
This is a repository copy of Specification, Validation and Verification of Social, Legal, 
Ethical, Empathetic and Cultural Requirements for Autonomous Agents.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/202062/

Preprint:
Yaman, Sinem Getir, Cavalcanti, Ana orcid.org/0000-0002-0831-1976, Calinescu, Radu 
orcid.org/0000-0002-2678-9260 et al. (3 more authors) (2023) Specification, Validation and
Verification of Social, Legal, Ethical, Empathetic and Cultural Requirements for 
Autonomous Agents. [Preprint] 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/id/eprint/202062/
https://eprints.whiterose.ac.uk/


Specification, Validation and Verification of

Social, Legal, Ethical, Empathetic and Cultural Requirements

for Autonomous Agents

Sinem Getir Yaman1, Ana Cavalcanti1, Radu Calinescu1, Colin Paterson1, Pedro Ribeiro1, and Beverley Townsend2

1. Department of Computer Science, University of York, UK

2. York Law School, University of York, UK

Abstract

Autonomous agents are increasingly being proposed for use in healthcare, assistive care, education, and other applications
governed by complex human-centric norms. To ensure compliance with these norms, the rules they induce need to be
unambiguously defined, checked for consistency, and used to verify the agent. In this paper, we introduce a framework
for formal specification, validation and verification of social, legal, ethical, empathetic and cultural (SLEEC) rules for
autonomous agents. Our framework comprises: (i) a language for specifying SLEEC rules and rule defeaters (that is,
circumstances in which a rule does not apply or an alternative form of the rule is required); (ii) a formal semantics
(defined in the process algebra tock-CSP) for the language; and (iii) methods for detecting conflicts and redundancy
within a set of rules, and for verifying the compliance of an autonomous agent with such rules. We show the applicability
of our framework for two autonomous agents from different domains: a firefighter UAV, and an assistive-dressing robot.
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1. Introduction

There is huge push to develop and use autonomous
agents (software and cyber-physical systems) in high-stakes
applications from health and social care, transportation,
education, and other domains. Along functional and non-
functional requirements such as dependability, performance
and utility, a new class of non-functional requirements
related to social, legal, ethical, empathetic, and cultural
(SLEEC) concerns [1] has become increasingly important
and challenging for these applications [2, 3, 4]. Despite
that recognised importance, there is currently very lit-
tle support for the elicitation, specification, validation,
and verification of SLEEC requirements. Existing research
in the area is promising, but only covers specific aspects
of the problem. For example, there are results on the
study [5, 6] and verification [7] of ethical concerns of au-
tonomous agents, modelling of legal requirements for soft-
ware systems [8], and development of personalised ethical
assistant tools based on the moral choices of the user [9].

In this paper, we build on this early research to provide
support for the development of autonomous agents that
need to perform tasks that raise SLEEC concerns [1, 10].
To that end, we introduce a tool-supported SLEEC re-
quirement specification and verification framework that
includes a language for defining these concerns as SLEEC
rules that complement the functional and other non-func-
tional requirements of an autonomous agent. Our lan-
guage supports the use of defeasible logic [11, 12] to allow

both the definition of SLEEC constraints and the spec-
ification of conditions under which these constraints do
not apply or may need to be replaced with alternative
constraints. Such conditions are expressed in terms of
additional information coming from the environment or
the agent components, and are specified within SLEEC
rules as defeaters. Given a set of SLEEC rules for an au-
tonomous agent, our framework automates: (i) their for-
malisation in tock-CSP [13], a version of the communicat-
ing sequential processes (CSP) algebra [14] that can de-
scribe discrete-time properties; (ii) the validation of their
consistency, to ensure that the rules are not conflicting,
and to identify redundant rules; and (ii) the verification of
an agent’s compliance with the validated rules.

We have evaluated our framework with two case stud-
ies: a firefighter uncrewed aerial vehicle (UAV) and an
assistive robot application from the healthcare domain.
Their rules have been identified with the help of lawyers
and ethicists. Our models representing the agent behaviour
are developed using a domain-specific language for robotics,
RoboChart [15]. This is a diagrammatic notation that can
be used to model control software using state machines,
time primitives to capture budgets and deadlines, and a
simple component model. Since there is support to gen-
erate tock-CSP models of RoboChart diagrams automat-
ically, we can use these models to formally verify designs
of the autonomous agents’ software against SLEEC rules.

The main contributions of our paper include:
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(1) A domain-specific language supporting the specifica-
tion of SLEEC rules for autonomous agents.

(2) The definition of a formal semantics for this language
in tock-CSP, catering for the definition of time bud-
gets, deadlines, and timeouts in the rules.

(3) A method for the formal validation of SLEEC specifi-
cations, to detect conflicting and redundant rules.

(4) A method for formally verifying the compliance of a
tock-CSP-encoded agent specification or design with
respect to a set of valid SLEEC rules.

(5) End-to-end tool support for SLEEC requirements spec-
ification, consistency validation and verification, using
a combination of software components developed by
our project and the FDR model checker [16].

The remainder of the paper is structured as follows. Sec-
tion 2 introduces the firefighter UAV, which we use as
a running example in later sections. Section 3 presents
the SLEEC language, and Section 4 defines its formal
semantics. Section 5 describes our approach to conflict
and redundancy checking, and our verification process for
SLEEC specifications. Section 6 details our evaluation,
describing the tool support provided, and the two case
studies. Finally, Section 7 covers related work, and Sec-
tion 8 concludes the paper with a brief summary and a
discussion of directions for future work.

2. Running example

To illustrate the concepts, notation, methods, and ap-
plication of our SLEEC framework, we use as a running
example a firefighting UAV inspired by recent research
on the use of drones to help tackle wildfires and urban
fires [17, 18, 19]. We consider that this UAV is tasked
with: (i) using a thermal camera to detect a potential fire
at a warehouse; (ii) determining the precise location of the
fire (with its depth camera) to report to a human teleop-
erator; and (iii) using an onboard water spraying system
to control the fire until the arrival of the fire brigade.

In addition to these functional goals, we suppose that
the firefighter UAV from our running example needs to
consider SLEEC concerns arising from its interactions with
human firefighters, bystanders and teleoperators. For ex-
ample, we assume that the UAV has an alarm which sounds
when the battery is running low. However, there are so-
cial concerns about sounding a loud alarm too close to a
human. As another example, we consider that reporting a
(potential) fire involves sending video footage of the sur-
veyed building to teleoperators. If, however, bystanders
are present in the vicinity of the building, including them
in this footage can raise legal and/or ethical privacy con-
cerns. We explain the UAV capabilities and the associated
SLEEC concerns in detail as we introduce our SLEEC no-
tation and its semantics in the next sections.

3. The SLEEC Language

Our framework supports the definition of SLEEC rules
for an autonomous agent by using a domain-specific lan-
guage whose syntax is defined in Figure 1. The set of
SLEEC rules for an agent is provided in this language as a
specification comprising two blocks. The first block (an
element of the syntactic category defBlock) provides def-
initions for the functional capabilities and parameters of
the agent. The second block (ruleBlock) defines the ac-
tual SLEEC rules in terms of those capabilities and pa-
rameters. These blocks are described next.

3.1. The definitions block

The definitions block (delimited by the keyword pair
def start. . . def end) comprises declarations of events and
measures that represent capabilities of the agent, and con-
stants that represent parameters of the agent. Events and
measures correspond to interactions between the agent and
the environment, including any humans, to reflect aspects
of the environment that are perceptible or affected by the
agent. Measures differ from events in that they carry val-
ues, communicated to the agent on demand. A measure
corresponds to a query that is always responsive. An event
is an atomic interaction (input or output) that happens
sporadically.

A constant represents a value for some parameter of the
system configuration; its specific value may or may not be
defined. If a value is not defined, the constant represents,
for instance, a parameter that is defined at deployment
time to reflect the hardware or environment in which the
system is deployed, or the preferences of its user.

Example 3.1. An example of a definition block for our
firefighter UAV is shown in Listing 1. BatteryCritical is an
event that occurs when the battery is very low. This is
an abstraction for a battery sensor that provides input to
the UAV regarding its own hardware. CameraStart rep-
resents an interaction with a teleoperator, who can turn
on the camera and start recording. SoundAlarm is associ-
ated with a loudspeaker that the UAV can use to sound an
alarm. Finally, GoHome represents a navigation capabil-
ity of the UAV, provided by its motors and the embedded
software for using these motors to return the UAV to a
home location.

In addition, the SLEEC definition block from Listing 1
defines three measures. The first, personNearby, commu-
nicates a boolean to indicate whether, using its cameras
and associated vision software, the firefighter UAV has de-
tected the presence of a person. Whenever that informa-
tion is needed, the agent can use the personNearby mea-
sure to obtain it. We declare also two measures for the
temperature of the air, and the windSpeed level. Finally,
the constant ALARM DEADLINE records a “time budget”
for the alarm to sound. We do not give its value in the
specification, as we assume it is dependent on the actual
deployment of the UAV.

✷
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specification ::= defBlock ruleBlock

defBlock ::= def start definitions def end
definitions ::= definition | definition definitions

definition ::= event eventID | measure measureID : type | constant constID [= value]
type ::= boolean | numeric | scale(scaleParams)
scaleParams ::= literal | literal, scaleParams

ruleBlock ::= rule start rules rule end
rules ::= rule | rule rules

rule ::= ruleID when trigger then response

trigger ::= eventID | eventID and mBoolExpr

mBoolExpr ::= measureID | not mBoolExpr | (mBoolExpr) | mBoolExpr relOp value |
mBoolExpr boolOp boolValue

response ::= constraint [defeaters] | { constraint [defeaters] }
constraint ::= eventID [within value timeUnit [otherwise response]]

| not eventID within value timeUnit

defeaters ::= defeater | defeater defeaters
defeater ::= unless mBoolExpr [then response]
relOp ::= < | > | <> | <= | >= | =
boolOp ::= and | or

Figure 1: BNF syntax of the SLEEC language

def_start
event BatteryCritical
event CameraStart
event SoundAlarm
event GoHome
measure personNearby: boolean
measure temperature: numeric
measure windSpeed: scale(light ,moderate ,strong)
constant ALARM_DEADLINE

def_end

Listing 1: Definition block for our firefighter robot.

In summary, an event can be issued by an agent; GoHome
is an example. Alternatively, an event can be a request
issued by a user, such as CameraStart, or an input from
another system component, such as BatteryCritical. Mea-
sures, on the other hand, provide to the agent information
about the state of the system. Some measures may be
known with a high degree of certainty from sensors, such
as a temperature sensor or a heart-rate monitor. Others
may be inferred from indirect measures or indeed the fu-
sion of multiple sensors. For instance, a user’s level of
distress may be inferred from heart-rate monitors, images
of the user’s facial expression, and their tone of voice.

Events, measures, and constants have a unique iden-
tifier (eventID, measureID, and constID). By conven-
tion, we use identifiers starting with a capital letter for
events, and with a lowercase letter for measures. For con-
stants, we use identifiers all in capitals. A measure decla-
ration also defines the type of the values it communicates.
The supported types are boolean, numeric, and ordinal
scales, which introduce some literals and define an order
among them. In our example, we have scale(light,moderate,
strong) with the implicit order light < moderate < strong.

rule_start
Rule1 when CameraStart and personNearby

then SoundAlarm
Rule2 when CameraStart and personNearby

then SoundAlarm within 2 seconds
Rule3 when SoundAlarm

then not GoHome within 5 minutes
Rule4 when CameraStart then SoundAlarm

unless personNearby then GoHome
unless temperature > 35

rule_end

Listing 2: Sample SLEEC rules for a firefighter UAV

3.2. The rules block

SLEEC rules are defined in a ruleBlock (delimited by
the keywords rule start. . . rule end). A rule has an identi-
fier (ruleID), a trigger, and a response. A trigger is
an event and, optionally, a condition (i.e., a Boolean ex-
pression) over measures (mBoolExpr); when the event in
the trigger occurs and the condition, if any, is satisfied,
then the rule specifies the required response which defines
a constraint indicating the event(s) that must or must
not occur. The Boolean expression over measures can in-
clude conjunctions (and), disjunctions (or), and equalities
and inequalities (relOp) over numeric and scale measures
and relevant values.

Example 3.2. In Listing 2, Rule1 is concerned with the
privacy of persons near the firefighter UAV, when its cam-
era starts recording. The trigger of Rule1 has the event
CameraStart and a condition requiring the value of the
measure personNearby to be true. The response, in this
case, consists of a constraint that requires SoundAlarm to
occur, to warn the person that recording is underway. ✷
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Rule2_a when CameraStart and personNearby
then SoundAlarm within 2 seconds
otherwise GoHome

Listing 3: Extended version of Rule2 with otherwise construct

A distinctive feature of our SLEEC language is that it can
specify time constraints: time budgets for responses and
required alternative responses in the case of a timeout. A
time budget is specified using the within construct. The
timeUnit is provided based on the context under consid-
eration.

Example 3.3. In Listing 2, Rule2 is a more specific vari-
ant of Rule1. It has the same trigger as Rule1, but gives a
time budget for the response: it must happen within 2 sec-
onds. After all, if the person is not warned early enough,
the recording might already have violated their privacy by
the time the alarm sounds. ✷

For situations where the response event may not happen
within its budget, i.e., when there is a timeout, the oth-
erwise construct can be used to define an alternative re-
sponse.

Example 3.4. Revisiting Rule2 from Listing 2, we may
realise that achieving SoundAlarm within 2 seconds is not
guaranteed. The loudspeakers may be broken, or another
SLEEC rule may specify that sounding the alarm is not a
socially or ethically acceptable course of action, e.g., be-
cause the person is too close to the UAV. In this case, an
alternative can be provided as shown in Rule2 a from List-
ing 3. Here, the UAV is required to return to base (GoHome)
if the alarm cannot be sounded within 2 seconds. ✷

Thus, the otherwise construct allows us to provide a dif-
ferent response, in the particular case of a timeout arising
from the definition of a related within.

Another form of constraint requires an event not to
happen. In this case, a time budget must be defined via
the within construct, so as to not permanently disable the
event.

Example 3.5. Rule3 from Listing 2 is triggered when
SoundAlarm happens. In this case, for social reasons, the
“output” event GoHome is blocked for 5 minutes. It may
be the case, for example, that the teleoperators are in the
home region, and the UAV should not come close to them
while the alarm is sounding. ✷

The environment in which an autonomous agent is de-
ployed is generally highly complex and the assumptions
that underpin SLEEC rules may be invalid under certain
conditions. To support resilience in such environments,
we allow for the use of defeasible reasoning when there
are scenarios leading to reasons that outweigh or disable
a constraint [20]. Defeasible reasoning is supported in our
SLEEC language via unless clauses, which allow normative
rules to be be modified in light of additional information
obtained from measures.

Example 3.6. Listing 2 presents a Rule4 for constraining
CameraStart with a view different from that in the pre-
vious rules. In Rule4, CameraStart is required to lead to
SoundAlarm. We have, however, an unless clause with a
condition depending on the value of the Boolean measure
personNearby. If this measure is true, then Rule4 requires
the UAV to GoHome, so as to avoid the anti-social ac-
tion of sounding an alarm near a person, likely a human
firefighter. This is, however, once again defeated by a sec-
ond unless clause based on the temperature measure. If
this measure is greater than 35◦C, no response is required.
That is because such a high temperature is deemed an
indication that there is a fire nearby, which trumps the
legal/ethical concerns about filming a bystander, and the
firefighter UAV is permitted to use its camera without re-
strictions. ✷

Overall, multiple defeaters (grouped, if needed, within curly
brackets {. . .} to indicate the constraint they apply to)
alongside time constrains and timeouts can be defined in
SLEEC rules. So, the semantics of the rules (formalised in
the next section) can be rather subtle, and the interactions
between multiple rules can be unexpected.

4. SLEEC Semantics

This section defines the semantics of SLEEC using the
process algebra tock -CSP, a timed variant of CSP [21].
CSP is part of a large family of notations for specifying
concurrent systems [22, 23, 24], and is distinctive in its
denotational semantics, giving rise to notions of refinement
useful for stepwise development. A powerful model checker
called FDR [16] supports the validation and verification of
CSP (and tock -CSP) specifications.

In Section 4.1, we give a brief introduction to tock -
CSP. Section 4.2 gives an overview of our semantics, with
an example. The detailed semantics of SLEEC triggers
and responses are described in Sections 4.3 and 4.4, re-
spectively.

4.1. Overview of tock-CSP

CSP processes specify patterns of interaction via syn-
chronisation on channels, taking into account (non)deter-
minism, deadlock, and termination. Communications be-
tween parallel processes and with the environment are
achieved via channels. These communications are instan-
taneous, atomic CSP events, that can carry values: inputs
and outputs. The dialect tock -CSP, in addition, allows
processes to specify time budgets and deadlines using a
special CSP event called tock .

In Table 1 we summarise the tock -CSP operators that
we use in this paper. To illustrate the notation we present
a tock -CSP process for a UAV firefighter’s autopilot.

Example 4.1. In this example, we define a process AP

to model a simple autopilot. We use events Navigate and
Track to represent capabilities of the drone to move to an
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Table 1: List of tock -CSP operators, with basic processes at the top, followed by composite processes: P and Q are metavariables that stand
for processes, d for a numeric expression, e for an event, a and c for channels, x for a variable, I for a set, v for an expression, g for a
condition, and X for a set of events. For a channel c, {|c|} is a set of events; if c is a typed channel then events are constructed using the dot
notation, so that {|c|} = {|c.v0, ..., c.vn |}, where vi ranges over the type of c.

Process Description

Skip Termination: terminates immediately

Wait(d) Delay: terminates exactly after d units of time have elapsed

e → P Prefix operator: initially offers to engage in the event e while permitting any amount of
time to pass, and then behaves as P

a?x → P Input prefix: same as above, but offers to engage on channel a with any value, and stores
the chosen value in x

a?x : I → P Restricted input prefix: same as above, but restricts the value of x to those in the set I

a!v → P Output prefix: same as above, but initially offers to engage on channel a with a value v

if g then P else Q Conditional: behaves as P if the predicate g is true, and otherwise as Q

P ✷ Q External choice of P or Q made by the environment

P ; Q Sequence: behaves as P until it terminates successfully, and, then it behaves as Q

P \ X Hiding: behaves like P but with all communications in the set X hidden

P ||| Q Interleaving: P and Q run in parallel and do not interact with each other

P |[X ]|Q Generalised parallel: P and Q must synchronise on events that belong to the set X , with
termination occurring only when both P and Q agree to terminate

P △ Q Interrupt: behaves as P until an event offered by Q occurs, and then behaves as Q

P △d Q Strict timed interrupt: behaves as P , and, after exactly d time units behaves as Q

d ◀ P Deadline for visible interaction: engages in an event of P in at most d time units

✷ i : I • P(i) Replicated external choice: offers an external choice over processes P(i) for all i in I

area of interest (Navigate) and then search (Track) a fire.
In AP , we specify that the autopilot first accepts a request
to Navigate and then (→) starts Track ing. When a fire is
found, AP behaves as defined in the process FIRE . When
FIRE terminates, in sequence (;) AP recurses.

AP = Navigate → Track → FIRE ; AP
FIRE = 0 ◀ (temperature?t →

if t > 35

then 1 ◀ (SoundFireAlarm → Skip)

elseSkip)

In FIRE the autopilot reads a value t using a channel
temperature (temperature?t), and then behaves as defined
by a conditional. The process with the communication
temperature?t follow by the conditional is the argument of
the operator (◀) that defines a deadline, here 0, for that
process to exhibit visible behaviour. The deadline defines
the number of time units that can pass, that is, the number
of tock events that can occur, before the visible behaviour
happens. With the deadline 0, we specify that the input
must happen immediately: no tock events are allowed be-
fore the communication on the channel temperature occurs.
In the conditional, if the temperature read (t) is greater
than 35 Celsius, then an event SoundFireAlarm is required
to happen in at most 1 time unit. So, SoundFireAlarm

can happen before a tock or after at most one tock . Af-
terwards, FIRE terminates (Skip) immediately: no more
tock events can happen. If t is less than or equal to 35,
FIRE just terminates. ✷

We note that the CSP event temperature corresponds to
the SLEEC measure temperature in Listing 2. The other
events are not mentioned there. In general, we can expect
SLEEC rules to be concerned with some, but not all, ca-
pabilities of an agent. Verification needs to take that into
account, as we discuss in Section 5.3.

4.2. Overview of SLEEC semantics

The semantics of a SLEEC specification from Fig-
ure 1 is given by a function [[ ]]S defined in Table 2. This
function maps the specification to a tock -CSP process,
and is defined in terms of two other functions, [[ ]]DS and
[[ ]]RS, that capture the semantics of the definitions dB and
rules rB of the specification. The definitions in Table 2
are mechanised in our SLEEC tool [25], which automates
the generatation of the tock -CSP semantics of a SLEEC
specification (see Section 6.1).

The semantics of definitions from Figure 1 is given
by corresponding declarations of channels and constants
representing the SLEEC events, measures, and constants.
The types boolean and numeric are given semantics as
Bool and Int. For a scale type, the semantics is a CSP
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Table 2: Rules that define a tock-CSP semantics for SLEEC. We use the following metavariables in the definitions of the rules: def as a
metavariable to stand for an element of the syntactic category definitions, defS to stand for an element of definitions, eID for an eventID, mID

for a measureID, T for a type, cID for a constID, v for a value, sp and subscripted counterparts for a scaleParams,r for a rule, rrS for an element
of rules, rID for a ruleID, trig for a trigger, and finally resp for a response. These metavariables are also used in rules in Tables 3 and 4.

[[def start dB def end rule start rB rule end ]]S = [[dB]]DS [[rB]]RS

[[def]]DS = [[def]]D

[[def defS]]DS = [[def]]D [[defS]]DS

[[event eID]]D = channel eID

[[measure mID : T]]D = channelmID : [[T,mID]]T

[[constant cID = v]]D = cID = v

[[boolean,mID]]T = Bool

[[numeric,mID]]T = Int

[[scale(sp1, . . . , spn),mID]]T = STmID

datatypeSTmID = sp1 | . . . | spn

STlemID(v1mID, v2mID) =

if v1mID == sp1 then true

else ( if v1mID == sp2 then v2mID /∈ {sp1}

else . . .

else v2mID == spn )

[[r]]RS = [[r]]R

[[r rS]]RS = [[r]]R [[rS]]RS

[[rIDwhen trig then resp]]R = rID = Trigger rID ; MonitoringrID ; rID

Trigger rID = [[trig, αE(resp),Skip,Trigger rID]]TG

MonitoringrID = [[resp, trig, αE(resp),MonitoringrID]]RDS

datatype that declares its literal parameters, and an asso-
ciated Boolean function to record the order between those
literals. A SLEEC constant becomes a CSP constant.

Example 4.2. In Figure 2, we present the declarations
for the definitions in Listing 1. For each event and mea-
sure, we have a channel declaration. For the type of the
measure windSpeed, we define a datatype STwindSpeed

and a Boolean function STlewindSpeed with arguments
v1windSpeed and v2windSpeed (of type STwindSpeed). If
v1windSpeed is the first literal light, then it is guaran-
teed to be less than or equal to v2windSpeed , no mat-
ter the value of v2windSpeed . If, however v1windSpeed
is moderate, then the inequality holds if v2windSpeed is
not light, since it is then at least moderate as well. Fi-
nally, if v1windSpeed is strong, then the inequality holds
if, and only if, v2windSpeed is strong too. For model
checking, we need to define a value for the constants. In
this example, we use 3 as a time unit for the value of
ALARM DEADLINE. ✷

The recursive definition of [[ ]]DS is given by two equa-
tions. For a single definition def, the semantics is given
by another function [[ ]]D. For a list of definitions def defS,
containing a single definition def followed by a list defS,
the semantics is the sequence of CSP declarations deter-
mined by [[def]]D to capture the semantics of def, followed
by the CSP declarations defined by a recursive application
of [[ ]]DS to defS. We do not consider the empty list of defi-

channelBatteryCritical

channelCameraStart

channelSoundAlarm

channelGoHome

channel personNearby : Bool

channel temperature : Int
channelwindSpeed : STwindSpeed
datatypeSTwindSpeed = light | moderate | strong
STlewindSpeed(v1windSpeed , v2windSpeed) =

if v1windSpeed == light

then true

else ( if v1windSpeed == moderate

then (v2windSpeed /∈ {light})

else v2windSpeed == strong )

ALARM DEADLINE = 3

Figure 2: CSP declarations for the definitions in Listing 1

nitions, since a SLEEC specification defines restrictions on
the use of the capabilities of the agent, and without a dec-
laration of capabilities, there is no sensible specification.

The equations defining [[ ]]D consider each form of def-
inition in turn. We assume that identifiers in SLEEC
satisfy the usual lexical restrictions adopted in CSP, so
that, for example, events and measures are represented by
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Rule2 = TriggerRule2 ; MonitoringRule2 ; Rule2
TriggerRule2 =

letMTrigger = 0 ◀ (personNearby?vpersonNearby →

if vpersonNearby == true

thenSkip

elseTriggerRule2)

within CameraStart → MTrigger

✷

SoundAlarm → TriggerRule2

MonitoringRule2 = 2 ◀ (SoundAlarm → Skip)

Figure 3: Semantics of Rule2 in Listing 2

channels of the same name. For a constant, we assume
that a value is given. The type used in the declaration of
a measure is given by the semantic function [[ ]]T whose
arguments are the type T and the identifier mID of the
measure. The equations defining [[ ]]T for boolean and nu-
meric are straightforward. For a scale type, we use the
name of the measure in defining the corresponding CSP
declarations.

For simplicity, we use an informal notation to repre-
sent a scale type with n parameters sp1 to spn , namely,
scale(sp1, . . . , spn). The definition of a formal generative
function for the semantics of a measure with such a type
is, however, straightforward. The name of the datatype

defined is that of the measure, that is, the argument mID,
prefixed with ST . The name of the Boolean function that
defines its order is prefixed with STle instead.

The recursive definition of the semantic function [[ ]]RS
for a list of rules is similar to that of [[ ]]DS, but is based
on the semantic function [[ ]]R for a rule. The semantics
of each rule is given by a process, named after that rule,
and defined using two processes that capture the meaning
of its trigger and of its response. The process for every
rule is defined by composing in sequence a Trigger and
a Monitoring process. This reflects the fact that a rule
imposes no constraints until its trigger is observed. At
that point, it monitors (that is, determines) the allowed
behaviour to enforce the response.

Example 4.3. For Rule2 in Listing 2, the CSP process
that defines its semantics is shown in Figure 3. The be-
haviour of the process Rule2 is initially defined by that
of TriggerRule2. When the trigger of Rule2 is observed,
TriggerRule2 terminates (via the Skip from the condi-
tional statement), and the process MonitoringRule2 takes
over. When the response happens, MonitoringRule2 ter-
minates and Rule2 recurses. ✷

In Table 2, the definition of [[ ]]R uses the identifier rID
of the rule to assemble the identifiers of the Trigger and
Monitoring processes. The definition of the Trigger pro-
cess is given by the semantic function [[ ]]TG whose argu-

ments are the trigger of the rule, the alphabet of events,
that is, the set of all events used in the response of the rule,
and two continuation processes. The alphabet of events is
given by the function αE(resp). The first continuation pro-
cess determines the behaviour when the trigger happens.
In the definition of [[ ]]R, this is Skip, since the Trigger

process must terminate in this case. The second continu-
ation process determines the behaviour if the event of the
trigger takes place, but its condition does not hold. In the
definition of [[ ]]R, this is the Trigger process itself, since
in this case the Trigger process must recurse.

To define the Monitoring process, we use the semantic
function [[ ]]RDS. The first argument is the response that
is to be monitored. The subsequent arguments are needed
because a defeater may void the monitoring, which then
needs to check the trigger again. The extra arguments are
the trigger and the alphabet of events used in the response.
The final argument of [[ ]]RDS is a continuation process,
which in the definition of [[ ]]R is Monitoring .

We define [[ ]]TG next, and [[ ]]RDS in Section 4.4. Those
familiar with the use of CSP to specify properties might
observe that we do not adopt the usual approach that con-
siders the overall alphabet of events, and defines a rule that
imposes no restrictions outside its own alphabet. That
approach is convenient for verification by refinement, but
does not easily support checks for conflicts and redun-
dancy. With our semantics, we support validation, and,
for verification, we adopt a more elaborate notion of cor-
rectness, using refinement and priorities (cf. Section 5).

4.3. Triggers

The definition of [[ ]]TG is given in Table 3. For a trig-

ger that has just an event eID, the process is a synchro-
nisation on that event followed by the argument process
sp that defines the continuation when the trigger happens.
A choice allows the response events to happen freely, but
their occurrence leads to a recursion so that the rule is not
enforced if the trigger has not happened.

If the trigger has a Boolean expression on measures,
the process is defined using let and within clauses. The
actual process is defined in the within clause, but in its
definition we can use processes named in the let clause. In
the process [[eID andmBE,AR, sp, fp]]TG, we have the syn-
chronisation on eID is followed by a process MTrigger , de-
fined in the let clause using a semantic function [[ ]]ME.

Example 4.4. As shown in Figure 3, if the trigger has
a Boolean expression on measures, MTrigger first reads
the values of the measures urgently. For Rule2 in List-
ing 2, the condition is just on the measure personNearby, so
MTrigger inputs a value vpersonNearby using the channel
personNearby . Afterwards, a conditional checks the mea-
sure expression. If it holds, the trigger has occurred, and
MTrigger terminates, leading to TriggerRule2 terminating
as well. Otherwise, MTrigger recurses back to the Trigger
process to wait for the trigger event again. ✷
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Table 3: Rules that define a tock-CSP semantics for SLEEC triggers. Additional metavariables used here are as follows: AR for an alphabet (set)
of events, sp and fp for tock-CSP processes, mBE for an mBoolExpr, and MIDs for a list of measureID elements.

[[eID,AR, sp, fp]]TG = eID → sp ✷ (✷ e : AR • e → fp)

[[eID and mBE,AR, sp, fp]]TG = let MTrigger = [[αME(mBE),mBE, sp, fp]]ME

within eID → MTrigger ✷ (✷ e : AR • e → fp)

[[⟨⟩,mBE, sp, fp]]ME = if norm(mBE) then sp else fp

[[⟨mID⟩⌢mIDs,mBE, sp, fp]]ME = 0 ◀ (mID?vmID → [[mIDs,mBE[vmID/mID], sp, fp]]ME)

The function [[ ]]ME takes the list of measures used in the
Boolean expression as arguments, that measure condition
itself, and the continuation processes. In the definition of
[[ ]]TG, the first argument αME(mBE) of [[ ]]ME is defined by
a function αME, similar to α, but providing just measure
identifiers used in the Boolean expression.

The inductive definition of [[ ]]ME considers separately
an empty list ⟨⟩ of measures and a list with at least one
measure mID. In the process defined by this function, the
value vmID of each measure mID is read urgently in se-
quence (→). That value is then substituted for mID in
the expression mBE. Once all of the measures are input,
a conditional checks the value of the resulting expression.

In detail, for a list of identifiers ⟨mID⟩⌢mIDs, the defi-
nition of [[ ]]ME defines a process that reads the value ofmID
and records it into a local variable named vmID. To make
that urgent, it uses the operator ◀ with deadline 0 over
a process that starts with the communication mID?vmID.
The behaviour that follows is defined by the process char-
acterised by a recursive application of [[ ]]ME.

In that application of [[ ]]ME, the remaining measures
in mIDs are considered. Moreover, the Boolean expression
is changed to refer to the variable vmID, where the mea-
sure mID is used. We use mBE[vmID/mID] to denote the
Boolean expression obtained by replacing the occurrences
of mID with vmID. In our example semantics for Rule2 in
Listing 2, personNearby becomes vpersonNearby .

If the first argument of [[ ]]ME is the empty list of mea-
sures, then all the relevant measure values have been read,
and the Boolean expression is defined in terms of those
values (recorded in local variables). So, [[ ]]ME defines a
conditional process that specifies the appropriate continu-
ation behaviour depending on the measure condition.

The actual condition evaluated is specified using a nor-
malisation function. In norm(mBE) the SLEEC relational
operators applied to literals of scale types in mBE are en-
coded using the comparator functions of those scale types.
(Strictly speaking, norm( ) requires an extra argument
defining the type of the measures and the names of the
comparator functions for the scale types.) Additionally,
the use of a measure mID as a Boolean is transformed to
an equality mID == true as required by the CSP nota-
tion.

4.4. Responses

The semantic function [[ ]]RDS for response definitions
is specified in Table 4. The semantics of a response en-

closed in curly brackets is just the semantics of its con-

straint and defeaters itself. We omit that simple defini-
tion from Table 4. The semantics of a response that has
just a constraint is given by the function [[ ]]C.

Example 4.5. Rule2 in Listing 2 provides an example
of a response that has just a constraint, that is, the rule
contains no defeaters. The Monitoring process in its se-
mantics, shown in Figure 3, captures the time constraint
in the response. It requires that SoundAlarm takes place
within 2 time units. In this case, we have the assumption
that each tock represents the passage of 1 second. ✷

The SLEEC rules can refer to a variety of time units. To
give semantics, we can either assume that tock represents
the passage of a minimal period of time that can be con-
sidered (1 millisecond, for example), or calculate the great-
est common divisor of all periods of time referenced, and
adopt that to define the meaning of tock . Whatever the
solution, when using a time period definition we need to
normalise the value to describe it in terms of a number of
tock events. For instance, if tock is deemed to represent a
second, then “1 minute” should be normalised to 60.

The definition of [[ ]]C has one equation for each possible
form of constraint. If it is just an event, the constraint
process defined by [[ ]]C requires that event to be accepted
and then terminates. We recall that termination indicates
that the constraint has been satisfied, and the rule process
can recurse and wait for the next trigger.

If there is a time budget within v tU defining a number v
of time units given by tU, then the process for the event is
included in an ◀. The deadline norm(v, tU) is determined
using a normalisation function to calculate the number of
tock events allowed, as explained above.

If the possibility of a timeout is considered, via an oth-
erwise clause, instead of a ◀, we use a timed interrupt (△d)
to specify that, if the budget norm(v, tU) is used up, the
process that captures the semantics of the response asso-
ciated with the otherwise takes over.

Example 4.6. The MonitoringRule2 a process for the
SLEEC Rule2 a in Listing 3 is shown below.

(SoundAlarm → Skip) △2 (GoHome → Skip)

If after 2 seconds, for whatever reason, the alarm cannot
be sounded, then GoHome is required. ✷
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Table 4: Rules for the tock-CSP semantics of SLEEC responses. Additional metavariables used here are: const for a constraint, ARDS for a
set of events, mp for a process, tU for a timeUnit, n for an index (a natural number), dfts for an element of defeaters, and dft for a defeater.

[[const, trig,ARDS,mp]]RDS = [[const, trig,ARDS,mp]]C

[[const dfts, trig,ARDS,mp]]RDS = let [[⟨const⟩⌢ dfts↾RP, trig,ARDS,mp, 1]]LRDS

within [[αME(dfts), dfts,#dfts+ 1]]CDS

[[eID, trig,ARDS,mp]]C = eID → Skip

[[eIDwithin v tU, trig,ARDS,mp]]C = norm(v, tU) ◀ (eID → Skip)

[[eIDwithin v tU otherwise resp, trig,ARDS,mp]]C = (eID → Skip) △norm(v,tU) ([[resp, trig,ARDS,mp]]RDS)

[[not eIDwithin v tU, trig,ARDS,mp]]C = Wait(norm(v, tU))

[[⟨resp⟩, trig,AR,mp, n]]LRDS = Monitoringn = [[resp, trig,AR,mp]]RDS, provided resp ̸= NoRep

[[⟨NoRep⟩, trig,AR,mp, n]]LRDS = Monitoringn = [[trig,AR,mp,Monitoringn]]TG

✷

(✷ e : AR • e → Monitoringn)

[[⟨resp⟩⌢ resps, trig,AR,mp, n]]LRDS = [[⟨resp⟩, trig,AR,mp, n]]LRDS

[[resps, trig,AR,mp, n+ 1]]LRDS

[[⟨⟩, dfts, n]]CDS = [[dfts,Monitoring1, n]]EDS

[[⟨mID⟩⌢mIDs, dfts, n]]CDS = 0 ◀ (mID?vmID → [[mIDs, dfts[vmID/mID], n]]CDS)

[[unlessmBE, fp, n]]EDS = if norm(mBE) then Monitoringn else fp

[[unlessmBE then resp, fp, n]]EDS = if norm(mBE) then Monitoringn else fp

[[dfts dft, fp, n]]EDS = [[dft, [[dfts, fp, n− 1]]EDS, n]]EDS

Finally, for a constraint that forbids the occurrence of an
event, the semantics is the process Wait(norm(v, tU)) that
pauses: only allows time to pass, that is, tock events to
happen, for v tU time units, and then terminates.

If a response has one or more defeaters, [[ ]]RDS defines
a process using let and within clauses. The let clause
defines a number of local Monitoring processes used in the
within clause to define the overall Monitoring process.

Example 4.7. Consider the simpler version of Rule4 in
Listing 4. Its Monitoring process is as follows.

let

Monitoring1 = SoundAlarm → Skip

Monitoring2 = GoHome → Skip

within

0 ◀ (personNearby?vpersonNearby →

if vpersonNearby == true

thenMonitoring2 elseMonitoring1)

The constraint in the then clause and the response in the
unless clause are captured by local processes Monitoring1
and Monitoring2. In the within clause, after reading the
relevant measures, the process chooses a local Monitoring

process based on the unless condition. ✷

The local Monitoring processes are defined by [[ ]]LRDS,
which takes as argument a list containing the constraint
of the response, and the responses in the defeaters dfts.
We use dfts↾RP to represent the list of those responses.
For an unless defeater without a response, we get NoRep.

Rule4_a when CameraStart then SoundAlarm
unless personNearby then GoHome

Listing 4: Simpler version of Rule4

This is a special response defined in the semantics just for
the purposes of simplifying the semantic rules. The ad-
ditional arguments of [[ ]]LRDS are the extra arguments of
[[ ]]RDS, and a counter for the Monitoring processes used to
define their names. In the definition of [[ ]]RDS, we define
the (initial) value of the counter as 1.

The definition of [[ ]]LRDS has two equations for a sin-
gleton list of responses, and a third equation for a list
⟨resp⟩⌢ resps starting with a response resp followed by a
list resps. For a singleton list with a proper response resp,
the Monitoring process is defined by [[ ]]RDS. For the spe-
cial response NoRep, we need to consider the trigger.

Example 4.8. The Monitoring process for Rule4 in List-
ing 4 is shown below. It is similar to that in Example 4.7,
but has an extra local Monitoring3 process since we have
an extra unless clause. In the within clause, both relevant
measures are read urgently, and then conditionals identify
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the right local process to monitor the behaviour.

let

Monitoring1 = SoundAlarm → Skip

Monitoring2 = GoHome → Skip

Monitoring3 = CameraStart → MonitoringRule4

✷ SoundAlarm → Monitoring3

✷ GoHome → Monitoring3

within

0 ◀ (personNearby?vpersonNearby →

0 ◀ (temperature?vpersonNearby →

if vtemperature > 35 thenMonitoring3

else (if vpersonNearby == true

thenMonitoring2 elseMonitoring1)))

Monitoring3 corresponds to the unless clause for the con-
dition temperature > 35, which does not have an associ-
ated response. The meaning in this case is that the rule
imposes no restrictions. So, all CSP events used in the
rule semantics need to be allowed. In the example, the
Monitoring3 process needs to offer the choice (✷) of all
CSP events corresponding to the events used in Rule4. For
the event in the trigger, its occurrence leads to the outer
MonitoringRule4 process taking over. For all other events,
Monitoring3 simply recurses: Monitoring3 does not block
these events, but ignores them by just proceeding.

As illustrated, the definition of a local Monitoring process
for an unless clause without a response, that is, with a
response NoRep, requires information about the trigger
of the overall rule, its alphabet, and the overallMonitoring

process. These are the extra arguments of [[ ]]C and [[ ]]LRDS.
For a response NoRep, the local process Monitoringn

defined by [[ ]]LRDS, when applied to a counter value n, is
specified as a choice over a trigger process characterised by
[[ ]]TG and a choice of events e from the alphabet AR of the
rule given as argument. In every choice, such an event e is
followed by a recursion. In our example above, AR contains
SoundAlarm and GoHome. The arguments of [[ ]]TG are
the trigger, the process mp, providing the continuation in
case the trigger occurs, and the process Monitoringn, the
continuation if the trigger does not occurs. We recall that
[[ ]]R defines mp as the Monitoring process for the rule.

The process in the within clause of a response pro-
cess (as defined by [[ ]]RDS) is specified by a [[ ]]CDS function.
Its arguments are the alphabet αME (dfts) of measures of
the defeaters dfts, the defeaters dfts themselves, and the
number of responses to be handled, namely, the number
#dfts of defeaters, plus 1, to consider the constraint in the
rule overall response. The definition of αME (dfts) is simi-
lar to that of αME (mBE), but applies to a list of defeaters,
considering the Boolean expressions that they use.

The inductive definition of [[ ]]CDS is simple. For a list
of measures ⟨mID⟩⌢mIDs, the process inputs the values
vmID or the measure urgently and then behaves as the
process defined by [[ ]]CDS for mIDs. In the defeaters used

as argument for the recursive application of [[ ]]CDS, the
references to mID are replaced with vmID. In Example 4.8,
this defines the two urgent communications to input values
of the measures personNearby and temperature.

For an empty list of measures, the process is defined
by [[ ]]EDS. This is again an inductive definition, whose ar-
guments are the list of defeaters, the local Monitoring1
process that applies when no defeater in the list does,
and the number of defeaters in that list. We recall that
Monitoring1 is the process that captures the behaviour of
the overall constraint of the rule (see definitions of [[ ]]RDS

and [[ ]]LRDS). If the list of defeaters dfts dft has more than
than one defeater, the result is the application of [[ ]]EDS to
the last defeater, whose monitoring process is given by a
recursive application of [[ ]]EDS to define a process for the
other defeaters, which applies when dft does not.

If we have just one defeater, then the process is a condi-
tional that checks whether its condition applies. It it does,
the local Monitoring process identified by the counter n is
used. Otherwise, the continuation process fp is used.

Example 4.9. We show below the use of [[ ]]EDS to define
the conditional in Example 4.8.

[[ unless vpersonNearby thenGoHome

unless vtemperature > 35,

Monitoring1, 3 ]]EDS

=

[[ unless vtemperature > 35,

[[unless vpersonNearby thenGoHome,Monitoring1, 2]]EDS,

3 ]]EDS

=

[[ unless vtemperature > 35,

( if vpersonNearby == true

thenMonitoring2 elseMonitoring1 ),

3 ]]EDS

=

if vtemperature > 35

thenMonitoring3

else ( if vpersonNearby == true

thenMonitoring2 elseMonitoring1 )

Additional examples are provided in the next sections. ✷

5. Validation and Verification

When writing SLEEC rules, it is possible to make a
mistake and introduce redundant or conflicting rules, es-
pecially given the possibility that these rules are provided
by stakeholders with different expertise (lawyers, ethicists,
sociologists, etc.) and comprise complex defeaters. Re-
dundant rules may help stakeholders to understand the
consequences of the rules; for verification, however, these
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rules are unnecessary and so should be flagged. Conflicting
rules, on the other hand, mean that there is no implemen-
tation that can satisfy them all. They need to be flagged
and the conflict needs to be resolved. In Section 5.1, we
present an approach that uses the semantics of our rules
presented above to detect conflicts, and in Section 5.3, we
present redundancy checks. Finally, in Section 5.3, we dis-
cuss the verification of an agent model against a set of
SLEEC rules.

5.1. SLEEC conflict detection

Two rules r1 and r2 are conflict free if there is no sce-
nario in which both rules apply and the restriction of r1
makes it not possible to satisfy the restriction of r2, or vice-
versa. Conjunction is specified in CSP using parallelism.
So, roughly speaking, conflict freedom requires the process
formed by the parallel combination of the processes for r1
and r2 never to reach a state in which the only event that
can happen, if any, is tock . In this case, a system that
satisfies both rules cannot make useful progress.

In practical terms, we only need to check for conflict
between rules that have an overlap in their alphabet of
events. If the rules have no such overlap, the restrictions
they impose cannot interfere with each other. Moreover,
overlap in the alphabet of measures is irrelevant, as rules
do not need to agree on the reading of measures. The
measures represent information about the system and the
environment that is available at any time.

Table 5 presents the function [[r1, r2]]CP, which defines
the conjunction process idCC(r1, r2) for the rules r1 and
r2. In the within clause of this definition, we compose
the processes id(r1) and id(r2) (which define the seman-
tics of r1 and r2) in parallel (|[...]|), synchronising on their
common alphabet of events, i.e., on the intersection alpha-
bets αE(r1) ∩ αE(r2) of their alphabets.

An additional parallel process Env captures the envi-
ronment in which the rules are considered, by recording
the values of the measures for sharing between id(r1) and
id(r2). The definition of Env is given in the let clause as
the interleaving, that is, the parallel combination without
synchronisation, of processes Enve for each event e in the
alphabet of measures αM(r1, r2) of r1 and r2. These pro-
cesses input the value of the measure e when a rule first
requires that measure (e?x ). They then record the value
x input as a parameter for another process VEnve, which
outputs x (e!x) whenever a rule needs that measure. With
Env we ensure that, for conflict checking, the rules are
considered when the measures take the same value.

Using [[r1, r2]]CP, we define conflict freedom for the rules
r1 and r2 below. For that, we use the process operator
‘P after t ’, which defines the process that behaves like P

after it has already engaged in its trace of events t .

Definition 5.1. The rules r1 and r2 are conflict free, if,
and only if, for every trace t1 of [[r1, r2]]CP, there is a trace
t2 of [[r1, r2]]CP after t1 that contains at least one tock and
at least one event different from tock .

Table 5: Conjunction of rules r1 and r2

[[r1, r2]]CP = idCC(r1, r2) = let

Env = ||| e : αM(r1, r2) •Enve

Enve = e?x → VEnve(x )

VEnve(x ) = e!x → VEnve(x )

within

(id(r1) |[αE(r1) ∩ αE(r2) ]| id(r2))

|[αM(r1, r2)]|

Env

With this definition, we require that, at no point, enforc-
ing both rules, as defined by the process [[r1, r2]]CP, leads to
a deadlock, so that no more events are possible, or to a sit-
uation in which there is no deadlock, but only the passage
of time can be observed. The latter scenario is a timed
deadlock: time can progress, but no event is possible.

Definition 5.1 is given in terms of the semantics, that
is, the set of traces, of the conjunction process [[r1, r2]]CP.
For automation, we can check conflict freedom using FDR
using two assertions. The first is a standard FDR assertion
for deadlock freedom, and the second is an assertion based
on our mechanisation of a timed-deadlock freedom check
in the context of tock-CSP that is inspired by work in [26].

Example 5.1. Listing 5 presents another rule (RuleA) for
the firefighter UAV. This rule requires that, if the battery
reaches a critical level, and there is no risk of fire nearby,
as indicated by the temperature measure, then the robot
should return to base so that it can continue to work at
a later point. We can imagine that, if there is risk of fire,
the UAV should continue its mission even if it means that
it will exhaust its battery in action. However, RuleA is in
conflict with Rule3 from Listing 2. We show in Figure 4
the conjunction CSP process for the two rules. In this
case, both rules restrict the GoHome event and use just
one measure, temperature. So, the Env process is just the
Envtemperature process for this measure. The deadlock
check (using the FDR model checker) gives a counterex-
ample that indicates the reason for the deadlock. Namely,
it provides a trace with the events BatteryCritical and
temperature.20, and after 13 occurrences of tock , then the
event SoundAlarm, followed by 47 occurrences of tock . In
this case, we are identifying a time unit with 1s. So, the
counterexample, indicates that if RuleA is triggered, and
after 13s, Rule3 is triggered, then, after another 47s, we
have a deadlock, as RuleA requires GoHome to take place,
but Rule3 forbids it. ✷

If the assertion for deadlock freedom holds, there is no
guarantee that timed deadlock freedom holds.

Example 5.2. Listing 6 presents two other conflicting
rules for the firefighter UAV. In the case of these rules,
their conjunction does not lead to a deadlock. It is the
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RuleARule3 = let Envtemperature = temperature?x → VEnvtemperature(x )

VEnvtemperature(x ) = temperature!x → VEnvtemperature(x )

Env = Envtemperature

within(RuleA |[ {GoHome} ]| Rule3) |[ {|temperature|} ]| Env

Figure 4: Conjunction process for RuleA in Listing 5 and Rule3 in Listing 2.

rule_start
RuleA when BatteryCritical and temperature < 25

then GoHome within 1 minute
rule_end

Listing 5: Conflicting rule for a firefighter robot

rule_start
RuleC when BatteryCritical

then CameraStart
unless personNearby then GoHome
unless temperature > 35 then SoundAlarm

RuleD when BatteryCritical
then CameraStart
unless personNearby then SoundAlarm
unless temperature > 35 then GoHome

rule_end

Listing 6: Conflicting rule for the firefighter UAV

case, however, that there is a situation in which the only
possible behaviour allowed by these two rules is the pas-
sage of time. The check for timed deadlock freedom pro-
vides the following counterexample. First BatteryCritical
happens, so that both rules are triggered. Afterwards, the
measures personNearby and temperature are read and the
values provided are true and 33. So, RuleC requires the
robot to GoHome and RuleD requires it to SoundAlarm in-
stead. We do not have a deadlock, as time can pass in the
absence of a deadline. It so happens, however, that RuleC
forbids SoundAlarm and RuleD forbids GoHome (because
the two events are in the alphabets of both rules, and
SoundAlarm is not mentioned in the relevant defeater of
RuleC, while GoHome is not mentioned in the relevant de-
feater of RuleD). So, neither event can happen. ✷

If a pair of rules are not conflicting, but their alphabets
overlap, then one of them may be redundant. We next
consider how to check for redundancy.

5.2. Detection of superfluous rules

For a pair of rules r1 and r2 that have overlapping al-
phabets and are not conflicting, we define redundancy be-
low, using t ↾ E to denote the trace obtained from t by
removing all events that are not in the set E .

Definition 5.2. For conflict-free rules r1 and r2, we say
r2 is redundant with respect to r1 if, and only if, for every
trace t1 of id(r1), there is a trace of t2 of [[r1, r2]]CP, such
that, t1 ↾ αE(r1) = t2 ↾ αE(r1, r2).

First of all, we observe that the traces of the process that
characterises a rule identify the behaviours allowed by the
rule. So, the smaller that set of traces, the more restric-
tive is that rule. In this context, however, the reading
of measures is irrelevant, since, as already said, rules use
measures just to obtain information that indicates how the
events are to restricted. So, in Definition 5.2, we charac-
terise a rule r2 as redundant, with respect to another rule
r1, by considering the traces t1 ↾αE (r1), where t1 is a trace
of r1 and αE (r1) is the set of events of r1 or, more pre-
cisely, the set of CSP events that represent the SLEEC
events of r1. These traces characterise the restrictions of
r1. Similarly, the traces t2 ↾ αE (r1, r2) characterise the re-
strictions of r1 and r2. If every behaviour allowed by r1 is
also allowed by r1 and r2, then r2 imposes no additional
restrictions, and it is, therefore, redundant.

The mechanisation of this check is direct, since trace
inclusion in CSP corresponds to refinement, and ignoring
events can be captured using the hiding CSP operator (↾).

Example 5.3. In Listing 2, Rule1 is weaker, as it does
not have a deadline, and can be eliminated. This can be
automatically checked using the FDR model checker via a
trace refinement. Since the refinement holds, there is no
counterexample, but a clear indication of the weaker rule
between the two. ✷

Normally, a rule r2 should not be redundant with respect
to another rule r1 if r2 involves events not referenced in
r1. This is, however, not necessarily the case, since the
responses that refer to the extra events may be unreach-
able. So, in general, it is worth checking every pair of non-
conflicting rules with overlapping alphabets of events. It
is also possible to check for unreachable responses. Next,
however, we consider autonomous agent conformance to
SLEEC rules.

Our experience with the case studies presented in this
paper and with a number of other examples of autonomous
agents, as well as discussions with SLEEC experts suggest
that the number of SLEEC rules for an autonomous agent
will not run into the hundreds: it is more like tens, if that.
Moreover, a single rule is unlikely to have a very long or
very deep list of defeaters. So, although our checks require
a pairwise analysis of the rules, we expect that the checks
for conflicts and redundancy within a SLEEC specification
for an autonomous agent will remain tractable. Impor-
tantly, as we avoid dealing with the whole set of rules in a
single check, model checking is also likely to remain feasi-
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ble. The treatment of more complex data types provided
by measures, however, are likely to impose a challenge.

5.3. Verification of compliance with SLEEC rules

This section describes our method for checking a sys-
tem under verification (SUV) against a SLEEC rule r by
means of refinement in tock-CSP. To that end, we as-
sume the existence of a tock-CSP model for the SUV. Such
models can be generated automatically from other design
models, or can be devised manually by system developers
with CSP modelling expertise. Here, we consider examples
where a RoboChart [15] modelfor the agent is available
and used as a basis to generate a tock-CSP model SUV
automatically.

The notion of conformance r |=TT SUV that we adopt
is defined below. In words, it corresponds to traces re-
finement in tock-CSP, where the specification is defined in
terms of the process [[r]]R that captures the semantics of r
(cf. Table 2). Traces refinement in tock-CSP ensures that
the events of the SUV occur in the order and time spec-
ified, so that time budgets and deadlines are respected.
Like in the check for redundancy, refinement disregards
the measures; here, however, we require the values of the
measures recorded in the specification and in the SUV to
be the same. (In the definition of redundancy from Sec-
tion 5.2, this is ensured by the conjunction process.)

Definition 5.3. An SUV conforms to a rule r, written
r |=TT SUV , where SUV is the tock-CSP model of SUV,
if, and only if, for every trace t1 of the process SUV ; Stop,
there is a trace t2 of [[r]]R such that: (1) t1 ↾ αE(r) = t2 ↾

αE(r) and; (2) for every event e of αE(r) in a position i of
these traces, for every measure m in αM(r), the value of m
recorded in t1 and t2 at position i are the same.

We consider the process SUV ; Stop, rather than just
SUV , because the processes that give semantics to a rule
do not terminate. If SUV terminates, subsequent compo-
sition with Stop ensures that we do not erroneously flag a
problem just because the rule does not allow termination.

According to Definition 5.3, a conforming SUV may
engage in additional events and read additional measures.
The value v of a measure m at i in a trace t is that in
the last event m.v before the occurrence of the i -th event
of αE(r) in t . Conformance requires that, if a rule reads
a measure, a conforming SUV must read that measure as
well. Moreover, when checking conformance, we consider
traces based on the same values for those measures.

As mentioned earlier, the mechanisation of conformance
checking is based on refinement, but the specification is a
weakening of [[r]]R, with respect to refinement, to allow oc-
currence of additional events and any order in the reading
of measures.

We illustrate the verification process using a simplified
model of the control software of the firefighting UAV. In
the next section, we consider additional examples.

Example 5.4. As said, for modelling we use RoboChart.
In Figure 5, we show a RoboChart interface Capabilities
that declares those capabilities of the firefighter UAV that
we identified in the SLEEC specification. Other interfaces
in the model may declare additional capabilities not re-
lated to SLEEC concerns, but needed to implement the
firefighter UAV mission. We also show a RoboChart state
machine called UAV that specifies the control software of
our simple firefighter in terms of these Capabilities and us-
ing local variables (person, wind, and temp). In the ini-
tial state Init of UAV (the target of the transition out of
the initial junction indicated by a dark circle with an i),
an entry action reads the windSpeed, recording it in the
local variable wind, and the temperature, recording it in
temp. The notation ‘<{0}’ specifies that these inputs need
to be immediately available. There are two transitions
out of Init. The first has the event BatteryCritical as a
trigger. If this event happens, the UAV cannot proceed,
and terminates by transitioning to the final state, indi-
cated by a clear circle with an F. The other transition has
no trigger, but a guard that requires the wind not to be
strong (wind != windScale::strong, where windScale is the
enumeration type of wind defined on the left in Figure 5),
and the temperature to be high (temp > 35), indicating
a possible fire. That transition leads to a composite state
Recording whose entry action starts the camera. Its own
state machine is concerned with whether there is a per-
sonNearby. Every 1s, this state machine reads that mea-
sure and records it in the variable person. Depending on
whether there is such a person or not, it raises the event
SoundAlarm. A transition out of Recording ensures that,
when the BatteryCritical is signalled, the UAV goes back
to base by raising the event GoHome. The guard ensures
that the amount of time since the state Recording has been
entered (sinceEntry(Recording)) is greater than 0, so that
the check for the presence of a person is carried out before
returning.

There are several simplifications in this example, but
our focus is on the rules in Listing 2. We have identified
that Rule1 is redundant, so we do not need to be concerned
with it. Our technique identifies that the model satisfies
Rule2, but not Rule3. The counterexample provided by the
FDR model checker has the following events:

windSpeed .light , temperature.36,
CameraStart , personNearby .true, tock
SoundAlarm,BatteryCritical ,GoHome

This counterexample is a trace that leads to a forbidden
event, here GoHome. The trace corresponds to a scenario
in which, in the Init state, the measures windSpeed and
temperature read are as light and 36, respectively. With
that, in the state Recording, the camera is started, when
there is a personNearby. So, after 1 s (i.e., one tock), the
alarm is sounded, but the battery is indicated as critical.
In this situation the UAV goes home, but Rule3 forbids that
for 5 minutes. Indeed, the projection of this UAV trace to
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Figure 5: Sketch of RoboChart model for a simple firefighter UAV

the events of Rule3 is SoundAlarm,GoHome, which is
not a trace of the process for Rule3 (without the events
that refer to measures). So, considering Definition 5.3,
condition (1) is not satisfied. ✷

Before providing additional examples in the next section,
we note that the relatively low complexity of SLEEC rules
is expected to make the verification of SUV compliance
with each individual rule feasible—under the assumption
that the SUV tock-CSP model is itself of manageable size.
As is often the case with model checking, this assump-
tion may not always hold because of state explosion, in
particular as the FDR model checker is not optimised for
dealing with timed (i.e., tock-CSP) models despite sup-
port them. On the positive side, RoboChart is part of
a framework that includes support for alternative verifi-
cation approaches, based on theorem proving, simulation,
and testing [27]. In particular, theorem proving is promis-
ing, and amenable to automation if we use automatically
generated semantics, like that of SLEEC.

6. Evaluation: Tool support and additional

case study

In this section, we present our efforts to validate our
work beyond the firefighter UAV case study presented as a
running example in the previous sections. In Section 6.1,
we present a mechanisation of the semantics in Section 4
to support editing of SLEEC rules and automatic genera-
tion of tock-CSP scripts. The close relationship between
the definition of the semantics and its mechanisation pro-
vides validation for the work via evidence that there are
enough definitions, and that they produce valid tock-CSP
processes. Section 6.2 presents another case study, namely,
an assistive dressing robot. The SLEEC rules for this ex-
ample have been developed in collaboration with SLEEC
experts, and we have used our tool to validate the rules.

In addition, we have verified a design of that robot with
respect to our rules.

6.1. SLEEC tool

We have implemented the SLEEC syntax (Figure 1)
in Eclipse with approximately 120 lines of Xtext [28] code.
The translation of SLEEC documents to tock-CSP is based
on the definitions presented in Tables 2–4 and is imple-
mented in Xtend (approximately 700 lines of code) [29], a
lightweight version of Java.

The implementation of norm(mBE) allows seconds, min-
utes, hours and days in the concrete syntax and it nor-
malises each value to seconds in the current implementa-
tion. The resulting tool is described in [25]. We tested
a wide range of different rule structures from Tables 2–4
specified in our SLEEC language. All code and the models
are publicly available [30].

For the semantics, we translate from the trace-based
definitions of conflict, redundancy, and conformance, to
refinement checks via a mechanisation of tock -CSP [13] for
verification using the CSP model-checker FDR [16]. This
enables the automatic analysis of SLEEC rules and veri-
fication of conformance against system models with tock -
CSP semantics, such as in the case of RoboChart models.

Figure 6 shows a screenshot of our tool, where we can
see the encoding of the SLEEC definitions and rules from
Listings 1 and 2 in the left pane, and the automatically
generated tock-CSP script for the SLEEC specification in
the right pane. We note that, because model checking
operates with finite models, measures of the type Int need
to be specified using finite intervals such as {0..35}.

6.2. Robot Assistive Application

We present here our second case study, a robotic assis-
tive dressing (RAD) system tasked with aiding a physically
impaired user with dressing adapted from the solution pre-
sented in [31]. A secondary function of RAD is to monitor
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Figure 6: Tool for editing and supporting reasoning about SLEEC rules

the health of the user, who is liable to fall. When falls are
detected, RAD is expected to contact support services.
Health and fall monitoring is achieved through a smart
watch worn by the user and by visual sensors mounted
on the platform and in the user’s home. To communicate
with the user, RAD is equipped with voice recognition and
speech modules. RAD can communicate with a support
operator located off site by transmitting audio and video
feeds. Finally, RAD can control temperature, lighting and
the opening/closing of the room curtains through home
automation functionality.

RAD’s control software is specified as a RoboChart
model that includes multiple state machines defining par-
allel behaviour. The two state machines relevant to the
discussion here are DressingService and MonitoringService;
they are depicted in Figure 7. DressingService specifies the
software for dressing of users, and interacts with the plat-
form via events such as DressingStarted and DressingAban-
doned. MonitoringService mediates the opening of a room’s
curtains, and can call support if needed. In what follows,
we describe each state machine in further detail.

In DressingService the state machine is initially in an
Idle state. A transition to a Dressing state is triggered by
the event DressingStarted, corresponding to a request from
the user. In that state’s entry action the current roomTem-
perature is input into a local variable temp, and then the
behaviour is given by a call to an operation Dress with the
current temperature passed as a parameter. Here, Dress
is a software operation that captures the time the actual
dressing can take, after which it sets the value of a Boolean

variable completed to true. Because Dress is called in a
during action, this behaviour can be interrupted by any of
Dressing’s outgoing transitions: either because completed
is true, or as a result of DressingAbandoned being trig-
gered. In both cases, before Dressing is exited, its exit
action is executed: it calls an operation Clear that sets
the variables completed and retry to false followed by an
output on DressingComplete to indicate that dressing has
completed, irrespective of whether it has succeeded. In
Abandoned there is a call to an operation Retry. This op-
eration captures a protocol for agreeing to retry dressing.
If there is agreement from the user, then retry is set to true
and the transition back to Dressing is enabled and taken.
Otherwise, if no agreement has been reached and more
than two minutes have elapsed since entering Abandoned,
the guard over the transition to Idle becomes true. When
that transition is taken there is a call to a software oper-
ation CallSupportDecision that calls support depending on
whether there is user assent for that.

The machine MonitoringService also starts in an Idle
state, from where two outgoing transitions that can be
triggered by events UserFallen and CurtainOpenRqt. If a
user has fallen then the operation CallSupportDecision is
called, followed by the opening of curtains in the entry
action of the state OpenCurtains, and then there is a tran-
sition back to Idle. If there is a request to open the curtains
via CurtainOpenRqt, then there are two readings of mea-
sures userUnderDressed and userDistressed to determine if
the user is under dressed and their level of distress. If the
user is neither under dressed nor highly distressed, then
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(a) DressingService state machine

(b) MonitoringService state machine

Figure 7: RoboChart state machines of the RAD application

the curtains are opened, and otherwise the request is re-
fused as indicated by the output event refuseRequest.

Robotic assistive dressing raises multiple SLEEC con-
cerns. We show in Table 6 four rules defined by experts;
their motivation, in terms of SLEEC principles that should
be followed and why, is indicated in the table.

Rule1 is concerned with the time taken by a dressing
episode; at most 2 minutes to complete, unless the room
temperature is low, in which case it should be faster. Rule2
regulates the opening of the curtains, which should con-
sider the privacy of the user, but also be sensitive to the
distress that can be caused if a user request for the cur-
tains to be opened is denied. If a user fall is detected
then support must to called, but Rule3 requires that assent
from the user is available for this. Finally, if the dressing
is abandoned, there should be an attempt to retry, and,
eventually the support must be called. Again, however,
as required by Rule4, the user’s assent should be gained
beforehand.

Only Rule3 and Rule4 have overlapping alphabets of
events: both refer to SupportCalled. So, using our SLEEC
tool from Section 6.1 we need to check them for conflict
first. As there is none, we need to check whether either of
them is redundant. They are not, so we can check next
whether the design conforms to all rules.

We get confirmation that the first three rules are sat-
isfied, but Rule4 is not. The issue is related to the design
of the operation CallSupportDecision(), shown in Figure 8.
In this version, the design engineer has followed an extra
requirement to call the support in no more than 1 minute,
if the user falls and there is consent. So, in CallSupport-
Decision() there is a deadline on SupportCalled, which flags
the return from a call to an operation CallSupport() of the
platform. With this deadline, we require that any actions

involved in implementing CallSupport(), such as establish-
ing a phone connection and dialling, are completed within
1 minute. Since CallSupport() is a platform operation, it
is asynchronous and does not block.

The extra requirement is incompatible with the re-
quirement to satisfy both Rule3 and Rule4, because Rule4
requires a delay of 2 minutes before calling support in case
dressing is abandoned. There is no conflict between Rule3
and Rule4, because Rule3 does not impose a deadline on
calling support. The extra requirement, however, creates
a conflict. The counterexample, shown below, reveals the
issue. Specifically, running the FDR model checker on the
tock-CSP semantics generated by our SLEEC tool pro-
duces the trace:

UserFallen,DressingStarted ,
assentToSupportCalls.true,CallSupport ,
roomTemperature.− 2,DressingAbandoned

This trace indicates that DressingService has gone through
DressingStarted, got the measure -2 for the roomTemper-
ature, but finally DressingAbandoned occurs. In Monitor-
ingService, UserFallen has led to a call to CallSupportDeci-
sion(), where assentToSupportCalls was found to be true,
so a call to support is triggered, and then a deadline re-
quires SupportCalled to take place in 60 seconds. At this
point, however, SupportCalled is forbidden by Rule4 for two
minutes so that a RetryAgreed has a chance to occur.

In this situation where the system design violates a
SLEEC rule, we have to consult the SLEEC and require-
ments stakeholders. A few outcomes may be possible. A
domain expert may agree that a one-minute deadline is
too strict, and, in this case, the design may be changed.
If DressingAbandoned happens before SupportCalled, RAD
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Table 6: SLEEC rules for the RAD system

Rule id SLEEC Specification SLEEC

principle

Implication

Rule1
when DressingStarted then DressingComplete

within 2 minutes
unless roomTemperature < 19 then DressingComplete

within 90 seconds
unless roomTemperature < 17 then DressingComplete

within 60 seconds

empathetic

ethical

promotes and supports user

well-being

Rule2
when CurtainOpenRqt then CurtainsOpened

within 60 seconds
unless userUnderDressed then RefuseRequest

within 30 seconds
unless userDistressed > medium then CurtainsOpened

within 60 seconds

cultural

empathetic

respect for privacy and

cultural sensivity

Rule3
when UserFallen then SupportCalled

unless not assentToSupportCalls

legal

ethical

social

respect for autonomy and

preventing harm

Rule4
when DressingAbandoned then {RetryAgreed

within 2 minutes
otherwise {SupportCalled

unless not assentToSupportCalls }}

legal

ethical

promoting user beneficence

and respecting autonomy

may consider whether the user is well enough to agree to a
retry, in spite of having fallen. In either case, SupportCalled
occurs after two minutes, either because the RetryAgreed
does not happen, or as a later response to UserFallen.

If the solution agreed is to comply with the shorter time
in the case of a fall, this can be captured by considering the
RAD capabilities to call support in the case of a fall and
to call support when dressing is not possible as distinct.
In this case, we can have two different events representing
two types of call to support. In fact, this may represent the
fact that the information to be passed on to the support
team in the different cases is different. We may also have
different support teams to deal with a fall, and with a
difficulty to get dressed.

7. Related work

A commonality in normative themes found in many re-
cently developed artificial intelligence ethics and guidance
instruments inform a ‘normative core’ of a principled ap-
proach to development, deployment, and adoption [32] [33]
[34] of agents whose behaviour relies on use of artificial
intelligence techniques. Significant work has been done
in the development of autonomous systems from the per-
spective of normative ideas [35, 7] including work around
transparency [36], explainability, and accountability [4].
Another research perspective develops a data-driven per-
sonalised tool, based on the moral choices of the user [9].
Our SLECC framework, however, is concerned with the
problem of the operationalisation of such norms [1] [37]

and defines a formalisation and an automated process for
validating and verifying rules that capture these norms.

There exists significant research on the development
and verification of autonomous systems [38][39][40]. Most
of the approaches verify the autonomous agents using for-
mal verification methods, such as model checking and the-
orem proving, by introducing new formalisms, but—com-
plementary to our SLEEC framework—they focus on the
safety requirements of the agents.

Concerns with verification regarding some level of eth-
ical constraints and legal aspects [41] have been recently
studied [5, 6] and investigated from a verification perspec-
tive [7], although not from the perspective of operational-
isation of these requirements. Robots are formally veri-
fied in [7] with an action selection of the robot controller
which evaluates the outcomes of actions using simulation
and prediction, and makes selection using a safety/ethical
logic [5]. Bremer et al. [5] present a technique for ver-
ification of transparency and ethical concerns using the
belief–desire–intention model and a simulation module to
obtain ethical rules. This line of work is complementary
to our SLEEC framework, as our focus is not on the iden-
tification of rules. Furthermore, unlike our SLEEC frame-
work, these approaches do not provide a notation dedi-
cated to the encoding of SLEEC-related concerns as re-
quirements.
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Figure 8: RoboChart model for CallSupportDecision

8. Conclusion

We introduced a tool-supported framework for the end-
to-end specification, consistency validation and verifica-
tion of social, legal, ethical, empathetic and cultural re-
quirements for autonomous agents. The framework sup-
ports the specification of these requirements as SLEEC
rules formalised in a domain-specific language grounded
in defeasible logic [11, 12], and their translation into tock-
CSP for redundancy and conflict checking, and for veri-
fying autonomous agent compliance with SLEEC require-
ments. By enabling the operationalisation of SLEEC re-
quirements for autonomous agents, our framework comple-
ments the significant international efforts to define ethical
principles for AI and autonomous systems, e.g. [33, 34, 42],
and our own recent work to elicit SLEEC requirements for
autonomous agents by starting from relevant normative
principles and stakeholder needs [1].

In future work, we will explore several opportunities for
extending the applicability and usability of our SLEEC
framework. First, we plan to augment the SLEEC lan-
guage with probabilistic constructs, and thus to provide
support for modelling the uncertainty in the environment
and decisions of autonomous agents. Second, we will im-
prove the integration of the tools used by the framework,
e.g., through automating the invocation of the FDR model
checker used to verify autonomous agent compliance with
SLEEC requirements. Third, we intend to augment our
tool support with a module that converts the counterex-
ample traces produced by the model checker into error
messages that are easier to understand for framework users
who do not have formal methods expertise. Finally, we
plan to continue to evaluate the SLEEC framework in ad-
ditional case studies from different application domains,
and with a larger number of SLEEC experts (lawyers, ethi-
cists, domain experts, regulators, sociologists) in order to
identify and fix any remaining applicability and usability
issues, and to assess the scalability and generalisability of
the framework further.

In the longer term, we will consider also extending
the framework with two additional methods. The former

method is needed for the runtime verification of autonomous-
agent decisions. Many autonomous systems learn, adapt
and evolve in operation, e.g., in response to changes in
their environment, and therefore cannot be fully verified
at development time. The latter method will further sup-
port this evolution by focusing on the online synthesis of
SLEEC-compliant adaptation plans for autonomous agents.
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