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Any-to-Any Voice Conversion with Multi-layer
Style Adaptation and Content Supervision

Xuexin Xu, Pingyuan Lin, Liang Shi, Xunquan Chen, Jie Lian, Jinhui Chen,

Zhihong Zhang∗, Edwin R. Hancock, Fellow, IEEE

Abstract—Any-to-any voice conversion can perform among
arbitrary speakers with even just one single reference utterance.
Many related studies have demonstrated that it can be effectively
implemented by speech representation disentanglement. On the
one hand, most existing solutions fuse the style representations
into the content features in a global manner without considering
the difference of distributions between them. On the other hand,
in the any-to-any scenario, there is no effective method to ensure
the consistency of the linguistic content without text transcription
and additional information extracted from additional modules.
To alleviate the above problems, in this paper, we propose a
novel any-to-any voice conversion method, which we refer to
as SACS-VC. It combines two principal modules, which are
a) Style Adaptation and b) Content Supervision. Specifically,
we rearrange the style representations according to the content
distribution by using a temporal attention mechanism, to obtain
finer-grained style timbre information for each individual content
feature. Meanwhile, we associate the converted outputs and the
source utterances directly to supervise the consistency of semantic
content in an unsupervised manner. This can be achieved using
contrastive learning based on the corresponding and the non-
corresponding locations of content features. Additionally, our
method can implement by using a non-parallel speech corpus
without any pretraining. Experimental results demonstrate that
our method outperforms the current state-of-the-art any-to-
any voice conversion systems in both objective and subjective
evaluation settings.

Index Terms—Voice conversion, attention mechanism, con-
trastive learning, feature disentanglement.

I. INTRODUCTION

VOICE conversion (VC) aims to convert speaker identity

from a source utterance to that of a target speaker while

simultaneously preserving the original linguistic content. This

approach is widely used in many applications including per-

sonalized speech synthesis and human-computer interaction.

Early work [1]–[5] focused on using aligned parallel data,

i.e., any speech pairs from source and target speakers share the

same linguistic content and are aligned in the temporal dimen-

sion. However, these data were difficult to collect and time-

consuming to align. The restricted corpus availability limits the
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performance and generalizability of speech conversion. These

limitations have motivated research to explore non-parallel

voice conversion approaches [6]–[8]. They have resulted in

the construction of a deep neural network to approximate

a mapping function from the source speaker domain to the

target speaker domain. CycleGAN-VC [8] and StarGAN-VC

[9] have both employed cycle-consistency to ensure the invert-

ible mapping that results is identical with the source input.

Although these methods can generate subjectively pleasing

performance without the need for a parallel corpus, they

have only resulted in a conversion process for a predefined

multiple speakers set. When encountering arbitrary speakers

which maybe unseen during training (outside the set of of

speakers used in training), the above VC methods have only

rather limited conversion capabilities.

To overcome such limitation, several any-to-any voice con-

version methods have been explored [10]–[12]. In particular,

most existing any-to-any VC approaches are based on speech

representation disentanglement. This is an effective way to

address the any-to-any conversion problem by decomposing

the speech into speaker timbre and linguistic content rep-

resentations. Then the speaker identity can be converted by

only replacing the speaker timbre representation from one

speaker to another. Fig. 1 demonstrates this process. To

separate speaker timbre information from linguistic content as

far as possible, many techniques have been proposed. These

include the information constrained bottleneck layer [11],

[13], phoneme transcription guidance [14], vector quantization

[12], [15], [16], normalization techniques [10], [17] and self-

supervised speech representation [18], [19].

Nevertheless, most of these methods only embed the speaker

timbre without considering its relevance to content, which is

an average global style feature Such use of averaged style

sacrifices the local phonemic style modeling capability, and

processes all local content features using the same transforma-

tion function in voice conversion. For example, the pioneering

work reported in [10] proposed a simple yet effective method,

which applies the global mean together with the variance of

the target speech to the source utterance in a deep feature

space. Since required the statistics are calculated globally

from a fixed-length speaker representation, the fine-grained

style details and phoneme-wise patterns are largely discarded.

Furthermore, silence segments affect the style representation

because they contain almost no useful information. The same

issue exists in AutoVC [11], which applied a pretrained

0000–0000/00$00.00 © 2021 IEEE
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Fig. 1. An illustrative process of feature disentanglement based voice
conversion.

speaker encoder to extract the global speaker timbre repre-

sentations. To obtain the fine-grained style embedding for

each scale of the content representation, a frequnelty used

intuition is that more attention should be paid to the most

similar phonemic pronunciation of the target utterances, and

then extract and embed the corresponding style representation

for these temporal locations.

Unfortunately, once the network probes the local fine-

grained style, then unreliable style information may contami-

nate the corresponding content. The reason for this is that it

is not possible to completely decouple the content and style.

The residual mutual information between them at the same

locations will restrain the original features. Therefore, the

linguistic content of the converted speech is usually distorted

or ambiguous, and this is not acceptable in voice conversion. In

fact, existing state-of-art any-to-any voice conversion, such as

AdaIN-VC [10], AutoVC [11], are devoted to achieving arbi-

trary transfer without a parallel aligned corpus They all fail to

achieve effective supervision concerning the linguistic content

without any additional processing modules. The reason for this

is that they only include the main objective for reconstructing

input utterances (as shown in Fig. 1). Accordingly, the goal of

voice conversion can be defined in a more detailed way as that

of transforming the style timbre as much as possible without

losing semantic content.

We attempt to address these problems and obtain a better

balance between the style timbre transfer and preserving

semantic content. To this end we propose a novel any-to-any

voice conversion framework, which we refer to as SACS-VC,

which introduce Style Adaptation and Content Supervision to

resolve the above problems. The style adaptation module can

adaptively rearrange the style timbre representations according

to the content distribution using a temporal attention mecha-

nism, and then perform style transfer on each individual con-

tent feature. We implement forthright supervision for semantic

content in a self-supervised manner.

In more detail, the temporal attention map is learnt jointly

from the content features and style features by implicitly

aligning similar phonemic pronunciation. Subsequently, the

style features are rearranged with respect to this map, and then

the stylized features are generated by position-wise addition of

rearranged style features to give content features. Motivated by

previous research [20], for realising the content supervision,

we associate the converted speech and the source input directly

using contrastive learning. In other words, we maximize

the mutual information of the semantic content between the

converted speech and source speech. This ensures that the

semantic content is preserved during the entire conversion

process. Moreover, we also consider the value of the content

feature error between the two. Although we only consider a

non-parallel speech corpus in the training stage, we can estab-

lish the semantic correspondences between the source input

and the converted output based on content features. We then

maximise the correspondence in a self-supervised manner. To

some extent, preserving the linguistic content can help to better

decouple the speech representations. Considering the different

temporal scales present in audio signals, the above operations

(i.e., style adaptation and content supervision) take into ac-

count different layers of the deep embedding. Meanwhile, to

enhance the quality of the synthetic speech, we encapsulate the

whole framework into an adversarial training strategy using a

U-Net [21] like multi-scale architecture. SACS-VC, we can not

only achieve a more fine-grained style timbre transformation

for each individual phonemic content, but it can also preserve

the consistency of semantic content as much as possible during

voice conversion. Our main contributions can be summarized

as follows:

• We propose a style attention module to adaptively re-

arrange the style distribution according to the content

distribution using a temporal attention mechanism. In this

way, we can generate the corresponding style features for

each individual content feature. It is a more fine-grained

and appropriate style pattern that depends on semantic

content.

• A novel optimization objective referred to as content su-

pervision is proposed. It associates converted outputs and

source utterances, and helps the method to preserve the

semantic content during voice conversion by maximizing

the mutual information between them.

• We consider both high-level and low-level deep features

at different temporal scales to obtain better convergence.

Additionally, an adversarial strategy and a multi-scale

architecture are also adopted to enhance the quality of

the audio signals generated. Both subjective and objective

experimental results demonstrate that our method is better

than or comparable to alternative existing state-of-the-

art any-to-any voice conversion methods on real-world

VCTK datasets.

The remainder of this paper is organized as follows. Sec.

II briefly surveys the related literature. Sec. III presents

our SACS-VC method and Sec. IV reports our experimental

results. Finally, Sec. V concludes the paper and suggests

directions for future investigation.
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II. RELATED WORK

A. Direct transformation based voice conversion

To remove the requirement of a parallel corpus without any

additional data or pretrained models, many researchers have

developed methods based on using a feed-forward network to

achieve a direct transformation from one speaker to another.

Some work [8], [22]–[24] has proposed the use of non-parallel

voice conversion networks, which can only achieve one-to-

one conversion by training an independent network. Voice

conversion among multiple speakers is a pivotal eneabling

technology for a wide range of applications. Kameoka et al.

extended an image-to-image translation method StarGAN [9]

to develop StarGAN-VC [7]. Chou et al. [6] employed a two-

stage training strategy and an adversarial speaker classifier to

further remove speaker dependent information from linguistic

representations. Lee et al. [25] overcame the drawbacks of

CycleGAN-based methods [8], [26] by conditioning the net-

work on the speaker, and the resulting method can perform

many-to-many voice conversion using a single network.

However, the above voice conversion methods among mul-

tiple speakers cannot efficiently transfer those speakers not

present in the training data. The disadvantage of these methods

is the lack of ability to model unseen data.

B. Feature disentanglement based voice conversion

Recently, to address the limitations mentioned above, sev-

eral studies based on speech representation disentanglement

have attempted to decompose the speech into speaker and

content representations. These methods can easily achieve

any-to-any voice conversion by just replacing the speaker

representation. Qian et al. proposed AutoVC [11], which used

a pretrained speaker encoder and imposed a restriction on the

length of the bottleneck layer. In their subsequent work [13]

they considered different properties of speech. Zhang et al.

[14] use the corresponding phoneme transcriptions to guide the

extraction of linguistic representations. Vector Quantization

(VQ) is employed in [15] and [12] to separate the speaker-

independent features. AdaIN-VC [10] demonstrated that in-

stance normalization can effectively remove speaker style

information, and then applied adaptive instance normalization

[27] to adjust the global statistics ( i.e., mean and variance).

Ishihara et al. [28] generated content-dependent style infor-

mation using an attention mechanism. In [29] the local and

global style information are considered simultaneously. Self-

supervised speech representations are employed in [18] and

[19] for voice conversion. Wang et al. [16] used mutual

information to measure the dependencies between speech

representations.

Existing disentanglement voice conversion methods usually

only consider the reconstruction objective in the training pro-

cedure. However, it is difficult to preserve the semantic content

during the conversion process, especially when only using

non-parallel data. On the other hand, many previous studies

only embed the style representation into a predefined fixed-

length vector, which is not particularly suitable for variable

phonemic content. These methods fuse deep style features

into the content features without considering the differences

between the feature distributions. To alleviate these problems,

in this paper, we explore a better trade-off between style

timbre transfer and preserving semantic content. Specifically,

we design a style adaptation module to rearrange the style

distribution by considering the details of the content distribu-

tion. This ensures that the embedded style representation is

most suited to the semantic content. To avoid the semantic

content changing during the conversion stage, we propose a

novel learning objective which constrains it using contrastive

learning.

III. METHODOLOGY

Our proposed framework is based on the GAN [30]. Typ-

ically, a GAN is composed of a generator and a discrimi-

nator, and in our work, the generator is an encoder-decoder

architecture. Similar to AdaIN-VC [10] and AutoVC [11],

as illustrated in Fig. 1, the generator uses three modules to

achieve any-to-any voice conversion. The training process only

requires self-reconstruction from an input utterance, it can be

written as follows:

CA = Ec(X1,A), S1 = Es(X1,A), X̂1→1,A = De(CA, S1)
(1)

where X1,A denotes the utterance “A” produced by the speaker

“1”. CA is the linguistic information relevant to content “A”

captured from the content encoder Ec(·), S1 indicates speaker

information about identity “1” is generated by the speaker

encoder Es(·), and the Decoder De(·, ·) takes the content

and style feature maps as inputs to synthesize the utterances

X̂1→1,A.

Confining our attention to the non-parallel setting, the

speech pairs have different lengths. Therefore, given a source

speech X1,A ∈ R
C×TA and a reference speech X2,B ∈

RC×TB , TA and TB denote the time length of the speech

depends on the utterance. The conversion process can be

written as:

CA = Ec(X1,A), S2 = Es(X2,B), X̂1→2,A = De(CA, S2)
(2)

Based on the above procedure, we can easily synthesize the

converted speech X̂1→2,A ∈ R
C×TA by replacing the speaker

identity information from S1 to S2. It is worth noting that

we adopt a multi-scale architecture in the content encoder.

Thus CA is a representation array where each item is captured

by different layers. Additionally, to retain more information,

the speaker encoder generates the speaker style features but

without downsampling to preserve the original temporal scale,

i.e., S2 ∈ R
C×TB .

The key idea is to decompose the speech into speaker and

content representations. Unfortunately, the residual content

information in style may lead to performance degradation.

To mitigate this problem, we rearrange the disentangled style

representation according to the content information. This is

done using the style adaptation process described later on

in Sec. III-A. The main learning objective of most any-

to-any voice conversion methods is reconstructing the input

utterances. There is no supervision for the converted speech

without introducing additional modules. Unfortunately it is
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Fig. 2. Style-Adaptation module. We rearrange the style distribution according
to the content information, then we fuse the content-dependent style features
RS2 into the content features CA by point-wise addition to generate the
stylized features CS2,A.

difficult to measure the quality of the converted speech in the

training stage, especially the linguistic content. To alleviate

the above problem, Sec. III-B describes a content supervision

approach to constrain the converted speech to be the same

as the source speech. We use three types of loss function to

train the entire model described in Sec. III-D, and the detailed

network architecture will be discussed in Sec. III-C.

A. Style adaptation

We generate the content feature maps CA and the style

representations S2 from source speech and reference speech

through the different encoders. To overcome the negative

effects of residual correlation information, the style adaptation

(SA) module rearranges the style features based on their

content representations, and then generates content-dependent

stylized features CS2,A.

The SA modules can automatically adapt the style distribu-

tion according to the content information. In this eraspect it

is akin to an implicit alignment at the phoneme level. This

adaptation can mitigate the negative effects of inconsistent

content, and, moreover, it can easily achieve arbitrary voice

conversion without dramatic performance degradation. The SA

module is illustrated in Figure 2. Initially, given a content fea-

ture CA ∈ R
C×TA , we perform a mean-variance channel-wise

normalization to remove the style information [10], and then

transform it linearly to generate the normalized feature CCA.

We process the style features S2 ∈ R
C×T2 in the same way

to obtain the normalized style representation SS2. Meanwhile,

we feed the style features S2 into an additional linear layer,

but in this case there is no normalization operation, denoted

by SS2. In a manner similar to the cross attention operation,

we first calculate the correlation matrix A ∈ RTA×TB , which

can formulated as:

A = SoftMax(CC
T

A ⊗ SS2) (3)

where the position (i, j) of the correlation matrix A is used to

measure the relation between the ith content feature and the

jth in style feature. In other words, for each position of the

content feature, we enumerate all position of the style feature

to automatically align it with the most similar phonemic

position. We then rearrange the style features SS2 by taking

the product the correlation matrix A and SS2, appropriately

generate the rearranged style feature RS2 ∈ R
C×TA , we

express this as follows:

RS2 = SS2 ⊗AT (4)

Finally, we fuse the style features into the content features to

achieve voice style transfer by:

CS2,A = RS2 + CA (5)

Through the above SA process, we generate a stylized

feature according to the content phonemic information, and

fuse it into the content features. The generated results can

automatically select an appropriate speaking style for the

semantic content information that can better preserve it.

B. Content supervision

Voice conversion should fully preserve the semantic content

of the source speech while transferring the speaker style.

However, most existing voice conversion methods do not

guarantee that such constraints are enforced without additional

structures, especially in any-to-any voice conversion based

on feature disentanglement. Because we cannot completely

decouple the style and content from speech and ensure that

they are independent of each other, incorporating style infor-

mation will to some extend distort the content distribution.

The resulting semantic content of the converted speech may

be both distorted and ambiguous. Preserving the semantic

content consistency between the converted speech and the

source speech is therefore important for voice conversion. We

propose the content supervision process as illustrated in in Fig.

3 to overcome this problem.

Suppose we accomplish the voice conversion taks given

the source speech X1,A and the target speech X2,B coming

from different speakers. Then the converted speech X1→2,A ∈
RC×TA will be generated based on Eq. (2). The basic goal is to

constrain X1,A and X1→2,A to have the same phonemic con-

tent. Although they belong to different speakers, the semantic

content should be consistent during the whole conversion

process. Since we train the content encoder Ec to capture the

linguistic content information of speech, the content features

are readily computed from the Ec. Each layer of Ec and

its location within the feature stack represents a segment

or a patch of the input acoustic features (i.e., speech). The

deeper layers with larger receptive fields and correspond to

larger patches. An intuitive idea is thereforeew to constrain

the content features to be the same before and after the voice

conversion at the corresponding positions. This process can be

writen as :

Lcontent =
1

L

L
∑

l=1

∥Ec(X1,A)− Ec(X1→2,A)∥2 (6)

where l denotes the lth layer of the content feature stack, and

we use the mean squared error (MSE) to define the content

perceptual loss. This loss is very similar to the content loss in

style transfer [27], but the feature extractor is not pretrained in

this case. Ideally, the above approach can reduce the problem
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Fig. 3. The content supervision processing flow. We establish the semantic content relationships between the source speech X1,A and the converted speech
X1→2,A. There are two learning objectives in our content supervision. First, we minimize the feature value errors between X1,A and X1→2,A at the same
locations. Second, we minimize the corresponding content mutual information between X1,A and X1→2,A by using contrast learning, while encouraging the
content encoder Ec to distinguish the phonemic content. The semantic content is preserved based the above objectives during the conversion process.

of content distortion or obfuscation. Unfortunately, the content

encoder Ec may learn a trivial function (such as loss of

ability to distinguish between phonemic content), and output

the approximate representation for different semantic content.

The reason for this is that we update the parameters of Ec

according to the above loss without any pretraining. To avoid

Ec losing the ability to capture content diversity, it is necessary

to add one further requirement to make its objective multi-task.

Motivated by the unpaired image translation method based

on contrastive learning in [20], we select L layers from

Ec, to give a multi-layer convolution network that extracts

feature stacks from the input speech spectrogram. The stack

of features produced in this way can be represented as Cl
A

and Ĉl
A, where l ∈ {1, ..., L}, CA and ĈA denote the content

features generated by Ec(X1,A) and Ec(X1→2,A) respectively.

Unlike the pixels in an image, the number of fragments of

speech is much smaller. Thus, all temporal locations of the

content features in each layer will be used.

To encourage the semantic content of converted speech

to be similar to the source speech, we maximize the mu-

tual correspondence information between them based on the

InfoNCE loss [31]. Based on Eq.(6), we add a new learn-

ing objective to avoid the content encoder degrading. This

objective distinguishes the different features having different

temporal positions (i.e.,.iIt associates corresponding features

to one another, while disassociating them from the remainder)

by contrastive learning. The idea of contrastive learning is to

construct three different types of vectors, namely a) a “query”

vector q, b) a “positive” vector v+, and c) N “negative”

samples v−. These vectors are all sampled from the content

features Cl
A and Ĉl

A, thus v, v+ ∈ RC and v− ∈ RN×C .

For all temporal positions T , there is one positive sample and

the remaining N negative samples (i.e., T = N + 1). In our

context, query refers to an output content patch, positive and

negatives are the corresponding and noncorresponding input.

We maximize the probability of selecting positive sample

v+ over negatives. Even conducting voice conversion, it can

enforce the content encoder to output a similar embedding at

the same temporal position, and generate the distinguishable

representations at distinct locations. This can be also viewed as

a multi-classification problem with N + 1 classes. Therefore,

the cross-entropy loss will be calculated so as to maximize the

mutual information and this is achieved in turn by maximizing

the probability of matching the positive sample with the query

vector. We normalize each of these vectors using the L2 norm.

The mathematical formulation can be written as follows:

ℓ(q, v+, v−) = −log

(

exp( q·v
+

T )

exp( q·v
+

T +
∑N

n=1 exp(
q·v−

n

T )

)

(7)

where v−n denotes the nth negative samples and T is a

temperature parameter used to scale the feature distances. Our

goal is to associate the semantic content of the source input

and the converted output. The query vector is sampled from the

content features of the converted output, The positive sample

and the negative samples are the corresponding and the non-

corresponding source input at the different temporal locations.

As a result the second objectives can be expressed as:

Lcontrast =
1

L
·

1

N + 1

L
∑

l=1

N+1
∑

n=1

ℓ(qnl , v
n
l , v

(N+1)\n
l ) (8)

where l denotes the index of the content feature stacks and N

depends on l due to the different temporal scales.
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Fig. 5. An intuitive architecture diagram of the discriminator, which composes
of several 2d convolution layers.

Using the above two types of constraints, we locate the

mutual correspondences between the semantic content of the

source speech and converted speech. We then optimize our

method according to the directions of constraints. At all

temporal locations, the content features of the converted output

will not only be similar to the source input, but also distinguish

it from alternative phonemic content. As a consequence of this

content supervision, we can ensure that the semantic content

information is preserved as much as possible during the entire

voice conversion process.

C. Network architecture

Our framework is based on a GAN [30], which is typi-

cally composed of a generator and a discriminator. Given a

non-parallel speech corpus, we sample two different speech

instances X1,A ∈ R
C×TA and X2,B ∈ R

C×TB with dif-

ferent speakers. The generator G can sequentially generate

the converted speech X1→2,B = G(X1,A, X2,B), which has

similar content to X1,A and a similar timbre to X2,B . The

discriminator distinguishes a real sample of speech from a

synthetic one while encouraging the generator to synthesize

realistic speech of the target domain X2,B . The network

architecture is illustrated in Fig. 4 and Fig. 5.

1) The Generator: The generator G can be divided into

three components, a) a content encoder Ec, b) a speaker

encoder Es, and c) a decoder D. We first obtain the high-

level representations from Ec and Es respectively, and then

reconstruct the speech information through D. The generator

is composed entirely of convolution neural networks to achieve

non-autoregressive generation. As shown in Fig. 4, we capture

the content speech features with different temporal scales in

the content encoder, and then restore them gradually in the

decoder. This multi-scale architecture is very similar to the

U-Net [21].

In the encoders, we first employ the ConvBank layer

[32] which stacks convolution layers with different kernel

sizes to enlarge the receptive field and capture long-time

scale information. Subsequently, several convolution layers

are applied to generate the high-level representations. The

purely 1-dimensional convolution layers are implemented with

a kernel size set to 5, and the stride size depends on whether

downsampling of the temporal scales is required. We adapt

instance normalization after each convolution layer of the

content encoder to eliminate the speaking style information

[10]. It is important to note that we do not downsample the

temporal dimension in the speaker encoder. Instead, we keep

the original temporal dimension the same as the input acoustic

features to preserve the overall information. To mitigate the

training difficulties, we also implement residual connections

[33] for each pair of convolution layers with the exception

of the ConvBank layer. We also use average pooling to
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decrease the temporal resolution to match the feature shapes.

As mentioned above, the content encoder will decrease the

temporal scales gradually. Therefore, in addition to storing

the output feature of the content encoder, we also store the

intermediate features before each downsampling operation,

i.e., CA = {C0
A, C

1
A, ..., C

L
A}, where L denotes the numbers of

downsampling operation, and the shapes of these features are

{RC×TA ,RC×
TA
2 , ...,RC×

TA

2L }. The speaker encoder embeds

X2,B to generate the speaking style representation S2 ∈
RC×TB , while preserving the temporal scale without any

downsampling. As illustrated in Fig. 4, we set the number

of downsamplings L is 3.

In the decoder, given the content features CA and the style

feature S2, there are two main basic operations?: 1) Restoring

the temporal scale from the smallest scale feature CL
A, and

2) Fusing the style feature S2 into the content distribution by

using the style adaptation modules mentioned in III-A. A set

of convolution layers with kernel size 5 and stride 1 are imple-

mented in the decoder. For increasing the temporal resolution,a

PixelShuffle1d layer [34] is used for upsampling, and local

interpolation in order that the residual connections match the

feature shape. A multi-scale architecture is applied to preserve

increased amounts of content information. We associate the

feature map after upsampling and the corresponding content

representation Cl
A according to the same scale. We feed the

restored feature and the style feature into the style adaptation

module. Due to the speaker encoder being trained without any

constraints and downsampling, we can automatically adapt and

fuse the style into the converted feature gradually according

to the semantic correlation. In other words, to synthesize

the stylized features, a pipeline is constructed using several

consecutive “1)-2)” operations to restore the temporal scale

of the features and then gradually fuse the style information.

Then we use a linear transformation to modify the channel

to match the acoustic features. Finally, the post network [35]

is appended but in this case without the batch normalization.

This predicts a residual to add to the prediction to improve

the overall reconstruction. The post network contains five

convolution layers, where we use hyperbolic tangent activation

function in all but the final layer. The channel dimension is set

to 512 in the first four layers, and reduces to 80 in the final

layer. We add a dropout layer with the rate set to 0.5 after

each layer in the post network.

2) The Discriminator: Unlike the generator, the discrimi-

nator is constructed with 2D convolution layers in a manner

similar to [6], [7] in order to better capture the acoustic texture.

We first reshape the input speech from RC×A to R1×C×A.

Subsequently, there are 5 convolution layers with stride 2 and

kernel size 5×5 to gradually, downsample the feature map. The

number of filters for these convolution layers are respectively

64, 128, 256, 512 and 512. To decrease the feature channel

from 512 to 32, a convolution layer with unit kernel size and

stride is appended. Finally, an output layer follows and is

used to obtain a measure of the degree of verisimilitude of

the speech in the target domain. Instance normalization [36]

and Leaky ReLu activation [37] with slope 0.01 are applied

after each convolution layer with the exception of the final

output layer.

D. Loss function

To translate the source speech to sound like the target

speaker, our proposed network is optimized through three

types of loss functions in the training stage. According to

Eq. (2), for given two arbitrary sampled speech instances

{X1,A, X2,B} from a non-parallel dataset X , we can achieve

any-to-any voice conversion based feature disentanglement.

1) Adversarial loss: Following [30], an adversarial loss is

adapted to synthesize realistic speech which sounds similar to

the target speech. We can write this as follows:

Ladv(X2,B , X1→2,A) = E{X1,A,X2,B}∼X logD(X2,B)

+ log(1−D(X1→2,A))
(9)

where G and D denote the generator and discriminator re-

spectively, and X1→2,A = G(X1,A, X2,B). The variant loss in

WGAN-GP [38] is adopted to mitigate the training instability

issue.

2) Content supervision loss: As discussed in Sec. III-B,

we use two different learning objectives to preserve the con-

sistency of the semantic content during the speech conversion

process. Thus, the content supervision loss depends on Eq.(6)

and Eq.(8) in weighted combination i.e.,

LT
cs(X1,A, X1→2,A) = E{X1,A,X2,B}∼X c1·Lcontent+Lcontrast

(10)

where the coefficient c1 is set to 0.5 to determine the relative

weight of the two components, and the temperature parameter

T in Eq.(8) is set to 0.09. Additionally, we also use the same

loss for the reconstruction objective, i.e., LR
cs(X1,A, X1→1,A).

Therefore, our content supervision loss is calculated on both

the translation and reconstruction patterns, and we simply add

them together to obtain the final content supervision loss:

Lcs(X1,A, X1→1,A, X1→2,A) =
1

2
· (LT

cs + LR
cs) (11)

We optimize the entire generator G according to this loss

function. This can also to some extent assist the generator

to decouple the speech representations by constraining the

semantic content structure.

3) Reconstruction loss: The reconstruction loss assists the

generator to preserve the consistency of the spectrogram when

using the same speech sample for both the input content speech

and the input reference speech:

Lrecon(X1,A, X1→1,A) = EX1,A∼X ∥X1→1,A −X1,A)∥1
(12)

where X1→1,A is the self-reconstruction procedure in Eq. (1),

and we use the L1 distance (norm) to measure the differences

between the source input and the correspond reconstructed

one. This reconstruction loss encourages well defined output

spectrograms and ensures that the auto-encoder architecture

does not loose too much information. It is also an essential

part and a main objective for feature disentanglement-based

any-to-any voice conversion methods [10], [11], [19].
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4) Final objectives: We train the proposed method by

solving a minmax optimization problem according for the

weighted sum of individual loss functions described above,

min
G

max
D
Lrecon + λaLadv + λcsLcs (13)

where λa and λcs are the hyperparameters which control the

relative importance of the different losses. We set λa to 0.02

and λcs to 1 during the experiments.

E. Implementation details

The output of our proposed method is a mel-spectrogram.

To this end we need to implement a vocoder to achieve the

transformation from acoustic features to speech signals. We

employed a pretrained MelGAN vocoder [39], which is a non-

autoregressive approach but has a comparable performance

with other autoregressive vocoders. Initially, we generate the

corresponding acoustic features in the required format for the

MelGAN input. More precisely, we resample the audio at

22,050 HZ and perform the STFT (short-time Fourier trans-

form) with STFT window size 1024. We then transform the

magnitude of the spectrograms into an 80-bin mel-scale and

then take its logarithm. Subsequently, these acoustic features

will be fed into our model to optimize its parameters. Finally,

we generate the converted speech through the optimized model

and the vocoder.

We train the proposed method (i.e., generator and discrim-

inator) using the ADAM optimizer (with learning rate =

10−4, β1 = 0.9, β2 = 0.999, and weight decay = 10−4)

for 20k iterations. The batch size is 32 and each mini-batch

consists of 32 source utterances and 32 reference utterances,

which are in one-to-one correspondence. The generator and

discriminator are optimized alternately in each iteration. Al-

gorithm 1 summarizes the entire training strategy.

Algorithm 1: Training Strategy

Input: Multi-speaker non-parallel dataset X ,

η = 0.0001, m = 32, λa = 0.02, λcs = 1
Initialize generator G = {Ec, Es, De} and

discriminator D,

for number of training iterations do

for j in 1, ..., m do

Sample source speech X
(j)
1,A ∼ X .

Sample reference speech X
(j)
2,B ∼ X .

Create a m-size minibatch {X1,A, X2,B}.
X1→2,A = De(Ex(X1,A), Es(X2,B))
X1→1,A = De(Ex(X1,A), Es(X1,A))
Calculate Ladv(X2,B , X1→2,A),
Lrecon(X1,A, X1→1,A),
Lcs(X1,A, X1→1,A, X1→2,A)
θD ← θD + η∇θDLadv

θG ← θG − η∇θG(Ladv + λaLrecon + λcsLcs)

TABLE I
NUMBER OF UTTERANCES AND SPEAKERS IN EXPERIMENTAL SETTING.

Training Validation Testing

Speakers 99 99 10
Utterances 23595 2573 2515

IV. EXPERIMENTS

A. Experiments setting

The entire CSTR VCTK Corpus [40], which includes about

44 hours of audio from 109 different speakers and different

sets of utterances, was used to train the proposed method.

We randomly sampled 5 female speakers and 5 male speakers

as our unseen test speakers. For each of the remaining 89

speakers, we used 90% of the utterances for training, and

the remainder for validation. We first trimmed the audio and

transformed it into acoustic features. For parallel training,

we randomly cropped the acoustic features with a segment

window length of 128. The details are shown in Table. I. In the

inference stage, voice conversion can be easily implemented

with variable-length inputs by virtue of our fully-convolutional

architecture. For non-parallel voice conversion, each training

pair consists of two different utterances with different content

from different speakers.

Any-to-any voice conversion requires that we process any

speaker utterances when they are not present in the training

data. Following [18], we consider two voice conversion set-

tings in our experiments: (1) many-to-many (m2m), which

implements voice conversion between speakers in the VCTK

training data; these test pairs came from the validation set

mentioned above. Although the speakers are seen in the

training stage, these utterances are not present in the training

data. (2) any-to-any (a2a), considers the voice conversion

between speakers which are not present in the training data;

these test pairs came from the testing set mentioned above. In

both the above cases, the test pairs were sampled fairly and

randomly in four dimensions (intra/inter-gender). We ensured

each test pair includes only 1 reference utterance. We can

easily generalize the proposed method to unseen speakers

without retraining or finetuning to improve the generalization

ability.

Four comparative methods which represent state-of-the-art

in any-to-any voice conversion were adopted for performance

comparisons. We have identified a comprehensive set of alter-

native methods and selected some of the most representative

ones. These include AdaIN-VC [10], AutoVC [11], VQVC+

[12], and AGAIN-VC [17]. To make fair comparison, we

reproduced their performance using the available open source

implementations and with the same training data. For each

method, we used the same acoustic features for training, and

adopted the MelGAN [39] vocoder to reconstruct the acoustic

feature to waveforms.

B. Evaluation metrics

1) Subjective metrics: Following previous analyses [41],

we also conducted evaluations on the naturalness of the
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TABLE II
OBJECTIVE EVALUATION RESULTS.

(a) Many-to-many setting

Methods Similarity ↑ MCD ↓ WER ↓

MelGAN (Vocoder) 0.932 3.69 15.21

AdaIN-VC 0.749 5.97 44.42
AutoVC 0.747 6.10 26.04
VQVC+ 0.766 5.91 56.16
AGAIN-VC 0.723 6.05 38.10

SACS-VC (Ours) 0.781 5.70 25.91

(b) Any-to-any setting

Methods Similarity ↑ MCD ↓ WER ↓

MelGAN (Vocoder) 0.933 3.66 15.04

AdaIN-VC 0.752 6.12 46.15
AutoVC 0.694 6.24 29.27
VQVC+ 0.735 5.98 59.12
AGAIN-VC 0.725 6.11 39.51

SACS-VC (Ours) 0.776 5.86 26.46

Proposed Adain-VC AutoVC VQVC+
0.0
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Fig. 6. MOS results on speech naturalness (left) and speaker similarity (right)
for both many-to-many VC and any-to-any VC, where the bars denotes 95%
confidence interval.

generated speech, and the similarity of the converted speech to

the reference utterance (vocoder-reconstructed) in style timbre.

The different measurements of converted speech form our sub-

jective metrics, i.e., speech naturalness and speaker similarity.

The Mean Opinion Score (MOS) was used to evaluate both

perceptual qualities of the converted speech. To evaluate the

speech naturalness, the annotators in the perceptual study were

asked to score the generated samples from 1 to 5 according

to how natural the converted speech sounded to them. For

measuring speaker similarity, each annotator was presented

with two audios (the converted speech and the corresponding

reference utterance), and asked to rate them from 1 (poorest)

to 5 (best) according to their confidence that the two audios

originated from the same speaker. These subjective evaluations

were conducted anonymously and randomly, and we ensured

that there were no less than 10 annotators for each sample

evaluation.

We randomly sampled 80 pairs from both the m2m set

and the a2a set considering all potential speech transfer

situations (intra/inter-gender) fairly. For each individual pair,

we obtained voice conversion using the alternative different

methods. These test pairs came from different speakers with

different transcriptions. All methods studied used the same

vocoder to reconstruct the audio waveforms.

2) Objective metrics: To objectively measure the quality

of the generated speech, we use three different metrics, i.e.,

a) Similarity, b) Mel-Cepstral Distortion (MCD) [42], and c)

Word Error Rate (WER). The authentic utterances are synthe-

sized with ground-truth mel-spectrograms using MelGAN. In

more detail, the metrics were evaluated as follows:

Similarity. The measurement of speaker similarity is similar

to the subjective evaluation methods mentioned above. The

goal is to measure whether the converted voice belongs to the

target speaker of the reference utterance. For a fair and objec-

tive comparison, we employed a third-party pretrained speaker

verification system Resemblyzer1 to embed the speaker timbre

characteristics into a fixed-dimensional feature. The evaluation

scores were generated by calculating the similarity between the

speaker representations of the reference utterance (vocoder-

reconstructed) and the generated utterance. The maximum

similarity score is 1, and the higher the score the higher the

speaker confidence.

In many-to-many voice conversion, even any-to-any setting,

2000 testing pairs with different transcriptions and speakers

were sampled from both m2m set and a2a set.

MCD. The Mel-Cepstral Distortion (MCD) is a measure

the differences of two sequences of mel-cepstra. It requires

a temporal alignment for the two input sequences. To make

reasonable comparisons between the generated and ground-

truth speech, we applied the Dynamic Time Warping (DTW)

algorithm to align the speech audio signals [43] before

calculating MCD. Here, we extracted mel-cepstrals features

(MECP) from the waveform of utterances to describe the

speech signals instead of the mel-spectrogram originally used.

The smaller the distance the better the conversion quality.

Since the MCD calculation requires a temporal alignment

between the converted utterance and the authentic reference

utterance, we sampled another 2000 speech pairs from both

a2a and m2m sets, where each individual pair is provided with

the same content but different speakers.

WER. To measure the degree to which the generated

speech maintains the semantic content of the original during

voice conversion, we evaluate the WER of the converted

utterances. This is done by drawing support from a pretrained

automatic speech recognition (ASR) system. Here, we adopted

a pretrained ASR model, WeNet [44]. The ASR system can

predict the transcriptions, thus the WER can be calculated by

comparing the predicted and the ground-truth utterances. A

lower WER value indicates that the conversion preserves more

linguistic content in voice conversion. It can to some extent

provide evidence of the conversion quality.

In contrast to similarity, WER can measure the completeness

of the semantic content. This is an important attribute of voice

conversion. The 2000 conversion test pairs are sampled from

the same speakers but with different linguistic content. This

is a simple but effective way to measure the extent to which

1https://github.com/resemble-ai/Resemblyzer
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Fig. 7. Attention visualization results of two example pairs. (a) is the utterances with same content and different speakers. (b) is the utterances with different
content and different speakers.

content is retained, and the degree of disentanglement between

different speech representations.

C. Experimental results

1) Subjective performance: As shown in Fig. 6, the two

MOS scores are determined with 95% confidence intervals in

both m2m and a2a settings. Our proposed SAVS-VC performs

better than other baseline methods on both speech naturalness

and speaker similarity, thus indicating better subjective con-

version quality according to human perceptual evaluations.

Meanwhile, the MOS results imply that our model can be

easily extended to conversions between unseen speakers with-

out drastic performance degradation. Here, we also conducted

related experiments for the proposed SACS-VC but without

content supervision. The results indicate that content supervi-

sion is important to obtain more natural converted utterances,

although at the price of slightly degrading the speaker sim-

ilarity. To summarize, our approach can transfer the speaker

timbre well while retaining as much content information as

possible. The generated audio samples are available on our

demo page2.

2) Objective performance: Based on the objective assess-

ment described above, the results given in Table. II were

obtained. From this table when compared with the alter-

native any-to-any voice conversion approaches studied, our

proposed method achieved the best results on Similarity,

MCD, and WER scores in both the m2m and a2a settings.

This may be attributed to the fact that our style adaptation

module can automatically explore acoustically similar speech

fragments, and the generated style representations are more

compatible with the content information than alternative global

style embeddings. For the any-to-any setting, despite a little

performance degradation, SACS-VC remains more efficient

than the alternative methods. AdaIN-VC and AGAIN-VC are

robust to unseen speaker in terms of speaker similarity, but

AutoVC and VQVC+ have significant reduced performance

when encountering unseen speakers. When disentangling the

content and style representations to achieve voice conver-

sion, AdaIN-VC, AGAIN-VC, and VQVC+ loose significant

amounts of content information with a higher WER score. This

2https://www.

is because these methods lack supervision concerning content

consistency during the conversion process. By contrast, our

method can effectively preserve semantic content information

due to the additional use of content supervision. Even though,

AutoVC achieves competitive performance in terms of WER,

our method significantly outperforms in terms of the remaining

metrics.

In conclusion, our method gives a better trade-off between

style timbre transference and semantic content preservation,

thus the converted utterances have better quality in terms of

both speech naturalness and speaker similarity.

D. Attention analysis

To present meaningful insights into for the performance of

the style adaptation module, we visualized the attention map

to analyze its efficacy. However, to display an explainable

visualization and focus purely on the style adaptation module,

we eliminated the content supervision loss, and retrained

the whole method. The final style adaptation module in the

decoder was selected, and we sampled two example pairs

from the test set considering two scenarios, namely a) different

speakers with the same utterance and b) different utterances.

In Fig. 7 (a), the source and target utterances with the

same content but spoken by different speakers show an ap-

proximately diagonal attention pattern (besides the silence

part). This is because they have a chronologically similar

phonetic structure. In Fig. 7 (b) we selected a different pair

with different content and different speakers. Again, the style

adaptation module is able to focus on the acoustically similar

speech fragments (e.g., /EY1 S/ and /IY1 S/ in the yellow box,

/IY0/ and /IY0/ in the green box, and /EH1 Z IH0/ and /AE1

Z AH0/ in the red box). These visualization results indicate

that our style adaptation module can explore more fine-grained

voice fragments. Moreover, it can be used to effectively fuse

more suitable style representation.

E. Ablation studies

In this section, we conduct ablation studies to demonstrate

the effectiveness of our proposed content supervision approach

by individually dropping each of the above loss functions.

This provides insights into the role of each loss function in
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(a) Proposed (b) w/o cs (c) w/o contrast (d) w/o content

Fig. 8. Visualization of embedding given by content encoder. We split the final content features according the temporal locations and visualize them. Each red
point represents the content embedding from one source utterances. Each × symbol represents the content embedding of the converted speech, the different
colors indicates that the different utterances are used as reference for voice conversion.

TABLE III
ABLATION STUDIES ON ANY-TO-ANY VOICE CONVERSION SETTING.

Methods Similarity ↑ MCD ↓ WER ↓

w/o Lcs 0.845 5.33 91.80
- w/o Lcontrast 0.833 5.34 80.74
- w/o Lcontent 0.812 5.53 58.46

SACS-VC (Ours) 0.776 5.86 26.46

the training stage. Note that, all of the presented results are

generated using the same metrics and the same any-to-any

voice conversion setting. The corresponding evaluation results

are given in Table III.

Once we remove the content supervision, the WER score

dramatically increased from 26.46% to 91.80%. This result

indicates that the Lcs loss is indispensible in enforcing that

the converted speech maintains the same semantic content as

the source speech. Meanwhile the Similarity score improves.

Without content supervision, the content and style become out

of balance, the model is free to excessively transform the style

timbre without considering the consistency of content. This

improvement in Similarity score coincides with our intuitions.

The MCD score also improves when the content supervision

loss is removed. Since the MCD metric requires parallel data,

all phonemes are present in the reference speech. The method

can also easily achieve a diagonal attention pattern based on

our style adaptation module, and the related experiments can

be found in Sec. IV-D. We argue that content supervision is

essential to ensure that our method prevents over-styling and

loss of semantic content. Moreover, it helps to locate a better

trade-off between the content and style.

We also conducted ablation studies of the different ob-

jectives for content supervision learning. When Lcontrast is

removed we only considered the error at the corresponding

position of the feature. We observe a slight decrease in

the WER score, but the converted speech was still blurred

and distorted. In removing Lcontent, we only associated the

converted speech and source speech using contrast learning.

The converted speech has similar pronunciation to the source

speech. However, in a more sophisticated testing environment

(Neural-ASR), the results were not so good. Only if we

consider both of those learning objectives simultaneously,

can we maintain more semantic content information and thus

achieve a lower WER score.

F. Visualization of content representations

In order to further demonstrate that our content supervision

method can ensure the consistency of semantic content during

voice conversion, the content representations extracted using

the content encoder were visualized using t-SNE [45]. We

tested 10 unseen speakers. We first randomly sampled one

utterance from different speakers. We selected one sample as

source speech and used the remainder as reference speech to

perform voice conversion. We extracted the content representa-

tions of one source speech and nine converted speech samples

from the content encoder, and then we split these represen-

tations along their time axis to obtain a single concatenated

embedding vector which can be used to represent a patch in

speech. Finally, we projected all of the individual concatenated

embedding vectors so obtained into a 2-dimensional space

using the t-SNE algorithm.
Fig. 8 presents the visualization results. Each red point

represents the embedding vectors of source speech, and each

× symbol indicates the representation of the converted speech.

The different colors represent the converted results obtained

from different reference utterances. It is clear that the con-

tent embedding vectors of the converted speech are almost

completely overlapped with the source speech. Each cluster

indicated a certain speech patch, they were independent of

each other with low similarity in projected feature space.

This result indicates that the content supervision method

employed can effectively preserve the consistency of semantic

structure. Moreover, it can lead the content encoder to de-

compose representations which are both clean and accurate.

After removing the loss Lcs, the embedding vectors were

found to be cluttered and overlapped in the embedding space.

In particular, the content representations of the converted

speech were distant from the corresponding source speech.

This implies significant distortion of the content when Lcs is

removed in the ablation study. When removing only the loss

Lcontrast, the distances among the corresponding clusters in-

creased compared with those obtained when Lcs was removed.

However, some speech clusters are close to each other in the
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embedding, and this may indicate that the content encoder

looses the ability to distinguish some phonemic content. When

only the loss Lcontent is removed, because we maximize the

mutual information between the content embedding vectors

of the converted speech and source speech by using this

loss, the results were very similar to those obtained with

our full proposed model (without ablation of the individual

losses). This implies that Lcontrast plays an important role

in preserving the semantic content. However, without the

error values between the corresponding embedding vectors,

the intra-cluster distances increased compared with the full

proposed model. These subtle differences will lead to phoneme

recognition errors, especially in the Neural-ASR system. To

summarize, these visualization results demonstrated the im-

portance and effectiveness of content supervision.

V. CONCLUSIONS

In this paper, we have proposed a novel method to achieve

any-to-any voice conversion, which we refer to as SACS-

VC. It attempted to solve two major problems with existing

voice transfer systems. Firstly, we adjust the style distribution

according to the content distribution by considering the local

similarity between them. Secondly, we preserve the consis-

tency of the semantic content in a self-supervised manner. Our

proposed method can generate high-quality voice by achieving

a trade-off between semantic content preservation and style

timbre transfer. Experiments verified that our proposed method

achieved comparable or even better performances than other

SOTA any-to-any voice conversion approaches.

1) Strengths: In any-to-any voice conversion, there are very

few methods that have explicitly ensured the consistency of

semantic content before and after conversion. We, on the

other hand, rearrange the style distribution by considering the

local similarities between the source and reference utterances.

Higher audio quality can be attributed to the use of the

proposed framework.

2) Weaknesses: In our method, the style adaptation mod-

ules needs to capture the local semantic similarities between

the source and reference utterances. However, noise inevitably

occurs when the reference utterance is too short or its linguistic

content is very far from that of the source utterance. Such noise

may impair the conversion performance. The reason for this

is that there is insufficient relevant information contained in

the reference utterance.

3) Future Work: To further improve our method, further

investigation should be made into obtaining more suitable style

information and producing more perceptually satisfying re-

sults. Additionally, we will explore more highly customizable

voice conversion based on multiple facets of speech including

timbre, pitch and rhythm.
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