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Abstract—Engagement is a fuzzy concept. In the present
work we operationalize engagement mechanistically by linking
it directly to human behaviour and show that the construct of
engagement can be used for shaping and interpreting data-driven
methods. First we outline a formal framework for engagement
modelling. Second we expanded on our previous work on theory-
inspired data-driven approaches to better model the engagement
process by proposing a new modelling technique, the Melchoir
Model. Third, we illustrate how, through model comparison and
inspection, we can link machine-learned models and underlying
theoretical frameworks. Finally we discuss our results in light of
a theory-driven hypothesis and highlight potential application of
our work in industry. 1

Index Terms—Engagement Modelling, Player Modelling, Ma-
chine Learning, Artificial Neural Networks

I. INTRODUCTION

Various attempts have been made in prior literature across

several domains to describe and analyse the engagement pro-

cess in a video-game context [1]. Engagement is an extremely

useful construct because it allows us to understand how a user

(e.g. a player) is interacting with a specific object or activity

(i.e. a video game) and how this interaction can evolve over

time. Here, we build upon our previous work [2] modeling

engagement and strengthen its link with human behaviour. We

expand our previous theoretical framework and use it to refine

our modelling approach. In doing so we generate a set of

theory-driven hypothesis that we investigate through model

comparison and inspection. This was achieved by carrying

out a series of three analyses over a 3.2 millions-entries

cross-game data-set. Our goal was not just to evaluate the

effectiveness of our new approach but also to ask how the

assumptions generated by the theoretical framework compare

to those learned by our modelling approach. In the final

section we briefly discuss a series of practical application that

our current approach can have in industry settings, ranging

from estimation of engagement evolution and identification of

engagement profiles. As far as we know this is one of the first

works explicitly translating qualitative theories of engagement

This work was supported by the EPSRC Centre for Doctoral Training
in Intelligent Games & Games Intelligence (IGGI) [EP/L015846/1] and
the Digital Creativity Labs (digitalcreativity.ac.uk), jointly funded by EP-
SRC/AHRC/Innovate UK under grant no. EP/M023265/1.

1Extensive ancillary information and results can be found at
https://github.com/vb690/modelling engagement ammount/wiki.

into machine-learned models. We argue that our refined the-

oretical framework allows for a re-framing of engagement in

behavioural terms while also allowing us to formulate and test

more precise hypotheses. The modelling approach we propose

here extends and refines our previous model - maintaining

the same advantages while also improving on some of its

limitations. In particular, we explicitly consider the contri-

bution of environmental variables, and we fully exploit the

temporal nature of the engagement process allowing the model

to work continuously with an arbitrarily long sequence of input

features. Finally, the model is able to estimate a larger range

of target metrics when compared with its predecessor. This

work also presents a methodology for inspecting, analyzing

and interpreting the user representation learned by the model,

providing a generalizable way of producing understandable

engagement profiles.

II. STATE OF THE ART AND CONTRIBUTION

In this section we give a general overview on the state of

the art in engagement modelling. Due to space constraints and

the substantial literature on the matter we will focus on a

restricted set of representative works in the area of large-scale

behavioural modelling of engagement. The work on engage-

ment modelling comes, generally, in two forms: estimation

and profiling of in-game behaviour [3]. The estimation of in-

game behaviour is usually formulated as a supervised machine-

learning or more general statistical modelling problem [3].

Despite the literature on the topic often presenting compelling

solutions for practical problems, it tends to follow a black

box approach: a machine-learned solution is generated for

solving a specific task but no attempts are made to inspect or

interpret the model [4]–[7]. Moreover, when these attempts are

made, the lack of a solid and predefined theoretical framework

tends to lead to post-hoc interpretations which are sometimes

difficult to verify or relate with actual human behaviour

[8], [9]. When trying to estimate engagement profiles, the

approach widely used in the literature is to adopt some form

of unsupervised learning technique for individuating patterns

of interaction with various in-game features [3], [9]. This how-

ever is usually done considering an unconstrained set of game-

specific metrics. As a result, a-posteriori justifications for the

characteristics of the individuated profiles are provided [10]–

[12], which, without an overarching explanatory theoretical
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framework, appear to be be very context-specific and difficult

to interpret. What we see in the literature is that attempts are

made to model a single behavioural manifestation of engage-

ment rather than the construct in its entirety. A noticeable

exception in this regard is the recent work by Reguera et al.

[13], who adopt a complete data-driven approach managed

to derive a general law for describing and quantifying the

engagement process, similarly to what Bauckhage at all. did in

[14]. However, neither group interpret their findings through

the lens of existing human behaviour theory. We believe that a

holistic model of engagement can be generated, constraining

the great flexibility provided by data-driven approaches by

employing solid and well established theoretical priors [15]. To

do so, an a-priori theoretical framework which is guaranteed

to generalise to different situations should be defined. Such

a framework should clearly state what are the observable

and measurable indicators of engagement and how they are

expected to vary in relations with the construct’s dynamics. In

doing so the findings emerging from data-driven approaches

can be compared with what the theoretical framework pre-

scribes.

III. ENGAGEMENT AS A BEHAVIOURAL PROCESS

Although various attempts have been made to describe the

construct of engagement, prior literature struggles to provide

a formal definition [1]. In particular, we observed a lack

of mechanistic explanations and parallelisms with human

behaviour in favour of more holistic and phenomenological

descriptions of the concept [1]. Although these phenomenolog-

ical descriptions do provide qualitative insights, mechanistic

explanations are necessary to generate and verify hypotheses

as well as producing real-world applications for engagement

modelling. For this reason, we extend the theoretical frame-

work adopted in our previous work [2] to draw stronger

connections between engagement and human behaviour. This

allowed us to not only make more informed decisions when

designing a strategy for modelling engagement in behavioural

terms but also to use this approach for verifying a set of theory

driven hypotheses.

A. The Engagement Process Model

When looking at the various formulation of engagement [1]

a common denominator seems to emerge: from a behavioural

point of view engagement can be represented with the amount,

duration and frequency of interactions between an individual I

and an object O. The Engagement Process Model proposed by

O’Brien and Toms [16] perfectly summarizes this, describing

these interactions in terms of a dynamic system. In their

system, the ability of O to provide rewarding experiences to

I , in conjunction with environmental factors Env, controls

cycles of interaction between I and O. Figure 1 represents the

process by which I engages with O inside Env. If I has an

a-priori belief that O is able to provide rewarding experiences

they will direct their attention towards it (1). If Env does not

pose any constraints, I will interact with O for as long as O

is able to provide rewarding experiences (2).

Point of
Engagement

Sustained
Engagement

Dis
Engagement

Extinction

Re
Engagement

Env

1

2 3

4

5

Fig. 1: The Engagement Process Model. Solid and dashed lines represent
compulsory and optional paths.

However, if O fails to provide these experiences, or con-

straints from Env emerge, I will gradually begin to disengage

from O (3). At this point I can either enter a cycle of re-

engagement and disengagement (4) or reach an inevitable state

of complete withdrawal from O (5).

B. Incentive Salience Attribution

The Engagement Process Model provides a good high-level

description of the engagement process but fails to give a

clear explanation of the dynamics controlling the system or

explicitly draw connections to human behaviour. We believe

that the Incentive Salience hypothesis formulated by Berridge

and Robinson [17] offers a solution for both of these problems.

I O±

b±
t

r±
t

Envt

Fig. 2: The process of incen-

tive salience attribution. Solid
and dashed lines represent ob-
servable and latent variables.

From a behavioural point of view,

the Incentive Salience hypothesis

states that through repeated inter-

actions (i.e. operant conditioning),

objects, O, which elicit rewarding

experiences, r, become valuable,

i.e. they acquire salience, to the in-

dividual, I , interacting with them

[17], [18]. The amount of salience

then controls how likely and in-

tense future interactions between

I and O will be [17], [18]. Let

(bt)
n

t=1 represent the history of

interactions between I and O, (rt)
n

t=1 a measure of how

rewarding an interaction O is perceived to be by I and

(Envt)
n

t=1 the changes in the environment in which I and

O interact. Following Figure 2, we can imagine the intensity

of each bt+1 increasing and decreasing according to the level

of rt. Changes in rt alter the salience of O, which acts as

an attracting force for future b. Reformulating this in a video-

game context, I and O indicate a user and a specific video-

game respectively, bt is the amount of playing activity during

a gaming session t, rt stands for how rewarding the user found

the gaming session. Finally Env are all those external factors

interfering or promoting the gaming activity (e.g. school days

or holidays) which therefore need to be taken into account for

estimating an unbiased measure of rt. For convenience, from



now on I and O will be used as synonyms for representing

a user and a specific game the user is interacting with. The

concept of attributed salience will be used interchangeably

with that of level of engagement since the two are strongly

interconnected and do not differ from a behavioural point of

view: high levels of attributed salience pushes I to interact (i.e.

engage) more with O [1], [16], [17]. By keeping this notation

we also highlight how our current approach can in theory be

extended to contexts other than video games.

C. From Theory to Modelling

We believe it is of core importance to estimate the level of

salience I is attributing to O at a specific t. As we have seen

before this, other than simply providing a way to assess the

current state of the interaction between I and O, would allow

us to perform informed estimations of all bt+1:n. Following

our theoretical framework we hypothesise that, being f , g and

k a set of unknown arbitrarily complex functions:

bt+1:n ∼ f(O±) (Eqn 1)

This can be achieved by taking into consideration the full

history of rewarding experiences provided to I by O:

O± ∼ g(rt, rt−1, . . . , rt−n) (Eqn 2)

Because rt is a latent variable it is necessary to find an

observable outcome able to approximate it. Again, following

our theoretical framework we hypothesize that rt can be

inferred from the full history of observed b between I and

O weighted by the effect of Env

rt ∼ k((b · Env)t, (b · Env)t−1, . . . , (b · Env)t−n) (Eqn 3)

To summarize, according to our hypothesis the latent vari-

able rt (which control changes in the salience attributed to

O) can be inferred from the intensity of observed behaviours

produced by I when interacting with O.

D. Choosing the Right Modelling Approach

Following the formulations above we can see how a suitable

approach for estimating attributed salience might be to adopt

an auto-regressive-like (AR) model with order p = n. This

model would take as input sequences of b, O and Env and

attempt to estimate the intensity of all future b generated by

I in response to O. The model should represent the temporal

relationships between the elements in the input sequence. We

showed in our previous work [2] that simply considering

full history of past behaviours without explicitly modelling

temporality lead to sub-optimal results. Finally, since our

theoretical framework doesn’t explicitly indicate which type

of function best describes the relationship between the history

of interactions and the intensity of future interactions, it is nec-

essary for our modeling approach to be able to learn arbitrary

complex functions. We argue therefore that the use of Artificial

Neural Network (ANN), and in particular recurrent variants

(RNN), are particularly well suited modelling techniques.

xt−1 xt+1

ht−1 ht+1

yt−1 yt+1

h(...) h(...)

W W W

xt

ht

yt

W

Fig. 3: Many To Many Recurrent Neural Network. Adapted from [19].

When using a RNN for sequence to sequence tasks, the

neural network takes as input a sequence of vectors of arbitrary

length (xt)
n

t=1 and as target (yt)
n

t=1, a sequence of vectors

of the same length. A weight matrix W , with subsequent

non-linear activation functions, is then applied recurrently to

each xt and to a latent variable ht−1. This will produce

the next ht that is used for estimating yt as well as for

the subsequent operations. Figure 3 demonstrates an example

of a ‘many to many’ model. We can see how an RNN

satisfies the need for modelling the inputs temporally and in

an arbitrarily complex manner. Moreover unlike traditional

AR models it is not necessary to specify the order p, this

is something W dynamically infers from the data, which

allows to retain information from varying size sequences in

a flexible manner. Following Figure 3, the input xt is a vector

carrying information about bt, O and Envt while yt a vector

of variables indicative of the intensity of bt+1:n. The latent

variable ht would represent the level of salience I is attributing

to O at time t. rt is implicitly computed by the operations

performed by W and it reflects in the changes of ht. Given

how an RNN computes its latent variables, we can see that

at each t the associated h will represent the full history of

information that have flowed through the model until then.

E. Manifold Learning

Despite the fact that ANNs seem to be a suitable approach

for translating our theoretical framework in a machine-learned

model, we need to assess if the learned model is able to

represent a sensible approximation of the process of salience

attribution. We believe that the concept of manifold learning

can be used to demonstrate this. ANNs are known to be effi-

cient universal function approximators but it is exceptionally

hard to draw insights about the underlying learned function.

However, one of the core concepts in deep learning, and

machine learning in general, is that the data we observe lies on

a manifold: a connected region where each point is surrounded

by other extremely similar examples [19]. When training an

ANN, we can imagine the operations performed by each layer

as learning the coordinates of each input point on a manifold

that holds a representation (i.e. an embedding) that is useful

for subsequent layers. For example, in a supervised learning

context, the last layer of an ANN is usually tasked with

performing classification or regression while the layer before



that provides the best data transformation for that task. With

this in mind we argue that if, through architectural choice, we

can enforce an ANN to learn a representation z for which

bt+1:n ∼ f(z) (Eqn 4)

where f is an arbitrarily complex function. This repre-

sentation z should then be able to place individuals with

similar characteristics, with respect to the objective, closer

in the embedding space. With this in mind we argue that

through the analysis of z it should be possible to inspect these

characteristics and compare them with those predicted by the

theoretical framework used for designing the model.

IV. METHODOLOGY

A. Data

To conduct our experiments, we gathered data from six

games published by our partner company, Square Enix Ltd.:

Hitman Go (hmg), Hitman Sniper (hms), Just Cause 3 (jc3),

Just Cause 4 (jc4), Life is Strange (lis), and Life is Strange:

Before the Storm (lisbf). The data-set contained data from

3,240,000 individuals, evenly distributed across the 6 games,

and randomly sampled from all users who played between the

games release and January 2020. Different from our previous

work, [2], we included a series of metrics representing the

Env as well as increased the number of target metrics to

provide a better behavioural approximation of engagement.

Moreover, in this work no set observation period was required

since the modelling approach follows an online strategy: given

the history of game sessions for a user the model is trained

to perform estimation after each session. It was important,

when deciding on which metrics should be adopted, to have a

minimal and highly generalizable set of features. This feature

selection improved the generalizability and usability of our

methodology and allowed us to carry out analytical work on

the representation learned by our model: relying on a limited

set of of input metrics, selected on the basis of an underlying

theoretical framework, makes it easier to generate and interpret

human readable visualisations.
1) The behavioural and object metric: Given a set of

(bt)
n

t=1 between I and O (i.e. game sessions performed by

a user within a specific game context), we needed a set of

behavioural metrics able to represents the intensity of each b.

Following the indications provided by our theoretical frame-

work, we decided to employ the same behavioural metrics used

in our previous work, see Table I, as they appear to be optimal

candidates for representing the intensity of b in behavioural

terms. For representing the O generating (bt)
n

t=1 we simply

retrieved a metric indicating the game context to which the

behavioural metric are associated.
2) The environment metrics: To represent (Envt)

n

t=1 we

needed a set of metrics which provide a high-level description

of the environment in which I and O are interacting. We chose

the hour of the day, the day of the week and the day of the

year to account for elements like weekends, working hours and

bank holidays. We additionally consider a metric indicating the

user’s broad geographic area to account for regional variations.

TABLE I: Considered Metrics over Sessions. Taken from [2]

Metric Description

Session Time Overall session duration (minutes)
Play Time Session Time spent actively playing (minutes)
Delta Session Temporal distance between sessions (minutes)
Activity Index Count of user initiated game-play-related actions. E.g.

‘Talk to NPC’ or ‘Acquire Upgrade’ were considered valid
actions while ‘Click Menu’ or ‘NPC Attacks You’ were not.

Activity Diversity Count of unique voluntarily initiated actions

3) The target metrics: The target metrics need to be a

set of behavioural metrics summarising the intensity of all

the (bt)
n

t+1 after a specific bt. These, following the intuitions

from [17], can be used as a measure of attributed salience.

We extend the traditional metrics of churn probability (ch)

and survival time (st) to also include survival sessions (st)

and the time the player is absent from the game between the

end of one session and the start of the next (ab). The two

survival target metrics were calculated following the formula:

survivalt = total P t or Ps−
t

∑

n=1

Pt or Pnn (Eqn 5)

with Pt and Ps being respectively Played T ime and

Played Sessions. The absence metric is simply the time in

minutes between the current session and the previous session.

We choose a definition and encoding of the churn variable

which is robust to outliers as well being able to represent

uncertain cases. Given the two criteria:

(a) Completing the game

(b) Being inactive for a period equal or greater to:

inactivity = Q3(x) + 1.5 · IQR(x) (Eqn 6)

where x is a vector of of inter-sessions distances for a

specific game, we determined the probability of being in a

churning state as follow:

churn probability =











0.0 if a

1.0 if ¬a ∧ b

0.5 otherwise

(7)

Summarizing, we argue that the intensity of all the future

interactions between I and O can be expressed through the

combinations of the four aforementioned metrics:

bt+1:n ∼ (ch, stt, sst, abt) (Eqn 8)

because all the four metrics are good quantifiers of the

amount and frequency of future behaviour generated by I in

response to O.

4) Data Preparation: For each user in our dataset we

retrieve a single feature for the object metric and a temporal

series for each other metrics, computing the input and target

metrics for each recorded game session. We then split the

data-set into training and testing subsets (80 and 20 % of the

original dataset) and rescaled the behavioural metrics using

the following formula:

scale(x) =
x−min(x)

max(x)−min(x)
(Eqn 9)



where x is the feature vector to be re-scaled. To avoid the

risk of information leakage min and max are computed only

on the training set. We then proceeded to numerically encode

the variables indicative of O and Env because the categorical

encoding employed by our models requires to transform all

the unique categories in numerical indices [20].

B. Hypotheses and Models

To evaluate the assumptions of our theoretical framework

we defined a series of hypotheses which we tested both

through the comparison of a set of models as well as by

inspecting the embedding space learned by our proposed

approach. These hypotheses are: 1) Explicitly modelling tem-

porality in the interactions between I and O results in better

performance when estimating behavioural proxies of attributed

salience. 2) Models able to learn arbitrarily complex functions

will produce less error when estimating behavioural proxies

of attributed salience. 3) Our modelling methodology is able

to generate a latent representation which reasonably approx-

imates the level of salience an individual has attributed to a

game. 4) The encoding of the level of salience provided by the

model will reflect increases and decreases in the behavioural

metrics used for describing the strength of the interactions

between I and O. For instance, individuals encoded has having

had attributed high salience to O will show a history of more

frequent and longer interactions. 5) While the patterns above

will appear consistently across game contexts (i.e. the distinct

O) various profiles will be observable within and between

different O, because the behavioural manifestation of salience

attribution partially depends on the nature of O. To test these

hypotheses we designed and implemented three models with

ad-hoc characteristics.

1) Autoregressive-like Models: Two AR models of order

p = 1 were implemented for testing hypotheses 1 and 2. More

specifically, we used an ElasticNet regression (TD ENet):

bt+1:n ∼ bt + Envt +O (Eqn 10)

and a Multi Layer Perceptron (TD MLP)

bt+1:n ∼ f(bt, Envt, O) (Eqn 11)

We can see that both models work under a Markovian

assumption that intensity of future interactions with O is

reliant only on the current state of I , but TD MLP is not

constrained to learn only linear functions.

2) Melchior Model: Additionally, we propose the novel

‘Melchior Model’ (MM), which is specifically designed to

implement the insights from our theoretical framework and

to test all the aforementioned hypotheses, Figure 4. Our MM

architecture models the contribution of each component, O, b,

and Env, separately in a way which resembles the specifica-

tions of section III.D, each component is then pooled and used

for estimating metrics representative of the intensity of future

interactions between I and O. The guiding concept was mul-

titask learning [19]: given a set of targets and the assumption

that these share a common representation, explicitly modelling

this last one allows to capture a collection of common factors

shared among all targets. We hypothesised that this would

have provided two benefits. Firstly, better generalization and

superior performance in terms of goodness of fit. Secondly,

the ability to inspect an overarching representation able to

explain the variance in the target metrics. This representation

would constitute an approximation of the concept of attributed

salience expressed in section III.B.

cht

stt

sst

abt

Envt

O

bt

rt

et e∗
t

O

b∗
t

yt

xt

eb∗
t

Fig. 4: Melchior Model Core Architecture. Blue squares represents inputs,
outputs and fully connected operations. Yellow diamonds indicates categorical
embedding operations. Green rounded rectangles are recurrent operations.
Shapes with shaded copies represents time series. The red highlight indicates,
according to what we specified in Eqn 4, the portion of the model that we
hypothesize holding a representation of the salience I is attributing to O.

All three models take as inputs two series of vectors, (bt)
n

t=1

and (Envt)
n

t=1, and a single feature O and are trained to

output four series of vectors corresponding to the target met-

rics. They were trained using Binary Cross Entropy for churn

probability and the Symmetric Mean Absolute Percentage

Error (SMAPE) for the other metrics. Both loss functions

are bounded between 0 and 1 and lower values correspond

to better performance. These loss functions were also used for

computing the performance of the models on the test set2.

C. Experiments

1) Experiment 1 - Model Comparison: The first experi-

ment is designed to replicate the findings of our previous work

[2] as well as test the assumption made by our theoretical

framework that engagement needs to be modelled as a dynamic

system. To achieve this we implemented the three models

discussed above and compared their performance. We employ

20% of the training set to search for the best hyper-parameters

while keeping the architecture of the three models fixed (i.e.

only elements such as the number of layers and hidden units

were tuned). This was achieved using the Hyperband algorithm

[21] due to its capacity to converge to a good solution with

relatively limited computational resources. After the tuning

process we fit each model on the entirety of the training set

and then compute the evaluation metrics on the test set.

2) Experiment 2 - Embedding Visualization: The second

experiment aims to verify, through visual inspection, that MM

learns a separate representation for each O that the model

observes and that these representations reasonably encode the



different level of salience that various I attribute to O. To

extract these representations we simply truncate the model’s

weights up to the point highlighted in Figure 4 and then

transform the testing set through the usual forward pass. For

generating the visualization necessary to test our hypothesis

we needed a methodology able to represent in two dimensions

the type of spatial properties discussed in section III.E For this

reason we employed the Uniform Manifold Approximation

and Projection for Dimension Reduction (UMAP) technique

[22]. UMAP is a manifold learning technique able to represent

the global and local geometry of a set of data in a arbitrary

number of dimensions, often 2 or 3 for visualization purposes.

In general terms this means that, on a two dimensional

plane, points are placed closer or further away to each other

depending on their similarity (i.e. proximity) in the original

space.

3) Experiment 3 - Embedding Partitioning: The final

experiment analyzes the applicability of using the represen-

tation from experiment two to validate the hypothesis that

behavioural traces that are coherent with the incentive salience

framework can be extracted from the learned embedding.

Following the manifold hypothesis we know that the learned

representation should place points similar to each others close

in the multidimensional space. Therefore partitioning this

space, with distance-based techniques, should allow us to

individuate different groups encoded with different levels of

attributed salience. To achieve this we run a mini-batch k-

means algorithm [23], [24] on the representation learned by

the model for each O and then inspect the behavioural metrics

associated to each partition. Since k-means requires a specific

number of partitions, we used the elbow method for choosing

the number of partitions that maximize the marginal gain in

explained variance 2. We decided to use the k-means algorithm

despite its known limitations [24] because of its ability to scale

well when N ≥ 105. After performing the partitioning we

visualized the temporal traces of the behavioural input for each

partition and compared them with the distribution of target

metrics for each partition. The code for all the experiments

has been written in Python 3.6 relying on Keras [20] for the

implementation of the models and on Scikit-learn [24] for the

partitioning algorithm.

V. RESULTS

1) Experiment 1 - Model Comparison: Figure 5 shows the

performance of each model collapsed over game context and

play sessions. Each plot representing the performance for a

specific objective. We can see how the performance of the

three models follows the expected trend, TD ENet < TD

MLP < Melchoir, in all four targets metrics. Additonally,

performing this comparison on non-collapsed data 2 demon-

strates a near-identical trend, strengthening the assumption

that temporally modelling interactions is vital for modelling

salience attribution.

2Omitted due to space concerns. Can be found at
https://github.com/vb690/modelling engagement ammount/wiki

Fig. 5: Models Comparison The four plots report the performance of the
three models

2) Experiment 2 - Embedding Visualization: Figure 6

reports the representation learned by MM on the test set.

Fig. 6: Learned representation for the six games contexts.

We see that UMAP is able to more faithfully represents

global geometry, placing points from different games within

distinct regions, compared to traditional Principal Component

Analysis (PCA). Focusing on jc4 and knowing that UMAP

attempts to preserve the local geometry, we can see from

Figure 7 that MM was able to generate a representation

where users with similar behavioural measures of attributed

salience (i.e. the four target metrics) are placed closer to each

other in the embedding space. The fact that each metric is

represented over different and partially non-overlapping areas

of the embedding space indicates that the model learned the

type of general representation that we illustrated with Eqn 4

and that is enforced by multitask learning. Such representation

can be considered as an abstract and overarching factor, much

like the concepts of engagement and attributed salience, able

to explain the variations in the behavioural targets.

3) Experiment 3 - Embedding Partitioning: Figure 8

shows the results of K-Means partitioning on the embedding

space. Looking at the characteristics of the partitions in Figure

9 we can see how each target metric develops differently



Fig. 7: Visualization of the learned representation for the jc4 context. Each
plot report the UMAP reduction of the learned representation colour coded
according to the median value of the four target metrics. From a behavioural
point of view, blue colors might be interpreted as encoding low attributed
salience while red colors high attributed salience. We advise to consult the
ancillary results for examining the entire space.

Fig. 8: Visualization of the individuated partitions for the jc4 context.

over time but that a general pattern seems to control each

partition’s trace. Partitions which have a low measurement in

the target metrics representing attributed salience are shown

to have shorter and less frequent interactions with the game,

while the opposite appears to be the case for those partitions

which have a high measurement in the same target metrics3.

VI. DISCUSSION AND LIMITATIONS

1) Theoretical Implications: Our theoretical framework

indicates that, from a behavioural point of view, I who

attribute a high level of salience to a specific O will show a

3Consulting the ancillary results we can see that this pattern is consistent
through all the games.

history of frequent and long interactions with O. Following

the formulation by [16] this would mean that I stays in

the sustained engagement state for longer, or frequently re-

engage after periods of disengagement. According to our target

metrics this would mean not churning, being absent for shorter

and ”surviving” for longer periods of time. Focusing on cluster

number zero in figure 9 we see that it is the cluster that

according to the distribution of its target metrics could be

hypothesized having the highest level of attributed salience to

playing the specific game. If we then look at the behavioural

traces describing the interactions between the I in this cluster

and the game, we can see that they perfectly match with

what is prescribed by our theoretical framework (see sections

III.a and III.b). We see that the same logic applies for all

the other partitions but with slight differences indicative of

the different manifestations of the engagement process. This,

in addition to the results provided by experiment 1 and 2,

shows that the theoretical constraints imposed on our model

do not just lead to better performance when compared with

unconstrained methodologies but also forces the model to

learn a representations that appear to be coherent with our

theoretical assumptions.

2) Practical Implications: As a byproduct of the present

work we produced a scalable cross-game model for estimating

metrics that are of core importance to industry applications

(i.e. frequency and amount of future playing behaviour). The

same model can be used as a feature extractor given its

capacity to learn representations that are reasonable approxi-

mations of the quality of the interaction between a user and

a game. Finally, the methodology we used for analyzing the

learned embedding offers an efficient way to perform time

series clustering, a task often crippled by prohibitive time

and memory demands. This is done by first constructing a

compact and static representation of the history of interactions

between the user and the game and subsequently partitioning

it. Moreover, the learned representation, when compared with

the raw features traditionally used in the literature, has the

advantage of having already been transformed by the network

to best describe the target metrics.

3) Limitations and Future Work: This work has a series

of limitations. 1) The analysis conducted for verifying the

linkage between theory, model and observed behaviours is

still preliminary and more careful and precise investigations

would likely yield insights. 2) Due to the assumptions that

k-means makes about the shape of the clusters it may be

the case that more sophisticated approaches provide a higher-

quality space partitioning. 3) For verifying that our modelling

approach can be extended to general human behaviour we

have to preform the same analysis done in this work with

data coming from O that are not limited to video games. 4)

Our approach appears to be suitable for modelling the amount

of engagement or attributed salience but we can’t say anything

about the factors of I , O and Env which control the changes in

the these constructs. 5) Differently to [13], [14] our approach

doesn’t explicitly produce a clear mathematical formulation

explaining the observed changes in behaviour. This can at most



Fig. 9: Characteristics of the individuated partitions. The line-plots on the left show the progression over time of the input metrics, with the solid line
indicating the average and the shaded area the 95% confidence interval. The plots on the right indicates the distribution of the target metrics.

be inferred or hypothesized observing the behavioral traces in

Figure 9. All these constraints constitute venues for future

works.

REFERENCES

[1] E. A. Boyle, T. M. Connolly, T. Hainey, and J. M. Boyle, “Engagement in
digital entertainment games: A systematic review,” Computers in human

behavior, vol. 28, no. 3, pp. 771–780, 2012.

[2] V. Bonometti, C. Ringer, M. Hall, A. R. Wade, and A. Drachen,
“Modelling early user-game interactions for joint estimation of survival
time and churn probability,” in 2019 IEEE Conference on Games (CoG).
IEEE, 2019, pp. 1–8.

[3] M. S. El-Nasr, A. Drachen, and A. Canossa, Game analytics. Springer,
2016.

[4] E. Lee, Y. Jang, D.-M. Yoon, J. Jeon, S.-i. Yang, S.-K. Lee, D.-W. Kim,
P. P. Chen, A. Guitart, P. Bertens et al., “Game data mining competition
on churn prediction and survival analysis using commercial game log
data,” IEEE Transactions on Games, vol. 11, no. 3, pp. 215–226, 2018.

[5] X. Liu, M. Xie, X. Wen, R. Chen, Y. Ge, N. Duffield, and N. Wang,
“Micro-and macro-level churn analysis of large-scale mobile games,”
Knowledge and Information Systems, pp. 1–32, 2019.

[6] A. F. del Rı́o, A. Guitart, and Á. Periáñez, “A time series ap-
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