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Abstract

Aims
To identify differential expression of shorter non-coding RNA (ncRNA) genes associated
with autism spectrum disorders (ASD).

Background

ncRNA are functional molecules that derive from non-translated DNA sequence. The
HUGO Gene Nomenclature Committee (HGNC) have approved ncRNA gene classes with
alignment to the reference human genome. One subset is microRNA (miRNA), which are
highly conserved, short RNA molecules that regulate gene expression by direct post-tran-
scriptional repression of messenger RNA. Several miRNA genes are implicated in the devel-
opment and regulation of the nervous system. Expression of miRNA genes in ASD cohorts
have been examined by multiple research groups. Other shorter classes of ncRNA have
been examined less. A comprehensive systematic review examining expression of shorter
ncRNA gene classes in ASD is timely to inform the direction of research.

Methods

We extracted data from studies examining ncRNA gene expression in ASD compared with
non-ASD controls. We included studies on miRNA, piwi-interacting RNA (piRNA), small
NF90 (ILF3) associated RNA (snaR), small nuclear RNA (snRNA), small nucleolar RNA
(snoRNA), transfer RNA (tRNA), vault RNA (vtRNA) and Y RNA. The following electronic
databases were searched: Cochrane Library, EMBASE, PubMed, Web of Science, Psy-
cINFO, ERIC, AMED and CINAHL for papers published from January 2000 to May 2022.

PLOS ONE | https://doi.org/10.1371/journal.pone.0287131

June 15, 2023 1/42


https://orcid.org/0000-0003-3056-2621
https://orcid.org/0000-0002-5252-7379
https://orcid.org/0000-0002-5171-8480
https://orcid.org/0000-0001-8333-1523
https://doi.org/10.1371/journal.pone.0287131
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0287131&domain=pdf&date_stamp=2023-06-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0287131&domain=pdf&date_stamp=2023-06-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0287131&domain=pdf&date_stamp=2023-06-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0287131&domain=pdf&date_stamp=2023-06-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0287131&domain=pdf&date_stamp=2023-06-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0287131&domain=pdf&date_stamp=2023-06-15
https://doi.org/10.1371/journal.pone.0287131
https://doi.org/10.1371/journal.pone.0287131
http://creativecommons.org/licenses/by/4.0/

PLOS ONE

Systematic review of non-coding RNA differential expression profiles associated with autism spectrum disorders

role in study design, data collection and analysis,
decision to publish, or preparation of the
manuscript.

Competing interests: | have read the journal’s
policy and the authors of this manuscript have the
following competing interests: S G-J is the Project
leader of the miRBase project at The University of
Manchester. This does not alter our adherence to
PLOS ONE policies on sharing data and materials.

Studies were screened by two independent investigators with a third resolving discrepan-
cies. Data was extracted from eligible papers.

Results

Forty-eight eligible studies were included in our systematic review with the majority examin-
ing miRNA gene expression alone. Sixty-four miRNA genes had differential expression in
ASD compared to controls as reported in two or more studies, but often in opposing direc-
tions. Four miRNA genes had differential expression in the same direction in the same tis-
sue type in at least 3 separate studies. Increased expression was reported in miR-106b-5p,
miR-155-5p and miR-146a-5p in blood, post-mortem brain, and across several tissue types,
respectively. Decreased expression was reported in miR-328-3p in bloods samples. Seven
studies examined differential expression from other classes of ncRNA, including piRNA,
snRNA, snoRNA and Y RNA. No individual ncRNA genes were reported in more than one
study. Six studies reported differentially expressed snoRNA genes in ASD. A meta-analysis
was not possible because of inconsistent methodologies, disparate tissue types examined,
and varying forms of data presented.

Conclusion

There is limited but promising evidence associating the expression of certain miRNA genes
and ASD, although the studies are of variable methodological quality and the results are
largely inconsistent. There is emerging evidence associating differential expression of
snoRNA genes in ASD. It is not currently possible to say whether the reports of differential
expression in ncRNA may relate to ASD aetiology, a response to shared environmental fac-
tors linked to ASD such as sleep and nutrition, other molecular functions, human diversity,
or chance findings. To improve our understanding of any potential association, we recom-
mend improved and standardised methodologies and reporting of raw data. Further high-
quality research is required to shine a light on possible associations, which may yet yield
important information.

Introduction

Autistic people are thought to account for at least 1% of the global population [1]. Individuals
with a diagnosis of autism have differences in social communication and are more likely to
have intense interests [2-4]. People with autism belong within a spectrum of neurodiversity
that is important for society and evolution [5]. For the purpose of this systematic review we
have followed the established international diagnostic criteria and the corresponding nomen-
clature [6]. From herein we will use the associated terminology, autism spectrum disorder
(ASD), although we acknowledge that different perspectives exist regarding language and ter-
minology preferences [7-9]. The genomic landscape of ASD is complex [10], however a strong
genetic aetiology is recognised [11, 12] with twin studies estimating heritability between 70-
90% [13, 14]. Access to broad genomic testing is reshaping our understanding of ASD, which
appears to encompass a collection of broad, heterogenous [15] and variable conditions with
overlapping neurobehavioral phenotypes [16]. These may be considered on one hand as com-
plex or syndromic when ASD symptomatology features alongside intellectual disability, facial
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dysmorphism or congenital malformations [17]. On the other hand, non-syndromic ASD
symptomatology may comprise a broader understanding of neurodiversity [5]. High impact
genetic variants are reported to occur in around 15% of individuals with ASD, which are pre-
dominantly caused by nuclear sequence-level and structural variants, or less commonly mito-
chondrial variants [18]. It is important to recognise the variable contribution genetic variants
have made towards ASD symptomatology, which frequently demonstrate incomplete pene-
trance and variable expressivity [19].

Proposed explanations for the high heritability, but low monogenic diagnostic findings in
ASD include oligogenic and polygenic models of aetiology [20]. Other proposed genetic aetiol-
ogies include the imprinted brain theory where there is a paternal bias in the expression of
imprinted genes [21] and epigenetic contribution [22]. Given that most nucleotides in the
human genome are outside of open reading frames of protein coding genes [23], yet around
75% of the genome are transcribed [24], this draws our attention inexorably to non-coding
RNA transcripts that comprise functional molecules that may play an important role in gene
expression and gene-environment interactions in ASD. A good starting point is a synthesis of
the ncRNA gene expression literature to delineate further promising avenues of enquiry for
ASD research [25].

Classification of non-coding RNA

ncRNA are described in detail elsewhere [26, 27]. They have historically been categorised by
size, where long non-coding RNA (IncRNA) are 200 or more nucleotides and short ncRNA
are less than 200 nucleotides in length [28]. The terms “short” or “small” however, are being
used less to describe ncRNA, and do not feature in the current approved nomenclature [26].
Many ncRNA molecules regulate gene expression via RNA interference, epigenetic modifica-
tion and inhibition of translation related mechanisms [29]. Secreted extracellular circulating
ncRNA are, in many cases, highly stable and detectable in multiple biological fluids such as
blood, saliva and urine [30, 31]. There is great interest in developing ncRNA expression assays
translatable into a clinical setting that may be capable of supporting ASD diagnostics and pro-
viding phenotypic or prognostic information to enhance ASD care [32, 33]. The HUGO Gene
Nomenclature Committee (HGNC) have worked with specialist advisors to define the
accepted nomenclature for ncRNA [26]. HGNC define nine major classes of ncRNA annotated
in the human genome. In this systematic review, we are interested in the shorter classes
ncRNA and their relative gene expression in ASD. We are not considering genomic variation
within ncRNA genes [34, 35], or the expression of larger ncRNA such as ribosomal RNA [36,
37] or long non-coding RNA (IncRNA) [38, 39]. The shorter ncRNA HGNC approved gene
classes included in this systematic review are: microRNA (miRNA), piwi-interacting-RNA
(piRNA), small NF90 (ILF3) associated RNA (snaR), small nuclear RNA (snRNA), small
nucleolar RNA (snoRNA), transfer RNA (tRNA), vault RNA (vtRNA), and Y RNA. They have
been summarised in Table 1. Whilst we acknowledge that HGNC approval is only in place for
piRNA gene clusters, given the likely expansion to include individual piRNA genes in the
future and given that annotation exists elsewhere [40], they have also been included. For sim-
plicity, we will collectively refer to the shorter ncRNA classes included in this systematic review
as ncRNA from herein.

Rationale for systematic review

A systematic review is warranted for a few key reasons. Firstly, much of the early research
examining ncRNA expression profiles in association with ASD examines miRNA alone [41].
We may be missing other important classes of ncRNA. To our knowledge there has been no
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Table 1. Shorter HGNC approved ncRNA gene classes included in this systematic review.

Name (abbreviated HGNC gene | Nucleotide Cellular functions Database / key references
name) symbols” length
MicroRNA (miRNA) 1912 21-24 Regulation of post-transcriptional gene expression by complementary miRBase v22.1 [49]; Bartel.,
mRNA binding that mediates translational repression or mRNA 2018 [50]
degradation
PIWI-interacting RNA* 114 clusters 24-31 Predominantly germline expressed that silence transposable elements, | piRBase v3.0 [40]; Ozata et al.,
(piRNA) regulate gene expression and counteract viruses by RNA cleavage, DNA | 2019 [51]
methylation and heterochromatin assembly
Small NF90 (ILF3) 28 117 Abundantly expressed in the testes, placenta, and discrete regions of the | Parrott et al,, 2011 [52]
associated RNA (snaR) brain with tissue specific regulation of cellular growth and translation
Small nuclear RNA 50 150 Components of the major and minor spliceosome complexes to splice Karijolich & Yu., 2010 [53];
(snRNA) introns from pre-messenger RNA Ma et al., 2022 [54]
Small nucleolar RNA 568 30-300 Guide RNAs for post transcriptional modification and maturation of snoRNABase** [55]; Bratkovi¢
(snoRNA)—three types: ribosomal RNA and small nuclear RNA by methylation and etal., 2019 [56]
i. C/D box (SNORD); pseudouridylation.
ii. H/ACA box (SNORA);
iii. Small Cajal body-
specific RNA (scaRNA)
Transfer RNA (tRNA) 591 73-93 Protein translation of mRNA on the ribosome GtRNAdb 2.0 [57]
Vault RNA (vtRNA) 4 88-100 Form large and highly conserved ribonucleoprotein complexes Biischer et al., 2020 [58]
implicated in autophagy, apoptosis, and cell proliferation
Y RNA 4 100 Bound by Ro60 and La proteins, with roles in DNA replication, RNA Kowalski & Krude., 2015 [59];

stability and cellular stress responses Valkov & Das., 2020 [60]

Table Footnote: #available from https://www.genenames.org/download/statistics-and-files/ [61]

* individual piRNA genes listed in piRBase v3.0 were included in this systematic review, as only piRNA gene clusters have current approval by HGNC; **snoRNABase is

no longer updated, but it remains a useful resource. Abbreviation mRNA = messenger RNA.

https://doi.org/10.1371/journal.pone.0287131.t001

systematic review exploring gene expression of other ncRNA. Secondly, a large proportion of
early research in this field is from post-mortem samples from brain tissue [42, 43]. These are
important for discovery but may lack clinical translatability. To realise the potential of ASD
ncRNA gene expression assays for biomarker use, we require an appreciation of the combined
expression data from living patients with ASD from clinically available samples. To date there
have been some narrative, discursive, selective or scoping reviews [25, 42, 44-48] and just one
recent systematic review that only examines miRNA expression associated with ASD that is
missing some studies [41]. Finally, in view of the recent international nomenclature describing
ncRNA with HGNC approved human genome annotation [26], we are keen to collate and
present up to date and standardised ncRNA gene expression data associated with ASD. We
acknowledge that there may be a paucity of evidence for classes of ncRNA other than miRNA,
but demonstrating and delineating this clearly by systematic review is important to help shape
future research directions.

Methods
PROSPERO registration number: CRD42020208233.

Study eligibility criteria
The inclusion criteria were as follows:

Population: Human subjects with a diagnosis of ASD compared with controls without
ASD.
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Exposure: ncRNA gene expression profiles from biosamples measuring HGNC approved
ncRNA genes or piRNA genes listed in piRBase v3.0.

Outcome(s): Expression profile of any of the following ncRNA genes: miRNA, piRNA,
snaR, snRNA, snoRNA, tRNA, vtRNA, and Y RNA; using validated scientific methodologies.

Studies: Peer reviewed publications, conference abstracts or dissertations.

The exclusion criteria were as follows: studies not published in English, duplicated data,
non-human studies, review articles, hypothesis papers, narrative reviews, fact sheets and letters
to the editor that did not present unique or new data, unpublished materials and studies pub-
lished before 2000.

Search strategy

The following electronic databases were searched: Cochrane, EMBASE, Science Direct, Med-
line, PubMed, Scopus, Web of Science, PsychInfo, ERIC, AMED, and CINAHL. We searched
databases from January 2000 to May 2022. Medical Subjective Heading (MeSH) search terms
were used for autism spectrum conditions including ‘autism’, ‘autistic’, autism spectrum disor-
der, ‘ASD’, autism spectrum condition (ASC), ‘Asperger’, ‘pervasive developmental disorder’
and ‘PDD’ in all combinations with the terms ‘short non coding RNA’, ‘non-coding RNA’,
RNA’, ‘miRNA’, ‘miRNA’, ‘piwi interacting RNA’, ‘piRNA’, ‘ribosomal RNA’, TRNA’, ‘small
NF90 associated RNA’, ‘small NF90 (ILF3) associated RNA’, ‘snaRs’, ‘small nuclear RNA’,
‘snRNA’, ‘small nucleolar RNA’, ‘snoRNA’, ‘transfer RNA’, tRNA’, ‘vault RNA’, and Y RNA’.
The references cited in identified publications were also searched to locate additional studies.
Data related to ncRNA expression profiles was extracted where available, including informa-
tion related to normalisation strategies, ncRNA gene expression fold change, P values and con-
fidence intervals. Given the varied nomenclature used for ncRNA, gene names will be
recorded together with HGNC codes, accession IDs from miRBase database v22.1 (mirbase.
org) or piRBase database v3.0 (bigdata.ibp.ac.cn/piRBase).

Procedure

Two reviewers independently screened the titles and abstracts to identify all eligible studies
identified by the searches. Any discrepancies were adjudicated by a third reviewer. The refer-
ence lists of selected articles were used to identify additional papers for screening. The
included studies were assessed using the Preferred Reporting Items for Systematic Review and
Meta-Analysis (PRISMA) guidelines [62]. Data extraction took place and was recorded in a
dedicated data extraction form generated using Microsoft Excel for further evaluation of study
quality and data synthesis including functional enrichment analysis of the significant differen-
tially expression miRNA genes. Raw data was retrieved from published papers, supplementary
materials or by contacting the corresponding authors.

Data synthesis and quality assessment

We planned to perform meta-analysis of ncRNA gene expression using the statistical tech-
niques employed by Zhu and Leung [63], including a random effects model [64] to examine
differentially expressed ncRNA genes in ASD compared with controls. We expected between
study heterogeneity and subgroup analysis were to be used to explore possible sources, includ-
ing source of patients, source of control (such as healthy control or disease control), partici-
pant ethnicity, ncRNA profile (single ncRNA and multiple ncRNA) and sample specimen
(blood, saliva, urine, cultured lymphoblastoid cells, fibroblast cells, neural tissues, and others);
living or post-mortem. We planned to analyse the statistical heterogeneity of the meta-analysis
by x-squared (x*)-based Q statistic test when I? (I-squared or 12) exceeded 50% or P < 0.1.
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Receiver-operating characteristics (ROC) curves were planned to be generated with sensitivity,
specificity and positive predictive values based on known assessments of participants with
ASD or without ASD. The area under the curve (AUC) was planned to be calculated both over-
all and for any subgroup analysis. Statistical tests were intended to be two-sided, with P < 0.05
considered statistically significant. Functional enrichment analysis of statistically significant
differentially expressed miRNA genes as determined by meta-analysis would be performed
using DIANA-miRPath v3.0 [65] and executed using the online DIANA-microT-CDS web-
server algorithm to examine Gene Ontology (GO) with ‘categories union’. P-value and microT
thresholds would be set at < 0.05 and 0.8, respectively with False Discovery Rate (FDR) correc-
tion applied. Targeted pathways and significance clusters will be generated and a related heat-
map constructed.

We planned an assessment of publication bias [66] using Egger’s graphical test to construct
a funnel plot of all studies included in the meta-analysis and explore the symmetry of the study
distribution on the plot [64]. Begg and Mazumdar’s Rank Correlation test would be used to
correlate the ranks of effect sizes and the ranks of their variances [67] and Orwin’s Fail-Safe N
test would determine the presence of missing studies that may skew the regression line in the
funnel plot, with Duval and Tweedie’s Trim and Fill method being used for imputation of the
missing studies [68, 69]. The methodological quality of all included studies was assessed by
two reviewers independently using a quality assessment template based on Quality Assessment
of Diagnostic Accuracy Studies (QUADAS-2) [70].

Results
Studies identified for selection

The systematic review search strategy yielded 5250 publications, with 1221 being duplications.
The titles and abstracts of 4029 papers were screened and 168 papers were assessed in full for
eligibility. 48 studies were identified for inclusion in the systematic review for data extraction.
This process is outlined along with reasons for exclusion in the PRISMA flow chart (Fig 1).

Summary of eligible studies

This systematic review has brought together the findings of 48 studies involving over 1800
individuals with ASD compared with over 1400 controls. The year of publication ranged from
2008 to 2021. ASD ncRNA gene expression studies have been conducted in numerous coun-
tries across the world, including Brazil, Bulgaria, China, Egypt, Iran, Italy, Japan, United King-
dom, and United States of America (USA). The most prolific country for publication was the
USA with 12 studies. Considering all included studies, the diagnosis of ASD of study partici-
pants in 16 studies reported the use of both a validated assessment tool and Diagnostic and Sta-
tistical Manual of Mental Disorders (DSM-5) criteria. There were 14 studies that only reported
the use of a validated assessment tool, the most common being the Autism Diagnostic Inter-
view-Revised (ADI-R) and the Autism Diagnostic Observation Schedule (ADOS). Eight stud-
ies solely used The World Health Organisation (WHO) or DSM diagnostic criteria without a
validated assessment tool and 10 studies did not state the method of ASD diagnosis. The vast
majority of studies (N = 46) examined miRNA gene expression; 41 studies did so exclusively
and 7 studies examined other classes of ncRNA, of which 5 studies also measured miRNA
gene expression (including a genome wide study ncRNA expression study encompassing
miRNA genomic loci). Fourteen studies used pre-selected candidate-driven ncRNA expression
approaches, for example where specific miRNAs had been investigated, in contrast to 34 stud-
ies that investigated unselected or larger populations of ncRNA genes including those exam-
ined using genome wide approaches. Many of these studies went on to examine (‘validate’) a
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Fig 1. PRISMA flow chart illustrating the process of study selection.

https://doi.org/10.1371/journal.pone.0287131.9001

selected population of miRNA genes identified by an initial unselected approach such as
microarray or from RNA-seq. Thirty-three studies reported ncRNA expression findings using
tissue samples and laboratory methodologies that could feasibly be implemented into clinical
practice (i.e., those from living individuals, with routine sampling methodology of easily
obtainable tissue such as blood or saliva and routine laboratory work). These studies had a
male to female ratio of participants of 3.5 to 1. There were 15 studies that exclusively reported
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findings from studies with less or unfeasible clinical implementation possibilities (i.e., when
samples derived from post-mortem brain tissue or studies from living individuals requiring
specialist sampling procedures such as biopsies, or those with complex or time-consuming lab-
oratory work such as cell culturing). These studies had a male to female ratio of participants of
4.8 to 1. There were two studies that examined ncRNA expression from both clinically feasible
and unfeasible samples.

Characteristics of eligible studies

Table 2 provides a summary of 33 studies describing methods feasible for clinical implementa-
tion. Of these, 29 reported ncRNA gene expression from peripheral blood and 4 reported from
saliva samples. We found no studies exploring ncRNA gene expression from other bodily flu-
ids such urine or sweat. Table 3 summarises the studies with less or unfeasible clinical imple-
mentation. From these 17 studies, 10 were from post-mortem brain tissue samples, five were
from cultured lymphoblastoid cell lines, one was from reprogrammed induced pluripotent
stem cell-derived neurons, and a further study reporting both olfactory mucosal stem cells and
primary skin fibroblasts [71]. Two of these studies examined ncRNA gene expression from
both clinically feasible and unfeasible samples [71, 72], and therefore feature in both Tables 2
and 3. Table 4 provides an overview of the individual ncRNA genes (all of which are miRNA
genes) that have been reported to have increased or decreased expression in ASD cohorts in
more than one study. The individual miRNA genes are listed with the direction of expression
change presented by broad tissue sample types: blood, saliva, cultured lymphoblastoid cells
(unless otherwise specified) and post-mortem brain samples. The seven studies examining dif-
ferential expression of ncRNA genes other than miRNA have been presented in a separate
table (Table 5).

Non-coding RNA with differential expression in ASD

The systematic review revealed 64 miRNA genes with differential expression in more than one
study (Table 4). Twenty-nine of these miRNA genes had differential expression in opposing
directions. Four miRNA genes had differential expression in the same direction in the same
tissue type in at least 3 separate studies. These were in bloods samples for miR-106b-5p [73-75]
and miR-328-3p [73, 76, 77], which had increased and decreased expression, respectively. The
other miRNA gene was miR-155-5p which had increased expression in post-mortem brain
samples [78-80]. Finally, miR-146a-5p had consistent, increased differential expression across
several different tissue types as reported in four studies [71, 81-83]. These were from saliva,
primary skin fibroblasts, lymphoblastoid cell lines, olfactory mucosal cells and post-mortem
brain samples from the pre-fontal cortex and temporal lobe, respectively. Seven research stud-
ies examined ncRNA gene expression, other than miRNA, in association with ASD (Table 5).
From these studies, differential expression was reported in individual genes from ncRNA clas-
ses including: snoRNA [43, 73, 84-87], snRNA [84, 88], piRNA [73] and Y RNA genes [73].
Differential expression of one or more snoRNA genes was reported by six studies, but no indi-
vidual snoRNA gene or other individual ncRNA genes (excluding miRNA genes) had differen-
tial expression reported in more than one study.

Data synthesis and meta-analysis

Functional enrichment analysis using DIANA-miRPath v3.0 online interface [65] was per-
formed with interrogation of the four key miRNA genes identified in this review (miR-106b-
5p, miR-328-3p, miR-146a-5p and miR-155-5p) versus Gene Ontology (GO) categories. Clus-
tering with the highest enrichment significance levels were seen in ‘ion binding’ and ‘organelle
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Table 2. Studies examining ncRNA gene expression in ASD using tissue samples and laboratory methodologies that could be feasibly implemented into clinical practice (N = 33).

Study Tissue Diagnosis of ASD Participants Sample processing Analysis
sample WHO/ | Validated ASD Control RNA extraction ncRNA assay DEx Normalisation
DSM | Ax tool | np Mean age M:F Mean age strategy
criteria ratio ratio
Abdelrahman | Blood: Yes Yes 29:11 | 4 = median 22:8 3.6 = median | miRNeasy kit 2 miRNA gene gPCR prAAct miR-16
et al., 2021 [89] | whole (Qiagen) with TagMan RT kitson | P < 0.05
QuantStudio 12K Flex
(Applied Biosystems)
Atwanetal, | Blood: Not Not stated | 26:11 |7 27:13 9 TRIzol method | 2 miRNA gene qPCR graact miR-16
2020 [90] PBMC stated with RealQ Plus 2x P < 0.05
Mastermix Green
(Ampliqon) on
Rotorgene Q (Qiagen)
Cheng et al,, Blood: NOS | Yes Yes 14:9 8 Not Not stated TRIzol method 20 ncRNA gene assay Custom Not stated
2020 [84] stated using GenePix formula
N=23 microarray and scanner
(Axon Instrument)
Cirnigliaro Blood: Yes Yes N=4 |- N=3 - miRNeasy kit 754 miRNA genes paAct Customised
etal., 2017 [91] | serum (Qiagen) examined by TagMan FDR =0.15 normalisation
Low Density Array P <0.05 using top three
 stable miRNAs
22:8 6.5 16:9 9.5 4 miRNA gene gPCR miR-146a
with TagMan MicroRNA
Assays (Applied
Biosystems)
Cui etal,, 2021 | Blood: Yes Not stated | 142:17 | 3.13 13722 |33 TRIzol method 3 miRNA gene gPCR graact Not stated
[92] Serum with SYBR Primix Ex P <0.05
Taq TM II (Takara) on
ABI StepOne Plus
(Applied Biosystems)
Eftekharian Blood: Yes Yes 3812 |6 37:13 6.04 Hybrid-RTM 4 miRNA gene qPCR paact RNU6-6P (RNUG6B)
etal, 2019 [93] | whole blood RNA with Applied Biosystems | P < 0.05
extraction kit TagMan Universal PCR
(GeneAll) Master Mix on Rotor
Gene 6000 Corbett
Gao etal,, 2021 | Blood: Not reported by Gao | GEO dataset: GSE18123 RiboPure blood | Affymetrix Gene 1.0 ST | Bioconductor | Quantile
[94] whole etal., 2021 [94]. 66:0 7.9 | 33:0 ‘ 9 kit (Ambion) (GeneST) / Affymetrix limma package | normalization
U133 Plus 2.0 GeneChip | P < 0.05 using RMA
GEO dataset: GSE6575 PAXgene Blood arrays. Weighted gene
30:0 2-5=range 9:0 2-5 =range RNA System co-expression network
analysis
Hicks, Ignacio | Saliva Yes Yes 19:5 9.1 16.5 9.2 TRIzol method 246 miRNA genes P <0.05 Reads per million
etal, 2016 [95] and miRNeasy kit | examined by Illumina FDR <0.15
(Qiagen) MiSeq with targeted
depth of 3 million reads
per sample

(Continued)
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Table 2. (Continued)

Study Tissue Diagnosis of ASD Participants Sample processing Analysis
sample WHO/ | Validated ASD Control RNA extraction ncRNA assay DEx Normalisation
DSM | Ax tool |NLE | Mean age M:F Mean age strategy
criteria ratio ratio
Hicks, Saliva Yes Yes 161:26 | 4.5 76:50 39 TRIzol method 527 miRNA genes FDR < 0.05 Read counts
Carpenter 4821 41 and miRNeasy kit | examined by Illumina and/or quantile-
et al., 2020 [96] (Qiagen) TruSeq Small RNA PLS-DA >2.0 | normalised, mean-
Sample Prep by centred, and
NextSeq500 instrument divided by the
with targeted depth of 10 standard deviation
million reads per sample of each variable
Hirsch et al,, Blood: NOS | Yes Yes N=7 | Notstated N=7 Not stated TRIzol method 16 miRNA genes paact geNorm approach
2018 [97] examined with SYBR
Green qPCR on Applied
Biosystems StepOne
System
Huang et al,, Blood: NOS | Yes Not stated | 4:1 4.9 5 Not stated TRIzol method All miRNA genes from | 2744 Quantile
2015 [98] miRBase v20.0 by Rank Product normalisation
RiboArray miDETECT | Method method
Human Array P <0.01
132 43 Not stated: 5 miRNA genes (array), miR-16-5p
Sex and age matched examined by qPCR on P <0.05
CFX96 BioRad (qPCR)
Jyonouchi Blood: Not Yes 52:16 | 11.8 = median | 16:11 10.1 = median | miRNeasy kit Ion Total RNA-Seq Kit | Analysis in Not stated
etal., 2017 [99] | PBMC stated (Qiagen) V2, Ion Xpress RNA-Seq | Strand NGS 2.7.
Barcode 1-16 kit and Ion | Fold
One Touch 2 system change > 2.0
using Ion 318 chips.
Sequence reads
processed in Torrent
Server v4.4 (Life
Technologies)
Jyonouchi Blood: Not Yes 88:17 | 10.6 = median | 27:8 13.3 = median | Not stated Small RNA Log 2 fold Read per million.
etal, 2019 serum stated Library Prep Kit for change Weighted trimmed
[100] Ilumina (Norgen Biotek) mean of the log
on Illumina NextSeq 550 expression ratios
with 75 PCR cycles (‘TMM)
Kichukova, Blood: Yes Yes 20:6 6.86 20:6 Age matched | PAXgene blood | 42 miRNA genes by praact Spiked in cel-miR-
Popov et al,, serum miRNA kit qPCR with Maxima 39
2017 [76] (PreAnalytiX) SYBR Green qPCR
Master Mix (hermo
Fisher) on ABI 7500
system (Applied
Biosystems)
Kichukova, Blood: Yes Yes 30:8 Not stated 22:6 Not stated PAXgene Blood | 4 miRNA genes by gPCR | 2744 Spiked in cel-miR-
Petrov et al, serum miRNA kit with Maxima SYBR 39
2021 [101] (PreAnalytiX) Green qPCR Master Mix
(hermo Fisher) on ABI
7500 system (Applied
Biosystems)

(Continued)
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Table 2. (Continued)

Study Tissue Diagnosis of ASD Participants Sample processing Analysis
sample WHO/ | Validated ASD Control RNA extraction ncRNA assay DEx Normalisation
DSM | Ax tool |NLE | Mean age M:F Mean age strategy
criteria ratio ratio
Nakata etal,, | Blood: NOS | Not Yes 18:12 | 284 18:12 284 Paxgene Blood Agilent SurePrint G3 paact Spiked in cel-miR-
2019 [102] stated RNA and miRNA | Human GE v2 8x60K FDR < 0.05 39
System (Qiagen). | Microarray (G4851B) Fold
(Agilent Technologies) change > 1.25
followed by targeted P <0.01
qPCR of miR-6126
Nguyen, Olfactory Yes Not stated | Not Not stated Not Not stated mirVana miRNA | 667 miRNA genes from | 2744 miR-221
Lepleux etal,, | mucosal stated stated isolation kit (Life | miRBase v10 using
2016 [71] cells N=8§8 N=6 Technologies) / TaqMan Arrays A and B.
Primary 4:1 5-41 =range | Not Not stated TRIZOI‘ method ) Vglidation 9f target
kin stated and miRNeasy kit | miRNAs using SYBR
fibroblasts N=4 (Qiagen) Green Power Mix (Life
Technologies) by
Blood: 8:1 5-18 =range | Not Not stated gPCR-HD-GPC platform
PBMC stated (Paris)
N=20
Ozkul et al., Blood: Yes Not stated | 31:14 | 2-13 =range | 10:11 3-16 =range | High Pure 372 miRNA genes pAAct SNORDE61,
2020 [103] serum miRNA Isolation | (384HC miScript SNORDG68,
Kit (Roche) miRNA PCR Array) SNORD?72,
using TagMan Universal SNORD?Y5,
PCR Master Mix with SNORDY6A,
qPCR on BioMark RNUS6-2, miRTC,
system (Fluidigm) and PPC
Pagan et al,, Post- Yes Yes 8:1 39 = median | 20:2 36.5 = median | mirVana PARIS | Single miRNA gene graact Spiked in cel-
2017 [72] mortem kit (Ambion) examined by qPCR P < 0.0001 miR39, cel-miR54
pineal gland (machine not specified) and cel-miR238
Blood: Not Not stated 70 Not stated using miScript reverse (Qiagen)
plasma stated transcription kit and
N =54 SYBR Green PCR kit
(Qiagen)
Popov, Blood: Yes Yes 24:6 3-11 =range |30 sex Age matched | PAXgene blood Single miRNA gene paact Spiked in cel-miR-
Minchev et al., | serum matched miRNA kit examined by qPCR using | Fold 39
2018 [77] (PreAnalytiX) Maxima SYBR Green change <2 and
qPCR Master Mix P <0.05
(Thermo Scientific) on
ABI PRISM 7500 system
(Applied Biosystems)
Popov, Blood: Yes Not stated | 24:6 8 20:5 7.96 PAXgene blood Single miRNA gene prAAct U6 snRNA
Minkov etal.,, | whole miRNA isolation | examined by qPCR using | P < 0.05
2021 [104] kit (PreAnalytiX) | SYBR Green qPCR
Master Mix (Thermo
Scientific) on ABI
PRISM 7500 system
(Applied Biosystems)
(Continued)

3NO SO1d

SI9PJIOSIP WNJ0eds wsine yum paleloosse sa|ijoid uoissaldxa [enusiayip YNY Bulpoo-uou Jo meines olewslsis


https://doi.org/10.1371/journal.pone.0287131

L2820 euod euinol/Lze 10 1/Bio 10p//:sdny | AINO SOTd

€20¢ ‘G aunp

av/cl

Table 2. (Continued)

Study Tissue Diagnosis of ASD Participants Sample processing Analysis
sample WHO/ | Validated ASD Control RNA extraction ncRNA assay DEx Normalisation
DSM | Ax tool |NLE | Mean age M:F Mean age strategy
criteria ratio ratio
Popov & Blood: Yes Yes 30.9 3-11 =range |28 sex Age matched | PAXgene blood Single miRNA gene paact Spiked in cel-miR-
Petrov, 2021 serum and matched miRNA isolation | examined by qPCR using 39 for serum
[105] PBMC kit (PreAnalytiX) | SYBR Green qPCR RNAUe6-1 (U6) for
Master Mix (Thermo PBMC
Scientific) on ABI
PRISM 7500 system
(Applied Biosystems)
Ragusaetal, | Saliva Yes Yes Not 4-8=range | Not 4-8 = range miRNeasy kit 800 miRNAs examined | 2744 Global Median
2020 [81] stated stated (Qiagen) by NanoString nCounter Normalisation:
N=23 N=12 technology miR-21-5p
Not 4-8=range | Note 4-8 =range qPCR of 7 miRNAs by
Stated Stated single TagMan
N=53 N=27 MicroRNA Assays
(Applied Biosystems)
Salloum-Asfar | Blood: Yes Yes Severe | 8.3 = median | 4:4 10.8 = median | miRNeasy kit QIAseq miRNA Library | > 50 read Spiked-in
etal, 2021 [73] | plasma 24:11 (Qiagen) kit (Qiagen) Illumina counts, absolute | UniSp100,
Mild 8.5 = median platform on HiSeq 3000/ | fold change > 2 | UniSp101, miR-
20:5 4000 SBS Kit (150 cycles) |and P < 0.05 | 103, miR-191, miR-
with targeted depth of 20 30c, miR-451, miR-
million reads per sample 23 and UniSp6
Sehovic. Etal,, | Saliva Not Yes 25:14 |5 11:14 5.75 mirVana isolation | 14 miRNA genes by praact miR-191-5p
2020 [106] stated kit TaqMan microRNA z score > 1.5
Assay (Applied
Biosystems) on Agilent
(Stratagene) MX3005P
Multiplex qPCR Thermal
Cycler
Sell et al,, 2020 | Blood: Re-analysis of GEO Dataset GSE67979 (see Huang et al., 2015). RiboArray miDETECT | PCA using Quantile
[107] whole Array and BioRad qPCR | QOE normalisation /
miR-16-5p
Shen et al., Blood: Not Not stated | Not Not stated Not Not stated Not stated Affymetrix Human Fold Quantile
2016 [108] lymphocyte | stated stated stated Genome U133 Plus 2.0 | change > 2 and | normalisation
cells N=282 N =64 Array mRNA expression | P < 0.05
data and
bioinformatically
constructed miRNA-
mRNA network
Vaccaro etal,, | Blood: NOS | Yes Yes 7:0 7.5 4:0 7.5 TRIzol method 26 miRNA genes by praact geNorm: miR125a-
2018 [109] qPCR using SYBR Green 5p, miR181b-5p,
qPCR and StepOne miR125b-2-3p, and
System (Applied miR198.
Biosystems)

(Continued)
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Table 2. (Continued)

Study

Tissue
sample

Diagnosis of ASD

Participants

Sample processing

Analysis

WHO /
DSM
criteria

Validated
Ax tool

ASD

Control

M:F
ratio

Mean age

M:F
ratio

Mean age

RNA extraction

ncRNA assay

DEx

Normalisation
strategy

Vachevetal,
2013 [110]

Blood

Yes

Not stated

Not
stated
N =30

Not stated

Not
stated
N=25

Age and sex
matched

PAX gene blood
miRNA kit
(PreAnalytiX)

1898 miRNA genes from
miRBase v18.0 using
Paraflo miRNA
microarray assay (LC
Sciences)

Not stated

Not stated

Vasu et al.,
2014 [74]

Blood:
serum

Not
stated

Yes

48:7

41:14

miRNeasy kit
(Qiagen)

125 miRNA genes using
Human Neurological
Development & Disease
miRNA PCR array
(SABiosciences) then
qPCR of 14 miRNA
genes using SYBR Green
on ABI PRISM 7900
Sequence Detection
System (Applied
Biosystems)

—AACH
2 Ct

P <0.05

Spiked in cel-miR-
39

Yuetal, 2018
[75]

Blood:
whole and
serum

Yes

Not stated

Not
stated
N=2

Aged
matched

Not
stated
N=3

Aged matched

20:3

5.5

TRIzol method /
mirVana PARIS
kit

2,549 miRNA genes from
miRBase v21 using
Agilent Human miRNA
microarrays

4 miRNA genes by gPCR
on GeneAmp PCR
system 9700 (Applied
Biological System) with
LytCyror 480 II real-time
fluorescence PCR
(Roche)

—AA
2 Ct

P <0.05

Fold change of

2 fold

U6 snRNA and
percentage shift
method

Zamil et al.,
2020 [111]

Blood:
serum

Yes

Not stated

14:2

6.8

7:9

6.1

miRNeasy kit
(Qiagen)

miScript SYBR Green
PCR Kit (Qiagen) 40
cycles of qPCR (machine
not specified)

~AACt
2

P <0.05
P <0.01

U6 snRNA (RNUG-
2)

Zhou et al.,
2019 [88]

Blood: NOS

Yes

14:9

Not
stated
N=23

Not stated

TRIzol method

9 snRNA gene assay
using GenePix
microarray and scanner
(Axon Instrument)

Custom
formula

Not stated

Table footnote: Ax = Assessment; DEx = Differential Expression; FDR = False Discovery Rare; NOS = Not otherwise specified; PBMC = Peripheral blood mononuclear cells; PCA using

QOE = principal component analysis using Qlucore Omics Explorer—a dynamic, interactive visualization-guided bioinformatics program with a built-in statistical platform; PLS-DA = partial least

squared discriminant analysis (weighted sum of absolute regression coefficients); RT = Reverse Transcription; 274" = 2”(~delta delta CT) method for calculating gene expression. Quantitative

polymerase chain reaction assays (QPCR).

https://doi.org/10.1371/journal.pone.0287131.t002
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Table 3. Studies examining ncRNA gene expression in ASD using tissue samples or laboratory methodologies that require complex additional processing or are from deceased persons

(N=17).

Study

Abu-Elneel
et al., 2008
[112]

Almehmadi
et al., 2020
[79]

Ander et al.,
2015 [85]

Bleazard.,
2017 [113]

Fryeetal,
2021 [114]

Tissue sample

Post-mortem
cerebellar cortex
tissue

Post-mortem
dorsolateral
prefrontal cortex

Post-mortem
amygdala

Post-mortem
primary auditory
cortex and
superior temporal
sulcus

Lymphoblastoid
cell lines

Lymphoblastoid
cell lines

Diagnosis of ASD
WHO/ | Validated ASD
]? SM Axtool |prp Mean age
criteria ratio
Not Not stated | 13:0 20.5
stated
Not Not stated | 7:0 9.29
stated
Not Not stated | 8:0 9.88
stated
Not Yes 5:5 31
stated
Yes Yes Not Not stated
stated
N=42
Not Yes 10:0 9.6
stated

Participants
Control RNA extraction

M:F ratio Mean age

13:0 22.6 mirVana
miRNA
Isolation kit
(Ambion)

7:0 10.4 miRNeasy kit
(Qiagen)

8:0 11

6:2 34 RecoverAll Total
Nucleic Acid
Isolation Kit
(Ambion)

Not stated | Age matched | miRVana

N=10 extraction kit
(Ambion)

7:0 6.9 TRIzol method

(unrelated); miRNeasy kit

10:0 (Qiagen)

(sibling)

Sample processing

ncRNA assay

466 miRNA genes
examined by
Multiplex qPCR with
TagMan probes on
Biosystems 7500HT

2 miRNA gene qPCR
using TagMan RT kit
on QuantStudio 12K
Flex System (Applied
Biosystems)

5607 small ncRNA
genes examined by
array (1733 mature
miRNAs, 1658 pre-
miRNAs and 2216
snoRNAs) on
Affymetrix miRNA
3.0 microarrays

RNA-seq using small
RNA library
preparation (AB/Life
technologies) on
SOLID 4.0 analyzer.
Subsequent gPCR
using Tagman Fast
Advanced Master Mix
on Quantstudio 12K
Flex (Applied
Biosystems)
RNA-seq using single
end sequencing on
Ilumina Hiseq4000.
Subsequent qPCR
using miScript IT RT
kit (Qiagen) on a
QuantStudioTM 6
Flex Real-Time PCR
System (Thermo
Fisher Scientific)

Analysis
DEx Normalisation
strategy

praact dCHIP software

P <0.05 invariant
normalisation
method

PR miR-16

P <0.05

P <0.01

Fold change Partek Genomic

>1.2. Suite v6.6 using

P < 0.005 Robust Multiarray
Averaging (RMA)

Read count via
Python HTSeq-
count package
and DESeq2 in
R.

Log2 fold
change

P <0.05
P <0.01

3 miRNA genes
used for
endogenous
controls

cel-miR-39 and
RNUes.
Normalisation of
sequence counts
(dividing counts
by a library size
parameter of
corresponding
sample)

(Continued)
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Table 3. (Continued)

Study

Tissue sample

Diagnosis of ASD

Participants

Sample processing

Analysis

WHO /
DSM
criteria

Validated
Ax tool

ASD

Control

M:F
ratio

Mean age

M:F ratio

Mean age

RNA extraction

ncRNA assay

DEx

Normalisation
strategy

Gandal et al.,
2018 [87]

Post-mortem
cerebral cortex

Not
stated

Not stated

Not
stated
N =51

Not stated

Not stated

Not stated

Not stated

Pooled RNA-Seq
quantifications data
imputed using RSEM
guided by Gencode
v19 annotations from
The PsychENCODE
project

Log2FC
FDR < 0.05

Not stated

Moore et al.,
2019[115]

Neuronal stem
cells (Induced
pluripotent stem
cells derived from
dermal fibroblasts)

Not
stated

Yes

3:0

26

3.0

58

TRIzol method

Single miRNA gene
examined using
TaqMan mature
miRNA assay
(Applied Biosystems)

2 -AACt

U6 snRNA

Mor et al.,
2015 [78]

Post-mortem
prefrontal cortex
Brodmann’s area

Not
stated

Yes

32

28.8

miRNeasy kit
(Qiagen)

Ilumina’s TruSeq
Small RNA Sample
Prep Kit on Illumina’s
MiSeq system.
Subsequent gPCR
with FastStart
Universal SYBR
Green Master (Roche)
on ABI ViiA 7 system

miRAnalyzer
DEx tool

U6 snRNA and
DSEQ read count
normalisation

Nguyen,
Lepleux
etal, 2016
[71]

Olfactory mucosal
cells

Primary skin
fibroblasts

Blood: PBMC

Yes

Not stated

Not
stated
N=8

Not stated

Not stated
N=6

Not stated

4:1

5-
41 = range

Not stated

8:1

5-
18 = range

Not stated

mirVana
miRNA isolation
kit (Life
Technologies) /
TRIzol method
and miRNeasy
kit (Qiagen)

667 miRNA genes
from miRBase v10
examined using
TagMan Arrays A and
B. Validation of target
miRNA genes using
SYBR Green Power
Mix (Life
Technologies) by
qPCR-HD-GPC
platform (Paris)

~AACt
2

miR-221

Nguyen,
Fregeac
etal, 2018
[82]

Post-mortem
temporal lobe

Not
stated

Yes

3:2

4 sex
matched

Age matched

TRIzol method
and miRNeasy
kit (Qiagen)

RNA-seq using
TruSeq Stranded
mRNA LT Sample
Prep Kit (Illumina) on
Ilumina
HiSeq2500.27
miRNA genes
examined using qPCR
on the Fluidigm 48.48
chip

Mean of two
housekeeping
miRNAgenes
and average of
all controls.
Fold

change > 1.2
P < 0.001

Housekeeping
miRNA genes:
miR-106a and
miR-17
Geometric mean
of CYCI, GPBPI,
RPLI3A, and
SDHA

(Continued)

3NO SO1d

SI9PJIOSIP WNJ0eds wsine yum paleloosse sa|ijoid uoissaldxa [enusiayip YNY Bulpoo-uou Jo meines olewslsis


https://doi.org/10.1371/journal.pone.0287131

L2820 euod euinol/Lze 10 1/Bio 10p//:sdny | AINO SOTd

€20¢ ‘G aunp

v /9l

Table 3. (Continued)

Study Tissue sample Diagnosis of ASD Participants Sample processing Analysis
WHO / | Validated ASD Control RNA extraction ncRNA assay DEx Normalisation
DSM | Ax tool |ME Meanage |M:Fratio | Mean age strategy
criteria ratio
Paganetal., | Post-mortem Yes Yes 8:1 39 = median | 20:2 36.5 = median | mirVana PARIS | Single miRNA gene praact Spiked in cel-
2017 [72] pineal gland kit (Ambion) examined by gPCR P < 0.0001 miR39, cel-miR54
Blood: plasma n54 Notstated | 70 Not stated (machine not and cel-miR238
specified) using (Qiagen)
miScript reverse
transcription kit and
SYBR Green PCR kit
(Qiagen)
Sarachana Lymphoblastoid | Not Yes 5:0 Not stated | 9:0 Not stated TRIzol method | 1237 miRNA genes Pavlidis RNU24 and
etal., 2010 cell lines stated and mirVana examined by custom- | template quantile
[116] miRNA printed miRNA matching normalisation
Isolation kit microarrays from analyses
Microarray CORE P <0.05
Facility of the
National
Human Genome
Research Institute.
Subsequent gPCR of 4
miRNAs using
miRNA TagMan
assays (Applied
Biosystems)
Senoetal, | Lymphoblastoid | Not Yes 137 Not stated | 19.3 Not stated miRVana Ilumina HumanRef-8 | 274 Fold TMEM32 and
2010 [117] cell lines stated miRNA V3 gene expression change > 1.5 quantile
Isolation Kit arrays. Subsequent normalisation
qPCR using SYBR
Green (Stratagene)
with TagMan
microRNA assay kits
(Applied Biosystems)
Stamova Post-mortem Not Not stated | 4:4 27 4:2 27 RecoverAll Total | 1123 miRNA genes P < .005 Fold- | Robust Multichip
etal, 2015 superior temporal | stated Nucleic Acid from miRBase v17 change >1.2 Averaging (RMA)
[86] sulcus gyrus and Isolation Kit and 2,216 snoRNA / normalisation via
primary auditory scaRNA genes Partek Genomic
cortex examined by Suite v6.6
Affymetrix micro-
RNA 3.0 microarray
Talebizadeh | Lymphoblastoid | Not Yes 33 10 3:3 10.5 mirVana 470 miRNA genes 2744C Fold RNU24 (qPCR)
etal, 2008 | cell lines stated miRNA isolation | from miRBase v9 change > 1.5 Locally-weighted
[83] kit examined using P < 0.001 Regression
Paraflo miRNA method on the
microarray assay (LC background-
Sciences) and subtracted data
subsequent QPCR
with TagMan assay
(Applied Biosystems)
(Continued)
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Table 3. (Continued)

Study Tissue sample Diagnosis of ASD Participants Sample processing Analysis
WHO / | Validated ASD Control RNA extraction ncRNA assay DEx Normalisation
DSM | Ax tool |MF Meanage |M:Fratio | Mean age strategy
criteria ratio
Wright et al., | Post-mortem Not Not stated | 10:3 22 30:9 22 RNeasy kit RNA-seq using featureCounts | Reads Per Kilobase
2017 [43] dorsolateral stated (Qiagen) TruSeq Stranded FDR < 0.05 of Gene per
prefrontal: Total RNA Library Million mapped
Brodmann areas Preparation kit on the reads values
46 and 9 HiSeq 2000. transformed using
Sequencing depth 80- log2 =log2(RPKM
120 million reads per +1)
sample
Wuetal, Post-mortem Not Yes 45:10 | 2- 38:8 8-62 =range | miRNeasy kit 699 miRNA genes Log2 fold RNU6B
2016 [80] combined frontal | stated 81 = range (Qiagen) examined following changes with

cortex, temporal
lobe and cerebellar
vermis

genome wide miRNA
expression profiling
using Illumina small
RNA sequencing.
Subsequent qPCR of
10 miRNA genes
using miScript RT,
Primer Assays kits
and SYBR Green PCR
Kits (Qiagen) on
Roche LightCycler
480 instrument

linear mixed
effects model

Table footnote: Ax = Assessment; DEx = Differential Expression; FDR = False Discovery Rare; PBMC = Peripheral blood mononuclear cells; RT = Reverse Transcription; 274" = 2*(~delta delta

CT) method for calculating gene expression. Quantitative polymerase chain reaction assays (QPCR).

https://doi.org/10.1371/journal.pone.0287131.t1003
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Systematic review of non-coding RNA differential expression profiles associated with autism spectrum disorders

Table 4. Overview of individual miRNA genes with differential expression in ASD reported in two or more stud-
ies presented by tissue.

miRNA | miRBase Accession | Blood |Saliva Brain/ |LCL (or Studies

gene Number neural | specified)

let-7a-5p | MIMAT0000062 | — ! Hicks, Carpenter et al., 2020 [96];
Huang et al., 2015 [98]; Mor et al.,
2015 [78];

let-7b-5p | MIMAT0000063 1 l 1 Bleazard., 2017 [113]; Ragusa et al.,
2020 [81]; Salloum-Asfar et al., 2021
(73]

miR-7-5p | MIMAT0000252 11 T 1 Hicks, Ignacio et al., 2016 [95];
Jyonouchi et al., 2019 [100]; Mor
et al.,, 2015 [78]; Salloum-Asfar et al.,
2021 [73]; Sehovic et al., 2020 [106]

miR-10a- | MIMAT0000253 T 1 Frye et al., 2021 [114]; Wu et al., 2016

5p [80]

miR-15a- | MIMATO0000068 11 Huang et al,, 2015 [98]; Salloum-

5p Asfar et al., 2021 [73]

miR-16- | MIMAT0000069 1 1 Huang et al., 2015 [98]; Ragusa et al.,

5p 2020 [81]

miR-19a- | MIMAT0000073 T 1 Mor et al., 2015 [78]; Ozkul et al.,

3p 2020 [103]; Mor et al., 2015 [78];
Salloum-Asfar et al., 2021 [73]; Yu
etal., 2018 [75]

miR-19b- | MIMAT0000074 711 T Cui et al,, 2021 [92]; Huang et al.,

3p 2015 [98]; Mor et al., (2015) [78];
Vasu et al., 2014 [74]

miR-20b- | MIMAT0001413 ) ) 1 Frye et al., 2021 [114]; Salloum-Asfar

5p etal., 2021 [73]; Wu et al., 2016 [80]

miR-21- | MIMAT0004494 T Mor et al., 2015 [78]; Wu et al., 2016

3p [80]

miR-23a- | MIMAT0000078 ) | ) Atwan et al., 2020 [90]; Sehovic et al.,

3p 2020 [106]; Wu et al., 2016 [80]

miR-23a- | MIMAT0004496 T Sarachana et al., 2010 [116];

5p Talebizadeh et al., 2008 [83]

miR-27a- | MIMAT0000084 Tl = Hicks, Ignacio et al., 2016 [95];

3p Sehovic et al., 2020 [106]; Vaccaro
etal., 2018 [109]; Vasu et al., 2014
[74]

miR-28- | MIMAT0004502 | | Hicks, Ignacio et al., 2016 [95];

3p Salloum-Asfar et al., 2021 [73]

miR-29c- | MIMAT0000681 11 Eftekharian et al., 2019 [93]; Salloum-

3p Asfar et al., 2021 [73]

miR-32- | MIMAT0000090 Ll T Bleazard 2017 [113]; Hicks, Ignacio

5p et al., 2016 [95]; Sehovic et al., 2020
[106]

miR-34c- | MIMAT0000686 ) | Bleazard., 2017 [113]; Vaccaro et al.,

5p 2018 [109]

miR-99a- | MIMAT0000097 = | 1 Bleazard., 2017 [113]; Salloum-Asfar

5p et al., 2021 [73]; Vaccaro et al., 2018
[109]

miR-101- | MIMAT0000099 ™ Salloum-Asfar et al., 2021 [73]; Vasu

3p etal,, 2014 [74]

miR- MIMAT0000101 1l Huang et al.,, 2015 [98]; Jyonouchi

103a-3p etal., 2019 [100]
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Table 4. (Continued)

miRNA | miRBase Accession | Blood |Saliva Brain/ |LCL (or Studies

gene Number neural | specified)

miR- MIMAT0000680 TM17 — | Nguyen et al., 2016 [71]; Sarachana

106b-5p etal., 2010 [116]; Salloum-Asfar et al.,
2021 [73]; Vasu et al., 2014 [74]; Yu
etal., 2018 [75]

miR-107 | MIMAT0000104 T T Sarachana et al., 2010 [116]; Wu et al,,
2016 [80]

miR- MIMAT0000423 Tl Bleazard 2017, Seno et al., 2011

125b-5p

miR-127- | MIMAT0000446 | T— Hicks, Ignacio et al., 2016 [95];

3p Salloum-Asfar et al., 2021 [73];
Sehovic et al., 2020 [106]

miR-132- | MIMATO0004594 11 Bleazard 2017 [113]; Sarachana et al.,

5p 2010 [116]; Talebizadeh et al., 2008
(83]

miR-134- | MIMAT0000447 111 Hirsch et al., 2018 [97]; Jyonouchi

5p et al., 2019 [100]; Salloum-Asfar et al.,
2021 [73]

miR-140- | MIMAT0004597 T— T1 Cirnigliaro et al., 2017 [91]; Hicks,

3p Ignacio et al., 2016 [95]; Sehovic et al.,
2020 [106]; Yu et al., 2018 [75]

mir-141- | MIMAT0000432 N T Ragusa et al., 2020 [81]; Salloum-

3p Asfar et al., 2021 [73]

miR-144- | MIMAT0000436 11 1 Mor et al., 2015 [78]; Nakata et al.,

3p 2019 [102]; Salloum-Asfar et al., 2021
(73]

miR- MIMATO0000449 - 1 111 | FBLCL Mor et al., 2015 [78]; Nguyen,

146a-5p mT Lepleux et al., 2016 [71]; Nguyen,
Fregeac et al., 2018 [82]; Ragusa et al.,
2020 [81]; Talebizadeh et al., 2008
[83]

miR- MIMAT0000757 | | Hicks, Carpenter et al., 2020 [96];

151a-3p Vasu et al., 2014 [74]

miR-155- | MIMAT0000646 T111 Almehmadi et al., 2020 [79]; Mor

5p — etal, 2015 [78]; Wu et al., 2016 [80]

miR- MIMAT0000257 1l Atwan et al., 2020 [90]; Cui et al.,

181b-5p —— 2021 [92]; Vaccaro et al., 2018 [109];
Vasu et al., 2014 [74]

miR-188- | MIMAT0000457 T T Bleazard 2017 [113]; Yu et al., 2018

5 [75]

miR- MIMAT0004614 Ll — Hicks, Carpenter et al., 2020 [96];

193a-5p Jyonouchi et al., 2019 [100]; Vaccaro
etal., 2018 [109]

miR- MIMATO0004767 11 Jyonouchi et al., 2019 [100]; Salloum-

193b-5p Asfar et al., 2021 [73]

miR-195- | MIMAT0000461 11 Huang et al,, 2015 [98]; Vasu et al.,

5p 2014 [74]

miR-197- | MIMAT0022691 1l Kichukova, Popov et al., 2017 [76];

5p Kichukova, Petrov et al., 2021 [101]

miR- MIMAT0000263 " T Salloum-Asfar et al., 2021 [73]; Seno

199b-5p etal, 2011 [117]

miR-219- | MIMATO0000276 or T T Mor et al., 2015 [78]; Sarachana et al.,

5p MIMAT0019747 2010 [116]
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Table 4. (Continued)

miRNA | miRBase Accession | Blood |Saliva Brain/ |LCL (or Studies

gene Number neural | specified)

miR-221- | MIMAT0000278 l— ) Salloum-Asfar et al., 2021 [73];

3p Vaccaro et al., 2018 [109]; Wu et al.,
2016 [80]

miR-223- | MIMAT0000280 ™ T Bleazard 2017 [113]; Wu et al., 2016

3p (80]

miR-328- | MIMAT0000752 i1l Kichukova, Popov et al., 2017 [76];

3p Nakata et al., 2019 [102]; Popov,
Minchev et al., 2018 [77]; Salloum-
Asfar et al., 2021 [73]

miR-335- | MIMAT0004703 M- 11 Hicks, Ignacio et al., 2016 [95];

3p Sehovic et al., 2020 [106]; Wu et al.,
2016 [80]

miR-363- | MIMAT0000707 T 1 Frye et al,, 2021 [114]; Wu et al., 2016

3p (80]

miR-379- | MIMAT0000733 | T Jyonouchi et al., 2019 [100]; Mor

5p etal, 2015 [78]

miR-424- | MIMAT0001341 11 ) Kichukova, Popov et al., 2017 [76];

5p Kichukova, Petrov et al., 2021 [101];
Wu et al., 2016 [80]

miR-451a | MIMAT0001631 7 | T 1 Frye et al., 2021 [114]; Huang et al.,
2015 [98]; Mor et al., 2015 [78]; Pagan
etal., 2017 [72]; Ragusa et al., 2020
[81]

miR-486- | MIMAT0004762 11 T Popov, Minkov et al., 2021 [104];

3p Seno et al., 2011 [117]; Yu et al., 2018
[75]

miR-494- | MIMAT0002816 1 T Huang et al,, 2015 [98]; Mor et al.,

3p 2015 [78]

miR- MIMATO0004773 1l Kichukova, Popov et al., 2017 [76];

500a-5p Kichukova, Petrov et al., 2021 [101]

miR-574- | MIMAT0003239 1l Huang et al., 2015 [98]; Jyonouchi

3p etal., 2019 [100]

miR- MIMAT0026622 IR 1 Kichukova, Popov et al., 2017 [76];

619a-5p Popov & Petrov 2021 [105]; Wu et al.,
2016 [80]

miR- MIMAT0005949 ™ 1 Ander et al., 2015 [85]; Kichukova,

664a-3p Popov et al., 2017 [76]; Kichukova,
Petrov et al., 2021 [101]

miR-874- | MIMAT0004911 11 1 Nakata et al., 2019 [102]; Salloum-

3p Asfar et al., 2021 [73]; Wu et al., 2016
[80]

miR-940 | MIMAT0004983 | ) Huang et al,, 2015 [98]; Wu et al,,
2016 [80]

miR- MIMAT0015001 1l Kichukova, Popov et al., 2017 [76];

3135a Popov, Minchev et al., 2018 [77]

miR- MIMAT0017991 Ll Huang et al., 2015 [98]; Ozkul et al.,

3613-3p 2020 [103]

miR- MIMAT0017990 T T Bleazard 2017 [113]; Salloum-Asfar

3613-5p etal 2021 [73]

miR-4270 | MIMAT0016900 I Huang et al 2015 [98]; Sell et al 2020
[107]

miR- MIMAT0019849 ™ Huang et al 2015 [98]; Yu et al 2018

4728-5p [75]
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Table 4. (Continued)

miRNA | miRBase Accession | Blood |Saliva Brain/ |LCL (or Studies

gene Number neural | specified)

miR- MIMAT0019855 ™ Jyonouchi et al 2019 [100]; Salloum-
4732-5p Asfar et al,, 2021 [73]

miR- MIMATO0019873 1 | Ander et al., 2015 [85]; Salloum-Asfar
4742-3p etal, 2021 [73]

miR-6086 | MIMAT0023711 I Huang et al., 2015 [98]; Yu et al., 2018

[75]

Abbreviations used: FB = primary skin fibroblasts; LCL = Lymphoblastoid cell line; T = increased expression
1 = decreased expression; — = non-significant expression change (where reported).

https://doi.org/10.1371/journal.pone.0287131.t1004

function’ GO categories, which can be visualised within the heatmap generated (S1 Fig). For
the planned meta-analysis, we extracted all available ncRNA expression data from each study.
Data for most studies was incomplete for meta-analysis, therefore we contacted corresponding
authors, but were only able to obtain raw datasets from a small number of studies. Considering
all included studies, a range of data elements were used to capture ncRNA gene differential
expression. Only 17 papers included both fold change and associated statistical findings [43,
73,75,77,78, 80-82, 85,90, 101-103, 110, 113, 114, 117] and often the latter was not corrected
for multiple testing. The different data types, levels of data processing and in many instances
inaccessible data, made meta-analysis unsuitable [118]. Many papers only reported p-values
for miRNAs that were found to be differentially expressed (i.e. did not report those with non-
significant expression). Although methods to combine p-values have been proposed [119], we
found that the use of different statistical tests, different hypotheses (one-sided or two-sided)
and any adjustment for multiple comparisons often being unknown, made this inappropriate.
Originally plans were made for a series of statistical and publication bias analytical assessments
as part of a meta-analysis, but these were not possible [64, 68, 69]. We added a field into the
quality assessment related to statistical analysis given the complexities of analysing complex
data sets and multiple testing in the included studies [120]. The quality assessment using
adapted QUADAS-2 [70] is shown in S1 Table.

Discussion

We consider here our findings from 46 studies that examined miRNA gene expression and 7
studies examining other classes of ncRNA.

Differential expression of miRNA genes in ASD

Several miRNA genes have been reported to have differential expression in two or more stud-
ies (Table 4). Whilst this initially appears promising, many of these are in opposing directions.
This may relate to tissue specificity of miRNA gene expression [71], type I errors related to
high numbers of miRNA genes tested and/or statistical tests being performed [121] or reflect
the heterogenous nature of ASD aetiology or the study populations examined [15, 122]. Fur-
ther issues around study quality and bias are considered later in the discussion. Only four miR-
NAs had differential expression in the same direction and tissue type in at least three studies:
miR-106b-5p, miR-146a-5p, miR-155-5p and miR-328-3p. Intriguingly, in addition to the stud-
ies in our systematic review, a further single case study examining genome-wide differential
miRNA gene expression from the post-mortem prefrontal cortex of a single deceased individ-
ual with ASD compared with a non-ASD sibling control without ASD (i.e. ASD of N = 1) also
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Table 5. Studies examining differential expression of ncRNA classes other than miRNA in ASD.

Study

Ander
etal,
(2015)
[85]

Cheng
etal,
(2020)
[84]

Gandal
etal,
(2018)
[87]

Salloum-
Asfar
etal.,
(2021)
[73]

Details

ncRNA expression
profiles

20 ncRNA gene
diagnostic signature
blood test

PsychENCODE
Consortium study.
Transcriptome-wide
isoform-level data from
52 individuals with
ASD

ncRNA expression
profiles

Tissue

Superior Temporal
Sulcus

Primary Auditory
Cortex

Peripheral blood
sample

Post-mortem brain
samples

Peripheral blood
plasma

Increased expression

SNORAI11C, SNORA27,
SNORAT7IE (referred to as
ACA39)

- SNORA22, SCARNASG,
SNORD13P2 (referred
to as U13 paralogue on
Chromosome 2),
SNORD13P3 (referred
to as U13 paralogue on
Chromosome 3), (U13
paralogue on
chromosome 11—no
corresponding HGNC
gene symbol)

Decreased expression

SNORDI13P1 (referred
to as U13 paralogue on
Chromosome 1)

ncRNA genes with "discrepancy between ASD and
control samples", but expression data not reported. The
model included 6 ncRNA genes eligible for systemic
review inclusion:

One snoRNA gene: RNUI105B

One Y RNA pseudogene: RNY1P11

Five snRNA genes: RNUI-16P, RNU6-258P, RNU6-
485P, RNU6-549P and RNVUI-15

1363 ncRNA genes annotated from RNA-seq data
(novel and known in ensemble using genecodeV27
nomenclature). 178 ncRNA genes differentially
expressed in ASD (vast majority not HGNC approved
shorter classes—-most abundant class are 60 lincRNA
genes). Only one apparent HGNC approved shorter
ncRNA gene identified (snoRNA gene-see below)

- SNORD-3B-2

piR-hsa-1282, piR-hsa-12790, | piR-hsa-28390, piR-hsa-
PiR-hsa-23326, piR-hsa-1207, | 32235, piR-hsa-28374,
piR-hsa-28131, piR-hsa-6463, | piR-hsa-32195, piR-hsa-
piR-hsa-1242, piR-hsa-27493, | 23210, piR-hsa-32238,
PpiR-hsa-27620, piR-hsa- piR-hsa-27731, piR-hsa-
27621, piR-hsa-27140, piR- | 27730, piR-hsa-325,
hsa-1243, piR-hsa-23533, PiR-hsa-27729, piR-hsa-
piR-hsa-23248, piR-hsa- 1849, piR-hsa-32158,
28876, piR-hsa-27622, piR- | piR-hsa-23209, piR-hsa-
hsa-1177, piR-hsa-28190, 32182, piR-hsa-32167,
PiR-hsa-5937, piR-hsa-24672, | piR-hsa-32159
PiR-hsa-28877 RNY4P36, RNY4P6,
SNORD3C, SNORD69, RNY4, RNY4P25,
SNORD51, SNORDI10, RNY4P18
SNORD22, SNORD24, SNORAG63B, SNORDG65,
SNORD102, SNORD3A, SNORAS51, SNORD57,
SNORD26 MT-NDI, MT-RNRI,
MT-ND5, MT-ND3,
MT-TW, MT-TE,
MT-RNR2, MT-TS2,
MT-TS1, MT-TG,
MT-TT, MT-TV,
MT-TH, MT-CO3,
MT-TK, MT-TI,
MT-TP, MT-TQ,
MT-TY, MT-TN,
MT-TL2, MT-TLI,
MT-TD, MT-TC,
MT-TR
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Table 5. (Continued)

Study Details Tissue Increased expression Decreased expression
Stamova Assessment of brain Post-mortem SNORD114-14 (referred to as | SNORA71D (referred
etal, region and age-related | Superior Temporal | snoRNA 14qII-14), toas U71d)
(2015) ‘small’ ncRNA Sulcus Association | SNORDSS (referred to by
[86] expression patterns Cortex versus ensembl ID:
Primary Auditory | ENSG00000221611),
Cortex (‘snoU13’ gene on
chromosome 2 referred to by
ensembl ID

ENSG00000239170 was also
reported, but has no

approved HGNC ncRNA

gene symbol)
Expression of SNORA73A (referred to as SCARNA12 (referred to
ncRNA with Ul7a), SNORA22B (referred | as U89)

increasing age in | to by ensembl ID

Superior Temporal | ENSG00000206603),

Sulcus SNORAA48 (referred to by
ensembl ID
ENSG00000212445),
(‘snoU13’ gene on
chromosome 9 referred to by
ensembl ID
ENSG00000239055 was also
reported, but has no

approved HGNC ncRNA

gene symbol)
Wright Genome wide Post-mortem SNORA54 SNORA74A, SNORA53,
etal, differential expression | dorsolateral SNORD17, SNORA74B,
(2017) analysis prefrontal cortex SNORD114-23
[43]
Zhou 9 snRNA diagnostic Peripheral blood | ncRNA genes with "discrepancy between ASD and
etal., signature from same sample control samples", but expression data not reported.
(2019) datasets as Cheng et al., snRNA diagnostic signature model included 9 eligible
[88] 2020 [84], with 4 snRNA genes:

additional snRNAs. 5 snRNA genes overlapping with Cheng et al., (2020)

[84] model: RNU1-16P, RNU6-258P, RNUG6-485P,
RNUG6-549P and RNVUI-15

4 additional snRNA genes: RNU6-1031P, RNU6-335P,
RNUG6-98P and RNU6ATAC26P

https://doi.org/10.1371/journal.pone.0287131.t005

found miR-106b-5p and miR-146a-5p were in their top six differentially expressed miRNA
genes [123]. It is instructive to consider the 4 notable miRNA genes identified in our systematic
review in more detail, although caution should be exercised given the possibility of selective
research and/or reporting and high levels of potential bias found from our quality assessments.

Four notable miRNA genes with differential expression in ASD

miR-106b-5p. It has previously been reported that miR-106b-5p has altered expression in
schizophrenia [124]. The finding that ASD and childhood onset schizophrenia both share
altered expression is under research scrutiny [125], although both these groups also have high
associated rates of pathogenic copy number variants and brain trauma [126] and there is a
long history of some diagnostic overlap [127]. miR-106b-5p has a wide influence on various
biological processes including cancer [128, 129] and in isolation is unlikely to demonstrate dis-
ease specificity.
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miR-146a-5. miR-146a-5p was found to have uniformly increased expression in our sys-
tematic review across a wide range of tissue types including saliva, primary skin fibroblasts,
lymphoblastoid cell line, olfactory mucosal cells and post-mortem brain samples from the pre-
frontal cortex and temporal lobe, respectively [71, 78, 81-83]. One of these studies examined
tissue and disease specificity of miR-146a-5p (with three other miRNA genes) and found no
differential expression in peripheral blood mononuclear cells (PBMC) from a group of ASD
patients compared to controls [71]. miR-146a-5p has also been implicated in a number of bio-
logical processes including regulation of the development of viral infections [130] and cancer
tumour suppression [131], for example in the inhibition of both EGFR and NF-kB signalling
and reduction of the metastatic potential of cancers [132].

miR-155-5p. miR-155-5p showed a degree of uniformity in our systematic review, with
increased expression in the amygdala, prefrontal cortex and temporal cortex regions in three
post-mortem studies [78-80] but with no significant differential expression found in dorsolat-
eral prefrontal cortex [79]. miR-155-5p has been implicated in inflammatory processes [133,
134] and the modulation of cancer [135]. miR-155-5p expression appears to be involved in
impaired development of dendritic cells, B cells and T cells and is important for immune
response [136, 137]. Moreover, it was one of several differentially expressed miRNA genes
associated with a basket of neurodegenerative diseases, including idiopathic Parkinson’s dis-
ease, where miR-155-5p has been reported to have increased expression [138].

miR-328-3p. In our systematic review, miR-328-3p was found to have decreased expres-
sion in peripheral blood samples in three studies examining serum [76, 77] and plasma [73],
respectively [73, 76, 77] but a further study reported increased expression in peripheral blood
[102]. miR-328-3p has been thought to have a role in cancer, whereby suppression is believed
to impair stem cell function, a mechanism hypothesised to prevent ovarian cancer metastasis
[139].

Functional enrichment analysis. The output of functional enrichment analysis by
DIANA-miRPath v3.0 [65] with the four key miRNA genes identified in this systematic review
(miR-106b-5p, miR-146a-5p, miR-155-5p and miR-328-3p) versus gene ontology categories
identified the most significant levels of enrichment in ‘ion binding’ and ‘organelle function’
GO categories (S1 Fig). Ion binding is an interesting finding, given the theories of channelopa-
thy dysregulation in the pathogenesis of ASD [140-143]. However, there are well articulated
concerns related to the cautious interpretation of functional enrichment and pathway analysis
of miRNA that have been raised within the miRNA research community [144-147]. For exam-
ple, there have been suggestions that the results from standard analyses are biased by over-rep-
resented terms and may suffer from ascertainment bias for the most studied molecular
pathways and be limited by selective coverage of annotated genes within a gene set [144].
Some solutions to these challenges have been proposed [144, 145, 147] but are beyond the
scope of this review.

Other ncRNA with differential expression in ASD

Whilst the majority of papers identified in this systematic review examined miRNA gene
expression, other ncRNA genes with differential expression were reported in seven papers
including differential expression of snoRNA [43, 73, 84-86], snRNA [84, 88], piRNA [73] and
Y RNA genes [73] (Table 5). One of these studies Salloum-Asfar and colleagues (2021) [73]
was the first to report stable expression of piRNA, snoRNA, Y RNA and tRNA genes in
plasma, a helpful attribute for further research. Two of the seven papers were published by the
same research group [84, 88], and described overlapping ASD ncRNA ‘diagnostic signatures’
that derived from re-annotation and analysis of expression data from an external dataset with
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validation using recruited participants. Together these two studies described nine snRNA
genes [84], one snoRNA gene [88] and one Y RNA pseudogene in overlapping ncRNA expres-
sion diagnostic models measured in blood (Table 5). Unfortunately the corresponding raw
data, strength and direction of expression change, and how each ncRNA gene contributed to
their ‘signature formula’ models were not clearly reported [84, 88]. The small number of
ncRNA gene expression studies in cohorts of individuals with a diagnosis of ASD is in itself an
important finding to report, to help shape future research directions, given their cellular mech-
anisms and theoretical links with ASD. Each ncRNA class with reports of differential expres-
sion in ASD found in our review, have been discussed further, in turn.

Small nucleolar RNA. Six studies examined differential expression in snoRNA genes in
ASD. snoRNA can be divided into three major classes: C/D box snoRNAs (SNORDs), H/ACA
box snoRNAs (SNORAs) and small Cajal body-specific RNAs (scaRNAs) (Table 1). snoRNAs
accumulate in the nucleoli of the cell and have roles in post-transcriptional modification and
maturation of ribosomal RNA and snRNA [56, 85, 148, 149] and roles in mRNA processing
and splicing [150]. There is interest in snoRNA splicing disruption affecting neuronal develop-
ment and function [151-153]. snoRNA have been associated with a range of human diseases
[154] including ASD, and are gathering interest [43, 73, 84-86]. Differentially methylated
genomic regions of paternal sperm samples have been associated with ASD-related phenotype
at 12 months of age [22]. The paternal sperm genomic loci region exhibiting differential meth-
ylation in this study contains fifteen snoRNA genes within the SNORD-115 cluster, which lies
within the Prader-Willi syndrome critical region on chromosome 15. Prader-Willi syndrome
is an imprinting condition that can manifest with a neurobehavioral phenotype with aspects of
ASD symptomatology [155].

Small nuclear RNA. Most snRNA are involved in the major and minor spliceosome com-
plex to splice the introns from pre-messenger RNA [53]. snRNA and the related core spliceo-
somal U-snRNP complexes are associated with numerous diseases including those with
neurological manifestations such as spinal muscular atrophy (SMA), amyotrophic lateral scle-
rosis and Burn-McKeown syndrome [156-159]. Some authors have proposed an association
of with snRNA with ASD [84, 88, 160], including Zhou and colleagues (2019), identified in
this review, who report an ASD-ncRNA ‘diagnostic signature’ in blood comprising entirely of
snRNA genes [88].

Piwi-interacting RNA. piRNA are frequently considered with miRNA, given their com-
parable size, and overlapping molecular functions [51]. In contrast to miRNA, piRNA are pre-
dominantly expressed in germline cells and function to silence transposable elements and
regulate gene expression through RNA cleavage and methylation mechanisms. The role of
piRNA is increasingly being described in somatic cells, such as in the nervous system and they
have been implicated in neurodevelopmental and neurodegenerative disorders [161]. Rett syn-
drome is an X-linked dominant neurodevelopmental condition affecting females caused by
pathogenic variants in the MECP2 gene [162]. Rett Syndrome is characterised by developmen-
tal regression following a period of apparently normal development, an ASD neurobehavioural
phenotype and repetitive hand movements. The MECP2 gene is responsible for binding to
methylated genomic DNA and has epigenetic functions required for neuronal development
[163]. Interestingly, MECP2 knockout mice have increased piRNA expression profiles in the
cerebellum [164]. MECP2 also has roles related to miRNA biogenesis, miRNA binding and
IncRNA interactions [163].

Y RNA. One study identified in this systematic review reported five Y RNA genes
(RNY4P36, RNY4P6, RNY4, RNY4P25 and RNY4P18) with decreased plasma expression in
ASD compared with controls [73]. The same study reported four other Y RNA genes with dif-
ferential expression associated with ‘more symptoms’ of ASD, with increased expression of
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RNY4P29 and decreased expression of RNY3P1, RNY3 and RNY4P28, respectively. Whilst
there were no other studies reporting Y RNAs, Cheng and colleagues (2020) included a single
Y RNA pseudogene known as RNY1P11 within their ASD ncRNA diagnostic signature in
blood [88], but had no HGNC approved Y RNA genes within their model. Y RNAs were first
discovered in the serum of people with systemic lupus erythematosus (SLE), a multisystemic
autoimmune condition that can involve the brain [165]. Y RNA have cellular roles related to
DNA replication, RNA stability and cellular stress responses [59, 60].

Other classes of ncRNA lacking ASD differential expression evidence. Whilst no differ-
ential expression findings were forthcoming from this systematic review in relation to vtRNA,
tRNA and snaR, we have highlighted some interesting literature relevant to ASD, worthy of
further discussion.

Vault RNA. vtRNA plays a role in neuronal synapse formation and so are of interest in
ASD given postulated aetiologies such as altered neurone development including synapse for-
mation [166]. vtRNA bind to and activate a mitogen-activated protein kinase (MEK) to
amplify the RAS-MAPK signalling pathway [167]. There is emerging evidence associating
RASopathies (a group of inherited disorders caused by pathogenic variants of genes encoding
regulatory proteins within the RAS-MAPK signalling pathway) with an increased prevalence
of ASD [168]. One such RASopathy is Legius syndrome, which interestingly has a murine
model where the ASD-like neurobehavioral phenotype is ameliorated by MEK inhibitors
[169]. Further work related to vtRNA expression in ASD could complement this research to
support the possible clinical translation of ASD-related MEK inhibitor drug therapy [169].

Transfer RNA. tRNA genes are encoded for by both nuclear and mitochondrial genomes.
The mitochondrial genome has been proposed as a genetic modifier for ASD [170] and theo-
ries related to mitochondrial dysfunction in ASD have been hypothesised [171]. The mito-
chondrial genome encodes 22 transfer RNA genes and harbours the majority of pathogenic
variants that result in broad and disparate disorders [172]. One report demonstrated a mito-
chondrial tRNA variant within a single family that was attributed as causative for a heteroge-
neous group of neurological disorders where ASD was a feature [173].

Small NF90 (ILF3) associated RNA. snaR gene expression may also be worthy of further
examination in ASD, given their abundant expression within the testis and discrete regions of
the brain [52]. Evidence from meta-analysis reports that advanced paternal age as a risk factor
for ASD [174], which may be related to increased rates of genomic and epigenomic abnormali-
ties within the germline cells [175]. It is also interesting that polymorphisms of SNAR-I (one of
twenty snaR genes), is associated with increased lateral ventricle volume [176], which is one of
two neuroimaging distinguishing features (alongside increased Pallidum volume) found in a
large ASD cohort that underwent high-resolution structural brain scans [177].

Limitations and quality assessments of studies

Quality of data and reporting. There are several limitations that need to be taken seri-
ously both in interpreting the results from this systematic review and in planning for future
research. The exact number of ASD participants from all included studies was difficult to
ascertain as certain studies were not explicit in descriptions of study populations, and there
were occasions where it was difficult to exclude some study population overlap [77, 104, 178].
The use of external datasets and biobank sample resources also made this challenging, with
some instances where the same Gene Expression Omnibus (GEO) dataset was used (for exam-
ple GSE18123 in three studies) [84, 88, 94]. Two of these studies were from one research group
that also appeared to use the same internal datasets in both of their studies, but this was not
readily apparent in their described methodologies [84, 88]. Most studies use small sample sizes
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and several studies do not report how the diagnosis of ASD was established (e.g., whether they
used validated measures). We identified studies that included participants with ASD present
alongside confounding phenotypes for example, individuals with ‘high-functioning’ ASD
[102], those who recruited both ASD and control participants from an allergy/immunology
clinic [99], and individuals with high levels of consanguinity, epilepsy and dysmorphism [112],
that may influence miRNA expression [179-181]. Participants were frequently recruited from
convenience samples or clinic populations and many studies had a limited description of con-
trol groups with few or no assessments to characterise phenotype variations. These factors are
further challenged by the heterogeneity of ASD and the use of small sample sizes [15, 182]. We
also recognised a large variation in the methods used to determine ncRNA gene expression
and many studies omit important methodological details related to these.

Meta-analysis and data synthesis. Statistical methodological quality in the studies are
highly variable with many instances of small sample sizes and studies using inappropriate sta-
tistical tests. It is unclear in some studies whether correction for multiple testing has been
applied and, where stated, different methods have been used such as Bonferroni or Benjamini-
Hochberg correction. For meta-analysis, we considered methods to combine p-values [119],
such as Stouffer’s method [183] that is generally preferred when different weights are attrib-
uted to the p-values being combined. However, it is not clear how the direction of differential
expression (often presented as fold change) should be incorporated. Some authors recommend
the removal of genes with conflicting differential expression, so that only the genes with the
same fold change are combined [184] and others suggest that one-sided p-values can be used
to take the direction of fold-change into account. When not specified, the p-values given are
presumably two-sided but one-sided p-values are sometimes reported. We also observed dif-
ferent statistical tests, including t-tests, Mann-Whitney U-tests and Tukey’s multiple compari-
son tests to provide the p-values. These were often reported as simple inequalities rather than
precise values, making it unlikely that useful information could be extracted from their combi-
nation. High degrees of heterogeneity were apparent across studies with respect to partici-
pants, sample types and expression assays. It is well recognised that different cell types have
tissue specific ‘miRNomes’ and comparing this ncRNA expression data therefore might not be
appropriate [185]. Despite contacting several authors, we were not able to obtain full data sets
in several cases. In summary, our planned strategy for meta-analysis and integration of the
findings from different studies was not possible [118] because of the large variation in data pre-
sentation, availability, statistical analysis used and many instances of poor reporting.

Factors affecting ncRNA gene expression. The field of ncRNA gene expression studies is
littered with challenges in the interpretation of findings. Disease or developmental states may
not be the only factors altering ncRNA expression. Exercise [186], sleep [187], nutritional
intake [188, 189] and infection [190] are just some factors that may impact ncRNA expression.
Interestingly, sleep [191], nutrition [192], bowel habit [193] and exercise [194] may be
markedly different in people with ASD compared to neurotypical people, raising the prospect
that ncRNA differential expression findings may be as a result of ASD and its patterns, life-
styles and associations rather than (or as well as) aetiological. This is currently unclear and so
research methodologies should attempt to examine and control for this where possible. There
are numerous ways that n.cRNAs are deployed in biological processes. As in multifactorial
models of ASD aetiology [195], the role of ncRNAs may also be multifaceted and interactive.

We also know that sample collection, RNA extraction, purification, storage, handling, and
testing conditions can greatly impact ncRNA expression [196-198]. For example, the use of an
EDTA anticoagulant appears to influence specific miRNA expression, particularly after longer
EDTA exposure times [196]. In our systematic review, EDTA blood tubes were used in several
studies [73, 75, 76, 89, 90, 93, 101, 105] with only a few studies using PAXgene blood RNA
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tubes [94, 102, 104, 110] and many studies omitted details about blood sample collection,
including anticoagulant exposure timings. Quantity and quality of centrifuging in blood has
also been shown to alter the proportion of intra and extracellular components that may dem-
onstrate different miRNA expression properties [197]. Challenges related to ncRNA data nor-
malisation approaches also support the need for standardisation [199]. Caution is also
required for the interpretation of post-mortem samples. In life, hypoxia is known to change
miRNA function and expression [200] and so it is not surprising that post-mortem miRNAs
are altered through the process of death with degradation happening in different ways at dif-
ferent rates [201, 202]. Post-mortem ncRNA gene expression studies therefore need to include
supplementary tests to explore degradation to aid interpretation. In summary, the process of
measuring ncRNA gene expression requires quality control and clear detailed reporting to
allow comparison between studies for meaningful interpretation.

Differential gene expression in opposing directions. Our review findings of studies
reporting miRNA genes with differential expression in opposite directions needs further con-
sideration. Another systematic review in type two diabetes mellitus reported that two thirds of
differentially expressed miRNA genes were found in opposite directions [63]. Whilst this may
suggest poor methodologies or reporting bias we should be cautious about how we interpret
this. Some miRNA genes appear to have greater tissue specificity than others [203]. In the con-
text of cancer, opposing directions of miRNA differential gene expression in miR-125b is
thought to represent oncogenic characteristics when expression is increased and loss of
tumour suppressive functions when expression is decreased [204]. Differential expression in
opposing directions of individual miRNA genes was observed in this systematic review on a
population level, but also on an individual level [112]. There is evidence that direction of
miRNA (and other ncRNA) differential expression may change with age [86] or over time and
may respond to environmental exposures such as smoking [205] and alcohol [206]. Whilst
numerous miRNA genes have been associated with neurodevelopmental or neurodegenerative
diseases [138] there is still much work to be done to understand whether miRNA differential
expression may play a role in aetiology or to the numerous other factors described above
including a response to the condition itself.

Expression assays for ncRNA. Various technologies for measuring ncRNA expression
levels have been used in the studies, each with different strengths and limitations [207]. Quan-
titative polymerase chain reaction assays (QPCR) are based on the amplification of target
ncRNA genes of known sequence. Although qPCR assays are known for their high sensitivity
and specificity, the sensitivity does depend on the target abundance and the efficiency of the
amplification [208]. If there are closely related sequences to the target sequence, there is a risk
of false amplification. The many different protocols, reagents, and analysis methods and lack
of technical information led to recommendations for qPCR assay design and data reporting,
or “minimum information for the publication of qPCR experiments” (MIQE) [209]. gPCR
assays can be expensive as each target requires specific primers and probes and they are com-
monly used to validate gene expression changes identified by other methods, such as microar-
rays or Next-Generation Sequencing (NGS). Microarrays are cost-effective and have been
widely used in ncRNA gene expression research. However, they may not be sensitive enough
to detect expression of low-abundance ncRNA genes and can suffer from dynamic range issues
which affect the quantification of highly abundant transcripts [210]. Microarray results can
also be influenced by probe design bias, as the performance of the probes may vary depending
on their sequence. Differences in hybridisation as well as normalisation issues mean that RNA
sequencing is sometimes preferred [211]. NGS has revolutionised ncRNA research by allowing
comprehensive profiling of ncRNAs. However, biases in library preparation methods, includ-
ing at ligation, reverse transcription, and amplification steps, and sequencing errors, can all

PLOS ONE | https://doi.org/10.1371/journal.pone.0287131 June 15, 2023 28/42


https://doi.org/10.1371/journal.pone.0287131

PLOS ONE Systematic review of non-coding RNA differential expression profiles associated with autism spectrum disorders

affect the accuracy of ncRNA identification and quantification [212]. Furthermore, NGS gen-
erates huge amounts of data, requiring advanced bioinformatics tools and computational
resources for data analysis.

Implications for clinical practice. At the current time there are no implications for clini-
cal practice that we could reliably draw from these results, with limited evidence to support
ncRNA gene expression as biomarkers for ASD. The ncRNA genes with differential expression
identified in this systematic review have all been implicated in several other diseases and bio-
logical processes and there is limited or no reporting of any high sensitivity and/or specificity
scores or validation studies. There are also limited descriptions of phenotypes in the ASD
groups. There is, however, enough promise to suggest that continuing to research in this field
has potential to improve our understanding of mechanisms associated with neurodevelopmen-
tal differences such as ASD.

Implications for research. By contrast there are many implications for research to con-
sider. The finding that there is limited research examining gene expression in classes of
ncRNA other than miRNA is important to report. This shines a light on the omission in the
research literature. Given that miRNA gene silencing occurs in many tissue types including in
the developing brain [213], it is intriguing that four proteins critical for miRNA biogenesis
[214] are encoded by genes associated with Mendelian disorders where ASD and overlapping
neurobehavioral phenotypes are highly prevalent: DRCG8 (included within the deleted region
in chromosome 22q11.2) [215], MECP2 (Rett syndrome) [216], FOXGI [217] and FMR1
(Fragile X) [218, 219]. As key regulators of gene expression, miRNA may have a role in modi-
fying genetic variants demonstrating incomplete penetrance and variable expressivity [220].
This theory is interesting, considering the multiple examples of recurrent pathogenic CNVs
associated with variable ASD risk [19].

Some standardisation is required to overcome the large variability in quality and reporting
of ncRNA gene expression in ASD. Improved methodologies and reporting would greatly ben-
efit the research endeavour. Alongside MIQE mentioned above, we recommend researchers
work to the FAIR Guiding Principles for scientific data management and stewardship (2016)
[221] to improve the findability, accessibility, interoperability, and reusability of ncRNA
expression data in ASD and other ncRNA expression studies. This would provide the standar-
disation and authentication necessary for data to be reusable. Feature level extraction output
(FLEO) files have been recommended as published gene lists (PGL data) and gene expression
data matrices (GEDM:s) have been deemed unsuitable for meta-analysis due to their depen-
dence on the pre-processing used [118]. Sharing research data between research groups comes
with challenges [222] and public sharing of raw data in biomedical microarray studies appears
to be more likely for studies published in high impact journals and when lead authors are
more experienced researchers [223, 224]. The majority of journals and funders now have data
sharing policies. National and international data protection laws restrict data sharing by geno-
mic researchers but a number of initiatives have been developed to promote successful data
sharing including those hosted by the European Molecular Biology Laboratory’s European
Bioinformatics Institute [225], the International Cancer Genome Consortium’s project [226],
the Pan-Cancer Analysis of Whole Genomes (PCAWG) [227] and the Human Cell Atlas
[228]. The researchers involved in setting up PCAWG have called for an international code of
conduct to overcome issues with data protection and provide guidelines for researchers [229].

Conclusion

The search for discrete genetic, immunological, metabolic, neurological/neurophysiological
and behavioural associations with ASD continues [32]. Differential expression of ncRNA
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genes have shown much promise in various conditions and may be playing a role in the multi-
factorial aetiology of ASD. At present, no clear conclusions can be drawn from this systematic
review for implementation into clinical practice. The key recommendations from our study
are to improve research methodologies, reporting and data sharing in this field and to fund
and deliver larger studies with more power that will increase the likelihood of being able to
answer important questions.
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