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EDIFICES: BUILDING-LIKE SPACES ASSOCIATED TO LINEAR

ALGEBRAIC GROUPS

MICHAEL BATE, BENJAMIN MARTIN, AND GERHARD RÖHRLE

In memory of Jacques Tits

Abstract. Given a semisimple linear algebraic k-group G, one has a spherical building
∆G, and one can interpret the geometric realisation ∆G(R) of ∆G in terms of cocharacters
of G. The aim of this paper is to extend this construction to the case when G is an arbitrary
connected linear algebraic group; we call the resulting object ∆G(R) the spherical edifice

of G. We also define an object VG(R) which is an analogue of the vector building for a
semisimple group; we call VG(R) the vector edifice. The notions of a linear map and an
isomorphism between edifices are introduced; we construct some linear maps arising from
natural group-theoretic operations. We also devise a family of metrics on VG(R) and show
they are all bi-Lipschitz equivalent to each other; with this extra structure, VG(R) becomes a
complete metric space. Finally, we present some motivation in terms of geometric invariant
theory and variations on the Tits Centre Conjecture.
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1. Introduction

Jacques Tits showed in his seminal 1974 monograph [34] how to associate a spherical
building ∆G to an isotropic semisimple linear algebraic group G over a field k: the simplices
of the building correspond to the k-parabolic subgroups of G, ordered by reverse inclusion.
This has led to a rich and fruitful interaction between the theory of algebraic groups and the
theory of buildings; for example, Serre has formulated his theory of G-completely reducible
subgroups of G in building-theoretic language [31], [32]. Tits’s celebrated Centre Conjecture
for spherical buildings—whose proof is the culmination of a series of papers involving several
authors [23], [21], [26]—has consequences for algebraic groups: for instance, it implies the
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Borel-Tits Theorem [13, §3]. The authors in previous and current work have studied the
interactions among the Centre Conjecture, G-complete reducibility and geometric invariant
theory, e.g., see [2], [4], [5], [7], [8, §5], [10, §5.4], and [9]. The link with geometric invariant
theory comes via a rational version of the Hilbert-Mumford Theorem, used to study orbits
of an action of G on an affine variety, see [3], [10, §3].
The geometric realisation ∆G(R) of ∆G has a striking interpretation in terms of cochar-

acters of G. Given a cocharacter λ of G, one can associate to it a parabolic subgroup Pλ of
G in a standard way, see [28, §2], [33, §8.4]. Roughly speaking, points in ∆G(R) correspond
to formal R-linear combinations of cocharacters, modulo a natural equivalence relation. If
x ∈ ∆G(R) is the point corresponding to λ then x belongs to the geometric realisation of the
simplex corresponding to Pλ. This construction is based on ideas of Tits and Chevalley and
is described in [16], [9] and below. See [24, Ch. 2, Sec. 2] for further discussion (note that
∆G(Q) is called the rational flag complex in loc. cit.). For applications to geometric invariant
theory, one must work with this geometric realisation rather than the simplicial building,
since in the Hilbert-Mumford Theorem one is concerned with the behaviour of individual
cocharacters; see Section 7.
Our purpose in this paper is to generalise the construction of a building via cocharac-

ters to the case when G is an arbitrary connected linear algebraic k-group, not necessarily
semisimple. This was achieved for reductive groups in [16]; in that case one can still form
a spherical building from the k-parabolic subgroups of G, which is canonically isomorphic
to the spherical building of the semisimple group G/Z(G)0, but one sees a difference at the
level of cocharacters as G may admit non-trivial cocharacters with image in Z(G)0. We
define spaces ∆G(R) and ∆G for arbitrary G in Section 3, which coincide with the spaces
described above when G is semisimple or reductive. We call ∆G(R) the spherical edifice
associated to G and ∆G the combinatorial edifice associated to G. We also define a space
VG(R), which we call the vector edifice associated to G; this is our generalisation for arbitrary
G of the vector building for a semisimple group defined in [29]. In fact, we concentrate on
vector edifices rather than spherical edifices as the former have some technical advantages
(see Remark 4.30).
In general ∆G(R) is not the geometric realisation of ∆G (or of any spherical building);

nonetheless it enjoys some of the same properties. For instance, G(k) acts on ∆G(R) and
we may endow ∆G(R) with a G(k)-invariant complete metric: see Section 6. We prove the
following key property (Proposition 4.7). Let f : G → H be a homomorphism of k-groups.
Then f gives rise in a natural way to a map κf : VG(R) → VH(R), and κf is continuous with
respect to the metric topologies (Corollary 6.22). For example, if G is reductive and P is a
parabolic subgroup of G then κi : VP (R) → VG(R) is a bijection, where i : P → G is inclusion
(see Example 4.14). We also obtain an induced map from ∆G(R) to ∆H(R). Even when G
and H are reductive, f need not map parabolic subgroups of G to parabolic subgroups of H,
so f does not give rise to a map ∆G → ∆H of simplicial buildings (see Remark 4.27). Our
constructions therefore provide extra flexibility: maps between the geometric objects exist
even when maps between the corresponding combinatorial objects do not. We rely on this
heavily in our forthcoming work [9].

While edifices are worth studying as objects in their own right, we have two further
motivations for investigating them. First, assume G is reductive. Let P be a parabolic
subgroup of G and let L be a Levi subgroup of P . For reasons discussed in Section 7, we
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wish to construct a map with certain properties from VG(R) to VL(R). It is well known
that such a map exists at the level of the simplicial building: this is the so-called projection
map from ∆G to ∆L, see Section 4.6. We need a map on the geometric realisations. Our
constructions give us what we want: we define the map to be κπ◦κ

−1
i , where i is the inclusion

of P in G from above and π : P → L is the canonical projection.
Second, edifices give us a framework for studying G-complete reducibility and geometric

invariant theory for non-reductive G: they play the role that the geometric realisation of the
spherical building plays when G is semisimple. We mention here in particular the case of
pseudo-reductive G. As explained in [25], one can associate a spherical Tits system to G [15,
Thm. 4.1.7], and one can then construct a spherical building ∆G using the pseudo-parabolic
subgroups of G; however, there does not seem to be an analogue of the “geometric realisation
by cocharacters” previously known here. Moreover, when working with pseudo-reductive G,
one often needs to extend scalars to a purely inseparable field extension k′/k; if the base
change Gk′ has non-trivial unipotent radical over k

′ then ∆G need no longer be a spherical
building, but the formalism of edifices is flexible enough to handle this situation. The authors
and their collaborators will pursue these ideas in forthcoming work.
The paper is set out as follows. In Section 2 we review some background material on

algebraic groups and cocharacters, and we define the key notion of an R-parabolic subgroup.
We define the vector edifice VG(K), the spherical edifice ∆G(K) and the combinatorial edifice
∆G in Section 3, where K = R or Q, and introduce some related notions: apartments (certain
subsets of the vector edifice), opposites, addition, and convexity. One substantial difference
from the reductive group case is that the “common apartment property” can fail: not every
pair of points in VG(K) need belong to a common apartment. In Section 4 we introduce the
notions of linear maps and isomorphisms between vector edifices. We show that an algebraic
group homomorphism f : G → H gives rise to a linear map κf : VG(K) → VH(K), and that
κf is injective if ker(f) is finite. In Section 5 we construct linear maps of vector edifices
arising from base change of the ground field k.

We turn to metrics in Section 6. We define the notion of an admissible metric on VG(K).
The idea is to do this first for reductive groups, where we can work inside individual apart-
ments; for an arbitrary G, we can embed G inside some reductive G′, which gives an em-
bedding of VG(K) inside VG′(K), then pull back a metric from VG′(K) to VG(K). Admissible
metrics on VG(K) are not unique, but we prove that any two are bi-Lipschitz equivalent
(Corollary 6.21); this takes some work. In the final section (Section 7), we discuss applica-
tions of our formalism to the Tits Centre Conjecture and to geometric invariant theory.

2. Preliminaries

Throughout k denotes a field with separable closure ks and algebraic closure k. We work
with affine (linear) algebraic k-groups. Formally, we view such a group G as a functor from
k-algebras to groups, represented by an affine k-algebra k[G], the coordinate algebra of G.
If X is a k-variety and k′/k is a field extension, then Xk′ denotes the k′-variety given by
the base change of X to k′, with coordinate algebra k′[Xk′ ] := k[X] ⊗k k

′; if f : X → Y is
a morphism of k-varieties then fk′ : Xk′ → Yk′ is the morphism obtained by base extension.
Unless specified otherwise, we use the phrase “let G be a k-group” as shorthand for “let G
be a smooth affine algebraic k-group”. We write g for the Lie algebra of G. For a k-group G
and a k-algebra A, we let G(A) denote the group of A-points of G. We adopt the framework
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of [14]: so by a subgroup of G we mean a k-defined subgroup, by a homomorphism we mean
a k-homomorphism and by a cocharacter we mean a k-defined cocharacter. We assume,
however, that subgroups are smooth; in cases when smoothness is not evident, we use the
terminology subgroup scheme. By the kernel of a homomorphism we mean the scheme-
theoretic kernel (note that this need not be smooth). Likewise, by the centraliser CG(H) of
a subgroup H we mean the scheme-theoretic stabiliser and by the intersection of subgroups
we mean the scheme-theoretic intersection. Note that CG(H) is smooth if H is a torus. By
an embedding of varieties we mean a closed embedding. For background on linear algebraic
groups, see [14], [11], [33]. We record one crucial result here [14, Thm. C.2.3], which is used
frequently in the sequel without further comment: the maximal split k-tori in a k-group G
are all conjugate under the action of G(k). By the rank of G we mean the k-rank: that
is, the dimension of a maximal split torus of G. If T is a maximal split torus of G then
Wk := (NG(T )/CG(T ))(k) is the relative Weyl group of G. If g ∈ G(k) then Inng : G→ G is
conjugation by g.

For an algebraic k-scheme X we let Xred denote the unique reduced subscheme of X with
the same underlying topological space as X [22, A.30]. When k is perfect (Xred)k̄ = (Xk̄)red
is reduced, and so when X is a group scheme over a perfect field k, Xred is smooth [22, Prop.
1.26, Cor. 1.39].

Our convention in this paper is that reductive groups are connected. If G is a k-group then
we write Ru,k(G) for the k-unipotent radical of G (the largest connected normal unipotent
k-subgroup). If Ru(Gk) descends to a subgroup of G then we write Ru(G) for Ru,k(G). We
denote by YG the set of cocharacters (one-parameter subgroups) of G — that is, an element
λ ∈ YG is a homomorphism λ from the multiplicative group Gm to G. If H is a subgroup of
G then we may regard YH as a subset of YG via the inclusion H ⊆ G. We say that λ ∈ YG
evaluates in H if λ arises from an element of YH in this way. We say that two cocharacters
commute if their images commute. Given λ ∈ YH and g ∈ G(k), we define g · λ ∈ YgHg−1 by
(g · λ)(a) = gλ(a)g−1 for any k-algebra A and any a ∈ Gm(A) = A×; this gives an action of
G(k) on YG.

Now suppose T is a split torus, and let XT denote the group of characters of T : that is,
χ ∈ XT is a homomorphism T → Gm. There is the usual pairing between YT and XT : given
λ ∈ YT and χ ∈ XT , the map χ ◦ λ : Gm → Gm is an endomorphism of Gm, and hence is
given by raising elements to a power; we denote this power by ⟨λ, χ⟩. If now T is a subtorus
of some k-group G, then for g ∈ G(k) and χ ∈ XT , we get a character g · χ ∈ XgTg−1 via
the formula (g · χ)(gtg−1) = χ(t) for any k-algebra A and t ∈ T (A). It is easy to check that
⟨g · λ, g · χ⟩ = ⟨λ, χ⟩ for all g ∈ G(k).

Throughout, the symbol K denotes R or Q. We write K+ for K ∩ (0,∞). If T is a torus
then YT with the usual addition of cocharacters is a free Z-module of finite rank. We define
YT (K) := YT ⊗Z K, a finite-dimensional K-vector space, and identify YT with the subset
of YT (K) consisting of elements of the form λ ⊗ 1 for λ ∈ YT in the usual way. We give
YT (K) the usual topology arising from a positive-definite bilinear form (this topology does
not depend on the form). We may similarly define XT (K) := XT ⊗ZK, and then the pairing
YT ×XT → Z extends to give a K-bilinear map YT (K)×XT (K) → K.

Below G denotes a connected k-group. At various points we make the extra assumption
that G is reductive. For f : G→ H a homomorphism of k-groups, we say that f is surjective
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provided f(k) : G(k) → H(k) is surjective. An isogeny is a surjective homomorphism of
k-groups with finite kernel.

2.1. Limits and R-parabolic subgroups. For full details on the following construction,
the reader is referred to [14, Sec. 2.1]. Let V be an affine k-scheme equipped with an action
of Gm. Given v ∈ V (A) for some k-algebra A, we say that lima→0 a ·v exists if the orbit map
(Gm)A → VA, a 7→ a ·v over A extends to an A-morphism A1

A → VA, and in this case we write
lima→0 a · v for that limit (which is necessarily uniquely defined). In [14, Lem. 2.1.4], it is
shown that there is a closed subscheme V ′ of V such that for any k-algebra A, V ′(A) consists
of the v ∈ V (A) such that the limit lima→0 a · v exists. If f : V → W is an equivariant map
of Gm-varieties, v ∈ V (A) and lima→0 a · v exists then lima→0 a · f(v) exists, and the converse
holds is f is an embedding.

The construction in the previous paragraph is of central importance in this paper when
V = G is a k-group, and the action of Gm on G is the conjugation action via a cocharacter
λ : Gm → G. In this case, for each λ ∈ YG, one obtains a closed subgroup Pλ(G) of G: for
each k-algebra A,

Pλ(G)(A) :=
{
g ∈ G(A)

∣∣∣ lim
a→0

λ(a)gλ(a)−1 exists
}

(that Pλ(G) is a smooth k-subgroup scheme is in [14, Lem. 2.1.5]). We also write lima→0 λ(a)·
g as a shorthand for the limit.

We call the subgroups of G of the form Pλ(G) for λ ∈ YG the R-parabolic subgroups of
G.1 We usually suppress the G in Pλ(G) unless there is some ambiguity — this occurs, for
instance, when H is a subgroup of G and we wish to view λ ∈ YH as a cocharacter of both
G and H, with two corresponding subgroups Pλ(H) ⊆ Pλ(G). In case G is pseudo-reductive
the subgroups Pλ(G) are the so-called pseudo-parabolic subgroups of G, but this is not the
case in general: a pseudo-parabolic subgroup of a general connected k-group G must also
contain Ru,k(G) but Pλ need not; see [14, Sec. 2.2].

We define Lλ(G) (or just Lλ) to be CG(Im(λ)) = Pλ ∩ P−λ and we define a subgroup
Uλ = Uλ(G) functorially by

Uλ(G)(A) :=
{
g ∈ G(A)

∣∣∣ lim
a→0

λ(a)gλ(a)−1 = 1
}
,

for each k-algebra A. It follows from [14, Lem. 2.1.5, Lem. 2.1.8] that Pλ, Lλ and Uλ are
smooth connected subgroup schemes of G, Uλ is a normal unipotent subgroup of Pλ, and
Pλ = Lλ ⋉ Uλ. If P is an R-parabolic subgroup of G then we call any subgroup Lλ for
λ ∈ YG such that P = Pλ an R-Levi subgroup of P . Given λ ∈ YG, we have a surjective
homomorphism cλ : Pλ → Lλ given by cλ(g) = lima→0 λ(a)gλ(a)

−1 for each k-algebra A and
each g ∈ Pλ(A).

We collect some basic properties of R-parabolic subgroups. First off, it follows from the
definition of limit in this case that for any subgroup H of G and a cocharacter λ ∈ YH ⊆ YG,
we have

Pλ(H) = Pλ(G) ∩H, Lλ(H) = Lλ(G) ∩H, Uλ(H) = Uλ(G) ∩H;

see [14, Lem. 2.1.5] and the paragraph following the proof of [14, Lem. 2.1.4].

1The “R” here is in honour of Roger Richardson, who made extensive use of the link between cocharacters
and parabolic subgroups in reductive groups, in the context of geometric invariant theory (see [28]).
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Note that every R-parabolic subgroup of G contains a maximal split torus of G — for
P = Pλ for some λ, and if T is a maximal split torus of G such that λ ∈ YT , then T ⊆
Lλ ⊆ Pλ. It is clear that if g ∈ G(k) and λ ∈ YG, then Pg·λ = gPλg

−1, Lg·λ = gLλg
−1 and

Ug·λ = gUλg
−1; in particular, if g ∈ Pλ(k), then Pg·λ = Pλ. If k′/k is a field extension then

Pλk′
= (Pλ)k′ , Lλk′

= (Lλ)k′ and Uλk′
= (Uλ)k′ .

We say the R-parabolic subgroups P and Q are opposite if there exists λ ∈ YG such that
P = Pλ and Q = P−λ: in this case, Pλ ∩ P−λ = Lλ.

The next result follows from [14, Prop. 2.1.8, Prop. 2.1.12].

Lemma 2.1. Let G be a k-group and let λ ∈ YG. Then the multiplication map Pλ×U−λ → G
is an open immersion. If G is connected and solvable then this map is an isomorphism.

Lemma 2.2. Let λ ∈ YG and let µ ∈ YPλ
. Then there exist u ∈ Uλ(k) and a maximal split

torus T of Pλ such that λ and u · µ belong to YT .

Proof. Choose maximal split tori T0 and T1 of Pλ such that λ ∈ YT0 and µ ∈ YT1 . By
conjugacy of maximal split tori, there exists g ∈ Pλ(k) such that gT1g

−1 = T0. Write g = lu
with l ∈ Lλ(k) and u ∈ Uλ(k). Then λ, u · µ ∈ YT , where T := l−1T0l. □

Lemma 2.3. Let T be a maximal split torus of G, and suppose λ ∈ YT . We have NPλ(k)(T ) =
NLλ(k)(T ) and NPλ(k)(Lλ) = Lλ(k).

Proof. Suppose we have g ∈ Pλ(k) such that gTg−1 = T . Now write g = lu with l ∈ Lλ(k)
and u ∈ Uλ(k). Note that lima→0 λ(a) · g normalises T , because λ(a) and g do, thus so does
l = lima→0 λ(a) ·g, and hence u normalises T also. Now the morphism Gm → Uλ, a 7→ λ(a) ·u
extends to a morphism from all of A1 (by definition of the limit), and this morphism has
connected image contained in the normaliser of T , containing the points 1 = lima→0 λ(a) · u
and u = λ(1) ·u. Rigidity of tori implies that the identity component of NG(T ) is the identity
component of CG(T ), [11, 8.10, Cor. 2], and since λ evaluates in T , CG(T ) ⊆ Lλ. But we
also have u ∈ Uλ, so this implies u = 1. Thus g ∈ Lλ(k), which proves the first statement.

Now suppose h ∈ Pλ(k) normalises Lλ. Then hTh
−1 is another maximal split torus of Lλ,

and hence is conjugate to T by some element of Lλ(k). But this says that we may multiply
h by an element of Lλ(k) to obtain an element of NPλ(k)(T ) ⊆ Lλ(k), so we’re done. □

Lemma 2.4. Let P = Pλ be an R-parabolic subgroup of G, and let T be a maximal split
torus of G such that λ ∈ YT .

(i) Given any other maximal split torus T ′ of G contained in P , there is a µ ∈ YT ′ with
Pµ = P and Uµ = Uλ. In fact, we can take µ = u · λ for some u ∈ Uλ(k).

(ii) The R-Levi subgroup Lλ is the unique Pλ(k)-conjugate of Lλ containing T .
(iii) Let µ ∈ YG such that Pµ = Pλ and Lµ = Lλ. Then Uµ = Uλ.

Proof. (i). Since T and T ′ are maximal split tori of the smooth connected k-group P , they
are P (k)-conjugate. Let g ∈ P (k) be such that T ′ = gTg−1. Write g = ul with u ∈ Uλ(k)
and l ∈ Lλ(k). Then u · λ = g · λ ∈ YT ′ , Pu·λ = uPλu

−1 = Pλ, and Uu·λ = uUλu
−1 = Uλ, as

required.
(ii). Suppose we have g ∈ P (k) such that T ⊆ gLλg

−1. Then T and g−1Tg are maximal
split tori of Lλ, so are conjugate by an element of Lλ(k). Hence, by adjusting g with an
element of Lλ(k) if necessary, we may assume that g normalises T . Now Lemma 2.3 implies
that g ∈ Lλ(k), as required.
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(iii). Since Im(µ) ⊆ Z(Lλ)
0 ⊆ T ⊆ Lλ, µ belongs to YT . It follows easily that cµ ◦ cλ =

cλ ◦ cµ. So let v ∈ Uµ(k). We can write v = lu for some l ∈ Lλ(k) and some u ∈ Uλ(k). Then

1 = cλ(cµ(v)) = cλ(cµ(lu)) = cλ(cµ(l))cλ(cµ(u)) = lcµ(cλ(u)) = l,

so v = u. This shows that Uµ ⊆ Uλ, and the reverse inclusion follows by symmetry. □

If G is reductive then the R-parabolic subgroups of G are precisely the parabolic sub-
groups, and the R-Levi subgroups of a parabolic subgroup are precisely its Levi subgroups;
furthermore, we have Uλ = Ru(Pλ). These facts mean that the result above has a rather
simpler formulation and proof for reductive G: the content of parts (i) and (ii) of Lemma 2.4
for reductive G are the well-known facts that each maximal torus of a parabolic subgroup
is contained in a unique Levi subgroup, and the unipotent radical of the parabolic subgroup
acts simply transitively on its Levi subgroups.

If G is not reductive then things are more complicated. We have Uλ ⊆ Ru,k(Pλ) since
Uλ is a connected normal unipotent subgroup of Pλ, but the inclusion can be proper. We
can have cocharacters λ, µ ∈ YG such that Pλ ⊆ Pµ but Uλ ̸⊇ Uµ. In fact, there can exist
λ, µ ∈ YG such that Pλ = Pµ but Uλ ̸⊇ Uµ and Lµ is not conjugate to Lλ. For instance,

take k = k and let G = Pµ(G
′) be a Borel subgroup of a non-trivial connected semisimple

k-group G′. Choose a maximal torus T of G such that µ ∈ YT . Let λ = 0 ∈ YG. Then
Pλ(G) = Pµ(G) = G = Lλ(G) ̸= Lµ(G) = T but Ru(Pµ) = Uµ(G) ⊈ Uλ(G) = 1.

We do, however, have the following result.

Lemma 2.5. Let P be an R-parabolic subgroup of G. Suppose P = Pλ = Pµ and Uλ ⊆ Uµ

for some λ, µ ∈ YG. Let H be a subgroup of P such that P ∼= H ⋉ Uµ. Then:

(i) H is Uµ(k)-conjugate to Lµ.
(ii) H is Uµ(k)-conjugate to a subgroup of Lλ. In particular, Lµ is conjugate to a subgroup

of Lλ.

Proof. Since H is a complement to Uµ in Pµ, H is isomorphic to Lµ under the (restriction of
the) projection Pµ → Lµ, and hence H contains a maximal split torus T of Pµ. Using Lemma
2.4(i), by conjugating H with some element in Uµ(k), we may assume that µ evaluates in T
as well. Now H = Pµ(H) = Lµ(H)⋉Uµ(H), but Uµ(H) = Uµ ∩H is trivial, so H = Lµ(H).
This implies that H ⊆ Lµ, thus H = Lµ since H is isomorphic to Lµ and both are smooth
and connected, proving (i).

The proof of (ii) is similar: by Lemma 2.4(i) and the fact that Uλ ⊆ Uµ, we may also
conjugate H by an element of Uµ(k) so that the maximal split torus T of H contains the
image of λ. Then H = Pλ(H) = Lλ(H)⋉Uλ(H). Again, since Uλ ⊆ Uµ and Uµ ∩H = 1, we
have H = Lλ(H), so H is contained in Lλ. □

Corollary 2.6. Let λ, µ ∈ YG such that Pλ = Pµ and Uλ = Uµ. Then there is a unique
u ∈ Uλ(k) such that Lµ = uLλu

−1.

Proof. The existence of u follows from Lemma 2.5(i) with H = Lλ. If u1, u2 ∈ Uλ(k) and
u1Lλu

−1
1 = u2Lλu

−1
2 then u−1

1 u2 normalises Lλ, so u1 = u2 by Lemma 2.3. This proves
uniqueness. □

Remark 2.7. We need some notation. Let V be a rational G-module and let T be a maximal
split torus of G. Let Φ ⊆ XT be the set of weights of T on V . Since T is split, V splits
into a direct sum of weight spaces Vχ for T . Given v ∈ V (k), we can write v uniquely as
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v =
∑

χ∈Φ vχ, where each vχ ∈ Vχ(k). We define supp(v) = {χ ∈ Φ | vχ ̸= 0}. If g ∈ G(k)

then the weights of gTg−1 on V are the characters of the form g · χ, where χ runs over the
set of weights of T on V , and we have Vg·χ = g · Vχ for each χ ∈ Φ. Let λ ∈ YT . Set
Φλ,ϵ = {χ ∈ Φ | sgn(⟨λ, χ⟩) = ϵ}, where ϵ ∈ {+,−, 0}. We define Vλ,ϵ to be the sum of the
weight spaces Vχ for χ ∈ Φλ,ϵ, and Vλ,≥0 := Vλ,0 ⊕ Vλ,+ (as in [10, Rem. 2.8]).
Now we consider an important special case of this set-up. By [20, Lem. 1.1(a)], there is a

G-equivariant embedding ρ of G (as a G-variety under the conjugation action) into a rational
G-module V . Let T , etc., be as above. For v ∈ V (A), lima→0 λ(a) · v exists if and only if
v ∈ Vλ,≥0(A) [14, Ex. 2.1.1]. We see that Pλ = ρ−1(Vλ,≥0), and it follows that Pnλ = Pλ for
every n ∈ N. By similar arguments, Lλ = ρ−1(Vλ,0) and Uλ = ρ−1(Vλ,+).

Remark 2.8. There are only finitely many R-parabolic subgroups P containing a fixed max-
imal torus S of G. To see this, choose a G-equivariant embedding ρ of G into a rational
G-module V , as in Remark 2.7. Let T be the unique maximal split subtorus of S. By Lemma
2.4(i), we can assume that P = Pλ for some λ ∈ YT . We have Pλ = ρ−1(Vλ,≥0). Since Φ is
finite, there are only finitely many possibilities for Φλ,≥0 and Vλ,≥0 and hence only finitely
many possibilities for P .

Lemma 2.9. Let T be a maximal split torus of G and let λ, µ ∈ YT . Suppose Pλ = Pµ.
Then Pλ+µ = Pλ = Pµ.

Proof. Set P = Pλ = Pµ. We prove first that Pλ+µ ⊇ P . Choose a G-equivariant embedding
ρ of G into a rational G-module V , and fix a maximal split torus T of G. For any ν ∈ YT
and any g ∈ G(k), we have g ∈ Pν(k) if and only if

min{⟨ν, χ⟩ |χ ∈ supp(ρ(g))} ≥ 0.

So let g ∈ P (k). Then

min{⟨λ, χ⟩ |χ ∈ supp(ρ(g))} ≥ 0

and

min{⟨µ, χ⟩ |χ ∈ supp(ρ(g))} ≥ 0,

so

min{⟨λ+ µ, χ⟩ |χ ∈ supp(ρ(g))} ≥ 0.

Hence g ∈ Pλ+µ(k). As P and Pλ+µ are smooth, this shows that Pλ+µ ⊇ P .
To complete the proof, it is enough to show that Lie(Pλ+µ) = Lie(P ). Let Φ be the set

of roots of G with respect to T . By [14, Prop. 2.1.8], if ν ∈ YT then Lie(Pν) = gν,≥0. Since
Lie(Pλ) = Lie(Pµ), we deduce that Φλ,≥0 = Φµ,≥0, so we have Φλ+µ,≥0 = Φλ,≥0 = Φµ,≥0 and
gλ+µ,≥0 = gλ,≥0 = gµ,≥0. The result follows. □

Lemma 2.10. Let P be an R-parabolic subgroup of G and let T be a maximal torus of P .
Then there exists λ ∈ YT such that Pλ = P .

Proof. Choose a finite Galois extension k′/k such that T is k′-split and set Γ = Gal(k′/k).
By Lemma 2.4(i) there exists λ′ ∈ YTk′

such that Pλ′ = Pk′ . Now γ · λ′ belongs to YTk′
for

each γ ∈ Γ and
∑

γ∈Γ γ · λ
′ is Γ-stable, so it descends to an element λ of YT . It is easily seen

that Pγ·λ′ = γ(Pλ′) = γ(P ) = P for all γ ∈ Γ. It follows from Lemma 2.9 that Pλ = P , so
we are done. □

8



Lemma 2.11. Let P and Q be R-parabolic subgroups of G. Suppose P ∩ Q contains a
maximal split torus T of G. Then P ∩Q is smooth.

Proof. We can write P = Pλ and Q = Pµ for some λ, µ ∈ YT , by Lemma 2.4(i). Since µ
evaluates in P , it follows that P ∩Q = Pλ∩Pµ = Pµ(Pλ). Since Pλ is smooth and connected,
this means that the intersection is an R-parabolic subgroup of Pλ, and hence is also smooth
and connected. (A direct proof using the Lie algebras is also possible, like the one in [14,
Prop. 2.1.8].) □

Lemma 2.12. Let P and Q be R-parabolic subgroups of G. The following are equivalent.

(i) P ∩Q contains a maximal split torus of G.
(ii) P ∩Q contains a maximal torus of G.
(iii) Pk ∩Qk contains a maximal torus of Gk.

Proof. Clearly (ii) implies (iii). If Pk ∩ Qk contains a maximal torus of Gk then Pk ∩ Qk is
smooth by Lemma 2.11, so P ∩Q is smooth; then P ∩Q contains a maximal torus and this
is a maximal torus of G. This shows that (iii) implies (ii). Now suppose S is a maximal split
torus of G contained in P ∩Q. We can choose λ, µ ∈ YS such that P = Pλ and Q = Pµ. Let T
be a maximal torus of G that contains Im(λ) and Im(µ); then T ⊆ Lλ∩Lµ ⊆ Pλ∩Pµ = P∩Q.
Conversely, suppose T is a maximal torus of G contained in P ∩ Q. By Lemma 2.10, there
exist λ, µ ∈ YT such that Pλ = P and Pµ = Q. Then Im(λ)Im(µ) is a split torus, so it is
contained in a maximal split torus S of G. We have S ⊆ Lλ ∩ Lµ ⊆ Pλ ∩ Pµ = P ∩Q. This
shows that (i) and (ii) are equivalent. □

Lemma 2.13. Suppose P and Q are two R-parabolic subgroups of a k-group G. Identify YP
and YQ as subsets of YG in the usual way. Then P ⊆ Q if and only if YP ⊆ YQ.

Proof. That YP ⊆ YQ when P ⊆ Q is obvious. For the other implication, first observe that
for any λ ∈ YG such that Q = Pλ, and any 1 ̸= u ∈ U−λ(k), u · λ does not evaluate in Q. To
see this, note that since the image of λ normalises U−λ, for every a ∈ ks we can write

uλ(a)u−1 = λ(a)(λ(a)−1uλ(a))u−1 = λ(a)ua

for some ua ∈ U−λ(ks). Since 1 ̸= u ∈ U−λ, u does not centralise Im(λ), and hence there
exists a ∈ ks such that ua ̸= 1, which means that λ(a)ua ̸∈ Pλ, and we’re done.

Now if we assume that YP ⊆ YQ, then we can find a maximal split torus T in the in-
tersection P ∩ Q: for any split torus of P is generated by the images of its cocharacters,
and these also lie in YQ. Choose cocharacters λ, µ ∈ YT such that P = Pλ and Q = Pµ.
Suppose P is not contained in Q. Now U−µ(P ) is a non-trivial unipotent subgroup of P by
Lemma 2.1. Since the image of µ acts non-trivially on this subgroup, it cannot be wound, by
[14, Prop. B4.4]. In particular, U−µ(P ) has a non-identity k-point u. Now µ is a cocharacter
of Q evaluating in P , so it is a cocharacter of P , so u · µ ∈ YP . The first paragraph of the
proof shows that u · µ ̸∈ YQ, which gives a contradiction. □

2.2. Spherical buildings. As general references on buildings we refer to [1] and [34]. We
regard a spherical building — as opposed to its geometric realisation — as a combinatorial
object. It is a simplicial complex with a distinguished set of subcomplexes called apartments.
If G is reductive then we can form the spherical building ∆G as follows: the simplices of
∆G are the parabolic subgroups ordered by reverse inclusion, and an apartment of ∆G is the
subcomplex consisting of all parabolic subgroups containing a fixed maximal split torus T of
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G. Two simplices are opposite if the corresponding parabolic subgroups are opposite. There
is a notion of convexity for subcomplexes [32, Prop. 3.1]. An automorphism of a spherical
building ∆ is an automorphism of simplicial complexes that maps apartments bijectively
to apartments. We write Aut(∆) for the group of automorphisms of ∆. For instance, any
algebraic group automorphism of G — e.g., an inner automorphism — gives rise to an
automorphism of ∆G. There are also automorphisms of ∆G arising from automorphisms of
the ground field k. Both these kinds of automorphism have counterparts for vector edifices:
see Section 4.2 and Section 5.2.

3. Edifices

In order to define vector edifices, we need to understand how to glue together the K-vector
spaces YT (K) for the maximal split tori of a k-group G in a suitable way, where K = R or
Q. This first requires us to attach an R-parabolic subgroup to an arbitrary element of
YT (K) (above, we have defined Pλ just for λ ∈ YT ). This work is achieved in the next few
subsections.

First we clarify some notation. When we write, say, λ ∈ YT (K) then it is understood that
we are working with a fixed choice of T . If µ is an actual cocharacter — that is, if µ ∈ YG
— then there can exist many different maximal split tori T such that µ ∈ YT , so there is
potential for misunderstanding. This does not cause problems, however, for we show below
that our constructions when applied to such a µ don’t depend on the choice of T : see the
paragraph following Definition 3.7.

3.1. Linear maps induced by homomorphisms of tori. Suppose f : T → T ′ is a ho-
momorphism of split k-tori. Then we get an induced map YT → YT ′ via λ 7→ f ◦ λ, and
this extends to a K-linear map f∗ : YT (K) → YT ′(K). This map is injective if f has finite
kernel. In particular, if T ⊆ G for some k-group G and g ∈ G(k) then the conjugation
map Inng induces a linear isomorphism from YT (K) to YgTg−1(K); we denote the image of
λ ∈ YT (K) by g ·λ. If in fact λ ∈ YT , then g ·λ ∈ YgTg−1 as just defined agrees with the usual
definition of g · λ given in Section 2. We also have functoriality: if f ′ : T ′ → T ′′ is another
homomorphism of split k-tori then (f ′ ◦ f)∗ = (f ′)∗ ◦ f∗. In particular, if f : G → H is a
homomorphism of k-groups then, given split k-tori T ⊆ G and S ⊆ H such that f(T ) ⊆ S,
we have a map h∗ : YT (K) → YS(K), where h : T → S is the restriction of f . Often we abuse
notation slightly and write f∗ : YT (K) → YS(K) for this map.

We return to the subject of linear maps induced by group homomorphisms in Section 4.2
below.

3.2. More on R-parabolic subgroups. Now we can define Pλ, Lλ and Uλ for λ ∈ YT (K),
where T ⊆ G is a split torus. We may as well assume that T is a maximal split torus of
G and λ ∈ YT (K). Then we may choose a G-equivariant embedding ρ of G into a rational
G-module V . Using the notation from Remark 2.7, we define a subspace W of YT (K) by

W = {µ ∈ YT (K) | ⟨µ, χ⟩ = 0 for all χ ∈ Φλ,0}.

Clearly λ ∈ W , by the definition of Φλ,0. Since Φλ,0 ⊆ XT , W is defined by equations with
coefficients in Z and hence is defined over Q. Therefore, we get that dimQ(W ∩ YT (Q)) =
dimKW , which implies that W ∩ YT (Q) is dense in W . Thus there exists a sequence (λn) in
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W ∩ YT (Q) converging to λ. For all n ∈ N and for λ′ := λn, it follows from the definition of
W that

(3.1) sgn(⟨λ′, χ⟩) = sgn(⟨λ, χ⟩)

holds for all χ ∈ Φλ,0, and for n large enough (3.1) even holds for all χ ∈ Φλ,±, because
the linear functional ⟨−, χ⟩ is continuous. An element λ′ ∈ YT (Q) satisfying (3.1) is called
a rational cocharacter approximation to λ (with respect to V ) (in YT (K)). Multiplying a
rational cocharacter approximation by a suitable positive integer, we may obtain an element
λ′ ∈ YT satisfying (3.1), which we call a cocharacter approximation to λ (with respect to
V ). If λ′ ∈ YT (Q) then we set Pλ′ = Pnλ′ , Lλ′ = Lnλ′ and Uλ′ = Unλ′ for any n ∈ N such
that nλ′ ∈ YG: clearly this is well-defined. We call a sequence (λn) of rational cocharacter
approximations to λ such that λn → λ a rational approximating sequence to λ (with respect
to V ) (in YT (K)).

Definition 3.2. Given λ ∈ YT (K) and a rational cocharacter approximation λ′ to λ, we
define Pλ = Pλ′ , Lλ = Lλ′ , and Uλ = Uλ′ .

Lemma 3.3. With the notation as above, we have the following.

(i) The subgroups Pλ, Lλ and Uλ do not depend on the choice of λ′ or the choice of ρ.
(ii) For any g ∈ G(k), if λ′ ∈ YT is a cocharacter approximation to λ then g · λ′ ∈ YgTg−1

is a cocharacter approximation to g · λ. Consequently, for any g ∈ G(k), we have
Pg·λ = gPλg

−1, Lg·λ = gLλg
−1 and Ug·λ = gUλg

−1.

Proof. (i). We have Pλ′ = ρ−1(Vλ′,≥0), Lλ′ = ρ−1(Vλ′,0) and Uλ′ = ρ−1(Vλ′,>0) (Remark 2.7),
so for a given ρ the fact that these subgroups do not depend on the choice of λ′ is clear.
Now let ρi : G → Vi be G-equivariant embeddings with Φi the sets of weights of T on Vi
for i = 1, 2. Let ρ : G → V1 ⊕ V2 be the diagonal embedding, and let Φ = Φ1 ∪ Φ2 be the
associated set of weights. Choose λ′ ∈ YT such that λ′ is a cocharacter approximation to λ
with respect to V1 ⊕ V2. Then sgn(⟨λ′, χ⟩) = sgn(⟨λ, χ⟩) for all χ ∈ Φ1 and for all χ ∈ Φ2,
so λ′ is a cocharacter approximation to λ with respect to V1 and with respect to V2. This
proves part (i).

(ii). The first statement follows from the fact that the pairing ⟨−,−⟩ is G(k)-invariant,
and the fact that the set of weights of gTg−1 on V is g · Φ, where Φ is the set of weights of
T . The second statement now follows. □

Remarks 3.4. (i). Let S be any split torus of G, let λ ∈ YS(K), and let T be any maximal
split torus of G containing S. We claim that there exists a cocharacter approximation λ′ to
λ contained in YS ⊆ YT . To see this, note that in the construction above, the S-weights on V
are given by the restrictions of the T -weights on V to S, because S ⊆ T . We may therefore
perform the construction of λ′ above entirely within YS(K) just using these restrictions, and
we obtain a cocharacter approximation λ′ ∈ YS satisfying (3.1). Analogous conclusions hold
for rational cocharacter approximations and rational approximating sequences in YS(K).
(ii). Now suppose T1 and T2 are two maximal split tori of G that contain S and let i1, i2 be

the inclusions of S in T1, T2 respectively. Let λ
′ be the cocharacter approximation contained

in YS ⊆ YT1 ∩ YT2 from part (i). It is immediate from the construction that L(ij)∗(λ) = Lij◦λ′

and P(ij)∗(λ) = Pij◦λ′ for j = 1, 2, so L(i1)∗(λ) = L(i2)∗(λ) = Lλ and P(i1)∗(λ) = P(i2)∗(λ) = Pλ. In
particular, both T1 and T2 are contained in Lλ, and there is no dependence of our construction
on the choice of a maximal split torus containing S.
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(iii). Let T be a maximal split torus of G. It is clear from the construction that if
λ ∈ YT (K) then T ⊆ Lλ ⊆ Pλ. It is also clear that Pλ = ρ−1(Vλ,≥0), Lλ = ρ−1(Vλ,0) and
Uλ = ρ−1(Vλ,>0) for any λ ∈ YT (K).

The next result is an extension to all of YT (K) of the obvious fact that for a cocharacter
λ ∈ YT we have Lλ = G if and only if λ evaluates in the centre of G.

Lemma 3.5. Let T be a maximal split torus of G and let λ ∈ YT (K). Let Zλ be the unique
maximal split torus of Z(Lλ)

0 and let Z be the unique maximal split torus of Z(G)0. Then:

(i) λ ∈ YZλ
(K).

(ii) Lλ = G if and only if λ ∈ YZ(K).

Proof. (i). Let (λn) be a rational approximating sequence to λ in YT (K). Choose an ∈ N
such that anλn ∈ YT for each n ∈ N. Then for all n ∈ N, Lλn = Lanλn = CG(anλn), so
anλn ∈ YZλn

, and so λn ∈ YZλn
(K). But Lλn = Lλ for n sufficiently large, and YZλ

(K) is
closed in YT (K), so λ ∈ YZλ

(K), as required.
(ii). The forward implication follows from part (i). The reverse implication follows from

Remark 3.4(i) applied to the split torus Z — we may find a cocharacter approximation
λ′ ∈ YZ and then we have Lλ = Lλ′ = G. □

3.3. The vector edifice. Now we can define YG(K) and VG(K). We work with the disjoint
union

⊔
T YT (K), where T ranges over the maximal split tori of G. It is convenient to write

elements of
⊔

T YT (K) explicitly as pairs (T, λ), where T is a maximal split torus of G and
λ ∈ YT (K). The group G(k) acts on

⊔
T YT (K) by g · (T, λ) = (gTg−1, g · λ).

We define two relations on
⊔

T YT (K) by

(T1, λ1) ∼ (T2, λ2) if there exists l ∈ Lλ1(k) such that T2 = lT1l
−1 and λ2 = l · λ1

and

(T1, λ1) ≈ (T2, λ2) if there exists g ∈ Pλ1(k) such that T2 = gT1g
−1 and λ2 = g · λ1.

Lemma 3.6. With the notation as above, we have the following.

(i) If (T1, λ1) ∼ (T2, λ2) then Lλ1 = Lλ2.
(ii) If (T1, λ1) ≈ (T2, λ2) then Pλ1 = Pλ2.
(iii) The relations ∼ and ≈ are equivalence relations.

Proof. Parts (i) and (ii) are a consequence of Lemma 3.3(ii), and (iii) follows from (i) and
(ii). □

Definition 3.7. We define

YG(K) :=
⊔

T

YT (K)/ ∼

and

VG(K) :=
⊔

T

YT (K)/ ≈,

and we call VG(K) the vector edifice of G (over K). When we refer to “a vector edifice V ”
below, it is with the understanding that V = VG(K) for some k-group G and for K = Q
or R.
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We can regard VG(K) as a quotient of YG(K), since ≈ is coarser than ∼, and we denote
the corresponding projection by

ϕG : YG(K) → VG(K).

We write ϖG :
⊔

T YT (K) → YG(K) for the canonical projection and we define

ωG := ϕG ◦ϖG :
⊔

T

YT (K) → VG(K).

Henceforth, we often abuse notation and denote elements of YG(K) simply by λ. Note that
we may regard YG as a subset of YG(K): for given λ ∈ YG, the equivalence relation ∼ does
the job of identifying all pairs (T, λ) where T is a maximal split torus of G containing the
image of λ, because all such tori are conjugate by elements of Lλ(k). More generally, if S is
a subtorus of two maximal split tori T1 and T2, then ∼ formally matches up the “common
subspace” YS(K) inside YT1(K) and YT2(K).

Remark 3.8. We observe that Lemma 2.2 holds not only for elements of YG but also for
elements of YG(K): If λ ∈ YG(K) and µ ∈ YPλ

(K) then there exist a maximal split torus
T of G and u ∈ Uλ(k) such that λ, u · µ belong to YT (K). To see this, repeat the proof of
Lemma 2.2 with YT0 , YT1 , and YT replaced by YT0(K), YT1(K), and YT (K).

Remark 3.9. Lemmas 2.3, 2.4 and 2.5 and Corollary 2.6 extend to YG(K): just apply each
original result to suitable cocharacter approximations.

Remarks 3.10. (i). One checks easily that the action of G(k) on
⊔

T YT (K) descends to give
actions of G(k) on YG(K) and VG(K). We sketch the argument for VG(K). Suppose we have
a pair (T, λ) consisting of a maximal split torus T and λ ∈ YT (K), and elements p ∈ Pλ(k)
and g ∈ G(k). We wish to show that

(gTg−1, g · λ) ≈ (g(pTp−1)g−1, g · (p · λ)) = (gpT (gp)−1, (gp) · λ).

Since both gTg−1 and gpT (gp)−1 are split tori of gPλg
−1 = Pg·λ, there is a p′ ∈ Pg·λ(k) such

that p′ conjugates gTg−1 to gpT (gp)−1. Writing p′ = gqg−1 for some q ∈ Pλ(k), we see
that q−1p belongs to NPλ(k)(T ), and this group coincides with NLλ(k)(T ), by the extension of
Lemma 2.3 to YG(K) (Remark 3.9). Consequently, q−1p fixes λ, so

p′ · (g · λ) = (gq) · λ = (gp) · λ,

and we are done.
(ii). In a similar vein, if (T, λ) ≈ (T, µ) then λ = µ. For suppose g ∈ Pλ(k) is such that

gTg−1 = T and g · λ = µ. Then, by appealing to the extension of Lemma 2.3 to YG(K) as in
(i), we see that g ∈ Lλ(k), and hence λ = µ.

Definition 3.11. Given x ∈ VG(K), we set Px := Pλ for any λ ∈ YG(K) such that ϕG(λ) =
x. Since the relation ≈ only identifies pairs (T1, λ1) and (T2, λ2) for which Pλ1 = Pλ2

(Lemma 3.6(ii)), this is well-defined.

Remark 3.12. For now we regard VG(K) just as a set. In Section 6 we topologise it by
endowing it with a metric.

Example 3.13. The definition of Pλ, Lλ and Uλ for λ ∈ YG(K) agree with those of [7, Sec.
2.2] when G is reductive (where the definitions are given in terms of pairings with roots). To
see this, we can assume by Remark 3.4(iii) that k is separably closed and choose a maximal
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torus T of G. Choose an equivariant embedding i of G in a rational G-module V . Let
λ ∈ YT (K) and let λ′ ∈ YT be a cocharacter approximation to λ. The derivative of i gives a
G-equivariant embedding of g in T0(V ), and T0(V ) is isomorphic to V as a G-module. Hence
all the roots of G with respect to T appear in the set of weights of T on V . It follows that
sgn⟨λ′, α⟩ = sgn⟨λ, α⟩ for every root α. Now Pλ is equal to Pλ′ , which is generated by T
together with the root groups Uα for the roots α such that ⟨λ′, α⟩ ≥ 0. This shows that Pλ

coincides with the subgroup defined in [7, Sec. 2.2], since ⟨λ, α⟩ ≥ 0 if and only if ⟨λ′, α⟩ ≥ 0
for each root α. The argument for Lλ and Uλ is similar: here Lλ′ is generated by T together
with the root groups Uα for the roots α such that ⟨λ′, α⟩ = 0, and Uλ′ is generated by T
together with the root groups Uα for the roots α such that ⟨λ′, α⟩ > 0.

Lemma 3.14. Let f : G → H be a homomorphism of connected k-groups. Let T be a
maximal split torus of G and let S be a maximal split torus of H such that f(T ) ⊆ S.
Let λ ∈ YT (K). Then there exist a G-equivariant embedding ν : G → V , an H-equivariant
embedding ψ : H → W , and λ′ ∈ YT such that λ′ is a cocharacter approximation to λ with
respect to V and f∗(λ

′) is a cocharacter approximation to f∗(λ) with respect to W .

Proof. Pick a G-equivariant embedding ϕ : G → V1 for some rational G-module V1, and
an H-equivariant embedding ψ : H → W for a rational H-module W . Define ν : G →
V := V1 ⊕ W by ν(g) = (ϕ(g), ψ(f(g))) for g ∈ G(A) for any k-algebra A. Then ν is
a G-equivariant embedding of G in V , and it follows from the construction that if λ′ is a
cocharacter approximation to λ with respect to V then f∗(λ

′) is a cocharacter approximation
to f∗(λ) with respect to W . Here we used the fact that ⟨λ, χ◦f⟩ = ⟨f ◦λ, χ⟩, where χ is any
weight of S on W and λ ∈ YT , and that this formula extends to all λ ∈ YT (K) (replacing
f ◦ λ with f∗(λ)). □

Remark 3.15. The proof of Lemma 3.14 actually gives a stronger conclusion: in the nota-
tion of the lemma there exist equivariant embeddings such that for any λ ∈ YT (K) and any
cocharacter approximation λ′ to λ with respect to V , f∗(λ

′) is also a cocharacter approxima-
tion to f∗(λ) with respect to W . It follows that if (λn) is a rational approximating sequence
in YT (K) to λ then (f(λn)) is a rational approximating sequence in YS(K) to f∗(λ).

Corollary 3.16. Suppose G is a subgroup of a connected k-group H. Then for any λ ∈
YG(K) we have Pλ = Pλ(H) ∩G, Lλ = Lλ(H) ∩G and Uλ = Uλ(H) ∩G.

Proof. Let i : G → H be the inclusion. By Lemma 3.14, there exists λ′ ∈ YG such that
we have the following equalities: Pλ = Pλ′ ; Lλ = Lλ′ ; Uλ = Uλ′ ; Pi∗(λ)(H) = Pi∗(λ′)(H);
Li∗(λ)(H) = Li∗(λ′)(H); and Ui∗(λ)(H) = Ui∗(λ′)(H). But Pi∗(λ′)(H) = Pλ′(H), because i∗(λ′)
is just λ′ viewed as an element of YH via the inclusion YG ⊆ YH , and similarly Li∗(λ′)(H) =
Lλ′(H) and Ui∗(λ′)(H) = Uλ′(H). The result follows since Pλ′ = Pλ′(H)∩G, Lλ′ = Lλ′(H)∩G
and Uλ′ = Uλ′(H) ∩G. □

Lemma 3.17. Let f : G → H be a homomorphism of k-groups, let T be a maximal split
torus of G and let λ, µ ∈ YT (K). Let S be a maximal split torus of H such that f(T ) ⊆ S.

(i) We have f(Pλ) ⊆ Pf∗(λ) and f(Lλ) ⊆ Lf∗(λ), with equality if f is surjective.
(ii) If f has finite kernel, then Pf∗(λ) = Pf∗(µ) implies Pλ = Pµ, and similarly Lf∗(λ) =

Lf∗(µ) implies Lλ = Lµ. Hence, if f is surjective and has finite kernel, then for
λ, µ ∈ YT (K) we have Pλ = Pµ if and only if Pf∗(λ) = Pf∗(µ), and Lλ = Lµ if and only
if Lf∗(λ) = Lf∗(µ).
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Proof. (i). For any λ′ ∈ YT , it is immediate from the definitions that f(Pλ′) ⊆ Pf∗(λ′)

and f(Lλ′) ⊆ Lf∗(λ′), and we have equality by [14, Cor. 2.1.9] if f is surjective (note that
the hypotheses of loc. cit. hold because a surjective map of smooth affine group schemes
is faithfully flat by [22, Prop. 1.70]). By Lemma 3.14 there exists λ′ ∈ YT such that λ′ is
a cocharacter approximation to λ and f∗(λ

′) is a cocharacter approximation to f∗(λ). So
f(Pλ) = f(Pλ′) ⊆ Pf∗(λ′) = Pf∗(λ), with equality if f is surjective, and similarly for Lλ.
(ii). As in part (i), it is enough by Lemma 3.14 to prove the result when λ ∈ YG. Let

P = Pf∗(λ). Since f has finite kernel, the preimage f−1(P ) is a finite extension of the smooth
connected group Pλ. Hence, we may conclude that ((fk̄)

−1(Pk̄))red and (Pλ)k̄ have the same
identity component, which is (Pλ)k̄ itself. Setting Q = Pf∗(µ), we deduce that

P = Q =⇒ f−1(P ) = f−1(Q) =⇒ ((fk̄)
−1(Pk̄))red = ((fk̄)

−1(Qk̄))red

=⇒ (Pλ)k̄ = (Pµ)k̄ =⇒ Pλ = Pµ.

A similar argument works for Lλ and Lµ. The final assertion now follows from part (i). □

3.4. Apartments. It follows from Remark 3.10 that the restriction of ϕG gives rise to a
bijection from YT (K) onto its image in VG(K); we denote this image by VT (K) and we call
this an apartment of VG(K). The set VT (K) inherits the structure of a K-vector space from
YT (K). We denote the common zero of all the apartments by 0.

Remark 3.18. Our new notation has introduced a potential inconsistency — given a split
torus T in G, we have two objects labelled VT (K): the apartment of VG(K) corresponding to
T , and the vector edifice of T as a k-group in its own right. It is not hard to see that these
two objects are essentially the same, but we leave a proper discussion of this until we have
introduced linear maps below; see Remark 4.12.

Lemma 3.19. The map T 7→ VT (K) gives a bijection between the set of maximal split tori
in G and the set of apartments in VG(K).

Proof. The given map is surjective by definition, so we just need to show that it is injective.
Suppose T1 and T2 are maximal split tori in G, and suppose that VT1(K) = VT2(K). Then
for all λ ∈ YT1 there exists µ ∈ YT2 such that (T1, λ) ≈ (T2, µ). This means that T2 ⊆ Pλ

for every λ ∈ YT1 , and hence T2 ⊆ Pλ ∩ P−λ = Lλ for every λ ∈ YT1 . Hence T2 commutes
with every cocharacter of T1, which implies that T2 commutes with T1, and we conclude that
T2 = T1, by maximality of T1 and T2. □

3.5. Common apartments, addition, opposites. As detailed in the introduction, the
structures we have just defined are generalisations to arbitrary k-groups of constructions
which already appear in the literature for reductive groups, where they give rise to (vector
and spherical) buildings [16], [24, Ch. 2, Sec. 2], [7, Sec. 2.4]. However, we cannot import
all of the structure/properties we see in the reductive case to the case of arbitrary G. One
fundamental problem is that two points of VG(K) need not lie in a common apartment, as
Example 3.22 below shows.2 Before giving that example, we give a characterisation of when
two points do lie in a common apartment.

2For another example of building-like structures where the same phenomenon occurs, see the theory of
hovels [30], [18].
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Lemma 3.20. Given x, y ∈ VG(K), the apartments containing both x and y are precisely
those of the form VT (K) where T is a maximal split torus of G contained in Px ∩ Py. In
particular, x and y are contained in a common apartment if and only if Px ∩ Py contains a
maximal split torus of G.

Proof. If x and y are contained in VT (K) for some maximal split torus T , then we may
write x = ϕG(λ), y = ϕG(µ) for λ, µ ∈ YT (K). But then T ⊆ Pλ ∩ Pµ = Px ∩ Py by
Remark 3.4(iii). Conversely, let T be a maximal split torus of G contained in Px∩Py. Choose
λ, µ ∈ YG(K) such that x = ϕG(λ) and y = ϕG(µ). By Lemma 2.4(i) and Remark 3.9, there
exist u ∈ Uλ(k) and v ∈ Uµ(k) such that u · λ, v · µ ∈ YT (K). Then x = ϕG(u · λ) ∈ VT (K)
and y = ϕG(v · µ) ∈ VT (K). □

Remark 3.21. In particular, taking x = y in Lemma 3.20 we see that for any x ∈ VG(K), x
belongs to VT (K) if and only if T is contained in Px. This also shows that if T ′ is another
maximal split torus of G such that x ∈ VT ′(K), then there is g ∈ Px(k) such that T ′ = gTg−1.

Example 3.22. Let B be a Borel subgroup of a reductive group G with G not a torus,
and write B = Pλ for some λ ∈ YG. Then ϕB(−λ) and ϕB(−u · λ) do not lie in a common
apartment of VB(K) for any 1 ̸= u ∈ Ru(B)(k), because P−λ(B) = T and P−u·λ(B) =
uTu−1 are distinct maximal tori of B, and VT (K) (resp., VuTu−1(K)) is the unique apartment
containing ϕB(−λ) (resp., ϕB(−u · λ)), by Lemma 3.20.

The preceding discussion motivates the following definition.

Definition 3.23. We say that VG(K) has the common apartment property if every x, y ∈
VG(K) lie in a common apartment of VG(K).

It follows from Lemma 3.20 that the common apartment property holds for G if and only
if the intersection of any two R-parabolic subgroups contains a maximal split torus of G —
this is the case for reductive groups, and more generally for pseudo-reductive groups, where
the R-parabolic subgroups are the same thing as the pseudo-parabolic subgroups, see [14,
Def. 2.2.1, Ex. 2.2.2]. In fact, [14, Prop. 3.5.12(1)] shows that the intersection of two pseudo-
parabolic subgroups in any k-group G contains a maximal split torus, but working with
pseudo-parabolic subgroups rather than R-parabolic subgroups does not give the structure
we need for applications below. Returning to the example of the Borel subgroup B in
Example 3.22, the only pseudo-parabolic subgroup of B is B itself; in contrast, we show
below (Example 4.14) that there is a naturally arising bijection between the vector edifice
VB(K) and the vector edifice VG(K).

An immediate consequence of this lack of common apartment is that there is no obvious
addition law on VG(K) in general, and the notions of convexity and opposition become more
complicated. One can, however, define addition when the two points one considers live in a
common apartment.

Lemma 3.24. (i) Let T be a maximal split torus of G. Suppose x, y ∈ VG(K) are
contained in the common apartment VT (K). Since VT (K) is a vector space, there
is an element x + y ∈ VT (K). The element x + y is independent of the choice of
apartment containing x and y.

(ii) Let x ∈ VG(K) and let a ∈ K+. The element ax is independent of the choice of
apartment containing x.
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Proof. (i). The common apartments containing x and y correspond to the maximal split
tori of G contained in the intersection Px ∩ Py (Lemma 3.20). By hypothesis, there is at
least one such T . Let T ′ be another. By Lemma 2.11, Px ∩ Py is smooth, so there exists
g ∈ Px(k) ∩ Py(k) such that gTg−1 = T ′. Choose λ, µ ∈ YT (K) such that x = ϕG(λ) and
y = ϕG(µ). Then x = ϕG(g · λ) and y = ϕG(g · µ). Fix a G-equivariant embedding of G in a
rational G-module V , and let λ′ and µ′ be cocharacter approximations (with respect to V ) in
YT to λ and µ, respectively. Then λ′ + µ′ ∈ YT is a cocharacter approximation to λ+ µ, and
so Pλ+µ = Pλ′+µ′ . Since Px = Pλ = Pλ′ and Py = Pµ = Pµ′ , we see that lima→0(λ

′ + µ′)(a) · g
exists, so g ∈ Pλ′+µ′(k) = Pλ+µ(k). Hence ϕG(g · λ + g · µ) = ϕG(g · (λ + µ)) = ϕG(λ + µ).
The result follows.

(ii). Let T, T ′ be maximal split tori of G such that x ∈ VT (K) ∩ VT ′(K). There exists
g ∈ Px such that gTg−1 = T ′. Pick λ ∈ YT (K) such that x = ϕG(λ). Then ϕG(a(g · λ)) =
ϕG(g · (aλ)) = ϕG(aλ) since Paλ = Pλ. The result follows. □

Definition 3.25. We say that x and y are opposite in VG(K) if there is an apartment
containing x and y and such that x+ y = 0 in that apartment. It follows from Lemma 3.24
that if x and y are opposite, then x+ y = 0 in every apartment containing x and y.

Remark 3.26. Note that part (ii) of Lemma 3.24 is false if a = −1 (or, more generally, if
a < 0): for x has many different opposites, one for each apartment containing x, and each
is of the form −x inside the corresponding apartment. See Remark 3.28.

Here is a criterion for points to be opposite in terms of cocharacters.

Lemma 3.27. Suppose x and y are opposite points of VG(K). Then Px and Py are opposite
R-parabolic subgroups of G, and there is a unique λ ∈ YG(K) such that x = ϕG(λ) and
y = ϕG(−λ).

Proof. First choose an apartment VT (K) such that x, y ∈ VT (K). Then since ϕG restricts to
a linear isomorphism YT (K) → VT (K), we have a unique λ ∈ YT (K) such that x = ϕG(λ)
and y = ϕG(−λ). But then Px = Pλ and Py = P−λ, hence Px and Py are opposite. Any
maximal split torus T ′ of G such that x, y ∈ VT ′(K) must lie in Px∩Py = Lλ by Lemma 3.20.
Since Lλ is smooth, any two such tori are conjugate by an element of Lλ(k). But elements
of Lλ(k) fix λ and −λ, which shows that λ is indeed unique as an element of YG(K). □

Remark 3.28. Note that for a given λ ∈ YG(K), there are in general many opposite points
to ϕG(λ) in VG(K). To see this, note that any of the cocharacters µ = u · (−λ) has this
property, where u ∈ Uλ(k) — the point here is that for such a u, ϕG(u · λ) = ϕG(λ), but
ϕG(u · (−λ)) ̸= ϕG(−λ) in general.

Definition 3.29. Let x, y ∈ VG(K). If there is an apartment in VG(K) containing x and y,
then we let

[x, y] := {ax+ (1− a)y | a ∈ [0, 1] ∈ K}

denote the geodesic between x and y in VG(K) — again, Lemma 3.24 implies that this
geodesic (when it exists at all) is independent of the apartment we choose to draw it in. We
say a subset S ⊆ VG(K) is convex if for all x, y ∈ S such that x and y lie in a common
apartment, [x, y] ⊆ S.

The failure of the common apartment property makes it harder to metrise VG(K). We
return to this in Section 6.
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Definition 3.30. We say that x, y ∈ VG(K) have the same type if y = g ·x for some g ∈ G(k).

Remark 3.31. Suppose x, y ∈ VG(K) have the same type and x and y belong to a common
apartment VT (K). Choose λ, µ ∈ YT (K) such that x = ϕG(λ) and y = ϕG(µ). Since x and
y have the same type, there exists g ∈ G(k) such that µ = g · λ. Then µ ∈ YT ′(K), where
T ′ := gTg−1. So T, T ′ are maximal split tori of Lµ, so they are Lµ(k)-conjugate. Now Lµ(k)
fixes µ, so after multiplying g on the left by an element of Lµ(k), we can assume that g
normalises T . This shows that x and y are Wk-conjugate, where Wk is the relative Weyl
group. We conclude that for a fixed maximal split torus T of G and fixed x ∈ VT (K), the
set {z ∈ VT (K) | x and z have the same type} is finite.
For example, suppose G = SL2. If x, y ∈ VG(K) are distinct elements having the same

type then x and y are opposite, because each apartment VT (K) is 1-dimensional and the
non-trivial element of the relative Weyl group Wk acts by z 7→ −z.

3.6. The spherical edifice. Recall from Lemma 3.24(ii) that we have a well-defined oper-
ation of scalar multiplication by elements of K+ on the vector edifice VG(K), allowing the
following definition.

Definition 3.32. The spherical edifice ∆G(K) is defined to be the set of K+-orbits on
VG(K) \ {0}. We denote the natural map from VG(K) \ {0} to ∆G(K) by

ζG : VG(K) \ {0} → ∆G(K).

Remark 3.33. The obvious inclusion of VG(Q) in VG(R) gives an inclusion of ∆G(Q) in
∆G(R).

Remark 3.34. The notions of apartment, opposite points and convexity make sense for ∆G(K)
as well. We define an apartment of ∆G(K) to be a subset of the form ζG(VT (K)\{0}) for
some maximal split torus T of G. If y1, y2 ∈ ∆G(K) then we say that y1 and y2 are opposite
if there exists a maximal split torus T of G and a point x ∈ VT (K) such that y1 = ζG(x) and
y2 = ζG(−x). If y1 = ζG(x1) and y2 = ζG(x2) are not opposite then we define the geodesic
[y1, y2] in ∆G(K) to be ζG([x1, x2]); this does not depend on the choice of x1 and x2. We say
a subset Σ of ∆G(K) is convex if for all y1, y2 ∈ Σ such that [y1, y2] exists, [y1, y2] ⊆ Σ.

3.7. The combinatorial edifice.

Definition 3.35. We define the combinatorial edifice ∆G to be the poset formed by the
R-parabolic subgroups of G under reverse inclusion. Given λ ∈ YG(K), P = Pλ and x =
ϕG(λ) ∈ VG(K), we denote the corresponding element of ∆G by σP , σλ or σx, and we write
≤ for the partial order on ∆G: i.e., σQ ≤ σP if and only if P ⊆ Q. We let ∅ denote the
element in this poset corresponding to G itself.

The elements of the combinatorial edifice can be realised geometrically inside VG(K): given
an R-parabolic subgroup P of G, consider the subset

σ̃P = {x ∈ VG(K) | Px = P}.

(We also define σ̃λ := σ̃Pλ
and σ̃x := σ̃Px .) By choosing a maximal split torus T of P , we may

realise σ̃P as a subset of VT (K) (Lemma 2.10), so it makes sense to take linear combinations
of elements in σ̃P .

Lemma 3.36. Let x, y ∈ σ̃P . Then ax+ by ∈ σ̃P for all a, b ∈ K+.
18



Proof. Fix a maximal split torus T of P . We can choose λ, µ ∈ YT (K) such that x = ϕG(λ)
and y = ϕG(µ); then Pλ = Pµ = P . Recall that Pν = ρ−1(Vν,≥0) for any ν ∈ YT (K)
(Remark 3.4(iii)). It follows that Paλ = Pλ and Pbµ = Pµ for any a, b > 0. So it is enough to
show that Pλ+µ = P .

Fix a G-equivariant embedding ρ′ of G in a rational G-module V ′. Let V be the rational
G-module V ′ ⊕ g and let ρ be ρ′ followed by the obvious inclusion of V ′ in V . Since Pν =
ρ−1(Vν,≥0) for any ν ∈ YT (K), the argument of the first part of the proof of Lemma 2.9 shows
that Pλ+µ ⊇ P .
Let ν ∈ YT (K) and let ν ′ ∈ YT be a cocharacter approximation to ν. By our choice of ρ

we have gν,≥0 = gν′,≥0, and we deduce that

Lie(Pν) = Lie(Pν′) = gν′,≥0 = gν,≥0,

where the middle equality is from [14, Prop. 2.1.8]. The argument of the second part of
the proof of Lemma 2.9 shows that Lie(Pλ+µ) = Lie(P ), and we deduce that Pλ+µ = P , as
required. □

It is well known that if G is semisimple then ∆G is a spherical building; in particular, it
is a simplicial complex. The same is true for reductive G because the parabolic subgroups
of G are in bijective correspondence with the parabolic subgroups of [G,G]. The following
example shows that the combinatorial edifice need not be a simplicial complex for arbitrary
G, and the partial order on ∆G need not be realised geometrically by relationships between
closures of the corresponding subsets in VG(K).

Example 3.37. Let k be algebraically closed, and set G = GL2 ⋉V , where V is the natural
two-dimensional module for GL2. Let e1 and e2 be the usual standard basis vectors in V ,
and let V1 and V2 be the corresponding one-dimensional subspaces of V . Let B+ denote the
upper triangular Borel subgroup in GL2 and B

− the lower triangular Borel subgroup. Let T
be the diagonal maximal torus in GL2. Then an element of YT (K) can be identified with a
pair (a, b) ∈ K2, and the corresponding R-parabolic subgroup has the form P ⋉W for some
parabolic subgroup P of GL2 and some subspace W of V as in the following table:

Conditions on (a, b) P ⋉W Conditions on (a, b) P ⋉W
a = b ≥ 0 G 0 > a = b GL2

a > b ≥ 0 B+ ⋉ V 0 > b > a B−

a ≥ 0 > b B+ ⋉ V1 b ≥ 0 > a B− ⋉ V2
0 > a > b B+ b > a ≥ 0 B− ⋉ V

In an (abstract) simplicial complex, we can recognise any element of the complex by the
vertices (minimal non-empty elements) it contains. In this case, the minimal elements in
the poset ∆G correspond to the maximal proper R-parabolic subgroups: thus, here we get
(the conjugates in G of) GL2, B

+ ⋉ V and B− ⋉ V . Consider σ = σB+⋉V1
∈ ∆G. Any

∅ ̸= τ ∈ ∆G with τ ⪇ σ corresponds to an R-parabolic subgroup P of G with P ⊋ B+⋉V1.
Such a P must contain T , so P = B+⋉V is the only option. Thus τ = σB+⋉V and σ contain
the same minimal elements, and ∆G is not a simplicial complex.
We leave it as an exercise for the reader to sketch the regions of the plane R2 that corre-

spond to each R-parabolic subgroup and show that (for example) the region a ≥ 0 > b is not
in the closure of the region a > b ≥ 0, even though we have a containment B+⋉V1 ⊆ B+⋉V .
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4. Linear maps of vector edifices

In this section we define the notion of a linear map between vector edifices, and show
how homomorphisms between k-groups give rise to such maps. For some of the later work
(especially in Section 5) it is important to consider maps between edifices for algebraic groups
defined over possibly different fields, so that is how our definitions are framed in Section 4.1.

4.1. Definition and first properties.

Definition 4.1. Suppose V1 = VG(K) and V2 = VH(K) are two vector edifices, where G
is a k-group and H is a k′-group for two (possibly different) fields k and k′. A function
κ : V1 → V2 is called a linear map of vector edifices if for every apartment A1 of V1, there
exists an apartment A2 of V2 such that κ(A1) ⊆ A2 and κ|A1 : A1 → A2 is a K-linear map.

It is immediate that the composition of linear maps is a linear map.

Remark 4.2. The reader is warned that the inverse of a bijective linear map of vector edifices
is not necessarily itself a linear map. The reason for this is that even if V1 and V2 are in
bijection with each other, it might not be the case that their systems of apartments are in
bijection with each other. See Example 4.14 below.

Definition 4.3. Suppose V1 = VG(K) and V2 = VH(K) are two vector edifices as above. A
linear map κ : V1 → V2 is an isomorphism of vector edifices if it is bijective and the inverse
map is also a linear map of vector edifices. If V1 = V2 then we call κ an automorphism of
vector edifices. We write Aut(V ) for the group of automorphisms of a vector edifice V .

In practice, we often wish to construct linear maps of vector edifices from corresponding
maps on cocharacters. The following result shows that this process can be reversed.

Lemma 4.4. Let G be a k-group and H a k′-group for two fields k and k′. Let κ : VG(K) →
VH(K) be a linear map. Then κ lifts uniquely to a map

κ̂ : YG(K) → YH(K)

with the following property: for any maximal split torus T of G and for any maximal split
torus S of H such that κ(VT (K)) ⊆ VS(K), we have κ̂(YT (K)) ⊆ YS(K), and the following
diagram commutes:

YT (K)

ϕG

��

κ̂
// YS(K)

ϕH

��

VT (K)
κ

// VS(K)

Proof. First off, it follows from Remark 3.10(ii) that κ̂ is unique if it exists.
Let λ ∈ YG(K), and set x = ϕG(λ) and y = ϕG(−λ). Since κ is linear on apartments,

κ(x)+κ(y) = κ(x+y) = κ(0) = 0, so κ(x) and κ(y) are opposite points in (the corresponding
apartment of) VH(K). By Lemma 3.27 we can find a unique µ ∈ YH(K) such that ϕH(µ) =
κ(x), ϕH(−µ) = κ(y). We set κ̂(λ) := µ.

Now let T be a maximal split torus of G such that λ ∈ YT (K) and let S be any maximal
split torus of H such that κ(VT (K)) ⊆ VS(K). Set x = ϕG(λ) and y = ϕG(−λ). Since
κ(x), κ(y) ∈ VS(K) by construction and κ(x) + κ(y) = 0, there exists a unique ν ∈ YS(K)
such that ϕH(ν) = κ(x) and ϕH(−ν) = κ(y). We see that κ̂(λ) = µ = ν ∈ YS(K), so that
κ̂(YT (K)) ⊆ YS(K), and the commutativity of the given diagram follows. □
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Remark 4.5. It is immediate from the construction that κ̂ restricts to a linear map from each

YT (K) to the corresponding YS(K). We have obvious functoriality: îd = id and τ̂ ◦ κ = τ̂ ◦ κ̂.

4.2. Linear maps induced by group homomorphisms. Let f : G→ H be a homomor-
phism of connected k-groups. We show that f gives rise to a linear map κf : VG(K) → VH(K).

Lemma 4.6. Let T be a maximal split torus of G and let S1 and S2 be maximal split tori
of H such that f(T ) ⊆ S1 ∩ S2. Let f1 : T → S1 and f2 : T → S2 be the maps induced by f .
Let λ ∈ YT (K) and set λ1 = (f1)∗(λ), λ2 = (f2)∗(λ). Then (S1, λ1) ∼ (S2, λ2).

Proof. By Remark 3.4(ii), S1 and S2 are maximal split tori of Lλ1 , and hence lS1l
−1 = S2

for some l ∈ Lλ1(k). The conjugation map Innl gives rise to a linear map ω from YS1(K) to
YS2(K), and we have ω ◦ (f1)∗ = (f2)∗ by functoriality (Section 3.1). The result follows. □

For each maximal split torus T of G, choose a maximal split torus ST of H such that
f(T ) ⊆ ST . The maps f∗ : YT (K) → YST

(K) for each T give rise to a map from
⊔

T YT (K) to⊔
S YS(K). Consider the compositions

⊔
T YT (K) →

⊔
S YS(K)

ϖH→ YH(K) and
⊔

T VT (K) →⊔
S VS(K)

ωH→ VH(K). By Lemma 4.6, these maps do not depend on the choices of the
maximal split tori ST for each T .

Proposition 4.7. The maps above descend to give well-defined maps YG(K) → YH(K) and

κf : VG(K) → VH(K).

Moreover, κf is a linear map of vector edifices.

Proof. We give the proof for κf . Suppose (T1, λ1) ≈ (T2, λ2) for (T1, λ1), (T2, λ2) ∈
⊔

T YT (K).
Then T2 = gT1g

−1 and g ·λ1 = λ2 for some g ∈ Pλ1(k). Let fi : Ti → STi
be the map induced

by f . It is enough to prove that (ST1 , (f1)∗(λ1)) ≈ (ST2 , (f2)∗(λ2)). By Lemma 4.6, there is no
harm in taking ST2 to be f(g)ST1f(g)

−1. Observe that this means that f2◦Inng = Innf(g) ◦f1.
It follows from functoriality that

f(g) · (f1)∗(λ1) = (f2)∗(g · λ1) = (f2)∗(λ2).

Since f(g) belongs to P(f1)∗(λ1)(H)(k) by Lemma 3.17(i), we obtain the desired result. It is
also clear that κf is linear — for each maximal split torus T of G, the corresponding map
f∗ : YT (K) → YST

(K) is K-linear.
The proof for the map YG(K) → YH(K) is very similar: it just uses a conjugating element

l ∈ Lλ1(k) instead. □

Remarks 4.8. (i). If λ ∈ YG then κ̂f (λ) = f ◦ λ. It is clear that κidG = idVG(K) and if
f : G → H and l : H → K are homomorphisms of connected k-groups then κl◦f = κl ◦ κf .
In particular, if f ∈ Aut(G) then κf belongs to Aut(VG(K)) and has inverse κf−1 .

(ii). Let f : G → H be a surjective homomorphism of connected k-groups and let x ∈
VG(K). It follows from Lemma 3.17(i) that Pκf (x) = f(Px).

Example 4.9. Let g ∈ G(k). Untangling the definitions, we see that κInng(x) is just g ·
x in the sense of Section 3.3. By Remark 4.8(i), κInng is invertible with inverse κInng−1 .

Remark 4.8(ii) implies that Pg·x = PκInng (x)
= Inng(Px) = gPxg

−1.

Remark 4.10. Let f : G → H be a homomorphism. Then κf is equivariant in the following
sense: if x ∈ VG(K) and g ∈ G(k) then κf (g · x) = f(g) · κf (x). To see this, note that if
λ ∈ YG and g ∈ G(k) then f ◦ (g · λ) = f(g) · (f ◦ λ); the result follows from linearity. This
shows that κf is type-preserving (see Definition 3.30).
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4.3. Homomorphisms which induce injective linear maps. We can now show that
inclusions of k-groups give inclusions of vector edifices. In fact, we can do better.

Proposition 4.11. Let f : G → H be a homomorphism of connected k-groups with finite
kernel. Then the maps YG(K) → YH(K) and κf : VG(K) → VH(K) are injective.

Proof. Again, we give the proof for κf ; the other proof is very similar. Let (T1, λ1), (T2, λ2) ∈⊔
T YT (K) be such that (ST1 , f∗(λ1)) ≈ (ST2 , f∗(λ2)). Let fi : Ti → STi

be the map induced
by f for each i. Then P(f1)∗(λ1)(H) = P(f2)∗(λ2)(H), so P(f1)∗(λ1)(f(G)) = P(f2)∗(λ2)(f(G))
by Corollary 3.16, and hence by Lemma 3.17(i) we have f(Pλ1) = f(Pλ2). It follows from
Lemma 3.17(ii) (applied to the surjective homomorphism G → f(G)) that Pλ1 = Pλ2 .
Thus T1 and T2 are maximal split tori of Pλ1 , which means we can find g ∈ Pλ1(k) such
that gT2g

−1 = T1. Since f(g) ∈ P(f1)∗(λ1)(H)(k) = P(f2)∗(λ2)(H)(k), we have P(f2)∗(g·λ2)(H) =
Pf(g)·(f2)∗(λ2)(H) = f(g)P(f2)∗(λ2)(H)f(g)−1 = P(f2)∗(λ2)(H) by Remark 4.10 and Lemma 3.3(ii).
Hence, replacing λ2 with g ·λ2, we may assume that T1 = T2. Now, since f has finite kernel,
the map (f1)∗ is injective on YT1(K), as observed in Section 3.1. Since we have reduced to
the case that λ1, λ2 ∈ YT1(K) with (f1)∗(λ1) = (f1)∗(λ2), we conclude that λ1 = λ2. □

Remark 4.12. We can now resolve the potential ambiguity noted in Remark 3.18 above. If
T is a maximal split torus of G then the notation VT (K) could mean the corresponding
apartment of VG(K) or it could mean the vector edifice associated to T in its own right.
But we see that if i : T → G is the inclusion then κi gives a linear isomorphism from the
latter object to the former, so the abuse of notation is harmless. Indeed, this observation
works for any subgroup H of G — we may identify the vector edifice VH(K) as a subobject
of the vector edifice VG(K) via the injective linear map κi : VH(K) → VG(K) arising from the
inclusion i : H → G. We often do this without further comment in the rest of the paper.

Remark 4.13. If λ ∈ YG(K) then we may regard λ as an element of YLλ
(K) and x := ϕG(λ)

as an element of VLλ
(K) and VPλ

(K) in the obvious way. Since all maximal split tori in Lλ

are Lλ(k)-conjugate, it follows that if T is a maximal split torus of Lλ then x ∈ VT (K).

Example 4.14. Suppose that G is such that VG(K) has the common apartment property,
and P is an R-parabolic subgroup of G. Then the inclusion i : P → G actually induces a
bijection κi : VP (K) → VG(K). To see this, note that for every maximal split torus T of G
and every λ ∈ YT (K), there is a maximal split torus ST,λ contained in Pλ ∩ P , because of
the common apartment property, and hence (T, λ) ≈ (ST,λ, µ), where µ = g ·λ for g ∈ Pλ(k)
conjugating T to ST,λ. Therefore, if we let x = ϕP (µ) ∈ VP (K) and y = ϕG(λ) ∈ VG(K), we
have κi(x) = y. Thus κi is surjective, and we already know it is injective by Proposition 4.11.
Note that, even though κi is a bijective linear map of vector edifices, it is not an isomorphism
in general: e.g., in the setting of Example 3.22 we have points x1, x2 ∈ VP (K) such that x1
and x2 do not lie in a common apartment of VP (K), but κi(x1) and κi(x2) do lie in a common
apartment of VG(K), because G is reductive in that case (and hence VG(K) has the common
apartment property).

4.4. Homomorphisms which induce surjective linear maps. Next we investigate the
conditions under which a homomorphism f : G → H gives rise to a surjective linear map.
It turns out that the obvious condition (that f is surjective) is not sufficient; this situation
is made more complicated by, for example, the existence over imperfect fields of inseparable
isogenies. This motivates the following definition. See also Remark 4.17(i) below.
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Definition 4.15. Suppose f : G→ H is a homomorphism of connected k-groups. We say f
is apte if every maximal split torus S of H has the form S = f(T ) for a maximal split torus
T of G.

With the key definition in hand, the following result is easy.

Lemma 4.16. Let f : G→ H be an apte homomorphism of connected k-groups. Then κf is
surjective.

Proof. Let S be a maximal split torus of H. The assumption that f is apte means we can
find a maximal split torus T of G with S = f(T ). Let h : T → S be restriction of f . Since
the map of character groups h∗ : XS → XT is injective, the dual map h∗ : YT → YS has finite
cokernel. This implies that f∗ : YT (K) → YS(K) is surjective, and the result follows. □

Remarks 4.17. (i). The lemma does not hold without the assumption that f is apte. For
a concrete example, let G = H = SL2 over an imperfect field k in characteristic 2, and let
f : G→ G be the standard Frobenius map which squares the entries of 2× 2 matrices. That
k is imperfect means that there is some a ∈ k \ k such that a2 ∈ k. Now let

u =

(
1 a
0 1

)
∈ G(k),

and let T be the standard (split) diagonal torus in G. The torus uTku
−1 is not a k-subgroup,

hence in particular is not k-split. However, its image fk(uTku
−1) = f(u)Tkf(u)

−1 descends
to a split k-torus S = f(u)Tf(u)−1, since f(u) ∈ G(k). This shows that f is not apte, and
it is also clear that not every element of VS(K) belongs to κf (VG(K)).
(ii). Following [11, 22.11], we call a surjective homomorphism f : G→ H a central isogeny

if it has finite kernel which is contained in the scheme-theoretic centre of G — that is, for
every k-algebra A and every A-algebra A′, the kernel of f(A) : G(A) → H(A) centralises
G(A′).3 If (a) f is surjective and k is perfect or (b) f is a central isogeny, then f is apte:
this follows from [11, 22.6 Thm.(ii)]. Neither of these hypotheses holds for the example in
(i).

(iii). Let f be a surjective homomorphism. Suppose f is smooth (this is equivalent to
requiring ker f to be smooth, by [22, Prop. 1.63]). Then f is apte. To see this, let S be
a maximal split torus of H and let S1 be a maximal torus of H containing S. Then the
subgroup scheme f−1(S1) of G is smooth. Let T1 be a maximal torus of f−1(S1) and let T be
the unique maximal split torus of T1. By [14, A.2.8], f(T1) = S1, so (the restriction of) f is
a surjective map of k-tori. It follows from [11, 8.15 Prop.(3)] and surjectivity that f(T ) = S.
(iv). Example 4.14 shows that κf can be surjective even when f is not apte.

We can now prove the key result of this subsection:

Proposition 4.18. Suppose f : G → H is an apte homomorphism with finite kernel. Then
κf is an isomorphism of vector edifices.

Proof. It follows from Proposition 4.11 and Lemma 4.16 that κf is a bijective linear map.
Since f is apte, for each maximal split torus S of H there is a maximal split torus T of G
such that f(T ) = S, and since f has finite kernel, this T is unique. Therefore, κf pairs up the
apartments of VG(K) and VH(K), and hence κ−1

f is also a linear map of vector edifices. □

3For G reductive, Borel [11, 22.3] gives another definition of central isogeny, but this is shown to be
equivalent to the scheme-theoretic one just given in [11, 22.15 Prop.].
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We finish with some results related to the common apartment property.

Lemma 4.19. Let N be a connected normal unipotent subgroup of G and let π : G→ G/N be
the canonical projection. Let x1, x2 ∈ VG(K). Then κπ(x1) = κπ(x2) if and only if x2 = n ·x1
for some n ∈ N(k).

Proof. If n ∈ N(k) and y = n · x then κπ(y) = κπ(n · x) = π(n) · κπ(x) = κπ(x) where the
second equality is from Remark 4.10. Conversely, suppose κπ(x1) = κπ(x2); call this common
value y. For each i, let Gi = Pxi

N , let Qi = π(Gi) and let πi : Gi → Qi be the restriction of
π. Then πi is surjective, so Qi = π(Pxi

) = Py(G/N) by Remark 4.8(ii).
Choose a maximal split torus T of G/N such that y ∈ VT (K). Then T is a maximal split

torus of Py(G/N) by Remark 3.21. For each i, since πi is smooth, πi is apte (Remark 4.17(iii)),
so there is a maximal split torus Ti of Gi such that π(Ti) = T . So T1 and T2 are maximal split
tori of H := T1N ∼= T1 ⋉ N . Hence there exists n ∈ N(k) such that T2 = nT1n

−1. Now xi
belongs to VTi

(K) for each i, so n·x1 and x2 belong to VT2(K). We have κπ(n·x1) = κπ(x2) = y
by Remark 4.10. But π induces an isomorphism from T2 onto T since N is unipotent, so κπ
induces an isomorphism from VT2(K) to VT (K). We conclude that x2 = n·x1, as required. □

Lemma 4.20. Let x, y ∈ VG(K). Then there exists u ∈ Ru,k(G)(k) such that u · x and y lie
in a common apartment.

Proof. Let H = G/Ru,k(G) and let π : G → H be the canonical projection. Since H is
pseudo-reductive, there is a maximal split torus S of H such that κπ(x), κπ(y) ∈ VS(K) (see
the discussion following Definition 3.23). By Remark 4.17(iii), as π is smooth there is a
maximal split torus T of G such that π(T ) = S. The map κπ gives an isomorphism from
VT (K) to VS(K), so there exists x′, y′ ∈ VT (K) such that κπ(x

′) = κπ(x) and κπ(y
′) = κπ(y).

By Lemma 4.19, there exist v, w ∈ Ru,k(G)(k) such that v · x = x′ and w · y = y′. Set
u := w−1v. Then u · x = w−1 · x′ and y = w−1 · y′ lie in the common apartment Vw−1Tw(K),
as required. □

Remark 4.21. Even though the common apartment property may fail to hold, we can show
the following: if x, y ∈ VG(K) then there exists z ∈ VG(K) such that x and z lie in a common
apartment, and y and z lie in a common apartment. For instance, we can take z = 0,
although this is slightly unsatisfactory as 0 does not yield a point in ∆G(K). More generally,
we can take z to be any element of VZ(G)0(K). Here is a construction which does not involve
Z(G)0.

Let U = Ru,k(G). By Lemma 4.20, there exist a maximal split torus T of G and u ∈ U(k)
such that u · x, y ∈ VT (K). We can pick λ ∈ Yu−1Tu(K) such that x = ϕG(λ) and u · x =
ϕG(u·λ). Note that x and ϕG(−λ) lie in the common apartment Vu−1Tu(K), and u·λ and−u·λ
both belong to YT (K). By [33, 13.4.4 Cor.], there exist v ∈ Pλ(U)(k) and w ∈ U−λ(U)(k) such
that u = vw. Let z = v ·ϕG(−λ). Then x and z lie in the common apartment Vvu−1Tuv−1(K)
since v · x = x. Now w · ϕG(−λ) = ϕG(−λ), so z = vw · ϕG(−λ) = u · ϕG(−λ) = ϕG(−u · λ)
belongs to VT (K). Hence z and y lie in a common apartment, as required.

4.5. Isomorphisms of vector edifices induce isomorphisms of combinatorial edi-

fices. Our next aim is to prove that isomorphisms between vector edifices behave nicely with
respect to the structure coming from the poset of R-parabolic subgroups under reverse inclu-
sion. Now that we have shown that for a subgroup M of G we can identify the sets YM(K)
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and VM(K) inside YG(K) and VG(K), we can extend Lemma 2.13, which is the equivalence
(i) ⇐⇒ (ii) in the following.

Lemma 4.22. Let P,Q be R-parabolic subgroups of G. Then the following are equivalent:

(i) P ⊆ Q;
(ii) YP ⊆ YQ;
(iii) YP (K) ⊆ YQ(K).

Proof. (i) ⇐⇒ (ii) follows from Lemma 2.13 and that (iii) =⇒ (ii) is easy to see, basically
by construction of these objects. Suppose (ii) holds. Let T be a maximal split torus of P .
Because of the equivalence of (i) and (ii), we have T ⊆ Q, so YT (K) ⊆ YQ(K). This shows
that (ii) =⇒ (iii). □

Lemma 4.23. Let κ : VG(K) → VH(K) be a linear map, and let κ̂ : YG(K) → YH(K) be the
corresponding lift from Lemma 4.4. Then for any λ ∈ YG(K), we have

κ̂(YLλ
(K)) ⊆ YLκ̂(λ)

(K) and κ̂(YPλ
(K)) ⊆ YPκ̂(λ)

(K).

Hence also κ(VLλ
(K)) ⊆ VLκ̂(λ)

(K) and κ(VPλ
(K)) ⊆ VPκ̂(λ)

(K). Thus, if we set x = ϕG(λ),

we have κ(VPx(K)) ⊆ VPκ(x)
(K).

Proof. Choose any z ∈ VLλ
(K): say, z = ϕLλ

(σ) for some σ ∈ YLλ
(K). Choose any maximal

split torus T of Lλ such that σ ∈ YT (K). Then λ ∈ YT (K), by Remark 4.13, and T is a
maximal split torus ofG. Let S be any maximal split torus ofH such that κ(VT (K)) ⊆ VS(K).
Then κ̂(λ) and κ̂(σ) belong to YS(K). Thus S ⊆ Lκ̂(λ) and so YS(K) ⊆ YLκ̂(λ)

(K). This shows

that κ̂(YLλ
(K)) ⊆ YLκ̂(λ)

(K), by Lemma 4.22.

For the second statement, let w ∈ VPλ
(K): say, w = ϕPλ

(τ) for some τ ∈ YPλ
(K). Set

x = ϕG(λ). Choose a maximal split torus T of Pλ such that τ ∈ YT (K). By Lemma 2.4(i)
and Remark 3.9, there exists u ∈ Uλ(k) such that uTu−1 ⊆ Lλ. Then λ ∈ YuTu−1(K), again
by Remark 4.13, so u−1 · λ ∈ YT (K), so T ⊆ Lu−1·λ by Remark 3.4(iii), so τ ∈ YLu−1

·λ
(K).

By the previous paragraph, we can conclude that κ̂(τ) ∈ YLκ̂(u−1
·λ)
(K) ⊆ YPκ̂(u−1

·λ)
(K). But

Pκ̂(u−1·λ) = Pκ(u−1·x) = Pκ(x) = Pκ̂(λ) by construction, so κ̂(τ) ∈ YPκ̂(λ)
(K), as required.

Now the corresponding statements on the level of vector edifices follow immediately. □

Lemma 4.24. Let G and H be connected k-groups and let κ : VG(K) → VH(K) be an iso-
morphism of vector edifices. Then κ induces a poset isomorphism σx 7→ σκ(x) between the
corresponding combinatorial edifices.

Proof. Let τ ∈ YG(K). Then κ̂(YPτ (K)) ⊆ YPκ̂(τ)
(K) by Lemma 4.23. On the other hand,

κ̂−1(YPκ̂(τ)
(K)) ⊆ YPκ̂−1(κ̂(τ))

(K) = YPτ (K) using Lemma 4.23 again, so we deduce that

(4.25) κ̂(YPτ (K)) = YPκ̂(τ)
(K)

for all τ ∈ YG(K).
Now let λ, µ ∈ YG(K) such that Pλ ⊆ Pµ. Then YPλ

(K) ⊆ YPµ(K) by Lemma 4.22, so
YPκ̂(λ)

(K) = κ̂(YPλ
(K)) ⊆ κ̂(YPµ(K)) = YPκ̂(µ)

(K) using (4.25). We deduce from Lemma 4.22
that

(4.26) Pκ̂(λ) ⊆ Pκ̂(µ).
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In particular, if Pλ = Pµ then Pκ̂(λ) = Pκ̂(µ), so the map σx 7→ σκ(x) is well-defined. Clearly,
this map is invertible (with inverse σw 7→ σκ−1(w)), and (4.26) implies that it is a poset
isomorphism. □

Remark 4.27. If κ : VG(K) → VH(K) is an arbitrary linear map of vector edifices then the
prescription σx 7→ σκ(x) need not give a well-defined map, even when G and H are reductive.
For instance, if f is the inclusion of a torus G in a non-commutative reductive group H then
Px(G) = G for every x ∈ VG(K) but there is more than one possible value for Pκf (x)(H). So
there are linear maps of vector buildings/vector edifices that do not correspond to any maps
at the combinatorial level. We will exploit the extra flexibility yielded by this geometric
approach in our forthcoming work [9].

Even if κ is bijective, the conclusion of Lemma 4.24 can fail. Let B be a Borel subgroup in a
non-commutative split reductive groupG and let f : B → G be inclusion. Then Example 4.14
shows that κf : VB(K) → VG(K) is a bijection. We can choose x = 0 ∈ VB(K), y ∈ VB(K)
such that G = Pκf (x)(G) ̸= Pκf (y)(G) = B; but Px(B) = Py(B) = B.

4.6. Projection maps. We can now, as promised in the introduction, relate our construc-
tions to the standard notion of projection for a spherical building. First, recall that given a
simplicial spherical building ∆ and any pair σ, τ of simplices in ∆ there is a uniquely defined
simplex στ which is the projection of τ onto σ, [34, 2.30, 3.19], [1, Def. 3.109]. If ∆ = ∆G is
the combinatorial edifice for a reductive k-group G (which is a simplicial spherical building),
then this projection has a natural realisation in terms of the corresponding parabolic sub-
groups of G: if σ = σP and τ = σQ, then στ is the simplex corresponding to (P ∩Q)Ru(P ),
which is also a parabolic subgroup of G [12, Prop. 4.4] and is contained in P . Further, if
we choose a maximal split torus T of G contained in P ∩ Q and write P = Pλ, Q = Pµ for
λ, µ ∈ YT , then (P ∩Q)Ru(P ) = Pnλ+µ for sufficiently large n ∈ N [4, Cor. 6.9].
Now let L = Lλ be the Levi subgroup of P corresponding to the choice of λ above. Then L

is a reductive group and the simplicial building ∆L of L can be realised inside ∆G. Again, this
can be seen in terms of parabolic subgroups: for each parabolic subgroup Q of G contained
in P , the subgroup Q∩L is a parabolic subgroup of L, all the parabolic subgroups of L arise
in this way, and there is an inverse map X 7→ XRu(P ) mapping parabolic subgroups of L
to parabolic subgroups of G contained in P [12, Prop. 4.4] — in this way we may identify
∆L with the link or star of σP [34, 1.1], [1, Prop. 4.9]; in more modern terminology, ∆L

arises as a residue, see [1, Sec. 5.3, Cor. 5.30]. Combining this with the observations from
the previous paragraph, we obtain a (surjective) map projP,L : ∆G → ∆L; this is the same
as the projection onto a residue of [1, Def. 5.35].

The key observation of this section is that these constructions can be realised in the
setting of a vector edifice VG(K) with the common apartment property (Definition 3.23).
Since a reductive group G gives rise to such a vector edifice, what follows can be viewed as
a generalisation of the previously described constructions. So now suppose G is any k-group
such that VG(K) has the common apartment property. We have seen in Example 4.14 above
that for such a G and an R-parabolic subgroup P = Pλ of G, the inclusion i : P → G gives a
bijective linear map κi : VP (K) → VG(K). It follows from Lemma 4.16 that if we let L = Lλ,
the projection f : P → L ∼= P/Uλ gives rise to a surjective linear map VP (K) → VL(K).
Hence the composition

FP,L := κf ◦ κ
−1
i : VG(K) → VL(K)
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is a surjective map.4 Note that f is apte by Remark 4.17(iii), because the kernel Uλ of f is
smooth.

Lemma 4.28. With the notation just set up, FP,L induces a well-defined map of combina-
torial edifices ∆G → ∆L, which we denote by projP,L. If G is reductive, then projP,L is the
projection map on the spherical building of G described above.

Proof. To check that the map on combinatorial edifices induced by FP,L is well-defined, we
need to check that if σµ = σν for µ, ν ∈ YG(K), then σFP,L(µ) = σFP,L(ν). Unwinding the
definitions, this amounts to checking that if µ, ν ∈ YL(K) give rise to the same R-parabolic
subgroup of G then they give rise to the same R-parabolic subgroup of L, which is true by
Corollary 3.16.

Now to check that the map induced by FP,L corresponds to projP,L in the case that G
is reductive, we again translate into a condition on R-parabolic subgroups. This time, it
suffices to show that given any µ ∈ YLλ

(K), we have Pµ(Lλ) = Pnλ+µ(Lλ) for all n ∈ N. To
see this, first note that for any cocharacter approximation λ′ to λ and any µ′ ∈ YLλ

we have
Pµ′(Lλ′) = Pnλ′+µ′(Lλ′) since the image of λ′ is central in Lλ′ = Lλ. Hence, the result follows
after choosing any cocharacter approximation µ′ ∈ YLλ

to µ. □

Remarks 4.29. (i). The map FP,L is not linear in general. For example, let G = SL2, let
P be the standard upper triangular Borel subgroup B and let L be the standard diagonal
maximal torus T . Choose λ ∈ YT such that Pλ = B and set x = ϕG(−λ). Let y = u·x, where
1 ̸= u ∈ Uλ(k). Now x and y are opposite by the example in Remark 3.31, so if FP,L is linear
then FP,L(x) and FP,L(y) must be opposite. But this is not the case as FP,L(x) = FP,L(y) = x
by Lemma 4.19.

(ii). Still in the setting of the previous example, let Q = P−λ be the opposite Borel to
B with respect to T . We can form the map FP,L using the projection P → L and the map
FQ,L using the projection Q → L. Then FP,L(y) = FP,L(x); but Lemma 4.19 implies that
FQ,L(y) ̸= FQ,L(x), as y is not U−λ(k)-conjugate to x. This shows that FP,L depends on the
choice of P for given L.

4.7. Linear maps of spherical edifices. Let κ : VG1(K) → VG2(K) be a linear map of
vector edifices. If κ is injective then we get an induced map

κ♭ : ∆G1(K) → ∆G2(K)

between the corresponding spherical edifices given by κ♭(K+ · x) = K+ · κ(x). Clearly this
map of spherical edifices is also injective. We call a map of the form κ♭ a linear map. (To
make this definition we need κ to be injective, for otherwise there are nonzero elements of
VG1(K) mapped to 0 ∈ VG2(K), and then κ♭ cannot be defined on all of ∆G1(K).)

Remark 4.30. Note that we get a linear map κf : VG(K) → VH(K) for any homomorphism
from G to a connected k-groupH, but we only get a corresponding map of spherical buildings
∆G(K) to ∆H(K) if κf is injective. This is one of the main advantages of working with vector
edifices rather than with spherical edifices.

Definition 4.31. We define an automorphism of ∆G(K) to be a bijective linear map whose
inverse is also a linear map. We write Aut(∆G(K)) for the group of automorphisms of ∆G(K).

4The notation FP,L makes sense because Uλ does not depend on the choice of λ for fixed P and L: see
Lemma 2.4(iii).
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Clearly, if κ ∈ Aut(VG(K)) then κ♭ ∈ Aut(∆G(K)). Conversely, suppose κ, ρ : VG(K) →
VG(K) are injective linear maps and ρ♭ = (κ♭)−1. Then (ρ ◦ κ)♭ = ρ♭ ◦ κ♭ = id∆G(K), so
ρ ◦ κ maps each ray in VG(K) to itself and each apartment in VG(K) to itself. Hence ρ is
a bijection, and it follows that κ is a bijection. We see that if T , T ′ are maximal split tori
of G and ρ maps VT (K) to VT ′(K) then κ−1 also maps VT (K) to VT ′(K), so κ belongs to
Aut(VG(K)). Hence Aut(∆G(K)) = {κ♭ | κ ∈ Aut(VG(K))}.

5. Linear maps arising from base change

Let α : k → k′ be a homomorphism of fields — for example, α could be a field isomorphism,
or the inclusion arising from a field extension k′/k — and let G be a k-group. Base change
along α gives rise to a k′-group αG: from the functorial point of view, given a k′-algebra
A′, we have αG(A′) = G(A′ ⊗α k), which makes sense as A′ ⊗α k is a k-algebra via scalar
multiplication in the second factor. Note that when α : k → k′ is the inclusion arising from a
field extension k′/k, then αG = Gk′ , but this construction works more generally, for example
when α : k → k is a field automorphism.

Identifying a point x ∈ G(k) with a morphism Spec(k) → G, we obtain by base change
along α a morphism Spec(k′) → αG, which is to say a point αx ∈ αG(k′). The corresponding
map

ψα : G(k) →
αG(k′), x 7→ αx

is a homomorphism of abstract groups.

5.1. Base change induces an injection of vector edifices. We first wish to show how
base change gives rise to a linear map of the corresponding vector edifices.

Suppose f : H → G is a homomorphism of k-groups. Then base change gives rise to a
homomorphism αf : αH → αG of k′-groups. Suppose G = (Gm)k is the multiplicative group
over k. Then αG ∼= (Gm)k′ is the multiplicative group over k′ (the ring A′ ⊗α k has the
same units as A′). Combining this observation with the previous one, we see that for each
cocharacter λ ∈ YG, we obtain a cocharacter αλ ∈ YαG. We also see that a split torus T of
G gives rise to a split torus αT of αG, and the k-rank of T is the same as the k′-rank of αT .

Now suppose T is a maximal split torus of G. Then the map λ 7→ αλ is an isomomorphism
of abelian groups YT → YαT , and hence induces an isomorphism YT (K) → YαT (K), which
we also denote by λ 7→ αλ. The map χ 7→ αχ is an isomomorphism of abelian groups
XT → XαT , and we have ⟨αλ, αχ⟩ = ⟨λ, χ⟩ for all λ ∈ YT and all χ ∈ XT .

Let λ ∈ YT (K) and choose a G-equivariant embedding of G in a rational G-module V .
Base change gives an αG-equivariant embedding of αG in the rational αG-module αV . The
weights of αV with respect to αT are the characters of the form αχ, where χ runs over the set
of weights of V with respect to T . We see that if λ′ is a cocharacter approximation to λ with
respect to V then αλ′ is a cocharacter approximation to αλ with respect to αV . We have
Pαλ = αPλ, Lαλ = αLλ and Uαλ = αUλ for any λ ∈ YK(K); this holds if λ ∈ YG by [14, Lem.
2.1.5] and the discussion that precedes it, and for arbitrary λ we get the result by taking
cocharacter approximations. It follows that ψα(Pλ(k)) ⊆ Pαλ(k

′), ψα(Lλ(k)) ⊆ Lαλ(k
′) and

ψα(Uλ(k)) ⊆ Uαλ(k
′) for all λ ∈ YG(K).

Lemma 5.1. Suppose α : k → k′ is a homomorphism of fields. Then the map λ 7→ αλ gives
rise to well-defined injective maps YG(K) → YαG(K) and VG(K) → VαG(K), and the latter
map is a linear map of vector edifices.
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Proof. Since we have already observed bijectivity and linearity at the level of apartments
above, the essential point is well-definedness. What we need follows from functoriality of
base change: if T1, T2 are maximal split tori of G and g ∈ G(k) is such that gT1g

−1 = T2, then
we have ψα(g)(

αT1)ψα(g)
−1 = αT2. Similarly, if g · λ1 = λ2 for λ1 ∈ YT1(K) and λ2 ∈ YT2(K),

then ψα(g) ·
αλ1 =

αλ2. We can now check that the map λ 7→ αλ behaves well with respect
to the relations ∼ and ≈ before and after base change. □

Remark 5.2. Since it is not necessarily true that every maximal split torus of αG is of the
form αT for some maximal split torus T of G (for example, take α a Frobenius endomorphism
of a non-perfect field k), the maps in Lemma 5.1 are not necessarily surjective.

Definition 5.3. Suppose α : k → k′ is a homomorphism of fields, and G is a k-group. We
denote the corresponding injective linear map of vector edifices by

να := νG,α : VG(K) → VαG(K).

We note in particular that this formalism allows us to identify the vector edifice VG(K) as
a subset of the vector edifices VGks

(K) and VGk
(K), which is helpful for later arguments on

metrics.

Lemma 5.4. Suppose G and H are k-groups, and let α : k → k′ be a field homomorphism.
For any homomorphism f : G→ H, we have κ(αf) ◦ νG,α = νH,α ◦ κf .

Proof. This is basically just functoriality of base change: it is clear that for λ ∈ YG we have
α(f ◦ λ) = αf ◦ αλ, and the result follows by chasing through the definitions. □

5.2. Field automorphisms and vector edifice automorphisms. First observe that if
α : k → k′ is an isomorphism of fields and G is a k-group, then the linear maps νG,α and
ναG,α−1 are inverses of each other, and hence VG(K) and VαG(K) are isomorphic.
We also wish to consider the possibility that αG and G are isomorphic as k-groups. For

ease of exposition, suppose α ∈ Aut(k) — i.e., α is given to us as a field automorphism —
so that G and αG are both k-groups. Then if there exists an isomorphism f : αG → G, we
obtain a linear automorphism

κα,f := κf ◦ να
of VG(K).

We discuss this further in [9]. Here we give two examples of this construction, showing
how it captures naturally occurring phenomena.

Example 5.5. Suppose α ∈ Aut(k) and let kα be the fixed field of α. Suppose that G
has a kα-descent — that is, that G = Hk for some kα-group H. Then we claim that αG
and G are naturally isomorphic as k-groups via a homomorphism fα (say). To see this,
note that for a k-algebra A, when we base change and form the algebra A ⊗α k (recall,
the k-multiplication happens in the second factor), we have an isomorphism of these two as
kα-algebras A ⊗α k 7→ A given by a ⊗ 1 → a. This gives rise to the corresponding natural
isomorphisms

fα(A) :
αG(A) = G(A⊗α k) = H(A⊗α k) → H(A) = G(A)

for each k-algebra A, defining the isomorphism fα.
A particular instance of this set-up is if k/k0 is a Galois extension, and G is a k-group for

which we can fix a k0-descent G0. Then we obtain from the various elements κα,fα an action
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of the Galois group Γ = Gal(k/k0) on VG(K). Moreover, the set of fixed points VG(K)Γ

naturally identifies with the vector edifice VG0(K).

Example 5.6. Suppose k is a perfect field of characteristic p, so that the Frobenius map
αp : k → k, x 7→ xp is a field automorphism. Let G = GLn be the general linear group
over k. Then this is a situation as in the previous example, where the group αG is naturally
isomorphic to G, say via a map fp, so we obtain an automorphism of the vector building κp :=
καp,fp . We also have the apte homomorphism Fp : G → G which is the standard Frobenius
morphism raising matrix entries to the pth power (i.e., acting by αp in each coordinate),
which gives rise to a linear automorphism κFp of VG(K). We can compare the effects of κp
and κFp by looking at the standard diagonal maximal torus T .
First, it is clear κFp(λ) = pλ for all λ ∈ YT (K). Second, because the natural isomorphism

fp :
αG → G is induced by the maps on A-points G(A ⊗αp k) → G(A) given by a ⊗ 1 7→ a

in each coordinate (as described in the previous example), the net effect on a diagonal
cocharacter after precomposing with base change along αp is to do nothing! Note (and this
is important) that we are not claiming that κp is the identity map on all of VG(K). For
a general split maximal torus T ′, there exists g ∈ G(k) such that T ′ = gTg−1. Then for
x ∈ VT (K), κFp sends g · x ∈ VT ′(K) to Fp(g) · (px) ∈ VFp(g)TFp(g)−1(K), by Remark 4.10. On
the other hand, it can be shown that κp sends g · x to Fp(g) · x — the key point is that for
g ∈ GLn(k), applying fp ◦ ψαp has the same effect as applying Fp. Thus we see that both
κFp and κp permute the apartments of VG(K), in the same way, but κFp also scales by p.
Finally, we note that if H is a subgroup of GLn such that Fp(H) = H, then this conclusion

naturally extends to the corresponding linear maps on VH(K) given by restriction from
VG(K).

We finish this section by recalling that in the case where G is a simple k-group of rank
at least 2, Tits has shown [34, Cor. 5.9, Cor. 5.10] that all automorphisms of the spherical
building ∆G can be constructed by considering those induced by automorphisms of the group
G together with suitable automorphisms of the field k and certain exceptional Frobenius
isogenies in characteristics 2 and 3. Our constructions in the previous two sections show how
to realise all these automorphisms on the level of the edifice VG(K) as well.

6. Admissible metrics

In this section we show how to put a metric on VG(K). Recall that two metrics d1 and d2
on a set X are said to be bi-Lipschitz equivalent if there exist c, C > 0 such that d1(x, y) ≤
c · d2(x, y) ≤ C · d1(x, y) for all x, y ∈ X; in this case, d1 and d2 induce the same topology on
X. When G is reductive then (following [20, Sec. 2], [7]) we can equip VG(K) with a metric,
as follows. Fix a maximal split torus T of G. The space VT (R) can be equipped with a
Wk-invariant metric (this is standard: just take any positive-definite bilinear form on VT (R),
average over the finite group Wk, and take the metric defined by the associated norm). Now
for any other maximal split torus T ′ in G, there exists g ∈ G(k) such that gT ′g−1 = T —
this choice of g is not unique, but any two such differ by an element of Wk, and so we can
translate the Wk-invariant metric on VT (K) to VT ′(K). This allows us to define d(x, y) for
any x, y ∈ VG(K), since the common apartment property holds. We thus obtain a metric d
on VG(K) with the property that d(x, y) = d(g · x, g · y) for all x, y ∈ VG(K), g ∈ G(k); we
call such a metric arising from a Wk-invariant bilinear form on VT (K) admissible.
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As explained in Section 3.5, for general G the vector edifice VG(K) may fail to have the
common apartment property, so we cannot immediately metrise VG(K) using this construc-
tion. However, with Proposition 4.11 in hand, we can make the following definition.

Definition 6.1. Let i : G → G′ be an embedding of G in a reductive k-group G′. Choose
an admissible metric d′ on VG′(K). Recall that the map κi : VG(K) → VG′(K) is injective
(Proposition 4.11). We obtain a pullback metric d on VG(K) defined by

d(x, y) := d′(κi(x), κi(y))

for all x, y ∈ VG(K). We also denote this metric by i∗(d′), and call a metric obtained
in this way an admissible metric on VG(K). Note that the equivariance of κi observed in
Remark 4.10, together with the G′(k)-invariance of d′, implies that d is G(k)-invariant and
the restriction of d to any apartment of VG(K) is given by a positive-definite bilinear form.
An admissible metric d gives rise to a topology on VG(K). Below we write “open” instead
of “d-open” if d is understood.
Given an admissible metric d on VG(K) we let ∥ ·∥ = ∥ ·∥d denote the corresponding norm:

∥x∥ := d(x, 0) for x ∈ VG(K).

Remarks 6.2. (i). Since any G can be embedded into some GLn, admissible metrics always
exist.

(ii). It is clear that if G is reductive then the two notions of admissible metric coincide.
(iii). Let H be a connected subgroup of G and let d be an admissible metric on VG(K),

arising from an embedding of G in a reductive group G′ and an admissible metric d′ on
VG′(K). Then the restriction of d to VH(K) (regarded as a subset of VG(K)) is admissible:
for it is the metric obtained from d′ via the inclusion of H in G′.
(iv). Let d be an admissible metric on VG(Q). It is easily checked that there is a unique

extension of d to an admissible metric on VG(R).
(v). If d is an admissible metric on VG(K) arising from an embedding i : G → G′ and an

admissible metric d′ on VG′(K), then we have

d(ax, ay) = d′(κi(ax), κi(ay)) = d′(aκi(x), aκi(y)) = ad′(κi(x), κi(y)) = ad(x, y)

for all a ∈ K+ and x, y ∈ VG(K). This uses the linearity of κi and the fact that the edifice
VG′(K) has the common apartment property (because G′ is reductive).

(vi). If d is an admissible metric on VG(K), then the subspace topology on any apartment
VT (K) is just the Euclidean topology induced by the positive-definite bilinear form obtained
by restricting the metric to VT (K).

Remark 6.3. Note that since an admissible metric is G(k)-invariant, so is the norm arising
from it: in particular, if (xn) is a bounded sequence in VG(K) and (gn) is a sequence of
elements of G(k), then the sequence (gn ·xn) is also bounded. We use this fact often in what
follows.

Remark 6.4. If G has the common apartment property — e.g., if G is pseudo-reductive —
then any two admissible metrics on VG(K) are bi-Lipschitz equivalent — this follows from
the common apartment property, the conjugation-invariance of the metrics and the standard
fact that any two positive-definite bilinear forms on a finite-dimensional vector space over K
induce bi-Lipschitz equivalent metrics. In particular, the induced topology on VG(K) does
not depend on the choice of metric. Below we extend these results to arbitrary connected
k-groups (Proposition 6.19).
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Definition 6.5. Given an admissible metric d on VG(K), we define Isomd(VG(K)) to be the
subgroup of Aut(VG(K)) consisting of the isometries with respect to the metric d.

Example 6.6. Not every automorphism is an isometry: for a simple example, choose a ∈ K+

with a ̸= 1 and take fa ∈ Aut(VG(K)) to be the map that sends x to ax. See also the
paragraph following Conjecture 7.4.

Lemma 6.7. Fix an admissible metric d on VG(K). Let (xn) be a Cauchy sequence in VG(K)
such that all the xn have the same type. Then (xn) is eventually constant.

Proof. Clearly we can assume without loss that G is reductive. Let x ∈ VG(K), and define

ϵ(x) = inf{d(x, y) | x ̸= y and x and y have the same type}.

Remark 3.31 implies that if we choose an apartment VT (K) with x ∈ VT (K), then

inf{d(x, y) | x ̸= y ∈ VT (K) and x and y have the same type} > 0.

But given any other apartment VT ′(K) containing x, T ′ is conjugate to T by an element fixing
x by Remark 3.21, and so this lower bound does not vary from apartment to apartment
containing x. Since G has the common apartment property we conclude that ϵ(x) > 0.
Further, ϵ(x′) = ϵ(x) if x and x′ have the same type, as d is conjugation-invariant, so ϵ(xn)
does not depend on n. The result follows. □

Proposition 6.8. Let G be a k-group and let d be an admissible metric on VG(R). Then
(VG(R), d) is a complete metric space.

Proof. The argument of [1, Prop. 12.10] establishes this result when G is semisimple; our
proof is a slight variation on that theme. By definition, there exist an embedding i of G in
some reductive k-group G′ and an admissible metric d′ on VG′(R) such that d = i∗(d′). To
ease notation, we regard VG(R) as a subset of VG′(R) via κi, so that d is just the restriction of
d′. Let (xn) be a Cauchy sequence in VG(R). Fix a maximal split torus T of G. By conjugacy
of maximal split tori in G, for each n we can choose hn ∈ G(k) such that zn := hn ·xn belongs
to the apartment VT (R) of VG(R). Note that the sequence (zn) is bounded, because (xn) is
(see Remark 6.3). Fix a maximal split torus S of G′ such that T ⊆ S. Then each zn belongs
to the apartment VS(R) of VG′(R). There is no harm in passing to a subsequence of (xn), so
without loss we can assume that the parabolic subgroups Pzn(G

′) are all equal by Remark
2.8. Since the restriction of d′ to VS(R) yields a complete metric and any closed ball in VS(R)
is compact, we can assume after passing to a subsequence again that (zn) converges to some
limit z ∈ VS(R). Each zn belongs to VT (R) and VT (R) is a subspace of the vector space
VS(R), so z ∈ VT (R).

Define a sequence (yn) in VG(K) by yn = h−1
n · z. Then d′(xn, yn) = d′(hn · xn, hn · yn) =

d′(zn, z) → 0; hence (yn) is Cauchy, since (xn) is. But the yn all have the same type as each
other as elements of VG′(K), so (yn) must eventually become constant by Lemma 6.7: say,
yn = y for sufficiently large n. We see that xn → y, so we are done. □

We now consider admissible metrics on the edifice for a product of groups. Let G1 and
G2 be k-groups. The maximal split tori of G1 ×G2 are precisely the subgroups of the form
T1×T2, where Ti is a maximal split torus of Gi. There is an obvious linear isomorphism from
VT1(K)⊕ VT2(K) to VT1×T2(K). For λ = (λ1, λ2) ∈ VT1×T2(K), we claim that Pλ(G1 ×G2) =
Pλ1(G1)×Pλ2(G2), Lλ(G1×G2) = Lλ1(G1)×Lλ2(G2) and Uλ(G1×G2) = Uλ1(G1)×Uλ2(G2).

32



This is clear if λ1 ∈ YT1 and λ2 ∈ YT2 . To see this in general, choose a Gi-equivariant
embedding of Gi in a rational Gi-module Vi for i = 1, 2, then embed G1 × G2 in V1 ⊕ V2
in the obvious way. Then (λ′1, λ

′
2) is a cocharacter approximation to (λ1, λ2) if and only if

λ′i is a cocharacter approximation to λi for i = 1, 2, and the claim follows. It is now easily
checked that the maps VT1(K)⊕VT2(K) → VT1×T2(K) paste together to give a bijection from
VG1(K)× VG2(K) to VG1×G2(K).
Now let d1 = i∗1(d

′
1) and d2 = i∗2(d

′
2), where ij is an embedding of Gj in a reductive

k-group G′
j and d′j is an admissible metric on VG′

j
(K). We get an admissible metric d′ on

VG′

1×G′

2
(K) = VG′

1
(K)× VG′

2
(K) given by

d′((x′1, x
′
2), (y

′
1, y

′
2)) =

√
d′1(x

′
1, y

′
1)

2 + d′2(x
′
2, y

′
2)

2 :

on each apartment VT ′

1×T ′

2
(K) = VT ′

1
(K) ⊕ VT ′

2
(K), the positive-definite bilinear form corre-

sponding to d′ is the orthogonal direct sum of the positive-definite bilinear forms on VT ′

j
(K)

corresponding to d′j for j = 1, 2. We have an embedding i1 × i2 of G1 ×G2 in G′
1 ×G′

2 and
we define an admissible metric d on VG1×G2(K) by d = (i1 × i2)

∗(d′). We write d = d1 × d2
and we call a metric of this form a product metric. We have

d((x1, x2), (y1, y2)) =
√
d1(x1, y1)2 + d2(x2, y2)2

for all (x1, x2), (y1, y2) ∈ VG1(K)× VG2(K) = VG1×G2(K).

6.1. Central tori. Suppose G has a non-trivial split central torus Z. We need an argument
for reducing from G to G/Z. Let d be an admissible metric on VG(K). Then there exist an
embedding i of G in a reductive group G′, and an admissible metric d′ on VG′(K) such that
d = i∗(d′). Set Z ′ = i(Z). We can replace G′ with the reductive group CG′(Z ′) if necessary,
so without loss we can assume that Z ′ is central in G′.
Now let T ′ be any maximal split torus of G′. Since T ′ contains Z ′, we may regard VZ′(K)

as a subspace of VT ′(K). Set WT ′ = VZ′(K)⊥, where ⊥ denotes the orthogonal complement
corresponding to the bilinear form that defines d′. Given x′ ∈ VT ′(K), we have a unique
decomposition x′ = x′Z′ + x′⊥, where x

′
Z′ ∈ VZ′(K) and x′⊥ ∈ WT ′ . Note that since any other

maximal split torus S ′ of G′ with x′ ∈ VS′(K) is conjugate to T ′ by an element of G′(k) fixing
x′ (essentially by definition of VG′(K)), and Z ′ is central in G′, the elements x′Z′ and x′⊥ do
not depend on the choice of T ′ with x′ ∈ VT ′(K).
Given x′, y′ ∈ VT ′(K), we define d′Z′(x′, y′) = d′(x′Z′ , y′Z′) and d′⊥(x

′, y′) = d′(x′⊥, y
′
⊥). For

any g′ ∈ G′(k), g′ fixes VZ′(K) pointwise (since it fixes YZ′ pointwise), soWg′T ′(g′)−1 = g′ ·WT ′

and for any x′ ∈ VT ′(K),

(6.9) (g′ · x′)Z′ = g′ · x′Z′ = x′Z′ and (g′ · x′)⊥ = g′ · x′⊥.

It follows easily that d′Z′ and d′⊥ give well-defined G′(k)-invariant functions from VG′(K) ×
VG′(K) to R. We define dZ(x, y) = d′Z′(κi(x), κi(y)) and d⊥(x, y) = d′⊥(κi(x), κi(y)) for
x, y ∈ VG(K). We also have d(x, y) = d′(κi(x), κi(y)), by definition, so we can conclude that

(6.10) d(x, y) =
√
dZ(x, y)2 + d⊥(x, y)2 for all x, y ∈ VG(K),

because the corresponding equation holds for d′, d′Z′ , d′⊥ and for all κi(x), κi(y) ∈ VG′(K).
Note that d and dZ agree on VZ(K)× VZ(K).
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Now let G1 = G/Z and let G′
1 = G′/Z ′. Let π : G → G1 and π′ : G′ → G′

1 denote
the canonical projections. Then i gives rise to an embedding i1 of G1 in G′

1. Choose an
admissible metric d′1 on VG′

1
(K) and let d1 = i∗1(d

′
1).

Lemma 6.11. Let the notation be as above. Then there exist c, C > 0 such that

(6.12) d1(κπ(x), κπ(y)) ≤ c · d⊥(x, y) ≤ C · d1(κπ(x), κπ(y))

for all x, y ∈ VG(K).

Proof. It is enough to show that there exist c, C > 0 such that

(6.13) d′1(κπ′(x′), κπ′(y′)) ≤ c · d′⊥(x
′, y′) ≤ C · d′1(κπ′(x′), κπ′(y′))

for all x′, y′ ∈ VG′(K). So fix a maximal split torus T ′
1 of G′

1. Since π′ is smooth and
surjective, π′ is apte by Remark 4.17(iii), so there is a maximal split torus T ′ of G′ such that
π′(T ′) = T ′

1. It is straightforward to check that κπ′ gives an isomorphism of K-vector spaces
from VT ′(K)/VZ′(K) to VT ′

1
(K), so κπ′ gives an isomorphism of K-vector spaces from WT ′

1

to VT ′

1
(K). Since any two positive-definite bilinear forms on a vector space yield equivalent

norms, there exist c, C > 0 such that (6.13) holds for all x′, y′ ∈ VT ′(K). It follows from the
G′(k)-invariance of d′1 and d

′
⊥ that the same c and C work for any maximal split torus of G′.

This gives the result. □

Consider the product group G1 × Z. The maximal split tori of G1 × Z are precisely the
subgroups of the form T1×Z, where T1 is a maximal split torus of G1. Keeping the notation

above, we endow VG1×Z(K) with the product metric d̃ := d1×dZ , where dZ is the restriction
of d to VZ(K). Given a maximal split torus T1 of G1, pick a maximal split torus T of G such
that π(T ) = T1. Since T contains ker(π) = Z, T is in fact unique. Define

βZ,T : VT (K) → VT1(K)× VZ(K) = VT1×Z(K)

by βZ,T (x) = (κπ(x), xZ).

Lemma 6.14. The maps βZ,T paste together to give a well-defined isomorphism βZ : VG(K) →

VG1×Z(K). Moreover, βZ is a bi-Lipschitz map from (VG(K), d) to (VG1×Z(K), d̃).

Proof. That βZ is well-defined follows from (6.9) and Remark 4.10. Since each βZ,T is bijec-
tive, βZ is bijective and the linearity of βZ and β−1

Z is a consequence of the definitions. The
bi-Lipschitz property follows from (6.12). □

6.2. Bi-Lipschitz equivalence of norms. We have seen that the common apartment prop-
erty can fail for VG(K). We can, however, prove a weaker local version.

Lemma 6.15. Let d be an admissible metric on VG(K). Let x ∈ VG(K). Then there exists
a d-open neighbourhood O of x in VG(K) such that

(i) Py ⊆ Px for all y ∈ O;
(ii) O ⊆ VLλ

(K) for any λ ∈ YG(K) such that ϕG(λ) = x.

Proof. First suppose G is reductive. Recall (see Lemma 5.1, Definition 5.3) that we have an
embedding of YG(K) in YGks

(K) and of VG(K) in VGks
(K); we denote the image of µ ∈ YG(K)

in YGks
(K) by µ̃, and of y ∈ VG(K) in VGks

(K) by ỹ. Choose a maximal split torus T of

G such that x ∈ VT (K), and choose a maximal torus T̃ of Gks such that Tks ⊆ T̃ : then
x̃ ∈ VT̃ (K). Choose λ ∈ YT (K) such that x = ϕG(λ), and recall that in this case we
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can determine the R-parabolic subgroup Pλ̃ by considering the pairing of λ̃ with roots of

Gks (see Example 3.13). Let α1, . . . , αs be the roots of Uλ̃ with respect to T̃ . The set

{µ ∈ YT (K) | ⟨µ̃, αi⟩ > 0 for 1 ≤ i ≤ s} is open and contains λ, so its image Õ in VT (K) is an

open neighbourhood of x. Hence there exists ϵ > 0 such that y ∈ Õ for all y ∈ VT (K) such
that d(x, y) < ϵ.

Let O be the open ball B(x, ϵ) in VG(K). Let y ∈ O. Since G is reductive, the common
apartment property holds, so there is a maximal split torus T0 of G such that x, y ∈ VT0(K).
Now T0 is a maximal split torus of Px, so there exists g ∈ Px(k) such that gT0g

−1 = T . We
have g · x = x, so d(x, g · y) = d(g · x, g · y) = d(x, y) < ϵ. It follows from Example 3.13 and
by construction that Ug·y ⊇ Ux, so Pg·y ⊆ Px (this conclusion holds because G is reductive).
Hence Py = g−1Pg·yg ⊆ g−1Pxg = Pg−1·x = Px by Example 4.9. This proves part (i) when G
is reductive.

Now let G be arbitrary and let x ∈ VG(K). There exist an embedding i of G in a reductive
k-group G′ and an admissible metric d′ on VG′(K) such that d = i∗(d′). By the reductive
case, there is a d′-open neighbourhood O′ of κi(x) such that Pw(G

′) ⊆ Pκi(x)(G
′) for all

w ∈ O′. By construction, O := κ−1
i (O′) is a d-open neighbourhood of x. Let y ∈ O. Then

Pκi(y)(G
′) ⊆ Pκi(x)(G

′), so Py ⊆ Px by Corollary 3.16. This finishes the proof of (i).
To prove (ii), let y ∈ O. Choose λ, µ ∈ YG(K) such that ϕG(λ) = x and ϕG(µ) = y. Since

Py ⊆ Px, µ belongs to YPx(K), so by Remark 3.8 there exist a maximal split torus T of
Px and u ∈ Uλ(k) such that λ, u · µ ∈ YT (K). Since Pκi(u·y)(G

′) = Pκ̂i(u·µ)(G
′) is contained

in Pκi(x)(G
′) = Pκ̂i(λ)(G

′), it follows from the description of R-parabolic subgroups and R-
Levi subgroups of reductive groups given in Example 3.13 that Lκ̂i(u·µ)(G

′) is contained in
Lκ̂i(λ)(G

′). We deduce from Corollary 3.16 that Lu·µ is contained in Lλ, so u ·y ∈ VLu·µ(K) ⊆
VLλ

(K). Now Uκ̂i(λ)(G
′) ⊆ Uκ̂i(µ)(G

′) because Pκ̂i(µ)(G
′) ⊆ Pκ̂i(λ)(G

′) and G′ is reductive. It
follows that Uλ = Uκ̂i(λ)(G

′) ∩ G ⊆ Uκ̂i(µ)(G
′) ∩ G = Uµ by Corollary 3.16, so u ∈ Uµ(k), so

u · y = y. Hence y ∈ VLλ
(K), and we are done. □

Lemma 6.16. Let d be an admissible metric on VG(K). Let x ∈ VG(K). Then there is a
d-open neighbourhood O of x such that for all y ∈ O, x and y lie in a common apartment.

Proof. We use induction on dim(G). The statement is vacuous if dim(G) = 0. If x ∈
VZ(G)0(K) then every y ∈ VG(K) lies in a common apartment with x, so O = VG(K) will do.
Suppose x ̸∈ VZ(G)0(K). Pick λ ∈ YG(K) such that ϕG(λ) = x. We identify VLλ

(K) with its
image in VG(K); the restriction d1 of d to VLλ

(K) is an admissible metric. By Lemma 6.15,
there is an open neighbourhood O1 of x such that O1 ⊆ VLλ

(K). Since dim(Lλ) < dim(G)
by Lemma 3.5(ii), our induction hypothesis applies that there is an open neighbourhood O2

of x in VLλ
(K) such that for all y ∈ O2, x and y lie in a common apartment of VLλ

(K). But
an apartment of VLλ

(K) is also an apartment of VG(K), so we can take O = O1 ∩O2. □

Lemma 6.17. Let T, T ′ be maximal split tori of G. Let (λn) and (λ′n) be sequences in YT (K)
and YT ′(K), respectively, and let λ ∈ YT (K), λ′ ∈ YT ′(K) such that λn → λ and λ′n → λ′.
Suppose (T, λn) ≈ (T ′, λ′n) for all n ∈ N. Then (T, λ) ≈ (T ′, λ′).

Proof. For each n, there exists gn ∈ Pλn(k) such that gnTg
−1
n = T ′ and gn · λn = λ′n. The

conjugation map Inngn gives rise to a linear map hn : VT (K) → VT ′(K). Since Wk is finite,
the set {hn |n ∈ N} is finite. By passing to subsequences, we can assume that the hn are
all equal — say, to h. So h(λ) = λ′ by the continuity of h. We have h(λ) = gn · λ for each
n ∈ N. Lemma 6.15 implies that gn ∈ Pλ(k) for large n. The result follows. □
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Lemma 6.18. Let κ be a linear map from VG(Q) to VH(Q). Then there is a unique extension
of κ to a linear map κ : VG(R) → VH(R).

Proof. We can extend κ uniquely on each apartment in the obvious way. We just need to
check that these maps paste together to give a well-defined map κ from VG(K) to VH(K) (it
is clear that the map is linear if it is well-defined, and uniqueness is also clear). Recall from
Lemma 4.4 that κ lifts to a map κ̂ : YG(Q) → YH(Q). Let T, T ′ be maximal split tori of G
and choose maximal split tori S and S ′ of H such that κ̂ maps YT (Q) into YS(Q) and YT ′(Q)
into YS′(Q). Let κ̂T,S : VT (R) → VS(R) (resp., κ̂T ′,S′ : VT ′(R) → VS′(R)) be the extension of
κ̂. Pick λ ∈ YT (R) and λ′ ∈ YT ′(R) such that (λ, T ) ≈ (λ′, T ′). It is enough to show that
(S, κ̂T,S(λ)) ≈ (S ′, κ̂T ′,S′(λ′)).

Pick a rational approximating sequence (λn) to λ in YT (R). By hypothesis, there exists
g ∈ Pλ(k) such that g · λ = λ′ and gTg−1 = T ′. Set λ′n = g · λn for each n ∈ N. Then
λ′n → λ′, since conjugation by g induces an isomorphism from VT (R) to VT ′(R). Further,
g ∈ Pλ(k) = Pλn(k), so (T ′, λ′n) ≈ (T, λn) and ϕG(λ

′
n) = ϕG(λn) for each n ∈ N. It

follows that κ(ϕG(λ
′
n)) = κ(ϕG(λn)) and hence (S ′, κ̂(λ′n)) ≈ (S, κ̂(λn)) for each n ∈ N. But

κ̂(λ′n) → κ̂T ′,S′(λ′) and κ̂(λn) → κ̂T,S(λ) as κ̂T ′,S′ and κ̂T,S are isomorphisms. It follows from
Lemma 6.17 that (S ′, κ̂T ′,S′(λ′)) ≈ (S, κ̂T,S(λ)), as required. □

We can now prove:

Proposition 6.19. Let G be a connected k-group and let G′ be a connected k′-group, where
k′ is a field. Let κ : VG(K) → VG′(K) be a linear map. Let d, d′ be admissible metrics on
VG(K), VG′(K), respectively. Then there exists C > 0 such that for all x1, x2 ∈ VG(K), we
have d′(κ(x1), κ(x2)) ≤ C · d(x1, x2).

Proof. We may assume that K = R, for if the result holds in that case then it quickly follows
for K = Q by Lemma 6.18 and Remark 6.2(iv). Let T be any maximal split torus of G
and let x1, x2 ∈ VT (K). Then κ(VT (K)) is contained in VT ′(K) for some maximal split torus
T ′ of G′. The restriction of d (resp., d′) to VT (K) (resp., VT ′(K)) is a metric arising from
a symmetric positive-definite bilinear form, so there exists D > 0 depending on d, d′ but
independent of x1, x2 such that d′(κ(x1), κ(x2)) ≤ D · d(x1, x2). Note that D is independent
of the choice of T because of the conjugation-invariance of d and d′. Hence we are done when
x1 and x2 belong to a common apartment of VG(K); in particular, this is the case when one
of x1, x2 belongs to VZ(G)0(K). In particular, taking x1 = x and x2 = 0 yields

(6.20) ∥κ(x)∥ ≤ D∥x∥

for all x ∈ VG(K).
Now we use induction on dim(G). The result is trivial if dim(G) = 0 or G is itself a

split torus. Suppose that G is not a split torus and that G contains a non-trivial central
split torus Z; let G1 = G/Z as above. Then dim(G1), dim(Z) < dim(G). Let d1 be as in
Section 6.1 and let dZ be the restriction of d to VZ(K). By Lemma 6.14 we have a linear map
κ1 := κ ◦ β−1

Z from VG1×Z(K) to VG′(K). By Lemma 6.14, we can replace VG(K) and κ with
VG1×Z(K) and κ1. But the result follows in this case by applying the induction hypothesis

to (VG1(K), d1) and (VZ(K), dZ) and the linear maps VG1(K)
κj1→ VG1×Z(K)

κ1→ VG′(K) and

VZ(K)
κjZ→ VG1×Z(K)

κ1→ VG′(K), where j1 and jZ are the inclusions of G1 and Z in G1 × Z,
respectively.
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So we may assume that G has no non-central split torus and hence, by Lemma 3.5(ii),
that Lλ is a proper subgroup of G for every nonzero λ ∈ YG(K). Suppose for a contradiction
that no constant C as in the statement of the lemma exists. Then there are sequences
(xn) and (yn) in VG(K) such that d′(κ(xn), κ(yn)) > n · d(xn, yn) for all n ∈ N. We claim
that by scaling and then successively replacing (xn) and (yn) with suitable subsequences
and conjugates, we may assume that (xn) and (yn) are bounded sequences converging to
a common limit x. First, we may assume (interchanging xn and yn at any given step if
necessary), that ∥xn∥ ≥ ∥yn∥ for all n ∈ N. By scaling, using Remark 6.2(v), we can further
assume that ∥xn∥ = 1 and ∥yn∥ ≤ 1 for all n ∈ N. Now fix a maximal split torus T of G.
For each n, after conjugating both xn and yn by an appropriate element of G(k), we can
assume each xn belongs to VT (K). Now (xn) is a bounded sequence in the d-complete space
VT (K), and hence some subsequence of (xn) d-converges to an element x ∈ VT (K) (recall
that K = R); replace (xn) by this subsequence and (yn) by the corresponding subsequence,
and note that x ̸= 0 since ∥xn∥ = 1 for all n ∈ N. Now (∥κ(xn)∥) and (∥κ(yn)∥) are bounded
by (6.20), so (d′(κ(xn), κ(yn))) is bounded. Since we have d′(κ(xn), κ(yn)) > n · d(xn, yn), it
follows that d(xn, yn) → 0, so yn → x also.

Choose λ ∈ YG(K) such that x = ϕG(λ). By hypothesis, we have dim(Lλ) < dim(G). Let
iλ : Lλ → G be the inclusion map, let κλ := κiλ : VLλ

(K) → VG(K) be the corresponding
inclusion of vector edifices, and identify VLλ

(K) as a subset of VG(K) via κλ, as usual. Let
O be an open neighbourhood of x as in Lemma 6.15, so that O ⊆ VLλ

(K). Then for all n
sufficiently large we have xn, yn ∈ O ⊆ VLλ

(K). By our induction hypothesis applied to Lλ

and the map κ ◦κλ : VLλ
(K) → VH(K), there exists some C > 0, independent of n, such that

d′(κ(xn), κ(yn)) ≤ C · d(xn, yn), a contradiction. The result now follows by induction. □

Corollary 6.21. Let G be a k-group and let d1, d2 be admissible metrics on VG(K). Then
d1 and d2 are bi-Lipschitz equivalent. In particular, the topology on VG(K) does not depend
on the choice of admissible metric.

Proof. This follows by applying Proposition 6.19 to the identity map from VG(K) to VG(K).
□

We call the topology arising from any admissible metric the metric topology. Below when
we refer to open and closed sets, we mean relative to the metric topology.
The next result is an immediate consequence of Proposition 6.19.

Corollary 6.22. Let G and G′ be k-groups and let κ : VG(K) → VG′(K) be a linear map. Let
d and d′ be admissible metrics on VG(K) and VG′(K), respectively. Then κ is continuous.

Corollary 6.23. Let H be a subgroup of G and let i : H → G be inclusion. Let e and d be
admissible metrics on VH(K) and VG(K), respectively. Then κi is a continuous closed map.
In particular, κi(VH(K)) is a closed subset of VG(K).

Proof. By Corollary 6.21 we can assume that e = i∗(d). If (xn) is any sequence in VH(K)
then (xn) is Cauchy if and only if (κi(xn)) is Cauchy. The result follows. □

Example 6.24. Let G be reductive and let P be a proper parabolic subgroup of G. Fix
admissible metrics e on VP (K) and d on VG(K). Let i : P → G be inclusion. Then κi is a
bijective linear map which is not an isomorphism of vector edifices (Example 4.14), but it is
a homeomorphism. If e = i∗(d) then κi is even an isometry.
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Example 6.25. Let k/k0 be a Galois field extension and suppose G has a descent to a
k0-group G0. Recall from Example 5.5 that the Galois group Γ = Γ(k/k0) acts on VG(K)
by automorphisms, and we may identify the fixed point set VG(K)Γ with VG0(K). Since
automorphisms are continuous by Corollary 6.22, we deduce that VG0(K) is a closed subset
of VG(K).

We finish this subsection by extending Corollary 6.23 to the case of homomorphisms with
finite kernel.

Lemma 6.26. Let f : G→ H be an isogeny of connected k-groups. Let x, y ∈ VG(K). Then
x and y lie in a common apartment of VG(K) if and only if κf (x) and κf (y) lie in a common
apartment of VH(K).

Proof. It is clear from the construction that if x and y lie in a common apartment of VG(K)
then κf (x) and κf (y) lie in a common apartment of VH(K). Conversely, suppose κf (x) and
κf (y) lie in a common apartment of VH(K): say, κf (x), κf (y) ∈ VS(K), where S is a maximal
split torus of H. Then S ⊆ Pκf (x)(H) ∩ Pκf (y)(H), so S ′ ⊆ Pκf (x)(H) ∩ Pκf (y)(H) for some

maximal torus S ′ of H (Lemma 2.12). Extending scalars to k and applying Lemma 3.17(i)
gives S ′

k
⊆ fk((Px)k) ∩ fk((Py)k). We have f−1

k
((Px)k)

0 = (Px)k and f−1

k
((Py)k)

0 = (Py)k by

the proof of Lemma 3.17(ii), so f−1

k
(S ′)0 ⊆ (Px)k ∩ (Py)k. But f

−1

k
(S ′)0 contains a maximal

torus of Gk since fk is an isogeny. The result follows from Lemma 2.12. □

Proposition 6.27. Let f : G → H be a homomorphism of connected k-groups with finite
kernel. Then κf is a closed map. In particular, κf (VG(K)) is closed in VH(K).

Proof. We can factor f as a homomorphism onto its image followed by a closed embedding,
so we can assume without loss by Corollary 6.23 that f is an isogeny. Choose embeddings
ii : G →M1 and i2 : H →M2, where M1 and M2 are connected reductive k-groups. Choose
admissible metrics d1 and d2 on VM1(K) and VM2(K), respectively, and let d be the product
metric on M1 ×M2. Define i : G→M1 ×M2 by g 7→ (i1(g), i2(f(g)).

Consider the metrics e := i∗(d) and e2 := (i2 ◦ f)
∗(d2) on VG(K). Then e (resp., i∗2(d2)) is

an admissible metric on VG(K) (resp., VH(K)) by construction, but we do not claim that e2
is an admissible metric on VG(K). Nonetheless e and e2 are G(k)-invariant and are given by
a bilinear form on any fixed apartment. It follows from an argument similar to the one in
the proof of (6.12) that there exist c, C > 0 such that

(6.28) ce(x, y) ≤ e2(x, y) ≤ Ce(x, y)

for all x, y ∈ VG(K) belonging to a common apartment.
Let (xn) be an e2-convergent sequence in VG(K) with limit x. To complete the proof, it is

enough to show that (xn) e-converges to x. Let O be an i∗2(d2)-open neighbourhood of κf (x)
as in Lemma 6.16. Then κ−1

f (O) is an e-open neighbourhood of x by Corollary 6.22. By

omitting finitely many terms at the start of the sequence, we can assume that xn ∈ κ−1
f (O)

for all n ∈ N. For any n ∈ N, κf (xn) and κf (x) lie in a common apartment of VH(K), so xn
and x lie in a common apartment of VG(K) by Lemma 6.26. It follows from (6.28) that the
sequence (xn) e-converges to x, since it e2-converges to x. This completes the proof. □

Remark 6.29. Let f : G → H be a homomorphism of connected k-groups and suppose k
is perfect. Then κf (VG(K)) is closed in VH(K). To see this, observe that f factors as
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G
f1
→ G/Nred

f2
→ G/N

i3→ H, where N := ker(f); note that Nred is k-defined as k is perfect.
Then κf1 is surjective by Lemma 4.16 and Remark 4.17(iii), and κf2 and κf3 are closed maps
by Proposition 6.27 and Corollary 6.23, respectively, so κf (VG(K)) is closed.
We conjecture that the same result holds without the hypothesis that k is perfect.

6.3. The metric topology and the quotient topology. Recall that ϖG :
⊔

T YT (K) →
YG(K) denotes the canonical projection and ωG :

⊔
T YT (K) → VG(K) is the composition

ϕG ◦ϖG. We may endow VG(R) with the quotient topology that it inherits via ωG, where we
regard

⊔
T YT (R) as the disjoint topological union of the YT (R) and each YT (R) is topologised

as a Euclidean space. We observed in Remark 6.2(vi) above that if d is an admissible metric
on VG(R), then d induces on the subspaces VT (R) this Euclidean topology, because d coincides
with the metric on VT (R) coming from a positive-definite bilinear form. Together with the
fact that the restriction of ωG gives a linear isomorphism ωT from YT (R) to VT (R), this
implies that the topology on VT (R) arising from d coincides with that arising from the
quotient topology. Below we show that the metric topology and the quotient topology on
VG(R) actually coincide, for which we need a result of Whitehead (see [17, 3.3.17]).5

Lemma 6.30. Let X, Y, Z, Z ′ be topological spaces with Z locally compact, let f : X → Y be
a quotient map and let g : Z → Z ′ be a homeomorphism. Then f × g : X ×Z → Y ×Z ′ is a
quotient map.

Proposition 6.31. The quotient topology on VG(R) coincides with the topology induced by
any admissible metric d. If C ⊆ VG(R) then C is d-closed (resp., d-open) if and only if
C ∩ VT (R) is closed (resp., open) with respect to the subspace topology on VT (R) for every
maximal split torus T of G.

Proof. Let C ⊆ VG(R). By definition of the quotient topology, C is closed if and only if
ω−1
G (C) is closed in

⊔
T YT (R), and this is the case if and only if ω−1

G (C)∩YT (R) is closed for
every maximal split torus T of G. But it follows from Lemma 2.4(i) and Remark 3.9 that
ωT (ω

−1
G (C) ∩ YT (R)) = C ∩ VT (R). This shows that C is closed in the quotient topology if

and only if C ∩ VT (R) is closed for every maximal split torus T of G. Likewise, C is open in
the quotient topology if and only if C ∩ VT (R) is open for every maximal split torus T of G.
Hence the second assertion of the proposition follows from the first. It also follows that if
a subset of VG(R) is metric-open (resp., metric-closed) then it is open (resp., closed) in the
quotient topology.

To prove the first assertion of the proposition, we use induction on dim(G). The result
holds trivially if dim(G) = 0. Suppose G contains a non-trivial split central torus Z. Let
G1 = G/Z, and fix an admissible metric d1 on VG1(R). We may identify VT (R) with YT (R),
and likewise for YT1(R) and YZ(R), so we may regard each map βZ,T from Section 6.1 as a
map from YT (R) to YT1(R)×YZ(R); these paste together to give a homeomorphism γZ from⊔

T YT (R) to
(⊔

T1
YT1(R)

)
× YZ(R), where T runs over the maximal split tori of G and T1

5The proof given in loc. cit. is for Z ′ = Z and g = idZ , but the generalisation in Lemma 6.30 is immediate.
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runs over the maximal split tori of G1. We have a commutative diagram
⊔

T YT (R)

ωG

��

γZ
//

(⊔
T1
YT1(R)

)
× YZ(R)

ωG1
×ωZ

��

VG(R)
βZ

// VG1(R)× VZ(R)

where we give VG(R) and VG1(R) × VZ(R) the quotient topology from ωG and ωG1 × ωZ ,
respectively. Since γZ is a homeomorphism and βZ is a bijection, we see that βZ must also
be a homeomorphism. Now dim(G1), dim(Z) < dim(G), so the quotient topology on VG1(R)
from ωG1 (resp., on VZ(R) from ωZ) coincides with the metric topology by our induction
hypothesis. Since VZ(R) is locally compact, Lemma 6.30 applied to ωG1×ωZ implies that the
quotient topology on VG1(R)×VZ(R) is the product of the quotient topologies on the factors.
Hence the quotient topology on VG1(R) × VZ(R) is the product of the metric topologies on

the factors, which coincides with the topology coming from the product metric d̃. But βZ is

a bi-Lipschitz map from (VG(R), d) to (VG1(R) × VZ(R), d̃) by Lemma 6.14. It follows that
the quotient topology and the metric topology on VG(R) coincide.

So assume G does not contain a non-trivial split central torus. If C ⊆ VG(R) is d-open
then C ∩ VT (R) is open for every maximal split torus T of G, so C is open in the quotient
topology. Conversely, suppose C ⊆ VG(R) is open in the quotient topology. Let x ∈ C. It
is enough to show that Bd(x, ϵ) ⊆ C for some ϵ > 0. By Lemma 3.5(ii), Lemma 6.15 and
our hypothesis on G, there exist δ > 0 and a proper R-Levi subgroup L of Px such that
Bd(x, δ) ⊆ VL(R). Set C0 = C ∩ Bd(x, δ). The first paragraph of the proof implies that C0

is an open neighbourhood of x with respect to the quotient topology on VG(R). Likewise,
C0 is an open neighbourhood of x with respect to the quotient topology on VL(R). But
dim(L) < dim(G) and the restriction d0 of d is an admissible metric on VL(R), so by our
induction hypothesis there exists ϵ > 0 such that ϵ < δ and Bd0(x, ϵ) ⊆ C0. Finally, observe
that Bd(x, ϵ) = Bd0(x, ϵ) since Bd(x, δ) ⊆ VL(R). The result now follows by induction. □

Remark 6.32. Proposition 6.31 generalises [7, Lem. 2.7].

6.4. Admissible metrics on the spherical edifice. Let d be an admissible metric on
VG(K). Recall that if K = Q then we have a unique extension of d to an admissible metric
on VG(R). We may identify ∆G(R) with the unit sphere in VG(R) (hence the terminology
“spherical edifice”), and ∆G(Q) with a subset of the unit sphere in VG(R): explicitly, we can
take ∆G(Q) to be the set of all x ∈ VG(R) such that ∥x∥d = 1 and the ray R+ · x contains a
Q-point. We give ∆G(K) the metric d♭ it inherits as a subspace of VG(R), where the induced
map d♭ is defined in Section 4.7.6 We call any such metric on ∆G(K) an admissible metric.
It follows from Corollary 6.21 that any two admissible metrics on ∆G(K) are bi-Lipschitz
equivalent, so they define the same topology. Given an admissible metric d on ∆G(K), we
define Isomd(∆G(K)) to be the subgroup of Aut(∆G(K)) consisting of isometries.

Let d be an admissible metric on VG(K). Clearly, if κ ∈ Isomd(VG(K)) then we have
κ♭ ∈ Isomd♭(∆G(K)). The converse, however, is false. For example, if fa is as in Example 6.6
then (fa)

♭ = id∆G(K) is an isometry but fa is not.

6For spherical buildings it is traditional to use the spherical metric on each apartment rather than the
metric inherited from the ambient Euclidean space, but we cannot do this for ∆G(K) for arbitrary G because
the common apartment property can fail.
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7. The Tits Centre Conjecture and geometric invariant theory

We finish by discussing some motivation for our constructions, elaborating on the summary
in Section 1. In this section we assume G is reductive, although some of the ideas below
make sense for arbitrary G. For more details, see [7] or [9].

Let ∆ be a spherical building. We call a subcomplex Σ of ∆ completely reducible (cr for
short) if every simplex of Σ has an opposite in Σ. Let Γ be a subgroup of Aut(∆) that
stabilises Σ. We say that a simplex σ is a simplicial Γ-centre7 of Σ if σ is nonempty and σ
is fixed by Γ.

The following is the Tits Centre Conjecture (TCC), which was proved in a series of papers
[23], [21], [26].

Conjecture 7.1 (Tits Centre Conjecture). Assume ∆ is thick, let Σ be a convex non-cr
subcomplex of ∆ and let Γ be a subgroup of Aut(∆) that stabilises Σ. Then Σ has a simplicial
Γ-centre.

We are concerned with the special case when ∆ = ∆G, whereG is reductive. We mention in
passing a connection with Serre’s theory of G-complete reducibility. We say that a subgroup
H of G is G-completely reducible over k (G-cr over k) if whenever H is contained in a
parabolic subgroup P of G, H is contained in some Levi subgroup L of P . Let Σ be the
fixed point set (∆G)

H . It is not hard to show that Σ is a convex subcomplex of ∆G and that
H is G-cr if and only if Σ is cr. So if H is not G-cr then Σ is a convex non-cr subcomplex
of ∆G, and one can apply the Tits Centre Conjecture. This yields results on G-complete
reducibility. See [2], [4], [5], [8], [10], [6], [32] for more details.

We say that a simplicial Γ-centre of Σ is unopposed if it has no opposite in Σ. The usual
formulations of the TCC don’t touch on this. Note, however, that the proof of the TCC in
type A in [23] automatically produces a Γ-centre that is unopposed. We return to this idea
shortly.

For reasons related to geometric invariant theory, we want an analogue to the Tits Centre
Conjecture but working with points in ∆G(K) rather than with simplices. We have notions
of convexity and opposition of points (see Section 3.5). We say that a closed convex subset
Σ of ∆G(K) is completely reducible (cr) if every x ∈ Σ has an opposite in Σ.

Definition 7.2. Let Γ be a subgroup of Aut(∆G(K)) that stabilises Σ. We say that x ∈ Σ
is a Γ-centre of Σ if x ̸= 0 and σx is fixed by Γ. We say that a Γ-centre x of Σ is unopposed
if x has no opposite in Σ.

Remark 7.3. (i) We do not insist in Definition 7.2 that x is fixed by Γ. It can be shown,
however, that if Γ ⊆ Isomd(VG(K)) for some admissible metric d and if Σ admits a Γ-centre
then Σ admits a Γ-centre that is fixed by Γ. See [9].

(ii) A simplicial Γ-centre always corresponds to a proper R-parabolic subgroup of G. If
YZ(G)0 ̸= 0, however, then there can exist a Γ-centre x such that Px = G.

Conjecture 7.4. Let Σ be a closed convex non-cr subset of ∆G(K) and let Γ be a subgroup
of Aut(∆G(K)) that stabilises Σ. Then Σ has an unopposed Γ-centre.

7Usually in the literature this is referred to as a Γ-centre. We have added the adjective “simplicial” to
distinguish these from the Γ-centres introduced in Definition 7.2.
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We call Conjecture 7.4 the strong Tits Centre Conjecture (sTCC). It is weaker than the
version given in [7, Conj. 2.10], which asserts the existence of a Γ-fixed point in Σ; this turns
out to be false if we don’t insist that Γ acts by isometries (cf. Remark 7.3). For a discussion
of these and related matters, we refer the reader yet again to [9] and to [7].

Any convex subcomplex of ∆G(K) is closed [7, Lem. 2.7], so there is clearly — as the
terminology suggests — a close link between the TCC and the sTCC. To make this con-
crete, however, one needs to understand the relationship between automorphisms of ∆G and
automorphisms of ∆G(K). This is not completely straightforward. Note, for example, that
there can exist automorphisms of ∆G(K) which arise from very natural operations on G, but
which are not isometries. For more details, see [9].

It is convenient to work with the vector edifice rather than the spherical edifice. We define
a cone in VG(K) to be a subset that is stable under multiplication by K+. We say that a
closed convex cone C in VG(K) is completely reducible (cr) if every x ∈ C has an opposite
in C. Here is our formulation of the sTCC for vector edifices.

Conjecture 7.5. Let C be a closed convex non-cr cone in VG(K) and let Γ be a subgroup of
Aut(VG(K)) that stabilises C. Then C has an unopposed Γ-centre.

Conjectures 7.5 and 7.4 are closely related: one can show that if Σ is a closed convex
non-cr subset of ∆G(K) then ζ−1

G (Σ) ∪ {0} is a closed convex non-cr cone in VG(K), and
conversely if C is a closed convex non-cr cone in VG(K) then ζG(C\{0}) is a closed convex
non-cr subset of ∆G(K) (see [7, Lem. 2.6]).
Now we can describe the relationship to GIT. We keep our assumption that G is reductive.

Suppose G acts on an affine variety X. Let x ∈ X(k) and let λ ∈ YG. We say that
λ destabilises x if lima→0 λ(a) · x exists. We say that λ properly destabilises x over k if
x′ := lima→0 λ(a) · x lies outside the orbit G(k) · x. We say that the orbit G(k) · x is
cocharacter-closed over k if there does not exist any λ in YG such that λ properly destabilises
x over k, see [10, Sec. 3] and [3, Sec. 3].
We define a subset Λx of VG and a subset Dx of VG(Q) by

Λx := {ϕG(λ) |λ ∈ YG, λ destabilises x}

and

Dx = {cλ |λ ∈ Λx, c ∈ Q+}.

We call Dx the destabilising locus for x. In [10] it is shown that Dx is a closed convex subset
of VG(Q) and Dx is stabilised by the building automorphisms arising from Gx(k) (by Gx we
mean the scheme-theoretic stabiliser of x). Moreover, Dx is non-cr if and only if there exists
λ ∈ YG such that λ properly destabilises x over k. Note, however, that Dx is not in general
a subcomplex of VG(Q).
Fix an admissible metric d on VG(K); this amounts to fixing a “length function” in the

sense of [20, Sec. 2]. Kempf proved the following theorem [20, Thm. 3.4, Cor. 3.5] (Hesselink
[19] and Rousseau [29] found closely related results).

Theorem 7.6. Suppose k is algebraically closed. Let G, X and x be as above, and suppose
G · x is not closed. Then there exists λopt ∈ YG such that λopt properly destabilises x over k
and Gx(k) ⊆ Pλ(k).
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The cocharacter λopt is often referred to as the optimal destabilising cocharacter ; it arises
by optimising a certain real-valued function on Dx. Note that λopt can depend on the choice
of d.

Now we come to our key insight: in the language above, ϕG(λopt) is an unopposed Γ-centre
of Dx for a certain subgroup Γ of Isomd(VG(Q)).8 This suggests two complementary paths.
(a). Use methods from GIT, including optimality, to prove cases of the sTCC, at least

when k = k. For some steps in this direction, see [7, Sec. 5].
(b). Use known cases of the sTCC to prove the existence of optimal destabilising cochar-

acters. There is no known generalisation of Theorem 7.6 to arbitrary fields, although there
are some partial results [20, Thm. 4.2], [19, Thm. 5.2], [7, Sec. 6], [10, Thm. 4.7], [3, Thm.
4.3]. For further discussion, see [10, Sec. 1]. Recall that Dx need not be a subcomplex of
VG(Q), so we need the full force of the sTCC to deduce the existence of a Γ-centre. On the
other hand, if Dx does happen to be a subcomplex then we can apply the TCC; for one such
result in the context of G-complete reducibility, see [6, Thm. 1.1].
As the above discussion makes clear, we are concerned with finding unopposed Γ-centres.

We finish by sketching an approach for finding an unopposed Γ-centre, given a Γ-centre. Let
C be a closed convex non-cr cone in VG(K) and let Γ ≤ Aut(VG(K)) such that Γ stabilises C.
Let x ∈ C be a Γ-centre. If x has no opposite in C then we are done. Otherwise there exists
λ ∈ YG(K) such that x = ζG(λ) and ζG(−λ) ∈ C. Set L = Lλ. We can regard VL(K) as a
subset of VG(K) via the inclusion i : L → G. Recall from Section 4.6 that we have a map
FP,L := κπ ◦ κ

−1
i from VG(K) to VL(K). The strategy is to show that Γ gives rise to a group

Γ′ of automorphisms of VL(K) and that FP,L(C) is a closed convex non-cr cone in VL(K)
stabilised by Γ′. Then one can look for a Γ′-centre x′ of FP,L(C), and show that κi(x

′) is a
Γ-centre of C. Repeating this process, one hopes eventually to find an unopposed Γ-centre
of C. We will explore this idea in more detail in [9].
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