UNIVERSITYW

This is a repository copy of Identifying Run-time Monitoring Requirements for Autonomous
Systems through the Analysis of Safety Arguments.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/200065/

Version: Accepted Version

Proceedings Paper:

Hawkins, Richard David orcid.org/0000-0001-7347-3413 and Ryan Conmy, Philippa Mary
orcid.org/0000-0003-1307-5207 (2023) Identifying Run-time Monitoring Requirements for
Autonomous Systems through the Analysis of Safety Arguments. In: SAFECOMP 2023
(42nd International Conference on Computer Safety, Reliability and Security). International
Conference on Computer Safety, Reliability and Security, 20-22 Sep 2023 , FRA

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Identifying Run-time Monitoring Requirements
for Autonomous Systems through the Analysis
of Safety Arguments*

Richard Hawkins[()()O(]fo(]Ol7734773413] and Philippa Ryan
Conmy[0000700037130775207]

Assuring Autonomy International Programme, Department of Computer Science,
University of York, Deramore Lane, York, England, YO10 5GH
richard.hawkins@york.ac.uk, philippa.ryan@york.ac.uk

Abstract. It is crucial that safety assurance continues to be managed
for autonomous systems (AS) throughout their operation. This can be
particularly challenging where AS operate in complex and dynamic en-
vironments. The importance of effective safety monitoring in ensuring
the safety of AS through-life is already well documented. These current
approaches often rely on utilising monitored information that happens
to be available, or are reliant solely on engineering judgement to deter-
mine the requirements. Instead, we propose to use a systematic analysis
of the safety case as the basis for determining the run-time monitoring
requirements.

Safety cases are created for AS prior to deployment in order to demon-
strate why they are believed to be sufficiently safe to go into operation.
The safety case is therefore inevitably based upon predictions and as-
sumptions about the system and its operation which may become un-
true due to changes post-deployment. Our approach identifies specific
run-time monitoring requirements for AS based upon a dialectic anal-
ysis of the safety case developed for the system. The advantage of the
approach described is that it is systematic (through explicit considera-
tion of elements of the safety case for the AS) and provides a way to
justify the sufficiency of the resulting monitoring requirements (through
creating explicit links the safety claims made about the AS).

Keywords: Monitors - Safety arguments - Run-time

1 Introduction

It is crucial for the assurance of safety-related and safety-critical systems that
the safety of the system can be demonstrated throughout its entire operational
life. Many safety assurance activities (such as design analysis and testing) can
be undertaken during development prior to the deployment of the system to

* This work is funded by the Assuring Autonomy International Programme
https://www.york.ac.uk/assuring-autonomy. Parts of this work were undertaken as
part of the “LOPAAS” project of the Fraunhofer-Gesellschaft “ICON” programme.

2 R. Hawkins and P. Ryan Conmy

operation. However, it is also important that safety continues to be managed
and assessed post-deployment, particularly to identify and respond to unantici-
pated changes in the system or the operating environment. As part of this it is
important to ensure that effective monitoring is in place during operation that
can identify when a response is required to ensure acceptable safety is main-
tained. Effective monitoring is important for all safety-related systems, however
it is of particular importance for autonomous systems (AS) [7], [3], since it is
expected that AS will experience more change during operation. This may be
in the form of changes to the AS itself (updates to machine learning models or
unanticipated failure modes of system components), or changes in the complex,
dynamic operating environment in which AS are required to operate.

Other work has previously discussed the need for safety monitors for AS. For
example, in [6] the use of safety performance indicators (SPIs) is suggested as a
way of defining safety metrics for an AS that can be monitored during operation.
In [2], the authors propose the use of runtime monitors to assess assurance
properties of AS by measuring confidence/uncertainty in those properties at
runtime. And in [9], the use of probabilistic runtime risk monitors is proposed
as a way of supporting dynamic risk assessment of AS during operation. A lot
of literature relating to run-time monitoring is focused on highly situational
monitoring to mitigate specific hazards. For example, [8] provides a method for
ensuring safe distance between platooning trucks. In [5], the authors propose
a safety concept, which monitors internal health and plausibility checking for
an autonomous driving control system. However, underpinning the successful
use of any safety monitors is the need to be able to identify and justify the
selection of what is required to be monitored, and how the use of the information
from that monitor can be shown to be effective in maintaining safety during
operation. Whereas existing approaches rely largely on engineering judgement to
define monitoring requirements, this paper describes an approach for identifying
specific run-time monitoring requirements for AS based upon an analysis of the
safety case developed for the system.

The advantage of the approach described in this paper is that it is systematic
(through explicit consideration of elements of the safety case for the AS) and it
provides a way to justify the sufficiency of the resulting monitoring requirements
(through creating explicit links to the safety claims made about the AS). The
paper is structured as follows; Section 2 introduces our approach based on the use
of dialectic arguments; Section 3 discusses the activities required pre-deployment
of the AS in order to identify run-time monitoring requirements; Section 4 then
discusses how the monitors are used post-deployment to ensure the validity of
the AS safety case is maintained; We draw conclusions and describe further work
in Section 5. We use an illustrative example throughout the paper to illustrate
our approach.

Identifying Run-time Monitoring Requirements for Autonomous Systems 3
2 Background

Safety cases can be created for systems prior to deployment in order to demon-
strate why they are believed to be sufficiently safe to go into operation [10]. The
safety case for any system is therefore inevitably based upon predictions and
assumptions about the system and its operation. Despite the best efforts of en-
gineers when developing the safety case to ensure all predictions and assumptions
are valid, some of these may turn out to be incorrect during operation, or may
be correct at the point of deployment, but later become incorrect due to changes
during operation. For example, during operation, upredicted emergent properties
of the system may become evident, unanticipated changes may occur in the ex-
ternal environment, or the operational performance of system components may
start to diverge from predictions. Safety assurance requires that confidence can
be provided in the continued validity of the safety case post-deployment once
the AS is in operation. In order to do this we need to understand what are the
correct things to monitor that will provide the required information about safety
case validity. We also need to know at what point the information obtained from
the monitors indicates that the validity of the safety case may be undermined.
This requires the definition of triggers associated with each monitor. The triggers
are used to indicate that corrective actions are required to restore the validity
of the safety case. The analysis that we propose in order to define the safety
monitoring requirements for an AS is based around the use of dialectic argu-
ment techniques. Below we introduce dialectic arguments and explain how we
use them in defining safety monitors for AS.

2.1 Dialectic Safety Arguments

Dialectic arguments provide a way of explicitly representing not just the argu-
ment and evidence that support the truth of the claims that are made (as is done
in a conventional safety argument), but also a way of representing argument and
evidence that could undermine the truth of those claims. Dialectic arguments
are created by identifying challenges to elements of the safety argument (claims
evidence, context, assumptions etc.). The challenges can take the form of either
claims that, if true, undermine the argument (challenge claims) or evidence that
undermines the truth of the argument (counter-evidence). The Goal Structuring
Notation (GSN) standard [1] defines a way of documenting counter evidence as
part of a safety argument. Figure 1 shows a simple example of argument chal-
lenges and defeat (a key to the GSN symbology is provided in Figure 2). The
diagram on the left hand side (a), shows a small GSN argument fragment re-
garding a claim that an algorithm is correctly implemented. The diagram on
the right hand side (b), shows how various elements of that argument may be
challenged. Challenges are represented by dotted arrows that link from the chal-
lenge claim to the element being challenged. In Figure 1 challenges are shown
to three elements of the argument: strategy S12, evidence E121 and claim C12.
Challenges are represented as claims (CC12.1, CC121.1 and CC2.1 respectively).

4 R. Hawkins and P. Ryan Conmy

For challenges to be compelling they should be supported by some evidence (re-
ferred to as counter-evidence). In Figure 1, an example of counter-evidence is
shown as EC2.1. If a challenge presented to the safety case is determined to be
valid, then the challenged element in the safety argument is said to be defeated.
Figure 1 shows an example of how a defeated claim, C12, can be represented.

c1 c1

The implementation of The implementation of

the algorithm is correct the algorithm is correct

cc12.1

No reasonable amount of
s12 S12
testing is likely to find a
/ If tests are passed then If tests are passed then Heisenbug

c11 /Cx! \|c2 c11 [Cx2 \
Tests are Test cases < Tests cases are Testsare | | Testcases < Tests case€are
passed \description /| sufficient passed \description / sufficient

—
~
~

/ E12N / 5121\ cc2.1
Test) Test The test cases are determined
\ :

report/ \mpoy b) to not be sufficient to meet
the desired coverage criteria
cc121.1 B

The testing was performed on
. EC2.1
a single-core processor but our
Test coverage

customers are likely to be

. . analysis
using multi-core processors.

e

report

Fig. 1. A simple example GSN safety argument (a) and a dialectic argument showing
how challenges and defeat of elements of the GSN structure can be represented (b).

In order to identify how the validity of an AS safety case may be under-
mined during operation, we propose that dialectic argumentation can be used
to explicitly identify, prior to deployment of the AS, how the safety argument or
evidence may be challenged at run-time. This enables detailed challenge claims
and counter-evidence specific to the operation of the AS under consideration to
be identified. As this dialectic argument focuses on potential run-time challenges,
we refer to it as an operational dialectic argument. Our approach says that if,
at any point in the lifecycle of the AS, the counter-evidence or challenge-claim
we have identified in the operational dialectic argument exists, then the safety
case is undermined, since elements of that argument become defeated. Therefore
by monitoring explicitly at run-time for occurrence of this counter-evidence, we
can have confidence that the safety case will remain valid during operation.

Once the operational challenges have been identified using the operational
dialectic argument, the mechanisms for successfully monitoring and responding
to the occurrence of that counter-evidence must be determined and implemented.

Identifying Run-time Monitoring Requirements for Autonomous Systems 5

Core GSN Elements

A claim in an safety argument is a . .
Claim I 't'I that i yt :g: tob It Evid pravides a fef e to the
roposition that is stated to be true. X
P p artefacts that demonstrate a claim to
Claims can be supported by other
. be true.
claims.
/s\rgument An argument strategy explains the Fo— Context elements provide an explicit
trate H i
8y argument approach adopted to support statemetlt of information or .
a claim. ions relevant to the claim.

This symbol indicates that the

A supported-by relationship defines Q argument element is currently
that the truth of a claim is supported undeveloped, and must be further
by another claim(s) or evidence. supported by claims and evidence.

. An In-Context-Of relationship defines
the context within which a claim is
stated to be true

GSN Dialectic Extensions

This symbol indicates that the - A Challenges relationship defines that
argument element is defeated. an ar | is chall i by

another claim or evidence

Fig. 2. A key to the GSN symbols used this paper

We discuss this in section 4. Firstly in the next section we look at how an
operational dialectic argument can be created for an AS.

3 Pre-deployment

In this section we describe the activities required in our approach prior to de-
ployment of the system in order to identify a sufficient set of run-time monitors
and to be able to justify their sufficiency. This firstly requires the development
of an operational dialectic argument, which is discussed in section 3.1.

3.1 Operational Dialectic Arguments

The starting point for creating a dialectic argument for an AS is the AS safety
case itself. This safety case will have been created prior to deployment of the AS
during the development of the system to demonstrate, through a safety argument
supported by evidence, that the AS is sufficiently safe to operate in its defined
context. There is existing guidance that can be used to help in the creation of
AS safety cases [4]. Figure 3 shows a simplified example of part of the safety case
for an autonomous vehicle that will operate on public roads. The safety case is
represented using GSN.

6 R. Hawkins and P. Ryan Conmy

This part of the safety case shows the argument that a particular safety re-
quirement (SR1) has been addressed through the design and implementation
of a particular system component (in this case the object detection compo-
nent of the vehicle). The object detection component in this case is responsible
for identifying objects that are present in the operating environment of the
AS. This is demonstrated through supporting two claims. Firstly (G2.1.1) it is
demonstrated through testing evidence that SR1 is satisfied. This argument is
supported through the provision of the relevant test results, as well as claims re-
garding the sufficiency of both the test cases and the test platform that was used.
Secondly, it is argued that the manner in which the object detection component
was developed gives confidence that SR1 is met. This argument considers the
machine learning (ML) model that is used as part of the object detection com-
ponent (G2.1.2.1), the appropriateness of the design decisions that were taken
(G2.1.2.2), and the rigour of the development process followed (G2.1.2.3). Each
of these claims is developed further through argument and evidence that is not
shown in Figure 3. A further claim (G2.1.2.4) shows that no hazardous errors
were identified in the design of the object detection component based on evidence
from a design review.

With the pre-deployment safety case established, the operational dialectic
safety case is then created by using the GSN argument structure to systemati-
cally identify potential run-time challenges to elements of that safety case. These
challenges, at this point, are hypothetical, in that the challenges to the safety case
elements do not, prior to deployment of the AS, exist. If the counter-evidence
that supports a challenge becomes present during the operation of the AS, then
that challenge becomes valid, and the relevant element of the AS safety case may
be defeated. For this reason it is important to be able to know, at run-time, if
any of this counter-evidence exists. Unless sufficient monitoring is put in place
prior to deployment of the AS, then the counter-evidence that can defeat ele-
ments of the safety case may exist without the knowledge of the system operator.
By identifying the potential run-time challenges prior to deployment, sufficient
monitors can be put in place to identify the presence of counter evidence.

Figure 4 shows a simplified version of the argument fragment from Figure
3 with the potential run-time challenges and counter-evidence identified (for
clarity in the diagram only those argument elements with challenges are fully
represented). This dialectic argument was created by systematically considering
each element of the safety argument and considering whether any events that
could foreseeably occur during operation of the AS could defeat that element.
These challenges are captured as challenge claims, which are stated as propo-
sitions that would become true in the presence of particular counter-evidence
arising during operation. For example, the claim G2.1 that the object detec-
tion component satisfies the requirement SR1 would be directly challenged at
run-time if the performance that is actually being observed by the system in
operation is seen not to meet that specified by the requirement. This has been
captured by the challenge claim CC1 in Figure 4. CC1 would be become a valid
challenge during operation of the AS if there was evidence to show that this

Identifying Run-time Monitoring Requirements for Autonomous Systems

G2.1.1.1

The

Relevant test cases

are passed

Sn2.1.1.1
[Object

detection

alts]

test res

C2.1.1.1
Object

detection test

cases

satisfaction of SR1 within

the defined operating

G2.1
SR1 is addressed by the
implementation of the

object detection component

C8.2
Operating

context definition

/\

G2.1.1
SR1 is demonstrably
satisfied by testing

evidence

G2.1.1.3
Test platform is

G2.1.1.2

sufficiently representative
of the target AV platform

test cases are sufficient

to demonstrate the

context of the AV

Sn2.1.1.3

Test report
Sn2.1.1.2 [port]

[Test

report]

G2.1.2

The design and development
of the object detection
component ensures SR1 can
be met

G2.1.2.1
ML object detection model
satisfies its allocated system

safety requirements in the

defined environment

G2.1.2.2 G2.1.2.3

Design decsions taken The development process

for object detection are | | followed is sufficient to ensure
appropriate to ensure

SR1 can be met

hazardous errors are not

introduced into the object

detection component

G2.1.2.4

Object detection
component design does not
contain errors that could

contribute to hazards

Sn2.1.2.4
[Design
Review

Report|

Fig. 3. GSN safety argument extract from a safety case for an autonomous vehicle.

8 R. Hawkins and P.

cc1

The observed
performance in
operation does not
satisfy SR1

G211
SR1 is demonstrably satisfied
by testing evidence

T

/e

/ \
(object detection |

\ performance)

\\measures] /

Goal 2112
The test cases are
sufficient to demonstrate
the satisfaction of SR1
_ - within the defined
_ - operating context of the AV

ccz2

The observed operating
context during operation
deviates from that
predicted during
development

representative of the
target AV platiorm

Ryan Conmy

G21

G2.1.13
Test platform is
sufficiently

SR1 s addressed by the
implementation of the object
detection component

G212
The design and development of
the object detection component [
ensures SR1 can be met

G21.24
Obiject detection component
design does not contain
errors that could contribute to
hazards

sn2.1.24
[Design

Review

Repori]

cc3
Changes have been

made to the AV platform
after deployment of the
AV

ccs
Changes have been made
to the object detection
component since
deployment

g
S

[Object \
detection
software

update]

cc4

Problems with the
object detection
software have been
found during operation

PN

[Software Bug
| reports]

\

/

/ OpEv2 \
\

[observations
| ofthe context |

\\of operatloy

=y

[vehicle
change

\\ reports] /

Fig. 4. Extract of an operation dialectic argument for an AV.

challenge claim was true. OpEv1 states the nature of the operation counter evi-
dence that would support this. OpEv1 will therefore be used as the basis for a
monitoring requirement in Section 3.2 to ensure that the presence of the counter
evidence is known.

Another example provided in Figure 4 relates to claim G2.1.1.3, that the test
platform represents the actual AV platform on which the component is operating.
This claim could be challenged if the AV platform is changed during operation
such that the test platform is no longer indicative of the AV. Such changes could
mean that the testing results are no longer valid. This has been captured by
the challenge claim CC3 in Figure 4. CC3 would be become a valid challenge
during operation of the AS if there was evidence to show that such a change had
indeed occurred to the vehicle in operation. OpEv3 identifies change reports as
the mechanism by which evidence of this could be identified. Once again OpEv3
can be used as the basis for a monitoring requirement in Section 3.2.

Each of the items of operational counter-evidence from Figure 4, along with
other examples from related parts of the wider safety case are listed in Table
1. It is only by identifying the presence of this counter-evidence at run-time
that the existence of challenges to the validity of the safety case can be known.
If such challenges were to occur during operation and the operator of the AS

Identifying Run-time Monitoring Requirements for Autonomous Systems 9

was unaware that this was the case (due to insufficient monitoring), then the
continued operation of the AS is potentially unsafe. It is therefore important
that monitoring requirements are defined for each item of operational counter-
evidence to ensure the necessary information is available during run-time. Then
we can use this to know if a safety argument challenge has occurred and hence an
appropriate response can be enacted to ensure the safety of the AS is maintained.
The next section discusses these monitoring requirements.

3.2 Identifying Run-time Monitoring Requirements

For each item of operational counter-evidence identified, it is necessary to define:

— what needs to be monitored at run-time in order to be aware of the presence
of the counter-evidence?

— what the criteria are that will be used for judging whether what has been
monitored represents counter-evidence?

— what will be used as the trigger for determining the presence of counter-
evidence?

Table 1, shows this information captured in the form of a table for the
counter-evidence identified for the example system. This is captured as ‘Moni-
tor’, ‘Criteria’ and ‘Trigger’ respectively. It can be seen in these examples that
a diverse set of information must be monitored for the AV to ensure that all
the relevant counter evidence will be identified. This includes things such as the
number of missed detections across the fleet of AVs, information about changes
to the vehicle platform, and detection of software errors. Each of these requires
some mechanism to be put in place to obtain that information at run-time. This
may include, for some of the information, the installation of physical sensors on
the AS, but may also include more procedural mechanisms to check and record
events. In this paper we consider all such mechanisms to be run-time monitors.

We can illustrate the monitoring requirements by considering examples from
Table 1. The operational counter-evidence OpEv1 has been identified as oper-
ational object detection performance measures. It can be seen in Figure 4 that
this was identified as counter-evidence because it would support a claim that
the observed performance of the component in operation does not satisfy the
defined safety requirement. In order to know if this evidence has arisen, we de-
termined that it would be necessary to monitor the number of missed detections
that are seen to occur across the fleet of vehicles that are operating. The criteria
that would be used to determine if counter-evidence is observed is the number
of missed detection that are observed in a set period (in this case 1000 miles of
operation). This can then be compared against the defined trigger to determine
if this represents counter-evidence. In setting the trigger we must consider the
context of the safety argument, and the specific element to which the counter-
evidence would relate. In this case we must consider the number of misses per
1000 miles that would represent a deviation from the performance claimed in
the safety case. Here, it would be when the number of misses exceeds what was

10

R. Hawkins and P. Ryan Conmy

Table 1. Identifying requirements for run-time monitoring from counter-evidence

Op. Evidence

Monitor

Criteria

Trigger

OpEv1 - [operational
object detection per-
formance measures]

Number of missed
pedestrian detections
across the vehicle
fleet

Missed detections ob-
served per 1000 miles
of operation

#misses/1000 miles
exceeds rate report-
ing in test results by
10%

OpEv2 - [observa-|Input images arising|Measurement of key|Operational images
tions of the context|from the camera for|parameters within|outside of test distri-
of operation] operation within de-|images (e.g., light|bution

fined ODD levels, surfaces,

colours etc.)

OpEv3 - [vehicle|Physical changes|Changes that may|Notification of AV
change reports| to vehicle platform|impact software per-|platform modifica-

(such as updates to|formance tion

Sensors, processors

etc.)
OpEv4 - [Software|Software errors dis-|Errors identified in|Notification of error
bug report] covered during oper-|object detection dur-|{found in object de-

ation

ing operation

tection

OpEvV5 - [AV incident
reports|

Reports raised by op-
erators of the vehicle

Incidents that relate
to object detection

Notification of ob-
ject detection inci-
dents that may be
hazardous

OpEv6 [Camera
maintenance records]

Calibration of cam-
era

Time since last cali-
bration

Greater than 6
months since last
calibration

OpEv7 [Camera
drift measurements|

Drift measurement of
camera images

Rate of drift in oper-
ation

Rate of drifting ex-
ceeds design assump-
tion

OpEv8 - [Object de-
tection software up-
date]

Software version

Change to object de-
tection software

Non-approved ver-
sion of software
running

OpEv9 - [Lidar error
status]

Lidar health moni-
toring

Lidar availability

Lidar fails to provide
output to object de-
tection component

Identifying Run-time Monitoring Requirements for Autonomous Systems 11

demonstrated in the pre-deployment testing of the vehicle. Since in this case
the performance seen in testing comfortably exceeded that required to satisfy
the safety requirement (SR1), we do not need to consider every small deviation
from this as a trigger for counter-evidence. Instead we have set a 10% threshold,
which is still within the safety requirement, but indicates a threat to the validity
of that aspect of the safety case that warrants assessment and potential action
(see Section 4).

As a second example we can consider OpEv8, which has been identified as
an update to the object detection software. It can be seen in Figure 4 that this
was identified as counter-evidence because it would support a claim that the
object detection software that is running on the operational vehicle is not the
software for which the claim about the soundness of the development was made.
In order to know if this has occurred we need to monitor the version of the object
detection software that is running on the operational system. The criteria is if
the version number of the executing software indicates that there has been a
change to the software, and this will trigger counter-evidence if the version that
is running is not approved (since this could mean that we are no longer able to
claim that the development of the object detection software is sufficient). Further
investigation would again be required at this point to determine the nature and
impact of the changes to the software.

Having identified the run-time monitoring requirements prior to deployment
of the AS, those requirements then have to be managed post-deployment to
ensure their effectiveness. This is discussed in Section 4.

4 Post-deployment

In this section we discuss in more detail the post-deployment monitoring mecha-
nisms and how they might be implemented in practice. First we need to identify
responsible organisations and create processes to keep track of the specified mon-
itors and triggers (the effectiveness of these also needs to be justified in the safety
case). Second we need to perform those processes when required.

4.1 Organisation and continual monitoring processes

Once the AS is in-service, safety management processes will need to be put in
place to review each of the identified criteria. Whilst the triggers provide clear
thresholds beyond which the safety case can be considered no-longer valid, and
some may be considered higher priority than others, we would expect all of the
criteria to be reviewed regularly as part of planned safety case review. Addi-
tionally, we would expect a periodic review of the safety case in case additional
run-time monitors have been identified, or could be improved over time, e.g., if
there is new technology for monitoring or a changed legal requirement. Further,
there may be other changes in the operating environment which impact on the
safety case. We emphasise that the run-time safety monitoring is a continual
process which evolves during the life of the project.

12 R. Hawkins and P. Ryan Conmy

To be effective, a responsible organisation must be identified, who have the
role of collating the specified run-time monitored information. The precise or-
ganisation, or organisations, required to support this may be dependent on the
nature of the run-time monitoring requirements, the type of AS, and the regula-
tory regime. For our autonomous vehicle example this will include fleet owners,
independent servicing centres and/or original manufacturers as well as individ-
uals who own the vehicle. A further complicating factor would be the need to
consider international boundaries, and national requirements.

4.2 Impact assessment process

Assuming that data indicates the trigger threshold has been reached, or a planned
review shows concern about a particular trigger, there will need to be an impact
assessment. This will first need to identify areas of potential impact on the safety
case. This will differ depending on the type of issue. At a minimum, all branches
which refer to a particular trigger would need to be reviewed, but the impact on
the case could be more wide ranging, e.g., if a new hazard was discovered.

For example, if the trigger is Op Evl - #misses/1000 miles exceeds rate
reporting in test results by 10%, the potential impact of this could include one
or more of the following:

— the validity of the goals below G2.1 in Figure 4 are challenges, as if the
observed performance relating to SR1 is not as expected which implies a
problem with the test and design evidence

— more specifically, the deployment environment may differ to that anticipated
- implying a further issue for Op Fv2 - observations of the operating context

— the risk of collision with a pedestrian was higher than that anticipated due
to one or more causal subsystems having lower performance than anticipated
and each of these subsystems should be investigated for shortfall

— the Op Ewvl trigger criteria was defined incorrectly, essentially a false positive
problem

— the validity of one or more higher branches of the safety argument above
G2.1 are undermined

— the scope of the impact could be an entire fleet of vehicles, or a subset of
the fleet (for example operating in a particular region)

Alternatively, if we consider a low level trigger such as Op Ev 7 - Rate of
drifting exceeds design assumption, the potential safety impact could extend to
the performance of any subsystems using the camera. We should investigate any
claims in the safety argument about the performance of the camera, which might
be in different branches of the case.

Having assessed the impact of the operational counter-evidence on the safety
case and the AS itself, it is necessary to either provide a rebuttal to this, or pro-
pose actions to address the impact. We should do this considering the impacted
claims and their context, rather than considering the trigger in isolation. In
practice a shortfall in measured performance may still be within tolerable safety

Identifying Run-time Monitoring Requirements for Autonomous Systems 13

limits and be localised to different parts of the case and this should be investi-
gated. To continue our examples, if the trigger for Op Fvl - #misses/1000 miles
exceeds rate reporting in test results by 10% is breached but there have been
no significant incidents or other subsystems are still compensating for shortfall
in one systems performance (e.g. where there are diverse means of detecting
pedestrians) then it may be possible to argue that the AS is still acting well
within tolerable levels of risk. Alternatively, it could be that the trigger has only
been observed in an isolated case with unusual environmental conditions which
it could be argued are unlikely to be seen again. Such rebuttals should be explic-
itly document and could be added to the dialectic argument during operation to
document the resolution of the challenge claim.

If the trigger Op Ev 7 - Rate of drifting exceeds design assumption is breached,
it may be that this results in no significant performance alteration in any of the
systems which are using the camera and/or that a more regular re-calibration
process can be automatically performed without impacting on the AS user.
Again, such rebuttals could be added explicitly to the dialectic argument.

Where the monitors indicate that there is impact on the validity of the safety
case but no rebuttals for the counter-evidence are identified, action must be taken
at run-time to address this. Typical actions could include limitations on use, for
example, avoiding using the AS in a particular environment until an issue is fully
investigated and fixed, or limiting the operating speed. The safety case would
need to be updated for this interim period, with the limitations made explicit
at the top level of the case, and monitoring processes would continue. As an
extreme example, action may require grounding of a fleet of AS. Once the safety
issue was resolved, the safety case would again be updated to reflect this.

5 Conclusions and Further Work

The importance of effective monitoring in ensuring systems remain safe through-
out their operational life is well understood. Due to the nature of AS, it becomes
particularly important that the sufficiency of the monitoring that is in place
at run-time can be justified. It is not sufficient therefore that the monitoring
requirements for an AS be defined in an ad-hoc manner, or relying solely on
engineering judgement. Instead it is important that a systematic and defensi-
ble method for deriving the run-time monitoring requirements is established. In
this paper we have discussed how the continued validity of the AV safety case
should be the focus of the run-time monitoring, with monitors used to identify
if counter-evidence to the safety case occurs during operation, such that mit-
igations can be enacted. The approach we have described uses the concept of
creating dialectic arguments as a way to systematically anticipate and identify
operational counter-evidence, and thus to derive effective run-time monitoring
requirements.

The work presented in this paper will lead to further related work. We have
demonstrated how our approach can be applied in practice using an example
from a self-driving vehicle and have provided simplified examples in this paper.

14 R. Hawkins and P. Ryan Conmy

Further evaluation of this approach will be undertaken through additional case
studies undertaken by independent engineers. We will consider the application of
the approach to different types of AS in other domains in order to show the gen-
eralisabilty of the approach. We will also seek to evaluate, through observation
during operation, the effectiveness of the monitoring requirements arising from
following our approach. The approach we have described in this paper can be
used to enhance the safety case for the operation of the AV, by enabling a com-
pelling argument to be made about the sufficiency of the run-time monitoring.
Further work will develop and demonstrate the structure for such arguments.

We will use the results obtained from case studies in order to investigate
further the nature of the run-time monitoring requirements that are derived from
applying our approach. It was seen in this paper that the nature of the monitoring
requirements can be diverse in nature, and consequently the monitoring and
mitigation mechanisms are also diverse. We will look to characterise the run-
time requirements for AVs as the basis for providing further guidance on their
effective management.

References

1. ACWG: Goal Structuring Notation Community Standard. Tech. Rep. SCSC-141C
v3.0, Safety Critical Systems Club (2021), https://scsc.uk/scsc-141C

2. Asaadi, E., Denney, E., Menzies, J., Pai, G.J., Petroff, D.: Dynamic assurance
cases: a pathway to trusted autonomy. Computer 53(12), 35-46 (2020)

3. Haupt, N.B., Liggesmeyer, P.: A runtime safety monitoring approach for adaptable
autonomous systems. In: Computer Safety, Reliability, and Security: SAFECOMP
2019 Workshops, Turku, Finland, September 10, 2019. pp. 166-177. Springer (2019)

4. Hawkins, R., Osborne, M., Parsons, M., Nicholson, M., McDermid, J., Habli, I.:
Guidance on the Safety Assurance of Autonomous Systems in Complex Environ-
ments (SACE). arXiv preprint arXiv:2208.00853 (2022)

5. Hoérwick, M., Siedersberger, K.H.: Strategy and architecture of a safety concept
for fully automatic and autonomous driving assistance systems. In: 2010 IEEE
Intelligent Vehicles Symposium. pp. 955-960 (2010)

6. Laboratories, U.: UL 4600: Standard for Evaluation of Autonomous Products
(2020). Standard for safety, Underwriters Laboratories (2020)

7. Machin, M., Guiochet, J., Waeselynck, H., Blanquart, J.P., Roy, M., Masson, L.:
SMOF: A safety monitoring framework for autonomous systems. IEEE Transac-
tions on Systems, Man, and Cybernetics: Systems 48(5), 702-715 (2016)

8. Reich, J., Sorokos, I., Papadopoulos, Y., Kelly, T., Wei, R., Armengaud, E.: Engi-
neering of runtime safety monitors for cyber-physical systems with digital depend-
ability identities. In: Computer Safety, Reliability, and Security. pp. 3-17 (2020)

9. Reich, J., Trapp, M.: Sinadra: towards a framework for assurable situation-aware
dynamic risk assessment of autonomous vehicles. In: 2020 16th European depend-
able computing conference (EDCC). pp. 47-50. IEEE (2020)

10. Sujan, M.A., Habli, I., Kelly, T.P., Pozzi, S., Johnson, C.W.: Should healthcare
providers do safety cases? lessons from a cross-industry review of safety case prac-
tices. Safety science 84, 181-189 (2016)

