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Abstract: We introduce a non-standard generalization of the Elo rating system for competitions involving

two or more participants. The new system can be understood as an on-line estimation algorithm for the

parameters of a Plackett-Luce model which can be used to make probabilistic forecasts for the results of

future competitions. The system’s distinguishing feature is the way it treats competitions as sequences of

elimination-type rounds that sequentially identify the worst competitors rather than sequences of selection-

type rounds that identify the best. The significance of this important modelling choice is discussed and its

consequences are explored. Finally, our generalized Elo system’s predictive power is demonstrated using

data from Formula One racing.

Keywords: Elo ratings, probabilistic forecasting, rank data, statistical modelling, time series.

1 Introduction

1.1 What is the Elo rating system and how can it be generalized?

Arpad Elo’s rating system for quantifying the relative skill of chess players has been extremely popular and

successful since its introduction in Elo (1967). It has proved simple enough for committed sports fans to

engage with without requiring extensive mathematical training. At the same time it has proved sophisticated

enough to provide predictions comparable to those from more complex models and those incorporating

more contextual data (see Hvattum and Arntzen (2010)).

The conventional Elo system allocates to a competitor, labelled with subscript 𝑖, a score �̂�i that is

understood as an approximate quantification of her match-winning ability. We then introduce a binary

random variable ‘𝑋(i beats j)’ taking value one if 𝑖 beats competitor 𝑗, and zero otherwise. The win-

probability for 𝑖 is the prior expectation computed as

E[𝑋(i beats j)] =
𝑒R̂𝑖

𝑒R̂𝑖 + 𝑒R̂𝑗

, (1)

which, given its introduction to the literature in Bradley and Terry (1952), is commonly referred to as

a Bradley-Terry model for the variable 𝑋(i beats j). After a match is completed the players’ scores are

adjusted in the direction of the difference between the actual and expected values of 𝑋(i beats j). For

competitor 𝑖, for example, her new adjusted score is

�̂�i ⊂ �̂�i + 𝑘 ¶𝑋(i beats j)⊗ E[𝑋(i beats j)]♢ . (2)

where 𝑘 is some fixed constant and the leftwards-pointing arrow denotes the assignment of a new numerical

value to a variable. Our notation here has been chosen to facilitate the interpretation of the Elo score
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adjustment equations as approximate Bayesian updates to estimates of true but unknown ability parameters

𝑅i. A comprehensive framing of the Elo system as a Bayesian calculation can be found in Glickman (1999),

Ingram (2021) and Ebtekar and Liu (2021) for example. While a Bayesian formulation is not strictly

necessary to motivate the Elo system, it will help us explain and justify our efforts to generalize it.

Variants of the Elo system have been employed in official and unofficial capacities to model the results

of many physical sports such as American football (Silver (2014)), basketball (Silver and Fischer-Baum

(2015)), ice hockey (Dabadghao and Vaziri (2022)), soccer (Lasek et al. (2013)) and tennis (McHale and

Morton (2011)). Its application to e-sports has been arguably even more important, where it serves to

quickly match huge numbers competitors of approximately equal ability in order to maximize the games’

competitiveness. Although the system in its original form was designed to learn from and predict the results

of pairwise comparisons, several attempts have been made to adapt it for multiplayer games and races.

A notable contribution example comes from Moore et al. (2018), who choose to interpret a race with 𝑛

competitors as a set of 𝑛(𝑛⊗ 1)/2 independent head-to-head races which are each won by the faster racer.

This modelling strategy, which is formalized in Mallows (1957) and used more recently in Weng and Lin

(2011), allows for the direct use of the standard Elo machinery. However, it can be seen to effectively

over-count the significance of race results involving a large number of competitors. The intuition here is

that is unfair to repeatedly punish (reward) a competitor for every rival they lose (win) to when they have

a single bad (good) race performance. More formally, we can think about competitors A, B and C who

finish a race in this order. Once we learn that A beats B and B beats C, and we adjust the competitors’

scores to better reflect these pairwise relationships, we already know that A has beaten C. We get no new

information when we are told A has beaten C so it does not make sense to adjust the scores again. A

different, principled, explicitly model-based approach to generalizing the Elo system is clearly needed to

accommodate the dependence between the pairwise results and to avoid the over-counting of dependent

events.

A particularly attractive class of models for doing this involves each of a competition’s competitors

simultaneously drawing ‘performance scores’ from their own distributions, whose location parameters are

identified with a notion of ability or strength. The performance scores themselves are understood to be

unobserved but their order determines a ranking, which is observed. In Yellott Jr (1977), Yellot showed

that the class of shifted Gumbel distributions is the only one leading to the tractable Plackett-Luce model

for competition winners, which we will meet properly in Section 3. The exponentials of the negated Gumbel

random variables are Exponential random variables, which now vary according to their scales rather than

locations as we switch between competitors. Concentrating on the Exponential variables helps us imagine the

performance scores as waiting times whose relevance to real competitions is, for many important examples,

more direct since they can be identified with times until match-winning maneuvers or match-losing errors.

Deviating from the Gumbel/Exponential model is possible but comes at considerable cost. The

TrueSkillTM system, described in Herbrich et al. (2006) and designed with principal application to e-

sports, is a proprietary algorithm for performing approximate Bayesian inference and prediction given

Normal performance scores and Normal priors on their means. Approximating the relevant integrals here

turns out to be a highly challenging endeavour that is tackled with an approximate message-passing

algorithm over a graph encoding the parameter dependency structure. While technically impressive, this

rating system is neither easy to reproduce nor easy to intuit. We argue that the latter problem is particularly

important. We require an intuitive model because we want to use it to organize our thoughts about a

competition in an intelligible way. We also want a model we can inspect, critique and explain to others

because we want people to invest in it. This could mean competition organisers and competitors using the

model to recognize performances worthy of reward, or gamblers using it to inform wagers.

So, sticking with the uniquely tractable Gumbel/Exponential model for performance scores, and noting

the distribution’s asymmetry, we are left with one seemingly innocuous question: should large values or

small values determine the winners of a competition? The remainder of this paper essentially argues that

large values should. The implications of this choice are discussed in theory and investigated in practice.

They lead us to recommending a particular non-standard orientation of the Plackett-Luce model and a
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corresponding generalization of the Elo system (the ‘endure-Elo’ system), which we argue is most relevant

to competitive sports.

1.2 Is there a need to generalize the Elo rating system to multiplayer
competitions?

A key characteristic of the event results that the Elo system serves to interpret is that they are only

informative for the relative abilities of competitors. This seems obvious for zero-sum two-player games like

chess or soccer, but less so for race-type competitions in which competitor interactions are less significant

to the results. For highly standardized athletics events, we agree that absolute measures of a competitor’s

performance (i.e. finishing times) certainly do exist and tend to be relatively consistent from one event to

another despite changes in venue and the set of fellow competitors. Here the existence of these dependable

absolute metrics means that a scoring system based only on relative performance is arguably redundant.

For sports like motor racing, however, the variation between tracks is such that finishing times for one event

are not, by themselves, useful for predicting finishing times for another event. The relative performance (i.e.

ranks) of the racers can be expected to remain consistent, and therefore useful for prediction, because the

track effects are, to an extent, cancelled out.

An Elo system for races is also potentially useful when considering tournaments of two-player games.

While the standard Elo system is undeniably useful for quantifying the relative performance of competitors

in individual games, it is not entirely clear that the individual performances contribute independently to

tournament success. For example, when the long-term objective of a soccer club is to accumulate enough

points to be promoted into a higher league, or to avoid relegation into a lower one, their performance in

a later match may be affected by those that preceded it and, more specifically, by the number of points

scored from them. The point being that the tournament is perhaps better seen holistically as a race to

accumulate points rather than a sequence of independent events, and that future tournament performances

are better predicted from past tournament performances than from past match performances (divorced

from the context of the tournament) alone.

1.3 Is there a prototypical form of multiplayer competition?

At this point it is also useful to mention two distinct types of multiplayer competition. The first are races

(tests of speed) in which the first competitor to finish is the overall winner. The second are knock-out events

(tests of endurance) in which the last competitor to finish is the overall winner. As we will see, both types of

competition can be modelled using the same probabilistic devices by characterizing competitor performances

in terms of time until success or time until failure and, correspondingly, by quantifying competitor abilities

in terms of success rates or failure rates. Certain implications of the resulting models relating to how good

and bad performances are interpreted, however, are reversed. The two modelling choices lead to two possible

ways of generalizing the Elo rating system that we refer to as speed-Elo and endure-Elo. We will argue that

the endure-Elo system is the most appropriate for most sporting events and hence deserves to be designated

the preferred generalization.

Deciding whether to classify an actual race as a test of speed or a test of endurance is not necessarily

as easy as it seems. Formula One (F1) racing, which we use in later sections as an example application for

our methodology, is interesting in this regard because it arguably combines both sorts of competition. Here

F1 drivers obviously compete to get the fastest overall race time but they also need to survive very many

laps without completely or partially degrading their vehicle. The distinction between speed and endurance

competitions is important when modelling competitors’ performance probabilistically because the maximum

and minimum of a set of random variables (and the identities of the variables that attain them) are liable

to behave in fundamentally different ways. This is particularly true of exponential random variables.
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Our theoretical arguments hinge on the assertion that the exponential distribution is better suited to

describing failure times than finishing times. This is the case since the distribution effectively describes the

time of a single competitor’s first failure or finish event given that such events occur with an infinitesimally

small but constant probability at any time. This assumption of a constant event rate is clearly not realistic

for finishing events in most real sports but could be realistic for failure events, which we can also think

of as errors that lead to unrecoverable set-backs in a race rather than complete destruction. Despite the

exponential distribution being poorly suited to modelling times of successes rather than failures, it is

commonly used (either explicitly or implicitly) for this purpose (in Plackett (1975), Beggs et al. (1981) and

Gormley and Murphy (2008) for example). The reason for this appears to be that computing the distribution

for the identity of the smallest of a set of exponential random variables is considerably easier than doing so

for the largest. We surmise that modellers are inclined to pick the orientation of their ranks in order to make

computing win-probabilities easier because win-probabilities are typically of primary interest. We encounter

expressions for the probabilities for the smallest and largest variable in equations (9) and (60) respectively.

The latter certainly takes more effort to compute as the number of competitors increases. Nevertheless, we

consider the cost to be worthwhile for moderately large numbers of competitors (approximately 20), as in

the example studied in Section 4.2, after which we can still make use of approximations as discussed in

Appendix section A.

The differences between speed and endurance competitions are not just academic considerations for

statistical modellers. They have qualitative effects on the resulting quantifications of competitor ability

and on predictions for competition winners. More concretely, if a failure can happen at any time then

competitors who fail early on in a competition may just have been unlucky. Accordingly, we should not

read too much into these results. A competitor who outlasts all her competitors, however, is very unlikely

to do so unless she had decreased her failure rate to an extremely low level. These ideas lead us to a

generalized ‘endure-Elo’ system that is most sensitive to the best performances in a competition rather

than the worst ones, and not the other way around as would be the case when finishing times are assumed

to be exponentially distributed. An increasing level of discrimination among the best performances can also

be seen in established rating systems without model-based justifications like the F1 Championship point

system, suggesting that the same sort of reasoning has taken place among the sport’s governing body. The

results of endurance competitions being ‘less random’ for the best performing competitors is also reflected in

the fact that the best competitors are more likely to win endurance competitions than speed competitions.

In Appendix 3.5 we provide some theory and examples to express these ideas more formally.

We ought to emphasize here that these ideas are not unknown in the relevant academic communities,

although they arguably remain underappreciated. Notably, Graves et al. (2003) reach the same conclusion

about models for speed and endurance events based on the observation that, for the (reversed Plackett-

Luce) endurance model, the observed Fisher Information is greatest for competitors who do the best in a

competition and least for those who do the worst; and that this property is reversed for the (conventional

Plackett-Luce) speed model. In this sense the estimation of ability parameters for the endurance model is

informed predominantly by the drivers’ best performances rather than their worst. Henderson and Kirrane

(2018), who provide a valuable comparison study of variants of the Plackett-Luce model applied to F1 data,

also question how informative the worst results in a race are for estimates of racers’ abilities. Most relevant

to our current work is their experimentation with a truncated form of the conventional Plackett-Luce model

that effectively treats all finishing positions beyond a certain point as being equivalent. They find that the

truncated (conventional Plackett-Luce) speed model outperforms the untruncated version when it comes to

predicting the top positions in races, but is itself outperformed by the (reversed Plackett-Luce) endurance

model.
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2 Summary of endure-Elo scoring rules

In this section we present a concise summary of the endure-Elo scoring rules. The model motivating the

rules is discussed in Section 3.

2.1 Base version

Our endure-Elo scoring system is premised on the idea that competitions in which all 𝑚 competitors receive

a rank are to be understood as a sequence of 𝑚 ⊗ 1 independent knock-out rounds in which the first

competitor to make a mistake is eliminated and allocated the worst as yet untaken rank. Given endure-Elo

scores �̂�i,t for a set of competitors 𝑄 at time 𝑡, we calculate the elimination and survival probabilities for a

round in which they take part according to

𝑃 (i eliminated in round) =
𝑒⊗R̂𝑖,𝑡

√︁

j∈Q 𝑒⊗R̂𝑗,𝑡

, 𝑃 (i survives round) = 1⊗ 𝑃 (i eliminated in round). (3)

The quantities Úi,t = 𝑒⊗R̂𝑖,𝑡 above are to be understood as approximate error or failure rates.

When a competitor loses a round and is eliminated from the competition we update all the endure-Elo

scores for competitors in that round according to

�̂�i,t ⊂�̂�i,t + 𝑘 [I(i survives round)⊗ 𝑃 (i survives round)] , (4)

where 𝑘 is a parameter that can be adjusted to maximize the product of probabilities (3) for the results of

previously observed competitions. When competitions involve just two competitors (and so consist of a

single elimination round) and the basic endure-Elo rating system reduces to the conventional Elo rating

system.

2.2 Extended version

A more sophisticated treatment of the k-factors appearing in (4) involves recognizing them as variances for

the true but unknown values that the �̂�i,t serve to estimate. Doing so motivates an extended version of the

update procedure so that

𝑘⊗1
i,t ⊂𝑘⊗1

i,t + 𝑃 (i survives round) [1⊗ 𝑃 (i survives round)] , (5)

�̂�i,t ⊂�̂�i,t + 𝑘i,t [I(i survives round)⊗ 𝑃 (i survives round)] , (6)

where the subscripted 𝑘i,t are effectively competitor-specifc k-factors.

If ℎ time increments pass before the next competition we suggest implementing an information-

discounting or forgetting step

𝑘i,t+h ⊂𝑘i,t + (1⊗ ã2h)(𝑘i,∞ ⊗ 𝑘i,t), (7)

�̂�i,t+h ⊂ãh�̂�i,t, (8)

where ã is a discounting factor and 𝑘i,∞ is an asymptotic variance that quantifies the uncertainty for the

ability of a competitor for whom we have no historical data.

3 A model to motivate endure-Elo scoring

3.1 The base model

Consider a competition for survival between competitors whose failure times are independently exponentially

distributed. Each competitor, labelled with subscript 𝑖 ∈ 𝑄 = ¶1, . . . , 𝑚♢, has a failure rate parameter
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Úi > 0. It is well known that in such a situation the probability of competitor 𝑘 failing first is

𝑃 (𝑘 fails first) =
Úk

√︁

a∈Q Úa
, (9)

and that the time of the first failure is also exponentially distributed with rate parameter
√︁

i∈Q Úi.

The independence and the memoryless properties of the exponential distribution mean that once the first

competitor fails, deciding the next competitor to fail effectively involves another independent competition

involving only the remaining competitors. This means, for example, that if competitor 𝑖 fails first in the

first round (and so comes last place in the whole competition), the probability of competitor 𝑗 failing first

in the second round (and so coming second-to-last in the whole competition) is

𝑃 (𝑗 fails second in whole competition ♣ 𝑖 fails first in whole competition) =
Új

√︁

a∈Q\i Úa
. (10)

This argument can be iterated, allowing us to compute the probability for any race result

𝑃 (competition result) =𝑃 (i fails first)× 𝑃 (j fails second♣ i fails first)× (11)

𝑃 (k fails third♣ i fails first and j fails second)× (12)

. . .× 𝑃 (z fails last♣all n-1 previous positions taken) (13)

=
Úi

√︁

a∈Q Úa
×

Új
√︁

a∈Q\i Úa
×

Úk
√︁

a∈Q\¶i,j♢ Úa
× . . .× 1. (14)

Such a distribution over rankings is referred to as a Plackett-Luce model, whose origins and properties are

described in detail in Marden (1996). In that book, and in the majority of works that cite it, the model

is explained in terms of sequentially allocating the best ranks rather than the worst ones. We explain in

sections 1.3 and 3.5 why this is rarely a sensible approach for sports modelling.

Our endure-Elo rating system can be understood as an algorithm for estimating the failure rate

parameters from the ranking results of competitions. More specifically, we iteratively adjust estimates

of the (unconstrained) negative logged failure rate parameters 𝑅i = ⊗ log(Úi) by moving them in the

direction of the gradient of their log-likelihood function evaluated at their current values. The negation of

the logged rate parameter means that the larger a competitor’s 𝑅i the greater the probability they will win

a competition. As a result the 𝑅i retain the interpretation of a ‘strength parameter’. For each competition

this log-likelihood is the logarithm of (14), which decomposes into 𝑛⊗ 1 additive terms corresponding to

each of the independent elimination rounds.

For every round that leads to competitor 𝑖 being eliminated we move her �̂�i parameter, which we

consider an estimate for 𝑅i, by an amount proportional to

𝜕

𝜕𝑅i
log 𝑃 (𝑖 eliminated in round) =⊗

𝜕

𝜕𝑅i
log

∏︀

∐︁1 +
∑︁

a∈Q\i

𝑒⊗R𝑎+R𝑖

∫︀

̂︀ (15)

=⊗

√︁

a∈Q\i 𝑒⊗R𝑎+R𝑖

1 +
√︁

a∈Q\i 𝑒⊗R𝑎+R𝑖
(16)

=⊗ (1⊗ 𝑃 (𝑖 eliminated in round)) = ⊗𝑃 (𝑖 survives round) (17)

and for every round she participates in and in which a rival competitor 𝑗(̸= 𝑖) is eliminated we move her �̂�i

parameter by an amount proportional to

𝜕

𝜕𝑅i
log 𝑃 (𝑗 ̸= 𝑖 eliminated) =⊗

𝜕

𝜕𝑅i
log

∏︀

∐︁1 +
∑︁

a∈Q\j

𝑒⊗R𝑎+R𝑗

∫︀

̂︀ (18)

=
𝑒⊗R𝑖+R𝑗

1 +
√︁

a∈Q\j 𝑒⊗R𝑎+R𝑗
(19)

=𝑃 (𝑖 eliminated in round) = 1⊗ 𝑃 (𝑖 survives round). (20)
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Combining these results we derive an update rule

�̂�i ⊂ �̂�i + 𝑘 [I(i survives round)⊗ 𝑃 (i survives round)] (21)

or

�̂�i ⊂ �̂�i ⊗ 𝑘 [I(i eliminated in round)⊗ 𝑃 (i eliminated in round)] , (22)

where the constant of proportionality 𝑘, which is commonly referred to as a k-factor by users of the Elo

system, is a step-size parameter in what is effectively a form of coordinate-wise gradient descent algorithm

for estimating the 𝑅i. Strictly speaking, the probability in (21) is an estimated probability derived from

substituting the unknown 𝑅i parameters for estimates of them with the effect that the approximate

expression

𝑃 (i survives round) = 1⊗
𝑒⊗R𝑖,𝑡

√︁n
j=1 𝑒⊗R𝑗,𝑡

≡ 1⊗
𝑒⊗R̂𝑖,𝑡

√︁n
j=1 𝑒⊗R̂𝑗,𝑡

(23)

is treated as an equality.

3.2 Competitor-specific k-factors

It may be argued that the value of 𝑘 in (21) and (22) ought to be decreased as a competitor takes part in

more matches since the information in a single match outcome relative to her historical record of games

decreases. Doing so can be seen as a consequence of the log-likelihood function for a competitor’s strength

parameter given all available data concentrating on particular values and, consequently, the precision of our

parameter estimates increasing. This connection between the log-likelihood function and the precision is

made precise by adopting a locally quadratic approximation to the log-likelihood for a parameter 𝑅i and

a corresponding Normal approximation for its distribution. Specifically, we identify the negative second

derivative of the log-likelihood with the parameter’s precision (or inverse variance).

After a competitor has taken part in a round of a competition the precision for her strength parameter

increases by the negative second derivative of the log-likelihood given the result of that round. Denoting the

precision for parameter 𝑅i as 𝑘⊗1
i , the resulting update rule is

𝑘⊗1
i ⊂ 𝑘⊗1

i + 𝑃 (i survives round)(1⊗ 𝑃 (i survives round)) (24)

where 𝑃 (i survives round)(1⊗ 𝑃 (i survives round)) is the negative second derivative with respect to 𝑅i of

both

log 𝑃 (𝑖 eliminated in round) and log 𝑃 (𝑗 ̸= 𝑖 eliminated in round), (25)

i.e. the second derivative is independent of whether the competitor is or is not eliminated.

The approximate log-likelihood can now be optimized by adjusting the relevant parameter in the

direction of its gradient by an amount proportional to the inverse of the precision. This Newton optimization

step is written as

�̂�i ⊂ �̂�i + 𝑘i [I(i survives round)⊗ 𝑃 (i survives round)] . (26)

It is here that we notice the correspondence between the inverse precisions (variances) with the Elo k-factors.

We note that variable k-factors are also used in the popular Glicko scoring system of Glickman (1999) for

two-player competitions, which we understand as implementing an alternative, more sophisticated Newton-

type optimization step for the log-likelihood for a competitor-specific log-rate parameter. Comparable

alternative models and inference procedures for dynamic rating systems can be found in Knorr-Held (2000)

and Cattelan et al. (2013).
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3.3 Time varying logged rate parameters

A further improvement to the points system can be made by acknowledging variation over time in the 𝑅i

parameters. A simple and convenient way to model this variation is to assume that the 𝑅i evolve according

autoregressive processes of order one so that

𝑅i,t = ã𝑅i,t⊗1 + 𝜖i,t. (27)

The innovation terms 𝜖i,t are understood to be independent Normal random variables with expectation

zero and variance à2, and the autoregression coefficient ã ∈ [0, 1] is understood as encoding competitors’

consistency. We can apply the expectation and variance operators to each side of equation (27) and iterate

the resulting expressions to derive the h-step ahead expectation and variance

�̂�i,t ⊂ ãh�̂�i,t⊗h, var(𝑅i,t)⊂ ã2h var(𝑅i,t⊗h) + à2 1⊗ ã2h

1⊗ ã2
. (28)

The first equation is readily interpretable as an inflation-type effect whereby accumulated points (both

positive and negative) decrease in absolute value over time. Interpreting the second equation is made easier

with the introduction of the asymptotic variance 𝑘∞ = à2/(1⊗ ã2) which allows us to rewrite (28) as

�̂�i,t = �̂�i,t⊗h + (1⊗ ãh)(0⊗𝑅i,t⊗h), 𝑘i,t = 𝑘i,t⊗h + (1⊗ ã2h)(𝑘∞ ⊗ 𝑘i,t⊗h). (29)

Equations (29) tell us then when ℎ time increments have passed we should adjust the expectation and

variance in the direction of their asymptotic values by amounts that depend on ã.

3.4 Specifying and interpreting hyperparameters

Since competitor abilities are only indirectly observed through the race results, learning appropriate values

for the model hyperparameters is challenging. Suitable values may be searched for so that the conditional

probabilities of the observed competition results are maximized. We anticipate that considerable care will

be needed for such a strategy, however, since it is difficult to theorize about the function being maximized.

Whether the hyperparameters are specified a priori or searched for numerically, it is sensible to build up some

intuition for their role in the model. In the following subsections we consider each of the hyperparameters

more closely.

3.4.1 Specifying the k-factors

The hyperparameter 𝑘∞ is the marginal variance for the 𝑅i,t, and tells us about the range of abilities among

a population of competitors. One route to specifying 𝑘∞ is to consider the disparity between competitors

at the first and third quartiles of the whole population of competitors. Assuming that this population is

well described by a normal distribution, and calling the probability that the stronger competitor beats the

weaker competitor 𝑞, it follows that the standard deviation for the distribution of competitors is

𝑘
1/2
∞ =

1

Φ⊗1(3/4)⊗ Φ⊗1(1/4)
log

⎤
𝑞

1⊗ 𝑞

⎣

≡
3

4
log

⎤
𝑞

1⊗ 𝑞

⎣

, (30)

where Φ⊗1 is the quantile function of the unit normal distribution.

In general, we can treat all the Elo k-factors as variances for the strength parameters 𝑅i, conditional on

historical competition results. As a special case, the parameter 𝑘∞ is the variance for a competitor whose

last historical result was observed infinitely long ago. This brings us to the tricky question of specifying a

fixed k-factor appropriate for Elo-type algorithms. We suggest that it is sensible to specify such a value as

a fraction of 𝑘∞ representing the relative uncertainty for a competitor’s ability score within the relevant
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population of peers. For example, we might consider a sport in which the competitor ranked 25 of 100 has a

probability of 0.95 of beating a competitor ranked 75 of 100 so that 𝑘
1/2
∞ ≡ 2.18. We might then suppose

that even given recent competition results it is reasonable only to pin down a competitor’s true position

within the population of peers to the nearest decile. At the centre of the normal distribution its deciles

are approximately 0.25 apart meaning that a k-factor of 𝑘 ≡ (0.25 × 2.18)2 ≡ 0.25 may be appropriate.

Experimentation with k-factors around this initial guess is then advisable.

3.4.2 Specifying autoregression coefficient φ

The hyperparameter ã quantifies the correlation between the 𝑅i at consecutive time points, and tells us about

the consistency or longevity of competitors’ abilities. Specifically, we can think about the hyperparameter ã

in terms of the rate at which our expectation for a competitor’s ability decays over time. Specifically, if

our expectation for a competitors ability relative to population average, as encoded by their 𝑅i parameter,

halves over a period of 𝑡1/2 time units then we should specify ã = 21/t1/2 .

3.5 Some properties of the exponential model for failure times

Let us consider a variant of the endure-Elo system whereby adjustments for all a competition’s rounds

are made simultaneously. This could be thought of as a step in the direction of the gradient of the sum of

log-likelihoods for all the rounds’ results. If all competitors are a priori considered to be equally capable

then the competitor who is eliminated in the 𝑢th round of 𝑛 (so comes 𝑣th = (𝑛 ⊗ 𝑢 + 1)th place in the

competition) has her endure-Elo score updated by an amount proportional to

1

𝑛
+

1

𝑛⊗ 1
+ . . . +

1

𝑛⊗ (𝑢⊗ 2)
⊗

⎤

1⊗
1

𝑛⊗ (𝑢⊗ 1)

⎣

= ⊗1 +

u∑︁

k=1

1

𝑛 + 1⊗ 𝑘
= ⊗1 +

v∑︁

k=n

1

𝑘
, (31)

where the first 𝑢⊗ 1 summands on the left hand side of (31) are earned by surviving rounds and the 𝑢th

summand is a downwards adjustment due to being eliminated in the 𝑢th round.

The number of extra points a competitor receives as her finishing position improves gets larger. More

precisely, if a competitor’s position were to be adjusted from 𝑣 + 1 to 𝑣 her reward in endure-Elo points

would increase by an increment of 1/𝑣, which increases as 𝑣 decreases. In this sense we would say that

competitors receive increasing returns for getting a better position. A generalized Elo system constructed

with exponential distributions describing race finishing times rather than failure times, so that consecutive

events allocate competitors the best positions rather than the worst, leads to the opposite result. This

means that a model for exponential race finishing times leads to a rating system in which competitors

receive diminishing returns as they get better positions. Scaled and integer-rounded endure-Elo score

updates as specified by (31) for a race with 𝑛 = 20 competitors are presented in Table 1. We note their

qualitative similarity to those of the official F1 Championship point system insofar as the second differences

of both sequences of scores being non-negative, while similarly computed speed-Elo score updates exhibit

non-positive second differences.

Another way to appreciate how the model for exponential failure times associates the greatest significance

with the best performances follows from considering two competitors labelled 1 and 2 with failure rates

Ú1 > Ú2. Suppose we observe that one of them survives for at least 𝑐 time units and we are asked to guess

which competitor it is. The likelihood ratio for the two options is

𝑃 (𝑋 ⊙ 𝑐 ♣ 𝑋 ≍ Exp(Ú1))

𝑃 (𝑋 ⊙ 𝑐 ♣ 𝑋 ≍ Exp(Ú2))
= 𝑒⊗(λ1⊗λ2)c, (32)

where 𝑋 denotes the unknown competitor’s time of failure. Clearly, the greater 𝑐 is the more convinced we

we ought to be that the data refers to competitor 2 with the lower failure rate. Phrased slightly differently,
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the more impressive the performance we observe the more sure we should be that it was achieved by the

stronger competitor.

We suggest that awarding increasingly large parameter adjustments for the best competition results is

the more appropriate strategy in the majority of sporting competitions. The non-mathematical intuition to

support the suggestion is that, in most cases, it is more likely that from chance alone for a good competitor

to perform exceptionally badly than for a bad competitor to perform exceptionally well. In practice this idea

means that we ought to be relatively forgiving of poor performances and differentiate between degrees of

poor performance less severely. This is reflected in the allocation of F1 Championship points (see Table 1),

for example, where the point difference between first and second place is much greater than the difference

between 19th and 20th place.

Another way to make these ideas explicit is by considering the probability that the best competitor

wins an endurance or speed competition. Obviously, the probability of the complementary event being small

formalizes that statement ‘it is unlikely for a bad competitor to perform exceptionally well’. Beginning

with the endurance competition, we suppose that there are three competitors with failure times that are

exponentially distributed with failure rates 0 < Ú1 < Ú2 < Ú3, meaning that on average competitor one is

the best. The probability that she beats one of her less able rivals (i.e. they fail before her) is

𝑃 (1 beats i in endurance comp.) =
Úi

Úi + Ú1
(33)

and, as we show in Appendix A.1.1, the probability that she wins the whole competition (i.e. her exponential

failure time is the greatest) is

𝑝endure =1⊗
Ú1

Ú1 + Ú2
⊗

Ú1

Ú1 + Ú3
+

Ú1

Ú1 + Ú2 + Ú3
. (34)

Now we can specify a speed competition in which all the pairwise win-probabilities are the same as that for

the endurance competition by supposing that the finishing rates for the competitors are 𝜌1 = Ú⊗1
1 > 𝜌2 =

Ú⊗1
2 > 𝜌3 = Ú⊗1

3 > 0. It is easy to see that

𝑃 (1 beats i in speed comp.) =
𝜌1

𝜌i + 𝜌1
=

Ú⊗1
1

Ú⊗1
i + Ú⊗1

1

=
Úi

Úi + Ú1
(35)

and that the probability that competitor one wins the speed competition is

𝑝speed =
Ú⊗1

1

Ú⊗1
1 + Ú⊗1

2 + Ú⊗1
3

. (36)

After some rearranging, we see that

𝑝endure ⊗ 𝑝speed =
(Ú2Ú3 ⊗ Ú2

1)Ú1Ú2Ú3

(Ú1 + Ú2)(Ú1 + Ú3)(Ú1 + Ú2 + Ú3)(Ú1Ú2 + Ú1Ú3 + Ú2Ú3)
> 0 (37)

because Ú2Ú3 > Ú2
1 since, by assumption, competitor one’s failure rate is less than those of her rivals. All

the other factors in (37) are positive simply because they are sums and products of positive rate parameters.

It is in this sense that in an endurance competition the strongest competitor is more likely to win, and a

bad competitor less likely to win, than in a speed competition.

Our final demonstrative calculation relates more directly to the claim that in endurance competitions it

is more probable for a good competitor to do badly than a bad competitor to do well. We consider again the

endurance competition with three competitors. This time we put stronger restrictions on the failure rates

Ú1 = 1, Ú2 = 𝑎, Ú3 = 𝑎2, (38)

so that

𝑃 (i beats i+1 in endurance comp.) =
𝑎

1 + 𝑎
, (39)
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implying that, in a sense, the competitors are equally spaced along a continuum of ability. When 𝑎 > 1

competitor 1 is, in expectation, better than competitor 2, who is better than competitor 3 to the same

extent. We can now quantify the relative probabilities of the best competitor coming last and the worst

competitor coming first (in two independent competitions),

𝑃 (1 comes last in endurance comp.)

𝑃 (3 comes first in endurance comp.)
=

⎤
1

1 + 𝑎 + 𝑎2

⎣⎮⎤

1⊗
𝑎2

𝑎2 + 1
⊗

𝑎2

𝑎2 + 𝑎
+

𝑎2

𝑎2 + 𝑎 + 1

⎣

(40)

=
𝑎3 + 𝑎2 + 𝑎 + 1

2𝑎2 + 𝑎 + 1
, (41)

which is clearly greater than one so long as 𝑎 is. Specification of the speed competition with the same

pairwise win-probabilities requires that finishing times are exponentially distributed with finishing rates

𝜌1 = 1, 𝜌2 = 𝑎⊗1, 𝜌3 = 𝑎⊗2. (42)

It follows that

𝑃 (1 comes last in speed comp.)

𝑃 (3 comes first in speed comp.)
=

⎤

1⊗
1

1 + 𝑎⊗1
⊗

1

1 + 𝑎⊗2
+

1

1 + 𝑎⊗1 + 𝑎⊗2

⎣⎮⎤
𝑎⊗2

1 + 𝑎⊗1 + 𝑎⊗2

⎣

(43)

=

⎤

1⊗
𝑎2

𝑎2 + 1
⊗

𝑎2

𝑎2 + 𝑎
+

𝑎2

𝑎2 + 𝑎 + 1

⎣⎮⎤
1

1 + 𝑎 + 𝑎2

⎣

(44)

=
2𝑎2 + 𝑎 + 1

𝑎3 + 𝑎2 + 𝑎 + 1
, (45)

which, being the reciprocal of (41), is less than one when 𝑎 > 1. In this sense the model with exponential

finishing times explicitly violates the assumption that it is more probable for a good competitor to do badly

than a bad competitor to do well. We will see how this leads to particularly poor predictions in our example

with real F1 data in Section 4.2.

4 Examples

4.1 Synthetic data

Our synthetic example, which is intentionally highly simplified, involves 𝑚 = 3 competitors who all take

part in 𝑛 = 32 multiplayer competitions that occur at consecutive unit time steps. We simulate time-varying

competitor-specific negative log failure rate parameters from an AR(1) process with ã = 0.99 and identically

and independently distributed normal innovations with standard deviation à = 0.2. For each competition

we then simulate exponential failure times given the failure rates at the corresponding event times. These

failure times are then ranked (rank 1 going to the latest time, rank 2 to the second latest time and rank 3

to the earliest time), resulting in the sequence of positions illustrated in Figure 1a. The ‘true’ simulated

values of the negative log failure rate parameters and our estimates for them based only on the ranks, which

are our endure-Elo scores, are plotted in Figure 1b using solid and dashed lines respectively. We observe

that, as expected, the estimates closely track the true values. We also see, for example, how winning (or

losing) streaks lead to smooth drifts upwards (or downwards) in the endure-Elo scores, and how atypical

race results lead to larger, more abrupt changes in the endure-Elo scores.

4.2 Real data

We now consider real data from F1 motor-racing, which at the time or writing is publicly available at

https://ergast.com/mrd. In Section 4.2.1 we look at a large data set of race results over several years and
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(a) Simulated finishing positions. Position one is given to the competitor with the greatest survival
time in a competition.
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(b) Negative log failure rates for three competitors. Solid lines interpolate the true simulated
values (the ability parameters Ri,t) and dashed lines interpolate estimates (the endure-Elo scores

R̂i,t).

Fig. 1: Simulated data and inferences generated from the model for exponential survival times and the endure-Elo system

for parameter estimation.
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examine the speed-Elo and the endure-Elo systems’ long term potential for predicting race outcomes. This

first analysis provides empirical support for the endure-Elo system’s adoption for race events. Then, in

Section 4.2.2 we focus on a particular F1 season and a subset of the participating drivers. At this scale we

can more easily identify individual race events with Elo adjustments, revised predictions and prediction

errors. This second analysis serves to explain the endure-Elo system’s good performance on the larger data

set, and hence to reinforce the findings of Section 4.2.1.

Reiterating the results of Section 3, the endure-Elo rating system involves updating the score for

competitor 𝑗 = 1, . . . , 𝑚 (who is knocked out in round 𝑢j and so finishes with position 𝑣j = 𝑛 + 1⊗ 𝑢j)

according to

�̂�j ⊂�̂�j + 𝑘

u𝑗∑︁

a=1

[𝑋(j survives round a)⊗ E(𝑋(j survives round a))] (46)

where

E(𝑋(j survives round a)) = 1⊗ E(𝑋(j eliminated in round a)) =1⊗
𝑒⊗R𝑗

√︁

i : u𝑖⊙a

𝑒⊗R𝑎
. (47)

Here elimination rounds sequentially pick out competitors to receive the next worst as yet untaken finishing

position and eliminated competitors do not take part in subsequent rounds. The probability of competitor 𝑗

finishing in first place is the probability that she survives all 𝑚⊗ 1 rounds. As shown in Appendix A, it is

computed as

𝑃 (𝑗 wins whole competition) =

2𝑛−1

∑︁

r=0

(⊗1)♣C𝑟♣ 𝑒⊗R𝑗

𝑒⊗R𝑗 +
√︁

k∈C𝑟
𝑒⊗R𝑘

(48)

where the 𝐶r are the elements of the power set of the set of competitor labels excluding 𝑗.

The speed-Elo system involves updating the score of competitor 𝑗 (who wins selection round 𝑢j and so

comes in with position 𝑣j = 𝑢j) according to

�̂�j ⊂�̂�j + 𝑘

u𝑗∑︁

a=1

[𝑋(j wins round a)⊗ E(𝑋(j wins round a))] (49)

where

E(𝑋(j wins round a)) =
𝑒R𝑗

√︁

i : u𝑖⊙a

𝑒R𝑎
. (50)

Here selection rounds sequentially pick out competitors to receive the next best as yet untaken finishing

position and selected competitors do not take part in subsequent rounds. The probability of competitor 𝑗

finishing in first place in the whole competition is the probability that she wins the first round, i.e.

𝑃 (j wins whole competition) = 𝑋(j wins round 1) =
𝑒R𝑗

m√︁

a=1

𝑒R𝑎

. (51)

For both systems, following the heuristic argument discussed in Section 3.4.1, we use a fixed k-factor of

𝑘 = 0.36.

We measure the performance of our models according to their log-likelihoods. These are the log-

probabilities they assign jointly to all the outcomes that occurred. In practice these are computed by

adding together log-probabilities for individual results given previous results. To make these log-probabilities

more meaningful, however, we couch them in the language of betting. We imagine that an agent using the

speed-Elo model computes probabilities 𝑝i,j for race 𝑖 = 1, . . . , 𝑛 being won by competitor 𝑗 = 1, . . . , 𝑚.

She then offers bets whereby she pays out 1/𝑝i,j for every one unit wagered on competitor 𝑗 if competitor 𝑗
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does win, and nothing otherwise. These bets are fair in the sense that her expected profit from each bet is

zero. We now imagine that the user of the endure-Elo model computes corresponding probabilities 𝑞i,j and

for each race 𝑖 spends all her available wealth 𝑆i on bets, splitting it between competitors labelled by 𝑗 in

proportion to her 𝑞i,j . This betting strategy maximizes her expected log-wealth. We encode race results by

the indicator variables 𝑋i,j , which take value one when race 𝑖 is won by driver 𝑗 and zero otherwise. Given

all of this notation, the user of the endure-Elo model increases her log wealth by

𝐷(𝑞, 𝑝) =

n∑︁

i=1

m∑︁

j=1

𝑋i,j

]︃
log

∏︀

̂︁
̂︁
̂︁
̂︁
̂︁
∐︁

𝑆i
⏟ ⏞ 

Wealth before
race i

+ 𝑆i𝑞i,j

⎤
1

𝑝i,j
⊗ 1

⎣

⏟  ⏞  

Profit from
winning bet

⊗𝑆i(1⊗ 𝑞i,j)
⏟  ⏞  

Losses from
losing bets

∫︀

̂︂
̂︂
̂︂
̂︂
̂︂
̂︀

⊗ log(𝑆i)
⌊︃

(52)

=

n∑︁

i=1

m∑︁

j=1

𝑋i,j log

⎤
𝑞i,j

𝑝i,j

⎣

(53)

over the series of 𝑛 races. Technically, this is a log-likelihood ratio for the two models given a subset of the

available data because the results gambled on only concern first place positions, not all positions. We have

chosen to compare the models in this way because it prioritizes the types of result that are typically of

most interest to stakeholders in F1 racing.

4.2.1 Analysis of historical data

For the 52 F1 seasons between 1970 and 2021 we compute winner probabilities for each race using each of

our Elo systems. Seasons consist of between 11 and 22 races, leading to a total of 𝑛 = 873 races. Every

season is modelled independently in the sense that the �̂�i strength parameters for the competitors in a

given season are set to zero at the start of each one and the Elo systems make adjustments as the season

progresses. In Figure 2 we plot histograms of the win probabilities assigned to the eventual winners of

each race. These values tell us about the predictive abilities of the systems in an absolute sense. We see

clearly that the empirical distribution of probabilities for the endure-Elo has more mass at higher values.

This observation is made more precise when we note that all three quartiles are greater than those for the

speed-Elo model.

In Figure 3 we plot the summands appearing in (53). These are the logged wealth multipliers for the

endure-Elo user following each individual wager against the speed-Elo user. We note that the median of the

(unlogged) multipliers is 2.180 and that 76.3% of the multipliers are greater than one - meaning that in

76.3% of races the endure-Elo user could be said to beat the speed-Elo user and that in 50% of these wagers

the endure-Elo user more than doubles her wealth. The total log-likelihood ratio (53) is 592. The mean

and variance of the summands are 0.678 and 1.331 respectively. A bootstrap resampling exercise reveals

that the sum of 18 randomly selected summands is greater than zero with probability 99%, implying that

endure-Elo system can be expected to lead to positive returns with high probability after a single season of

approximately 20 races.

4.2.2 Analysis of a single F1 season

We focus now on Grand Prix races during the 2019 season. We begin by looking at the official F1 points

used for determining the winner of the annual F1 Championships. These are awarded according to a racer’s

finishing position as described fully in Table 4b. Drivers receive an additional bonus point if they finish in

the top ten and also complete the fastest lap. We note that two drivers, Albon and Gasly, switched team

(and therefore car) during the 2019 season. Although there is a strong argument that distinct driver/team

combinations ought to be considered as distinct competitors with their own ability parameters, for the time
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(b) Speed-Elo probabilities (quartiles at 0.029, 0.048 and 0.091).

Fig. 2: The histograms illustrate the empirical distributions of win-probabilities assigned competitors who did win particular

races. Large probabilities signify instances when a model predicted the winner with high certainty, while small probabilities

signify instances when the model was surprised by the observed identity of the winner. The dashed vertical lines mark the

quartiles of the distributions. The green cross marks the mean.
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Fig. 3: Differences in log-probabilities assigned by the endure-Elo user and the speed-Elo user to events that did occur.

Quartiles at 0.000, 0.779 at 1.407 are marked with dashed vertical lines. The mean difference of 0.678 is marked with a

cross.

being we consider only the drivers and ignore the team switch. We do so to minimize complications that

might distract from the core features of the rating systems under consideration.

The finishing positions and running means of F1 Championship points for the drivers are plotted in

Figures 4a and 4b, respectively. The F1 points can be seen to move in approximate qualitative correspondence

with the generalized Elo scores plotted in Figure 5. We note also the similarity between the final rankings

according to the F1 points and the endure-Elo scores. These observations are reassuring although not

necessarily quantitatively meaningful since the F1 point system is not primarily a device for making

predictions for particular races, rather the system is intended to reward drivers for good performances over

a season. The vertical grey lines in these plots mark the dates of races, immediately before which the points

are recalculated given past results. Black triangles are positioned on the time series corresponding to the

winning drivers. Informally, a plot with triangles higher up the y-axis signifies a scoring system that better

predicts the winners. The straight coloured lines interpolating the scores on race days are included only as

an aid for the reader.

We can see in Figure 5b how, for instance, the speed-Elo system severely punishes Vettel, Bottas,

Verstappen and Leclerc for a small number of very poor performances, details of which can be read from

Table 2. The races in question all involve crashes or mechanical faults that send these drivers to the bottom

of the field and lead to large sudden drops in their scores. The drops contribute to a large gap building

up in subsequent win-probabilities between the affected drivers and Hamilton, who suffers no such poor

performances and punishments. The endure-Elo system takes the poor performances much less seriously

and so does not consider the gap between Hamilton and the others to be so great. In terms of the gambles,

this pays off for the endure-Elo system on several occasions. In particular, the endure-Elo user profits

greatly when Leclerc wins the Belgian and Italian Grand Prix, Vettel wins the Singapore Grand Prix (all in

September) and Verstappen wins the Brazilian Gran Prix (in November) despite their previous mishaps.
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Fig. 4: Race statistics for F1 drivers in 2019. Note that to avoid clutter subfigure 4a includes results only for the 5 com-

petitors with the most F1 points at the end of the season.
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Fig. 5: The plots above show ability scores for the generalized Elo systems (the R̂i values) immediately before each race

of the 2019 F1 season. Black triangles identify the drivers who won particular races. Opacity of the plotting lines draw

attention to competitors who finish the season with the most F1 Championship points.
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5 Remarks

We have proposed a novel endure-Elo rating system for participants in multiplayer competitions motivated

by a coherent probabilistic model. The existence of this underlying model, and its concordance with real

competitions, allows us to judge if and how the endure-Elo system can be expected to perform well. The

same cannot be said for ad hoc modifications to the conventional Elo system for one-on-one competitions

that are not motivated by a particular model, and can also not be said for systems based on models too

complicated for mathematical analysis. We have also demonstrated the superior predictive performance

of the endure-Elo system over the speed-Elo for a prototypical example. Specifically, we have presented

an instance in which a user of the endure-Elo system could reliably profit from bets made in competition

with a user of the speed-Elo system. Importantly, we have been able to deconstruct and rationalize this

result in terms of our model’s properties. More precisely, we identified its success with the way it treats

poor performances by good competitors relative to good performances by poor competitors. In this way the

model provides a theoretical argument explaining why and when our empirical finding ought to generalize

to other contexts.

In sections 3.2 and 3.3 we suggested ways to tailor the endure-Elo system to account for the relative

uncertainty for competitors’ true abilities and for the variability of those abilities over time. These issues

can be expected to be especially important when we consider series of competitions over longer periods in

which competitors’ abilities change substantially. We intend to investigate this further in future work. For

now, however, we note that there is a significant premium for simple rating systems that can be put to

immediate use by non-experts. We therefore prioritize the promotion of the simpler version of the system

that uses fixed k-factors, and encourage users to experiment with it.

At a more general level, our work calls into question common practices for modelling ranks and

preferences. We have seen that the Plackett-Luce model for sequentially allocating the lowest ranks rather

than the highest ranks leads to very different results in terms of the model’s implications for predicting

the best and worst of a set of competitors. In Yellott Jr (1977) Yellot establishes a connection between

the Plackett-Luce model and Luce’s Choice Axiom (see Luce (1977)), which proposes that numerical

quantifications of preference can simply be rescaled when some options are removed. Given this connection

and our findings with the F1 data, it becomes clear that the relevance of Luce’s Choice Axiom for preferences

ought to be considered carefully before it is used to inform a model. Specifically it is important to consider

whether it is more appropriate to apply the Axiom to preferences for which assets (in our case competitors)

to keep or to discard. It is beyond the scope of the current work to investigate further the distinction

between these modelling choices but we hope our findings can contribute to discussions of the topic in some

way.

Supplementary material

This paper is accompanied by an Rmarkdown document with which readers can reproduce the analyses

presented above. Readers are invited to inspect the code to get an idea for how the endure-Elo methodology

can be implemented. They are also encouraged to modify and improve the code, which is written principally

to illustrate relevant calculations rather than provide an optimized implementation of them.
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A Mathematical analysis of the model for exponential failure

times

A.1 Quantities derivable from the endure-Elo scores

The probability that competitor 𝑖 fails 𝑘th (and is ranked (𝑚 + 1⊗ 𝑘)th) or among the first 𝑘 of a total of

𝑛 competitors (so is ranked among the top 𝑚 + 1⊗ 𝑘) is often of interest to sports fans and bookmakers.

In theory equation (14) can be computed for all 𝑚! possible permutations of the competitors, and the

probability in question computed as the sum of the relevant subset of terms. Given that we have access to

an algorithm to enumerate permutations, this computational strategy is, in principle, straightforward to

implement. Its computational cost, however, is liable to become prohibitive as the number of competitors

increases. Below we suggest more efficient ways for computing these probabilities.

A.1.1 Probability competitor i fails kth

We consider a set 𝐶 of 𝑘⊗ 1 competitors who all fail before 𝑖 and the remaining set 𝐷 of 𝑚⊗ 𝑘 competitors

who fail after 𝑖. We then integrate out over all the possible failure times for 𝑖,

𝑃 (only 𝐶 fail before 𝑖) =

∞∫︁

0

Úi𝑒
⊗λ𝑖x ×

(︃
∏︁

a∈C

(1⊗ 𝑒⊗λ𝑎x)

)︃

× 𝑒⊗λ𝐷x𝑑𝑥 ÚD =
∑︁

b∈D

Úb. (54)

We then rewrite the product over the competitors in 𝐶 as a sum over subsets of 𝐶 (denoted 𝐶r) in order to

derive the expression

𝑃 (only 𝐶 fail before 𝑖) =

∞∫︁

0

Úi𝑒
⊗λ𝑖x ×

∏︀

∐︁

2𝑘−1

∑︁

r=0

(⊗1)♣C𝑟♣𝑒
⊗
√︁

𝑎∈𝐶𝑟
λ𝑎x

∫︀

̂︀× 𝑒⊗λ𝐷x𝑑𝑥 (55)

=

2𝑘−1

∑︁

r=0

(⊗1)♣C𝑟♣

∞∫︁

0

Úi𝑒
⊗λ𝑖x × 𝑒

⊗
√︁

𝑎∈𝐶𝑟
λ𝑎x
× 𝑒⊗λ𝐷x𝑑𝑥 (56)

=

2𝑘−1

∑︁

r=0

(⊗1)♣C𝑟♣ Úi

Úi + ÚD +
√︁

a∈C𝑟
Úa

. (57)

Finally, we sum over
(︀

m⊗1
k⊗1

[︃
possibilities for 𝐶 to reach the expression

𝑃 (𝑖 fails 𝑘th) =
∑︁

C

2𝑘−1

∑︁

r=0

(⊗1)♣C𝑟♣ Úi

Úi + ÚD +
√︁

a∈C𝑟
Úa

. (58)

To reiterate, computing probability (58) naively via full enumeration of the probabilities for all 𝑚! race

results would involve 𝒪(𝑚2𝑚!) operations. Because the smallest of the 𝑚⊗ 𝑘 times outside the top 𝑘 has
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an exponential distribution we do not actually have to consider all their permutations. Accounting for this,

we can compute the probabilities only considering permutations of competitors who fail before 𝑖, which

leads to a procedure involving 𝒪(
(︀

m⊗1
k⊗1

[︃
𝑘2(𝑘⊗ 1)!) operations. The calculation explained above (specifically,

expanding the product in (54)) allows us to reduce the operation count a bit further to 𝒪(
(︀

m⊗1
k⊗1

[︃
𝑘2k⊗1). For

moderately large 𝑘 this is still, admittedly, a demanding calculation. Further work may lead to improvements

in the tractability of these probabilities, but we do not currently see how they would be achieved.

A.1.2 Probability competitor i fails first

If competitor 𝑖 fails first then the set 𝐶 appearing in (58) is empty. In this case the probability in question

reduces to

𝑃 (𝑖 fails 𝑘th) =
Úi

Úi + ÚD
, (59)

where ÚD is the sum of the failure rates for all the competitors excluding 𝑖.

A.1.3 Probability competitor i fails last

For endurance-type competitions the competitor who finishes (or fails) last is the winner, meaning that the

probabilities of finishing last are particularly important. We can compute such probabilities using (58) with

𝑘 set to 𝑚. In this case the outermost summation in (58), which counts the number of combinations of rival

competitors that fail before 𝑖 does, and ÚD, which sums the rate parameters for competitors failing after 𝑖,

can be disregarded. The equation becomes

𝑃 (𝑖 fails 𝑚th) =

2𝑛−1

∑︁

r=0

(⊗1)♣C𝑟♣ Úi

Úi +
√︁

a∈C𝑟
Úa

, (60)

where the 𝐶r are the members of the power set of the set of competitor labels excluding 𝑖. Equation (60)

can be seen as an application of the inclusion-exclusion principle since

𝑃 (𝑖 fails 𝑚th) =1⊗ 𝑃 (𝑖 fails before someone else) (61)

=1⊗ 𝑃 (
⋃︁

j ̸=i

𝑖 fails before 𝑗), (62)

where
⎷

j denotes the union of events indexed by 𝑗. Given this understanding, Bonferroni’s inequality tells

us that (60) can be bounded from above and below by partial sums. Specifically, we can split the sum in

(60) into parts that each sum over sets of rival competitors of a given size

𝑃 (𝑖 fails 𝑚th) =

n⊗1∑︁

a=0

∑︁

♣C♣=a

(⊗1)a Úi

Úi +
√︁

a∈C Úa
(63)

and use Bonferroni’s inequality to deduce that

𝑃 (𝑖 fails 𝑚th) ⊘

v∑︁

a=0

∑︁

♣C♣=a

(⊗1)a Úi

Úi +
√︁

a∈C Úa
for even 𝑣 (64)

𝑃 (𝑖 fails 𝑚th) ⊙

v∑︁

a=0

∑︁

♣C♣=a

(⊗1)a Úi

Úi +
√︁

a∈C Úa
for odd 𝑣. (65)

The practical utility of this result is that the potentially very long sum in (60) can be avoided if we are

content just to bound it. This would mean computing partial sums like (64) for some 𝑣 and using the last

two as upper and lower bounds.
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If, for example, three competitors’ failure times are exponentially distributed with rates Úa with

𝑎 ∈ ¶𝑖, 𝑗, 𝑘♢, then the probability of competitor 𝑖 finishing last is the sum

𝑃 (i finishes last) = 1⊗
Úi

Úi + Új
⊗

Úi

Úi + Úk
+

Úi

Úi + Új + Úk
, (66)

in which the summands’ denomimators include the rate parameter for competitor 𝑖 and every combination

of the remaining competitors. In this instance the Bonferroni inequalities tell us that

𝑃 (i finishes last) ⊘1, (67)

𝑃 (i finishes last) ⊙1⊗
Úi

Úi + Új
⊗

Úi

Úi + Úk
, (68)

𝑃 (i finishes last) ⊘1⊗
Úi

Úi + Új
⊗

Úi

Úi + Úk
+

Úi

Úi + Új + Úk
. (69)

An alternative upper bound can be derived from the fact that a competitor’s chance of failing last can

only decrease as more rival competitors join the competition, i.e. if we partition the set of all competitor

labels 𝑄 into sets 𝑈i (whose subscript encodes the fact that it contains label 𝑖) and 𝑉 then

𝑃 (𝑖 finishes last among 𝑄 = 𝑈 ∪ 𝑉 ) ⊘ 𝑃 (𝑖 finishes last among 𝑈) (70)

which can then be minimized by specifying 𝑈i so that it contains 𝑖 and a subset of the (smallest) failure

rates corresponding to the best competitors. Accompanying lower bounds can be found by considering the

complement to the event in question

𝑃 (𝑖 finishes last among 𝑄) =1⊗ 𝑃 (𝑖 does not finish last among 𝑄) (71)

=1⊗
∑︁

j∈Q\i

𝑃 (𝑗 finishes last among 𝑄) (72)

⊙1⊗
∑︁

j∈Q\i

𝑃 (𝑗 finishes last among 𝑈j), (73)

where, similarly, 𝑈j is a subset of labels for the best competitors and label 𝑗.

In practice we find the probability that a competitor finishes last is most efficiently computed by recur-

sively building up the set of denominators and corresponding signs appearing in (60), before manipulating

them all simultaneously and adding them up. The R code below shows exactly how this is achieved. It

defines a function whose input is a vector of failure rates for a set of exponential random variable and whose

output is a vector of probabilities for the corresponding random variables being the largest.

lastprob<-function(lambdavect){

n<-length(lambdavect)

probvect<-rep(0,n)

for(i in 1:n){

lambdavecti<-lambdavect[-i]

denominators<-lambdavect[i]

signs<-1

for(k in 1:(n-1)){

denominators<-c(denominators,denominators+lambdavecti[k])

signs<-c(signs,-signs)

}

probvect[i]<-sum(lambdavect[i]/denominators*signs)

}

probvect

}
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With 20 competitors, as is mostly the case in our F1 examples, the function above evaluates the required

probabilities in approximately 4.2×10⊗1s on a laptop equipped with a 1.9GHz processor. The corresponding

calculation of the probabilities for failing first is orders of magnitude faster, averaging approximately

2.2× 10⊗6s. So at this scale we find neither calculation to be prohibitively costly. The super-exponentially

increasing cost of the former calculation quickly becomes a problem as we introduce more competitors

however. With 24 competitors, the function above takes approximately 14× 100s to evaluate, which in some

contexts may already be impractically slow.

A.1.4 Probability competitor i finishes among the first k

Our strategy for computing this probability follows along similar lines as those described in Section A.1.1.

We start by writing down the probability competitor 𝑖 and a set, denoted 𝐶, of 𝑘 ⊗ 1 other competitors

finish before the fastest of the 𝑚⊗ 𝑘 remaining competitors, denoted 𝐷. This probability can be expressed

as a product of terms corresponding to the finishing times for each competitor. The probability that 𝐶 ∪ 𝑖

finish ahead of 𝐷 then follows from integrating out the fastest time of the later competitors in set 𝐷, i.e.

𝑃 (𝐶 ∪ 𝑖 finish among first k) =

∞∫︁

0

(1⊗ 𝑒⊗λ𝑖x)×

(︃
∏︁

a∈C

(1⊗ 𝑒⊗λ𝑎x)

)︃

× ÚD𝑒⊗λ𝐷x𝑑𝑥, ÚD =
∑︁

b∈D

Úb. (74)

We can now rewrite the central product in (74) as a sum over all the 2k⊗1 possible subsets of 𝐶. We call

these subsets 𝐶r and write

𝑃 (𝐶 ∪ 𝑖 finish among first k) =

∞∫︁

0

(1⊗ 𝑒⊗λ𝑖x)×

∏︀

∐︁

2𝑘−1

∑︁

r=1

(⊗1)♣C𝑟♣𝑒
⊗
√︁

𝑎∈𝐶𝑟
λ𝑎x

∫︀

̂︀× ÚD𝑒⊗λ𝐷x𝑑𝑥 (75)

=

2𝑘−1

∑︁

r=1

(⊗1)♣C𝑟♣

∞∫︁

0

(1⊗ 𝑒⊗λ𝑖x)× 𝑒
⊗
√︁

𝑎∈𝐶𝑟
λ𝑎x
× ÚD𝑒⊗λ𝐷x𝑑𝑥 (76)

=

2𝑘−1

∑︁

r=1

(⊗1)♣C𝑟♣

⎤
ÚD

ÚD +
√︁

a∈C𝑟
Úa
⊗

ÚD

Úi + ÚD +
√︁

a∈C𝑟
Úa

⎣

. (77)

To compute the probability of competitor 𝑖 finishing in the top 𝑘 we now need to sum over the
(︀

n⊗1
k⊗1

[︃

versions of (77) with different 𝐶, which lesds to

𝑃 (i finishes among first k) =
∑︁

C

2𝑘−1

∑︁

r=1

(⊗1)♣C𝑟♣

⎤
ÚD

ÚD +
√︁

a∈C𝑟
Úa
⊗

ÚD

Úi + ÚD +
√︁

a∈C𝑟
Úa

⎣

. (78)

B Tables
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Position 1 2 3 4 5 6 7 8 9 10 ≥11

F1 points 25 18 15 12 10 8 6 4 2 1 0

Endure-Elo points 25 15 11 7 5 3 1 0 -1 -2 ≤-3

Speed-Elo points 25 24 22 21 19 17 15 13 11 9 ≤6

Tab. 1: F1 point allocations for finishers in a standard Grand Prix race event. These are compared to scaled and integer-

rounded Elo adjustments of the type described in Equation (31). The key feature here is that the differences between point

allocations increase for the F1 and endure-Elo systems as we consider better finishing positions. The opposite is true with

the speed-Elo system.
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Albon Bottas Gasly Giovinazzi Grosjean Hamilton Hülkenberg Kubica Kvyat Leclerc Magnussen Norris Pérez Räikkönen Ricciardo Russell Sainz Stroll Verstappen Vettel

Australian Grand Prix 14 1 11 15 18 2 7 17 10 5 6 12 13 8 19 16 20 9 3 4

Bahrain Grand Prix 9 2 8 11 20 1 17 16 12 3 13 6 10 7 18 15 19 14 4 5

Chinese Grand Prix 10 2 6 15 11 1 20 17 19 5 13 18 8 9 7 16 14 12 4 3

Azerbaijan Grand Prix 11 1 17 12 18 2 14 16 19 5 13 8 6 10 20 15 7 9 4 3

Spanish Grand Prix 11 2 6 16 10 1 13 18 9 5 7 20 15 14 12 17 8 19 3 4

Monaco Grand Prix 8 3 5 19 10 1 13 18 7 20 14 11 12 17 9 15 6 16 4 2

Canadian Grand Prix 19 4 8 13 14 1 7 18 10 3 17 20 12 15 6 16 11 9 5 2

French Grand Prix 15 2 10 16 20 1 8 18 14 3 17 9 12 7 11 19 6 13 4 5

Austrian Grand Prix 15 3 7 10 16 5 13 20 17 2 19 6 11 9 12 18 8 14 1 4

British Grand Prix 12 2 4 18 19 1 10 15 9 3 20 11 17 8 7 14 6 13 5 16

German Grand Prix 6 15 14 13 7 9 16 10 3 17 8 18 20 12 19 11 5 4 1 2

Hungarian Grand Prix 10 8 6 18 20 1 12 19 15 4 13 9 11 7 14 16 5 17 2 3

Belgian Grand Prix 5 3 9 18 13 2 8 17 7 1 12 11 6 16 14 15 19 10 20 4

Italian Grand Prix 6 2 11 9 16 3 5 17 19 1 18 10 7 15 4 14 20 12 8 13

Singapore Grand Prix 6 5 8 10 11 4 9 16 15 2 17 7 19 18 14 20 12 13 3 1

Russian Grand Prix 5 2 14 15 20 1 10 16 12 3 9 8 7 13 19 17 6 11 4 18

Japanese Grand Prix 4 1 7 14 13 3 20 17 10 6 15 11 8 12 19 16 5 9 18 2

Mexican Grand Prix 5 3 9 14 17 1 10 18 11 4 15 20 7 19 8 16 13 12 6 2

United States Grand Prix 5 1 16 14 15 2 9 19 12 4 18 7 10 11 6 17 8 13 3 20

Brazilian Grand Prix 14 20 2 5 13 7 15 16 10 18 11 8 9 4 6 12 3 19 1 17

Abu Dhabi Grand Prix 6 4 18 16 15 1 12 19 9 3 14 8 7 13 11 17 10 20 2 5

Tab. 2: Finishing positions for drivers in the 2019 F1 racing season. We use these primarily to make sense of the trajectories plotted in Figure 5.
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