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An on-the-fly deep neural network for simulating
time-resolved spectroscopy: predicting the
ultrafast ring opening dynamics of 1,2-dithiane†

Clelia Middleton, a Conor D. Rankineab and Thomas J. Penfold *a

Revolutionary developments in ultrafast light source technology are enabling experimental spectroscopists

to probe the structural dynamics of molecules and materials on the femtosecond timescale. The capacity

to investigate ultrafast processes afforded by these resources accordingly inspires theoreticians to carry

out high-level simulations which facilitate the interpretation of the underlying dynamics probed during

these ultrafast experiments. In this Article, we implement a deep neural network (DNN) to convert excited-

state molecular dynamics simulations into time-resolved spectroscopic signals. Our DNN is trained on-

the-fly from first-principles theoretical data obtained from a set of time-evolving molecular dynamics. The

train-test process iterates for each time-step of the dynamics data until the network can predict spectra

with sufficient accuracy to replace the computationally intensive quantum chemistry calculations required

to produce them, at which point it simulates the time-resolved spectra for longer timescales. The

potential of this approach is demonstrated by probing dynamics of the ring opening of 1,2-dithiane using

sulphur K-edge X-ray absorption spectroscopy. The benefits of this strategy will be more markedly

apparent for simulations of larger systems which will exhibit a more notable computational burden,

making this approach applicable to the study of a diverse range of complex chemical dynamics.

1 Introduction

Modern light sources and optics have led to a dramatic increase

in sophisticated time-resolved experimental techniques that

can reveal fine details about the excited-state dynamics of

molecules and materials on the atomic scales of time (femto-

second) and length (Angström). Methodologies such as ultra-

fast multidimensional spectroscopy,1 femtosecond stimulated

Raman spectroscopy,2 ultrafast electron diffraction (UED),3 and

time-resolved X-ray absorption spectroscopy (TR-XAS)4,5 offer

complimentary insights into the competition between different

photochemical and photophysical channels, couplings between

key vibrational modes and electronic states, and the electronic

and nuclear structural dynamics which underpin the functional

properties of the molecules and materials under study. However,

the complexity of these experiments and their data are such that

extracting the dynamics from the experimentally-obtained obser-

vables can be extremely challenging and, in practice, often

requires strong support from theory and computation.

This support often focuses on the simulation of quantities

such as electronic state population kinetics; which can be

compared directly to time constants extracted from fitting

kinetic models to the experimentally-obtained observables.

While useful, these theoretical quantities are not guaranteed to

be directly related to any of the experimental observables, and

previous works6 have highlighted the importance of simulating

the experimental observables directly to avoid the misinterpreta-

tion of the data. Ultimately, the direct evaluation of experimental

observables using simulations provides the critical connection

between experiment and theory that is required to maximise the

reliable information extracted from the experiment. It also

supplies a common vocabulary for theoreticians and experimen-

talists working on light-triggered processes to exchange and

develop meaningful interpretations of experimental data.

A time-dependent theoretical framework which describes

excited-state non-adiabatic nuclear dynamics is often essential

to reproduce accurately the experimental observables. When it

comes to carrying out simulations under such a framework,

trajectory-based approaches [e.g. trajectory surface hopping

(TSHD),7 ab initio multiple spawning (AIMS),8 or variational

multi-configurational Gaussian (VMCG) dynamics9] are appealing

since they circumvent the challenge presented by the exponential

scaling of quantum dynamics.10–12 Indeed, as both the potential

and experimental observables can be calculated on-the-fly with

aChemistry - School of Natural and Environmental Sciences, Newcastle University,

Newcastle upon Tyne, NE1 7RU, UK. E-mail: tom.penfold@ncl.ac.uk
bDepartment of Chemistry, University of York, York, YO10 5DD, UK

† Electronic supplementary information (ESI) available. See DOI: https://doi.org/

10.1039/d3cp00510k

Received 1st February 2023,

Accepted 21st April 2023

DOI: 10.1039/d3cp00510k

rsc.li/pccp

PCCP

PAPER

O
p
en

 A
cc

es
s 

A
rt

ic
le

. 
P

u
b
li

sh
ed

 o
n
 2

4
 A

p
ri

l 
2
0
2
3
. 
D

o
w

n
lo

ad
ed

 o
n
 5

/1
7
/2

0
2
3
 4

:3
2
:2

3
 P

M
. 

 T
h
is

 a
rt

ic
le

 i
s 

li
ce

n
se

d
 u

n
d
er

 a
 C

re
at

iv
e 

C
o
m

m
o
n
s 

A
tt

ri
b
u
ti

o
n
 3

.0
 U

n
p
o
rt

ed
 L

ic
en

ce
.

View Article Online
View Journal  | View Issue



13326 |  Phys. Chem. Chem. Phys., 2023, 25, 13325–13334 This journal is © the Owner Societies 2023

trivial parallelisation as and when (and only where) they are

required, trajectory-based approaches make it easier to translate

the quantum dynamics performed in higher dimensional space

into time-resolved spectra. Specifically, in the context of

X-ray spectroscopy13,14 – the focus of the present work – on-the-

fly trajectory-based approaches have been used to great effect to

model the ultrafast photochemical ring-opening reaction of 1,3-

cylohexadiene,15 the excited state relaxation of pyrazine,16,17 and

the non-radiative relaxation of ethene via a conical intersection

(CI).18 However, while trajectory-based approaches can reduce the

computational cost compared to traditional grid-based quantum

dynamics approaches,19,20 there remains still a significant com-

putational cost associated with carrying out an (X-ray) spectral

simulation at each time step; this cost is preclusive for larger

systems, especially where high-accuracy quantum-chemical calcu-

lations are required to describe satisfactorily complex effects.

We have previously developed21,22 and deployed25–27 a deep

neural network (DNN) – XANESNET28 – for predicting the line-

shape of X-ray absorption (XAS)21,22,29 and emission (XES)23

spectra. XANESNET predicts spectral lineshapes using only local

information about the coordination geometry of the absorbing

atom. It can be optimised in as little as a minute and predicts

instantaneously, making it a powerful tool for reducing the

computational cost associated with simulating time-resolved

spectra. Towards developing DNNs for this kind of application,

there are two distinct approaches: one can either develop a ‘Type I’

DNN, trained for generality in the sense that it is able to simulate

an XAS/XES spectrum for an arbitrary absorbing atom in any

coordination environment at a given absorption edge (our pre-

vious work has, to date, focused on this approach21,22), or a ‘Type

II’ DNN, trained for a specific (time-dependent) problem. A

general ‘Type I’ model might be a sub-optimal solution for the

prediction of the fine structure that can typically be acquired in

modern ultrafast experiments. Consequently, in this Article, we

work with a ‘Type II’ DNN and apply our model to investigate

theoretically the ultrafast excited-state ring-opening dynamics of

1,2-dithiane (for structure see Fig. 1) as studied with sulphur K

edge XAS. Our results show that our ‘Type II’ DNN, trained on-the-

fly using first-principles geometric and XAS spectral data obtained

from excited-state TSHD, offers an accurate, affordable, and

computationally efficient approach for translating nuclear

dynamics into time-resolved experimental observables.

2 Method and computational details
2.1 Trajectory surface-hopping dynamics of 1,2-dithiane

Nonadiabatic TSHD simulations of the ultrafast excited-state

ring-opening dynamics of 1,2-dithiane have been previously

published in ref. 30, and the complete computational details

are contained therein. Briefly: 51 independent initial condi-

tions sampled from a ground-state (S0) Wigner-distributed

ensemble were transformed into the first electronically-

excited (S1; s�S�S  LPS) state according to their computed

transition energies and moments, and then trajectories were

propagated classically over the excited state potential energy

surface for 1 ps using a 0.5 fs integration time step via the

velocity-Verlet algorithm. The nonadiabatic transition probabil-

ities were accounted for using the the fewest-switches algorithm.31

Fig. 1(a) shows the population kinetics of the S0 (ground

state) and S1 and S2 (together, as the excited states) over the first

900 fs post-photoexcitation to the S1 state. The excited state

population in Fig. 1(a) couples together both the S1 and S2
states since the latter has only a minor contribution in the early

part of the dynamics and the two form a degenerate pair of

s�S�S  LPS states at later times, so we do not represent the

states separately. In the XAS spectral simulations, the treatment

of the S1 and S2 states is discussed in more detail below.

Fig. 1(b) shows the average (with one standard deviation

covered by the shaded area) S–S internuclear distance as a

function of time obtained from the TSHD simulations. An

initial coherent oscillation with a temporal period of E350 fs

is observed, followed by a significant increase in the standard

Fig. 1 (a) Electronic state population kinetics obtained from the first

900 fs of TSHD simulations. (b) Average (line) and standard deviation

(shaded region) of the S–S internuclear distance obtained from the first

900 fs of TSHD simulations. TSHD simulations were propagated following

the transformation of 51 initial conditions sampled from a ground-state

(S0) Wigner-distributed ensemble into the first electronically-excited

(S1; s
�
S�S  LPS) state. Data were obtained from ref. 30.
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deviation and a damping of the oscillation which indicates

vibrationally-hot incoherent motion occurring across the S0-

and S1/S2-state potential energy surfaces at later times. This

behaviour, discussed in detail in ref. 30, agrees well with

previous experimental observations obtained via time-resolved

ion spectroscopy.32

2.2 Sulphur K-edge XAS simulations

Sulphur K-edge XAS spectra were simulated using restricted-

excitation-window time-dependent density functional theory

(REW-TDDFT)33 within the approximation(s) of the BP86

exchange-and-correlation functional34,35 as implemented in the

ORCA36 quantum chemistry package. The REW-TDDFT equations

were solved for 60 states under the Tamm-Dancoff approximation

(TDA),37 and the interaction with the X-ray field was accounted for

under the electric quadrupole approximation.33 The scalar relati-

vistic effects were described using a Douglas–Kroll–Hess (DKH)

Hamiltonian of 2nd order.38 The DKH-def2-TZVP39 basis set was

used throughout.

To calculate the sulphur K-edge XAS spectra of the

electronically-excited states (S1/S2), the reference wavefunction

for the valence-excited states was approximated using the lowest-

lying triplet electronically-excited state (T1) of 1,2-dithiane, which

has very similar electronic structure to the lowest-lying

electronically-excited singlet states (S1/S2) and represents a tract-

able approximation due to the lack of spin sensitivity in XAS.40

As detailed in ref. 30, the S1 and S2 states correspond to s�S�S  

LPS transitions which are close in energy (near degenerate at later

times in the TSHD simulations) and, given the similarity of their

character, should be expected to exhibit similar sulphur K-edge

XAS spectra. The T1 state, which we use as a proxy, also corre-

sponds to a s�S�S  LPS transition and approximates the char-

acter of the S1 and S2 states well – certainly sufficiently well for the

scope of the present work which aims primarily to establish the

effectiveness of training our ‘Type II’ DNN on the fly.

2.3 Deep neural network

The architecture of the ‘Type II’ DNN used in this Article closely

follows that of XANESNET,28 as detailed in ref. 22. XANESNET

is a deep multilayer perceptron (MLP) machine-learning model

comprising an input layer, two hidden layers, and an output

layer. All layers are dense, i.e. fully connected, and each hidden

layer performs a nonlinear transformation using the rectified

linear unit (ReLU) activation function. Featurisation is per-

formed via dimensionality reduction using the wACSF descrip-

tor of Gastegger and Marquetand et al.41 As constructed in this

Article, the input layer contained 49 neurons comprising a

‘global’ (G1) function, 16 radial (two-body; G2) functions, and

32 angular (three-body; G4) functions, and the first hidden layer

contained 256 neurons with each subsequent hidden layer

reducing in size by 50% relative to the size of the preceding

layer. The linear output layer contained 359 neurons from

which the discretised sulphur K-edge XAS spectrum was

retrieved. The internal weights, W, were optimised via iterative

feed-forward and backpropagation cycles to minimise the

empirical loss, J(W), defined here as the mean-squared error

(MSE) between the predicted, mpredict, and target, mtarget, sulphur

K-edge XAS spectra over the reference dataset, i.e. an optimal

set of internal weights,W*, was sought to satisfy argmin
W

J Wð Þð Þ.

Gradients of the empirical loss with respect to the internal

weights, dJ(W)/dW, were estimated over minibatches of 32

samples and updated iteratively according to the Adaptive

Moment Estimation (ADAM)42 algorithm. The learning rate

for the ADAM algorithm was set to 1 � 10�4. The internal

weights were initially set according to the He43 uniform dis-

tribution. Unless explicitly stated in this Article, optimisation

was carried over 2000 epochs. Regularization was implemented

to minimise the propensity of overfitting; batch standardisa-

tion and dropout were applied at each hidden layer. The

probability of dropout at each epoch was set to 0.30.

The XANESNET DNN is programmed in Python 3 with the

TensorFlow44/Keras45 API and integrated into a Scikit-Learn46

(sklearn) data pre- and post-processing pipeline via the Keras-

Regressor wrapper for Scikit-Learn. The Atomic Simulation

Environment47 (ase) API is used to handle and manipulate

molecular structures. The code is publicly available under the

GNU Public License (GPLv3) on GitLab.28

In this Article, the objective is to develop a ‘Type II’ DNN to

translate the TSHD simulations described above into time-

resolved XAS spectroscopic signals. The DNN is trained on the

fly from first-principles data (geometries and sulphur K-edge XAS

spectra) obtained/calculated at each time step, and is then used to

predict all future timesteps. After each iteration of this process,

the DNN predictions are assessed for accuracy (Fig. 2). We aim to

find the timestep at which the DNN can provide predictions that

substitute for the time-consuming quantum-chemical calcula-

tions which would otherwise be required to obtain the time-

resolved sulphur K-edge XAS spectra at later times. At each

timestep, two DNN are trained using data from the preceding

timesteps: one for the electronic ground state (S0) and one for the

electronically-excited states (S1/S2, using the T1 as a proxy). The

two DNNs are then used to predict the sulphur K-edge XAS spectra

for all future timesteps, the choice of DNN depending on whether

the trajectory is in the S0 or S1/S2 state at that timestep. We assess

the point at which the DNN can substitute for the quantum-

chemical calculations in two ways. Firstly, we use a cosine

similarity metric to quantify the difference between the predic-

tions and quantum-chemical calculations at each time step after

the point up to which the DNNs were trained; while this provides

an appropriately accurate assessment for this proof-of-concept

work, the obvious limitation is that this approach requires the

quantum-chemical calculations to already be available for all

future timesteps. Secondly, and, principally, to circumvent this

requirement, we also assess the cutoff using the model uncer-

tainty evaluated using the ensembling methodology.23 Principally,

ensembling exploits the fact that there is no guarantee that there

exists a single unique set of internal weights,W*, for a DNNwhich

satisfy argmin
W

J Wð Þð Þ. Practically, ensembling involves training

multiple (N) instances of each DNN using the same reference

dataset but different statistical initialisations forW. The ensemble
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of N DNNs is then used to produce N independent predictions

from which a mean prediction and standard deviation for each

input can be derived. The latter is used to quantify the ensemble

uncertainty for the predictions. In this present Article, ensembling

is performed at each timestep and the point at which the DNN is

sufficiently capable of substituting for the quantum-chemical

calculations is taken to be the point at which the standard

deviation converges to its minimum value.

3 Results and discussion
3.1 Time-resolved sulphur K-edge XAS spectra from first

principles

Fig. 3(a) and (b) show the ground- (S0) and excited-state (S1/S2)

sulphur K-edge XAS spectra as a function of the S–S internuclear

distance along the ring-opening coordinate. The S0-state sulphur

K-edge XAS spectrum corresponding to the (initial; equilibrium)

ring-closed structure of 1,2-dithiane exhibits a main band at

2404 eV with a shoulder on the high-energy front. This main

band, within a single-electron picture, corresponds to transi-

tions from each of the S 1 s orbitals into the low-lying

unoccupied s�S�S orbital. The shoulder corresponds to transi-

tions into the s
�
C�S orbitals, with the latter being weaker

transitions than the former as a consequence of the reduced

spatial overlap between these orbitals and the S 1 s orbitals.

Upon photoexcitation into the S1 state – a HOMO–LUMO

s�S�S  LPS transition – an additional band appears at

E2401 eV (Fig. 3(b)), corresponding to transitions from the S

1 s orbitals into the sulphur ‘lone pair’ (LPS) orbitals which now

contain holes as a consequence of the photoexcitation process.

There is also a reduction in the energy gap between the s�S�S

and s�C�S orbitals. For the ring-opened structure, both the S0-

and S1/S2-state sulphur K-edge XAS spectra show a distinct low-

energy feature similar to the excited-state sulphur K-edge XAS

spectrum of the ring-closed structure. This is because the ring-

opened structure contains two terminal sulphur radicals and

the lowest-energy unoccupied orbitals, similarly, are of the LPS
type. The highly localised nature of the LPS orbitals and the

initial S 1 s core electron means that these transitions are much

less sensitive to changes in geometry than the other features

present in the sulphur K-edge XAS spectrum.

In the S0 state (Fig. 3(a)) a shift of the first feature towards

lower energy occurs as ring opening proceeds. This reflects the

elongation of the S–S bond. In the S1/S2 states (Fig. 3(b)), the

low-energy feature at 2401 eV is already present at the equili-

brium/Franck–Condon geometry and so little change in this

peak with S–S bond length is observed. A similar observation is

made with respect to the main band shifting towards lower

energy. However, in contrast to what we observe for the S0 state,

the shift is weaker. It is noted that both the S0- and S1/S2-state

sulphur K-edge XAS spectra are very similar at longer S–S inter-

nuclear distances as a consequence of the near-degeneracy of the

three states at the ring-opened geometries.

Fig. 2 A schematic of the workflow used in this Article. The DNN takes as input geometries obtained from the TSHD simulations of 1,2-dithiane, carried

out in ref. 30, and the calculated sulphur K-edge XAS spectra for these geometries up until some time, T, after excitation. These pairs of geometries and

sulphur K-edge XAS spectra constitute the reference dataset on which the DNN carries out supervised learning. The optimised DNN is used to predict the

sulphur K-edge XAS spectra for all future timesteps up until the final timestep, and the error – or loss – associated with the predictions is quantified by the

cosine similarity between the theoretical target and DNN-predicted sulphur K-edge XAS spectra. This process is repeated at sequential timesteps, T + DT,

until the cosine similarity between the theoretical target and DNN-predicted sulphur K-edge XAS spectra converges.
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Fig. 4 shows the temporal evolution of the sulphur K-edge

XAS spectra from the ensemble average of the 51 TSHD

trajectories over 900 fs post-photoexcitation to the S1 state.

Fig. S1–S51 – found in the ESI† – show the temporal evolution

of the sulphur K-edge XAS spectra for each of the 51 TSHD

trajectories individually. Fig. 4 shows two distinct and

temporally-evolving bands centred around 2401 and 2405 eV,

consistent with the static simulations along the ring-opening

coordinate (Fig. 3).

At early times, the band at 2401 eV shows oscillatory

behaviour with a period of E150 fs. This mirrors the popula-

tion kinetics (Fig. 3(a)). As shown in Fig. 3, this first transition

exhibits quite different behaviour in the ground and excited

state and therefore it is unsurprising that the oscillations in

this band reflects the population kinetics. In contrast, the peak

at 2405 eV shows oscillations with two distinct time periods,

one of B50 fs and another B340 fs. The latter is consistent

with changes in the S–S bond length, which as expected from

Fig. 1(b) shows one distinct oscillation before being damped

from the loss of coherence. The former 50 fs component

corresponds to oscillations in C–S bond lengths, while coher-

ence is reduced during the dynamics, these oscillations remain

more visible throughout the first 900 fs. This peak does not

exhibit any kinetics associated with the population kinetics as

the spectral shape is less sensitive to the fine details of the

electronic state populated than geometric changes occurring

during the dynamics. Both of the bands show little clear

variation after E400 fs, consistent with the dephasing of the

coherent nuclear motion (Fig. 1(b)) after the first ring-opening/

ring-closing cycle and the progression of the system towards

vibrationally-hot incoherent motion occurring across the S0-

and S1/S2-state potential energy surfaces at later times.

3.2 Predicting the sulphur K-edge XAS signal using

XANESNET

Having established the time evolution of the sulphur K-edge

XAS spectra using quantum-chemical calculations, we turn our

attention towards reproducing the same spectral simulations

using our ‘Type II’ DNN. As described in the Methods section,

we train two DNNs at each timestep: one for the S0 state, and

one for the S1/S2 states. The training data comprises, in each

case, all of the geometric and sulphur K-edge XAS spectral data

calculated until the current timestep, T. The two DNNs are then

used to predict the sulphur K-edge XAS spectra for all future

timesteps. Fig. 5 shows the mean cosine similarity of all spectra

predicted from timestep T to T = 900 fs. We acknowledge that,

although the cosine similarity metric ignores differences in

magnitude between the predicted and target sulphur K-edge

XAS spectra, our focus here is on reproduction of the spectral

shape alone as all of our sulphur K-edge XAS spectra have been

normalised to the largest value during their dynamics. The

cosine similarity shows a rapid improvement from 0.86 to 0.94

within the first 100 fs, followed by a subsequent plateau

suggesting that 100 fs of first-principles data is sufficient to

predict satisfactorily the sulphur K-edge XAS spectra for all

future timesteps. 100 fs is a surprisingly short timescale for this

data to be acquired over, but it corresponds approximately to

Fig. 3 Evolution of the sulphur K-edge XAS spectrum along the ring-

opening coordinate in (a) the electronic ground state (S0) and (b) the

lowest-lying electronically-excited states (S1/S2, using the T1 state as a

proxy). Calculated using REW-TDDFT at the DKH-BP86/def2-TZVP level.

Fig. 4 Time-resolved sulphur K-edge XAS spectrum associated with the

ultrafast excited-state ring-opening dynamics of 1,2-dithiane. Calculated

using REW-TDDFT at the DKH-BP86/def2-TZVP level.
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the time required for the S–S internuclear distance to reach its

maximum value (Fig. 1(b)). Suggesting that in this case, once a

DNN is trained on first principles sampling the full range of S–S

bond length, it has sufficient information to predict the

remaining spectra up to the 900 fs studied in this work. This

is discussed in more detail in Section 3.3.

This is supported in Fig. 6 which shows a plot of the principal

t-distributed stochastic neighbour embedding (t-SNE) compo-

nents of the wACSF descriptor encoding each local geometry at

every timestep (colour bar) of the dynamics. t-SNE is a statistical

approach for reducing the dimensionality of datasets.24 In con-

trast to the more commonly-used linear dimensionality reduction

approach of principal component analysis (PCA), t-SNE is a non-

linear dimensionality reduction approach which, unlike PCA,

seeks to preserve the local structure of data by minimizing the

Kullback–Leibler (KL) divergence between distributions with

respect to the locations of the points in the map. In contrast to

PCA, t-SNE is not a black box, but instead requires user-defined

hyperparameters: the perplexity, learning rate, and the number of

iterations (which, to produce Fig. 6, were set to 50, 60, and 1000,

respectively). The t-SNE visualisation presented in Fig. 6 shows

that the wACSF embeddings describing the equilibrium/Franck–

Condon structures are centred around 20 (t-SNE1), 0 (t-SNE2).

During the first 200 fs post-photoexciation, t-SNE1 gradually

transforms to �20, while t-SNE2 initially decreases, suddenly

increases at E100 fs, and then subsequently decreases again to

0 at E200 fs. Post-350 fs t-SNE1 and t-SNE2 disperse over the

entire t-SNE component space, reflecting the vibrationally-hot

incoherent dynamics that take over the TSHD simulations at later

times. This illustrates, consistent with the analysis performed in

the previous paragraph, that a significant amount of the t-SNE1
and t-SNE2 space has been covered within the first 100 fs, which

explains the convergence observed in Fig. 5.

Fig. 7(a) and (b) show theoretical (target) and DNN-predicted

time-resolved sulphur K-edge XAS spectra over the first 900 fs

post-photoexcitation, respectively. Percentage errors between

the theoretical (target) and DNN-predicted time-resolved sul-

phur K-edge XAS spectra are tabulated in Table 1. In contrast to

Fig. 4, the first 120 fs are left blank in Fig. 7(a) and (b) as this

timeframe contains the first-principles data from which the

DNN learns and on which no predictions are made (see Fig. 5).

Overall, we observe good agreement (particularly at early times)

between the theoretical and DNN-predicted sulphur K-edge XAS

spectra: the oscillatory behaviour of both bands – associated

with the population kinetics and changes in S–S internuclear

distance – is successfully reproduced by the DNN. However,

any comparison between the theoretical and DNN-predicted

sulphur K-edge XAS spectra for the trajectory ensemble at later

times (e.g. t 4 500 fs) is complicated by the vibrationally-hot

nuclear wavepacket and the progression of incoherent

dynamics. Consequently, we focus our analysis of the perfor-

mance of the DNN on individual trajectories from the trajectory

ensemble which, we assert, are a more stringent test of the

quality of the DNN predictions.

Fig. 8 shows a comparison between the theoretical and DNN-

predicted time-resolved sulphur K-edge XAS spectra for three

individual trajectories. The corresponding plots for the remaining

trajectories are shown in Fig. S55–S102 (ESI†). These show much

more fine detail in the dynamics than is visible at the trajectory

ensemble level and – importantly – in each case show good

agreement between the theoretical DNN-predicted sulphur K-

edge XAS spectra. Fig. 8(a) and (b) show the theoretical and

DNN-prredicted sulphur K-edge XAS spectra for Trajectory 1 and

the percentage error between the two simulations is tabulated in

Table 1. The oscillations present in the theoretical simulations are

also observed in the DNN simulations with an overall percentage

error under 10%. The merging of the two peaks observed atE300

and E700 fs are associated with the reformation of the S–S bond

at these timescales. Similar behaviour is observed for Trajectory 2

Fig. 5 Evolution of the cosine similarity loss metric as a function of the

training set size; the training set comprises all timesteps up to the training

time (T; on the x axis).

Fig. 6 t-SNE embedding of the wACSF feature vectors (encoding the

local geometries around the absorbing atoms) for all geometries across all

timesteps and all trajectories. Embeddings are colour-coded according to

their timestep. The initialisation of the t-SNE embedding was performed

via PCA, the learning rate was set to 50, the perplexity was set to 60, and

1000 iterations were carried out.
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in Fig. 8(c) and (d); in this case, the S–S bond reforms atE300 and

E600 fs. Fig. 8(e) and (f), showing the time-resolved sulphur

K-edge XAS spectra for Trajectory 3, illustrate different behaviour:

once the S–S bond reforms after E300 fs, non-radiative internal

conversion returns the molecule to the S0 state in a vibrationally

hot condition and rapid oscillations are observed, corresponding

to vibrational activity of the S–S stretching mode.

To quantify the error between the calculated and DNN

predicted time-resolved spectra, Table 1 shows the overall

percentage error and the error in 4 time windows for the overall

ensemble and the trajectories shown in Fig. 8. The corres-

ponding table for the remaining trajectories is shown in the

Table S1 (ESI†). For the individual trajectories the overall

percentage error is B10%, with the error being smaller in the

first two time-windows and increasing slightly in the final two.

The overall percentage error of the ensemble (shown in Table 1)

is larger than the error of most of the individual trajectories,

indicating (i) the influence of the worst trajectories and (ii) that

combining each of the individual trajectories into the ensemble

can compound the overall error. This influence of individual

trajectories makes it interesting to consider the weighting given

to each trajectory in the ensemble. For TSH dynamics used here

each trajectory should have equal weights for all time-step,

alternatively for Gaussian based methods, the weighting of the

trajectory basis functions is dynamic and calculated during the

dynamics.16,18,48 An alternative approach adopted to analyse

time-resolved scattering experiments used the weighting as a

free parameter to fit the experimental spectra.15 This would

provide one criteria to eliminate trajectories exhibiting large

errors and the weighings determined to achieve a good agree-

ment with experimental data could be used to establish the

dominant photochemical pathways from an ensemble of trial

trajectories.

3.3 Determining if a model is sufficiently trained for an

unknown system

Up until this point, we have assessed whether the DNN is

sufficiently trained to predict future timesteps based on an

evaluation of the cosine similarity metric between the theore-

tical and DNN-predicted sulfur K-edge XAS spectra for those

future timesteps (Fig. 5). However, this approach is not parti-

cularly useful in practice as it requires that quantum-chemical

calculations have already been carried out for all timesteps –

this then makes the DNN redundant. Consequently, a metric

which supplies an error/uncertainty, enabling one to judge

when the DNN model is sufficiently capable and confident in

a prediction, is required.

One approach could be to execute quantum-chemical calcu-

lations to assess the prediction error for a limited time window

after the DNN model has been developed up until the predic-

tion error is minimised. However, such an approach would

likely fail to account for scenarios where the system explores a

region of the potential energy surface which is significantly

different to region(s) explored in the early timesteps with which

the DNN was trained. Another approach could be to execute a

small number of quantum-chemical calculations distributed

throughout the future time window for the purposes of asses-

sing the prediction error at specific future times, and to assume

that these samples cover sufficiently the space of the potential

energy surface that is explored. However, this is certainly not

straightforward to assume.

Alternatively, we can implement a broader uncertainty

awareness into the DNN itself using an ensembling approach.23,49

Fig. 7 Time-resolved sulphur K-edge XAS ensemble-averaged spectrum associated with the ultrafast excited-state ring-opening dynamics of 1,2-

dithiane. (a) Calculated using REW-TDDFT at the DKH-BP86/def2-TZVP level. (b) Predicted using the DNN detailed in this Article. Plots are shown from

120 fs onwards, as the DNN has been trained on the data from all timesteps up until 120 fs.

Table 1 Percentage errors averaged over the duration of the trajectory

for each of trajectories 1, 2, and 3 (Fig. 8), and for the full trajectory

ensemble; also tabulated are the percentage errors averaged over four

time windows: I (100–300 fs), II (300–500 fs), III (500–700 fs) and IV (700–

900 fs). The corresponding table for the remaining trajectories in the

trajectory ensemble is found in the ESI (Table S1)

Trajectory Overall I II III IV

1 8.4 3.7 8.7 10.1 11.1
2 8.7 5.1 7.6 11.7 10.2
3 11.5 6.0 14.1 14.8 10.9
Overall 10.2 5.2 11.3 11.7 12.7
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Practically, ensembling involves training multiple (N) instances

of each DNN using the same reference dataset but different

statistical initialisations for W. The ensemble of N DNNs is

then used to produce N independent predictions from which a

mean prediction and standard deviation for each input can be

derived. The latter is used to quantify the ensemble uncertainty

for the predictions. The concept behind this interpretation is

that different W* obtained from the N models in the ensemble

will tend towards similar predictions when the inputs are

similar to those found in the reference data. This is because

W* for each DNN instance, even if/when different, have been

optimised for comparable data. In contrast, if the inputs are

dissimilar to the inputs found in the reference dataset, each of

the N independent predictions will be more greatly affected by

W* and a higher standard deviation will consequently be

observed. The deviation of ensembled predictions hence pro-

vides, to the end user, a barometer of the ‘dependability’ of the

DNN for an application with their own dataset.

Fig. 9(a) shows the median relative standard deviation for

the ensembled predictions as a function of the training time.

This shows a rapid decrease with convergence observed around

100 fs, in close agreement with that shown in Fig. 5. This

Fig. 8 Time-resolved sulphur K-edge XAS spectra associated with the ultrafast excited-state ring-opening dynamics of 1,2-dithiane for three individual

trajectories (1, 2, and 3) taken from the trajectory ensemble average shown in Fig. 7. (a), (c), (e) Calculated using REW-TDDFT at the DKH-BP86/def2-TZVP

level. (b), (d), (f) Predicted using the DNN detailed in this Article. The remaining individual trajectories are shown in the ESI.† Plots are shown from 120 fs

onwards, as the DNN has been trained on the data from all timesteps up until 120 fs.
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indicates that for general application where all of the first

principles calculations do not exist, this metric could be used

to assess the point at which convergence is reached. For this

case study, the convergence around 100 fs is consistent with

previous analysis of the convergence this time window suffi-

ciently covers the full range of S–S bond distances covered

throughout the rest of the dithiane ring-opening dynamics.

For more detail, Fig. 9(b) shows the relative standard deviation

as a function of time for the spectra trained up to 110 fs. This

shows a small increase between 120–400 fs followed by a plateau

for the remaining time of the simulations. A comparison for

models with shorter training times can be found in Fig. S54

(ESI†), which show a much greater increase in the relative

standard deviation. To exemplify the uncertainty obtained from

the ensembling models, Fig. 9(c) shows two spectra with �2s,

calculated from the ensembling technique.

4 Conclusions

In this Article, we have applied the XANESNET DNN to transform

excited-state TSHD simulations into time-resolved experimental

sulphur K-edge XAS spectral signals. Taking advantage of the

accurate, affordable, and instantaneous predictions produced by

the XANESNET DNN, we bypass the intensive quantum-chemical

calculations that are usually necessary to simulate time-evolving

XAS spectra from (excited-state) molecular dynamics simulations.

We have shown that our ‘on-the-fly’ train-test procedure, iterated

at each timestep of the TSHD simulation, converges quickly and is

able to substitute effectively for (otherwise) time-consuming

quantum-chemical calculations. Consequently, we anticipate that

this approach could become an important auxiliary tool for

simulating and interpreting time-resolved XAS spectra.

For the present example presented in this article – the ultrafast

excited-state ring-opening dynamics of 1,2-dithiane – we find that

E100 fs of TSHD simulation provides sufficient first-principles data

to train a DNN which is then able to predict accurately the sulphur

K-edge XAS spectra at future (unseen) timesteps in the TSHD

simulation. In this particular case – the periodic ring-opening/

ring-closing dynamics of 1,2-dithiane – this training time window

can be rationalised as it covers the time required for the S–S bond to

break post-photoexcitation to an s�S�S  LPS state and survey

subsequently a significant amount of coordinate space. However,

for future applications, where convergence may be less straightfor-

ward, we have also demonstrated that the ensembling approach can

be used to assess the uncertainty of the DNN, providing an

indication of whether or not the DNN is sufficiently trained to

reproduce reliably and accurately the pertinent signals of the XAS

spectra. In the present formulation, the DNNmaps (local) structure

onto the XAS spectral lineshape and, consequently, any interpreta-

tion drawn from using the DNN will be in terms of how the nuclear

wavepacket or ensemble dynamics map onto the (experimental)

spectroscopic observables. The DNN is therefore unable to provide –

directly, at least – information on the electronic wavepacket

dynamics and, under the present framework, such information

would still require first-principle quantum-chemical calculations;

however, these could be carried out at reduced computational cost

in a targeted manner, e.g. at critical geometries/times identified

from the experimental and/or DNN-predicted dynamics.

Overall, this Article demonstrates a particularly promising

new approach for the simulation and interpretation of time-

resolved X-ray spectroscopic signals. Extension to systems of

higher dimensionality is straightforward under the present

framework, and our ‘on-the-fly’ train-test procedure should

have broad applicability to trajectory-based approaches for

simulating time-resolved X-ray spectroscopic signals for a

diverse range of chemical dynamics – particularly dynamics

on longer timescales and for larger systems that the computa-

tional cost of these simulations presently precludes.
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Fig. 9 (a) Median relative standard deviations of the DNN-predicted time-

resolved sulphur K-edge XAS spectra at timesteps greater than the model

training time. (b) Median relative standard deviations as a function of time

for the spectra trained up to 110 fs, as shown in Fig. 7. (c) Sulphur K-edge

XAS spectra at 225 and 800 fs, including 2s uncertainty (shaded region)

calculated via the ensembling approach.
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G. Vankó, Faraday Discuss., 2016, 194, 731–746.

21 C. D. Rankine, M. M. M. Madkhali and T. J. Penfold, J. Phys.

Chem. A, 2020, 124, 4263–4270.

22 C. D. Rankine and T. Penfold, J. Chem. Phys., 2022, 156, 164102.

23 T. Penfold and C. Rankine, Mol. Phys., 2022, e2123406.

24 L. Van der Maaten and G. Hinton, J. Mach. Learn. Res., 2008, 9, 11.

25 M. M. M. Madkhali, C. D. Rankine and T. J. Penfold,

Molecules, 2020, 25, 2715.

26 M. M. M. Madkhali, C. D. Rankine and T. J. Penfold, Phys.

Chem. Chem. Phys., 2021, 23, 9259–9269.

27 E. Falbo, C. Rankine and T. Penfold, Chem. Phys. Lett., 2021,

780, 138893.

28 XANESNET, 2021, gitlab.com/conor.rankine/xanesnet.

29 L. Watson, C. D. Rankine and T. J. Penfold, Phys. Chem.

Chem. Phys., 2022, 24, 9156–9167.

30 C. D. Rankine, J. P. F. Nunes, M. S. Robinson, P. D. Lane and

D. A. Wann, Phys. Chem. Chem. Phys., 2016, 18, 27170–27174.

31 S. Hammes-Schiffer and J. C. Tully, J. Chem. Phys., 1994, 101,

4657–4667.

32 A. B. Stephansen, R. Y. Brogaard, T. S. Kuhlman, L. B. Klein,

J. B. Christensen and T. I. Sølling, J. Am. Chem. Soc., 2012,

134, 20279–20281.

33 S. D. George, T. Petrenko and F. Neese, Inorg. Chim. Acta,

2008, 361, 965–972.

34 A. D. Becke, Phys. Rev. A: At., Mol., Opt. Phys., 1988, 38, 3098.

35 J. P. Perdew, Phys. Rev. B: Condens. Matter Mater. Phys., 1986,

33, 8822.

36 F. Neese, F. Wennmohs, U. Becker and C. Riplinger, J. Chem.

Phys., 2020, 152, 224108.

37 S. Hirata and M. Head-Gordon, Chem. Phys. Lett., 1999, 314,

291–299.

38 M. Reiher, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2012, 2,

139–149.

39 F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005,

7, 3297–3305.

40 S. Eckert, J. Norell, R. M. Jay, M. Fondell, R. Mitzner, M. Odelius

and A. Föhlisch, Chem. – Eur. J., 2019, 25, 1733–1739.

41 M. Gastegger, L. Schwiedrzik, M. Bittermann, F. Berzsenyi

and P. Marquetand, J. Chem. Phys., 2018, 148, 241709.

42 D. P. Kingma and J. L. Ba, arXiv, 2014, preprint, arXiv:1412.6980.

43 K. He, X. Zhang, S. Ren and J. Sun, arXiv, 2015, preprint,

arXiv:1502.01852.

44 M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. S. Corrado, A. Davis, J. Dean and M. Devin

et al., TensorFlow: Large-Scale Machine Learning on Hetero-

geneous Distributed Systems, 2015, tensorflow.org/.

45 Keras, 2015, github.com/keras-team/keras.

46 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,

B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss

and V. Dubourg, et al., J. Mach. Learn. Res., 2011, 12,

2825–2830.

47 A. Hjorth Larsen, J. Jorgen Mortensen, J. Blomqvist,

I. E. Castelli, R. Christensen, M. Dułak, J. Friis,

M. N. Groves, B. Hammer and C. Hargus, et al., J. Phys.:

Condens. Matter, 2017, 29, 273002.

48 T. Northey, J. Duffield and T. Penfold, J. Chem. Phys., 2018,

149, 124107.

49 A. Ghose, M. Segal, F. Meng, Z. Liang, M. S. Hybertsen,

X. Qu, E. Stavitski, S. Yoo, D. Lu and M. R. Carbone, Phys.

Rev. Res., 2023, 5, 013180.

Paper PCCP

O
p
en

 A
cc

es
s 

A
rt

ic
le

. 
P

u
b
li

sh
ed

 o
n
 2

4
 A

p
ri

l 
2
0
2
3
. 
D

o
w

n
lo

ad
ed

 o
n
 5

/1
7
/2

0
2
3
 4

:3
2
:2

3
 P

M
. 

 T
h
is

 a
rt

ic
le

 i
s 

li
ce

n
se

d
 u

n
d
er

 a
 C

re
at

iv
e 

C
o
m

m
o
n
s 

A
tt

ri
b
u
ti

o
n
 3

.0
 U

n
p
o
rt

ed
 L

ic
en

ce
.

View Article Online


