
This is a repository copy of Optimal Coupling of Jumpy Brownian Motion on the Circle.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/199017/

Version: Accepted Version

Article:

Connor, Stephen orcid.org/0000-0002-9785-2159 and Merli, Roberta (2023) Optimal 
Coupling of Jumpy Brownian Motion on the Circle. Journal of Applied Probability. ISSN 
1475-6072 

https://doi.org/10.1017/jpr.2023.38

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Applied Probability Trust (2 May 2023)

OPTIMAL COUPLING OF JUMPY BROWNIAN MOTION

ON THE CIRCLE

STEPHEN B. CONNOR,∗ University of York

ROBERTA MERLI, University of York

Abstract

Consider a Brownian motion on the circumference of the unit circle, which

jumps to the opposite point of the circumference at incident times of an

independent Poisson process of rate λ. We examine the problem of coupling

two copies of this ‘jumpy Brownian motion’ started from different locations, so

as to optimise certain functions of the coupling time.

We describe two intuitive co-adapted couplings (‘Mirror’ and ‘Synchronous’)

which differ only when the two processes are directly opposite one another, and

show that the question of which strategy is best depends upon the jump rate

λ in a non-trivial way. We also provide an explicit description of a (non co-

adapted) maximal coupling for any jump rate in the case that the two jumpy

Brownian motions begin at antipodal points of the circle.

Keywords: Co-adapted coupling; mirror and synchronous coupling; maximal

coupling; stochastic control; HJB equation
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1. Introduction

Consider a continuous time stochastic process X = (Xt)t≥0 on (−π, π]given by

Xt = X0 +
1

2
Bt + πNλ

t (mod 2π) , (1)

where Bt is a standard R-valued Brownian motion and Nλ is an independent Poisson

process of rate λ ≥ 0. (The factor of a half is introduced purely for algebraic con-
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2 S.B. CONNOR AND R. MERLI

venience in what follows.) X is a Lévy process which can be viewed as a Brownian

motion on the circumference of the unit circle which jumps to the antipodal point of

the circle at incident times of Nλ. For this reason, we will refer to the process X as a

jumpy Brownian motion of rate λ (JBM(λ)).

In this paper we are interested in couplings of two JBM(λ) processes started from

different points of the circle. That is, we are interested in processes (X, X̂) on (−π, π]2

such that, viewed marginally, X and X̂ each behave as a copy of JBM(λ). Given a

coupling (X, X̂), we define the coupling time by

T = inf{t ≥ 0 : Xs = X̂s for all s ≥ t} .

Recall that the tail distribution of any coupling time provides an upper bound on the

total variation distance between the laws of Xt and X̂t via the coupling inequality [1]:

∥L(Xt)− L(X̂t)∥TV ≤ P(T > t) , (2)

where

∥L(Xt)− L(X̂t)∥TV = sup
A

{P(Xt ∈ A)− P(X̂t ∈ A)} (3)

and where the supremum is taken over all Borel subsets of (−π, π]. A coupling is called

successful if P(T > t) → 0 as t → ∞; it is called maximal if it achieves equality in (2)

for all times t.

It is well known that a maximal coupling of two random processes exists under

extremely mild conditions: see [7, 16, 6] for discrete-time processes, and [18] for the

case of càdlàg processes with Polish state-space. However, in most cases, explicit

construction of a maximal coupling is extremely difficult, and it is natural for attention

to focus on classes of couplings which are more readily realisable. One such class is

that of co-adapted couplings:

Definition 1.1. A coupling (X, X̂) is called co-adapted if there exists a filtration

(Ft)t≥0 such that X and X̂ are both adapted to (Ft)t≥0 and for any 0 ≤ s ≤ t,

L(Xt | Fs) = L(Xt |Xs) and L(X̂t | Fs) = L(X̂t | X̂s) .

In other words, both X and X̂ are Markov with respect to the filtration (Ft)t≥0.

Kendall [11] refers to co-adapted couplings as immersed, since the condition of Defini-
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tion 1.1 is equivalent to demanding that the natural filtrations of X and X̂ are both

immersed in a common filtration.

Even though maximal couplings certainly need not be co-adapted, there are a few

processes for which maximal co-adapted couplings have been shown to exist. Probably

the simplest of these is the reflection/mirror coupling of Euclidean Brownian motions,

in which the path of one process, until the coupling time, is obtained by reflecting the

other in the hyperplane bisecting the line joining their starting points [13]; indeed, this

is the unique maximal co-adapted coupling [8], a result which holds more generally

for Brownian motion on a Riemannian manifold [12]. More recently, Banerjee and

Kendall [2] showed that a maximal co-adapted coupling for smooth elliptic diffusions

on a complete Riemannian manifold can only possibly exist if the underlying space is

a sphere, Euclidean space or hyperbolic space.

Of particular relevance to the work of the current paper is the analysis of a symmetric

random walk on the hypercube performed by Connor and Jacka [4], and subsequently

generalised in [3]. They considered the class of co-adapted couplings for two such

random walks, and showed that there exists a stochastically optimal coupling within

this class. In other words, they exhibited a coupling whose coupling time T ∗ satisfies,

simultaneously for all t ≥ 0,

P(T ∗ > t) = min{P(T > t) : co-adapted coupling times T} .

Furthermore, they showed that this optimal co-adapted coupling does not achieve

equality in (2), thus demonstrating that there does not exist a maximal co-adapted

coupling for this random walk. A result in the same vein was proved by Kendall [11],

who showed that there exists a stochastically optimal co-adapted coupling for the two-

dimensional process consisting of Brownian motion together with its local time at 0;

numerical evidence indicates that this coupling is once again not maximal. We also

highlight here the paper of Jacka et al. [9], which investigated (amongst other things)

whether the reflection coupling for Brownian motions optimises various functions of the

coupling time of the corresponding geometric Brownian motions. They showed that

the Laplace transform of the coupling time is maximised by the reflection coupling,

but that whether this coupling also solves the finite time horizon problem (to minimise

the coupling time’s tail distribution) depends upon an underlying drift parameter.
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1.1. Motivation and main results

By way of motivation for the study of JBM(λ), consider the following problem.

Suppose that X and X̂ start from opposite points on the circle (i.e. |X0 − X̂0| = π,

where | · | denotes the shortest distance between two points on the circumference of the

unit circle) and that we wish to couple their evolution so as to minimise (some non-

decreasing function of) the corresponding coupling time. Write Dt = |Xt−X̂t| ∈ [0, π].

Consider the two following cases:

1. If λ = 0 then there are no jumps; in this case the fastest coupling is achieved by

setting X̂t = π −Xt (mod 2π), i.e. having the two processes reflect about either

of the two points at distance π/2 from both X0 and X̂0. The resulting process

Dt is a reflected Brownian motion on [0, π], and the corresponding coupling time

is given by T = inf{t : Dt = 0} = τ , where τ is the first hitting time of the set

{−π/2, π/2} by the Brownian motion 1
2Bt making up the diffusion component

of X.

2. Alternatively, if λ is large then we expect jumps to be occurring quickly; in this

case it may be better to synchronise the driving Brownian motions, and to let

the Poisson processes N and N̂ be independent until the first time that we see an

incident on either one. In other words, we maintain Dt = π for all t < J , where

J ∼ Exp(2λ) is the first time that either X or X̂ jumps, and then the coupling

time is given by T = J .

Note that the ways in which the driving Brownian motions are coupled in these two

scenarios are as different as can be; the first coupling proceeds by maximising the

volatility of Bt − B̂t for all t < T , whilst the second minimises it (setting it to zero, in

fact). Taking this intuition further, it is not unreasonable to suppose that there might

be a critical value of λ with the property that the second of the two couplings sketched

above is better than the other if and only if the jump rate exceeds this critical value.

Furthermore, it is clear that when λ = 0 the mirror coupling described in case 1

above will be maximal, but that this will not be true of the coupling strategy outlined

in case 2: if one chooses to synchronise the driving Brownian motions and couple at

time J , then there is a positive probability that coupling would have occurred faster if
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the Brownian motions had instead been reflected. Indeed, we shall show in Section 2

that when |X0 − X̂0| = π the total variation distance between the distributions of Xt

and X̂t satisfies

∥L(Xt |X0 = 0)− L(X̂t | X̂0 = π)∥TV = P(min{J, τ} > t) ,

where J and τ are independent. We shall use this observation to explicitly describe a

maximal, but non co-adapted, coupling of two JBM(λ) processes started from antipodal

points of the circle.

In Section 3 we restrict attention to the class of co-adapted couplings of two JBM(λ)

processes with arbitrary starting points, and consider two couplings motivated by the

cases outlined above. We shall refer to these as Mirror and Synchronous couplings,

but these names relate solely to the way in which the driving Brownian motions are

coupled when Dt = π. A formal definition will be given later (Definition 3.1), but in

order to state our main results we provide an informal description here.

Definition 1.2. (Informal description of Mirror and Synchronous couplings.) The

Mirror and Synchronous couplings treat the jump and diffusion components of X and

X̂ as follows, until the coupling time T .

Jumps:

• if Dt ∈ (0, π/2], synchronise the driving Poisson processes (i.e. make X̂

jump at time t if and only if X sees a jump at time t);

• if Dt ∈ (π/2, π], make the driving Poisson processes independent.

Diffusion:

• if Dt ∈ (0, π), reflect the driving Brownian motions (i.e. set B̂t = −Bt);

• if Dt = π, then:

• for the Mirror coupling, reflect the driving Brownian motions (i.e.

continue to set B̂t = −Bt);

• for the Synchronous coupling, synchronise the driving Brownian

motions (i.e. set B̂t = Bt).
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Trivially, the Mirror coupling is successful for all jump rates λ ≥ 0, while the Syn-

chronous coupling is successful for any λ > 0. We note that our Synchronous coupling

has a similar two-stage approach to the ‘reflection/synchronised coupling’ of Brownian

motion together with local time described in [11]. In both cases the Brownian motions

are reflected until some stopping time, T1 (in our case, the first hitting time of Dt on

the set {0, π}); if coupling has not occurred at time T1 then the Brownian motions are

subsequently synchronised until the coupling time, T .

In Section 3 we shall calculate the Laplace transform of the associated coupling

times, TM (Mirror) and TS (Synchronous), and then use ideas from stochastic control

to prove that the Synchronous coupling is faster than the Mirror coupling if and only

if λ ≥ λ⋆, where λ⋆ = 0.08337 . . . is the unique solution to the equation

cosech(π
√
λ) + 2π

√
λ = 2 coth(π

√
λ) . (4)

More precisely, for this range of λ the Synchronous coupling turns out to uniquely

maximise the Laplace transform of the coupling time within the class of all co-adapted

couplings.

Theorem 1.1. For any λ ≥ λ⋆ the Synchronous coupling uniquely maximises, within

the class of co-adapted couplings, the Laplace transform of the corresponding coupling

time. That is, for any λ ≥ λ⋆ and any x ∈ (0, π], the coupling time TS maximises

E
[

e−γT |D0 = x
]

simultaneously for all γ ≥ 0.

It does not appear that there is any co-adapted coupling which simultaneously max-

imises the Laplace transform for all values of γ when λ < λ⋆ (see Remark 3.2). However,

the Mirror coupling does turn out to minimise the mean coupling time for this set of

jump rates.

Theorem 1.2. For any λ ∈ [0, λ⋆), the Mirror coupling minimises the mean coupling

time within the class of co-adapted couplings. That is, for any λ ∈ [0, λ⋆) and any

x ∈ (0, π], the coupling time TM minimises E [T |D0 = x] within the class of co-adapted

couplings.

In the sequel we shall use the terms ‘LT-optimal’ and ‘mean-optimal’, and shall usually

refrain from writing ‘within the class of co-adapted couplings’. Note that when λ = 0
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(no jumps) the Mirror coupling reduces to the reflection coupling for Brownian motion

and is therefore maximal. Similarly, when λ → ∞ the Synchronous coupling makes

jumps from x 7→ π − x occur immediately for any x > π/2, and so in the limit the

difference process D behaves like reflected Brownian motion on [0, π/2]; it is simple

to see that this will once again be maximal. Table 1 summarises the non-trivial way

in which the various optimality properties of our coupling strategies depend upon the

jump rate.

Jump rate Coupling properties

λ = 0 Mirror is maximal

0 < λ < λ⋆ Mirror is mean-optimal; no LT-optimal coupling exists

λ⋆ ≤ λ Synchronous is LT-optimal (and hence also mean-optimal)

λ → ∞ TS converges to the maximal coupling time

Table 1: Summary of optimal coupling properties for different values of the jump rate λ.

JBM(λ) therefore makes an interesting addition to the relatively small number of

examples in the literature of processes for which precise results about optimal co-

adapted couplings have been established. In particular, to the best of the authors’

knowledge, our results are the first of their kind for a Lévy process with both continuous

and jump components.

Remark 1.1. Our original proofs of Theorems 1.1 and 1.2 were based on excursion

theory of Brownian motion, using calculations similar to those in [17, §VI.56]. We

are grateful to an anonymous referee who suggested the more direct method used in

Section 3 below. However, we still find the excursion approach very appealing, and the

corresponding calculations can be found in the original arXiv version of this paper [5].

Further details can also be found in the PhD thesis of the second author [14], alongside

supporting evidence for the correctness of our results obtained via direct simulation of

the two couplings.
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2. Maximal coupling

In this section we briefly describe a construction of a maximal, but non-co-adapted,

coupling in the case that D0 = π (i.e. the two coupled JBM(λ) processes begin at

opposite points of the circle). Let (X0, X̂0) = (0, π). For any set A ⊂ (−π, π],

P(Xt ∈ A) =

∞
∑

k=−∞
P( 12Bt ∈ A+2kπ ,Nλ(t) even)+P( 12Bt ∈ A+(2k+1)π ,Nλ(t) odd) .

Since

P(Nλ(t) even) =
1 + e−2λt

2
≥ P(Nλ(t) odd) ,

it is clear that the set on which Xt has greater density than X̂t is, for all t ≥ 0, the

half-circle A⋆ = (−π/2, π/2) centred at X0. As above, let τ denote the first hitting

time of the set {−π/2, π/2} by the Brownian motion 1
2Bt. By the definition of total

variation distance (3), we see that

∥L(Xt |X0 = 0)− L(X̂t | X̂0 = π)∥TV = P(Xt ∈ A⋆)− P(X̂t ∈ A⋆)

= 2P(Xt ∈ A⋆)− 1

= e−2λt
(

2P( 12Bt ∈ A⋆ + 2πZ)− 1
)

= e−2λt
P(τ > t) , (5)

where this final equality follows by the reflection principle. Thus we see that when X

and X̂ begin from antipodal points, the total variation distance between their laws is

given by the tail distribution of the random variable min{J, τ}, where J ∼ Exp(2λ).

This observation leads to an explicit construction of a maximal coupling, as follows.

Let N2λ be a marked Poisson process of rate 2λ, whose incident times are denoted

by Jk, and with marks Yk
i.i.d.∼ Bernoulli(1/2). Let B be a standard Brownian motion

started at 0, with hitting time τ defined as above. We first of all use these to define

the JBM(λ) process X: the diffusion component of X is given by 1
2B, and X makes a

jump of size π at incident times Jk if and only if the corresponding mark Yk equals 1.

We now define X̂, started at π, in such a way that X̂ and X couple almost surely

at time T ⋆ = min{J1, τ}:

• On the event {τ < J1}, we let the diffusion component of X̂ equal − 1
2B, so that

X̂ is the reflection of X about the points ±π/2. In this case X̂ and X will meet

at time τ .
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• On the event {J1 < τ}, we let the diffusion component of X̂ equal 1
2B (i.e. X̂

and X move synchronously, remaining at distance π from each other) until time

J1. We then make X̂ jump by π at time J1 if and only if the mark Y1 equals 0.

That is, X̂ jumps at time J1 if and only if X does not jump at that time, and

since their diffusion components were synchronised, X̂ and X will meet exactly

when one of them jumps at time J1.

• From time min{J1, τ} onwards, the diffusion and jump components of X̂ equal

those of X.

This is a valid coupling (the process X̂, viewed marginally, really is a JBM(λ) process

started from π). Furthermore, it is clearly maximal but not co-adapted: the evolution

of X is adapted to the natural filtration generated by {N2λ, B}, whereas the evolution
of X̂ until the coupling time depends on knowledge of which of the times J1 and τ

occurs first.

Remark 2.1. For general starting states (D0 = x < π) such an explicit description of

a maximal coupling is significantly more challenging. The main complication is that it

is no longer true that the set on which Xt has greater density than X̂t is independent

of t. Rather, with (X0, X̂0) = (−x/2, x/2), the set A⋆
t on which Xt has greater density

takes the form

A⋆
t = (−rt, 0) ∪ (rt, π) ,

where rt = rt(x) is the unique point in (0, π) at which the densities of Xt and X̂t

agree. Depending upon the value of λ, rt tends to either π/2 or π as t → ∞, but not

necessarily monotonically. The only exception to this rule is in the limit as λ → ∞,

when rt → π/2 for all values of t (and for all x < π); in this case A⋆
t does not depend

upon t, and an explicit maximal coupling is once again straightforward to describe.

(See the comment before Table 1.)

3. Co-adapted couplings

We begin the search for optimal co-adapted couplings by adopting the perspective of

stochastic control. We wish to work with a pair of JBM(λ) processes which are adapted

to a common filtration of σ-algebras (Ft); it is more convenient to work initially with
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jumpy Brownian motions (X, X̂) on the real line (i.e. processes satisfying equation (1)

without the ‘mod 2π’) and then project to the circle. Let (Ft)t≥0 be any filtration

to which the following independent random processes are all adapted: two standard

Brownian motions, B and B̃; two marked Poisson processes Nλ and Ñλ of rate λ ≥ 0,

whose marks (Ut and Ũt, respectively) are independent and identically distributed as

Uniform[0, 1].

First, note that any co-adapted coupling of two Brownian motions B and B̂ can be

represented by the SDE

dB̂t = θt dBt +
√

1− θ2t dB̃t ,

where θt is a predictable random process taking values in [−1, 1] [10, Lemma 6]. Sim-

ilarly, as explained in [4], any co-adapted coupling of two Poisson processes (Nλ, N̂λ)

can be written as

N̂λ(dt) = ✶[Ut≤pt−] N
λ(dt) + ✶[Ũt>pt−] Ñ

λ(dt) , (6)

where pt is a càdlàg control process adapted to (Ft), taking values in [0, 1]. (More

accurately, in [4] the authors describe any co-adapted coupling of two unit-rate random

walks on the hypercube, Zn
2 , in terms of (n+1)2 independent marked Poisson processes

which are controlled by a doubly-stochastic matrix-valued process; equation (6) is just

a simplified parametrisation of their result when n = 1.)

Combining these two results, it is clear that the joint process (Xt, X̂t) satisfies





dXt

dX̂t



 =
1

2





1 0

θt
√

1− θ2t









dBt

dB̃t



+ π





1 0

✶[Ut≤pt−] ✶[Ũt>pt−]









Nλ(dt)

Ñλ(dt)



 , (7)

where the control process ct = (θt, pt) takes values in [−1, 1]× [0, 1] and is adapted to

the filtration (Ft). The control process explicitly determines the dependence between

X and X̂. In particular, if θt = 0 then their continuous components are independent;

if θt = 1 then they are synchronised ; and if θt = −1 then they are mirror or reflection

coupled. Similarly, if pt = 1 then the jump components of X and X̂ are synchronised,

whereas if pt = 0 then they are independent.

In what follows, we will be interested in the difference process Zt = Xt− X̂t, and in

particular the time it takes for this to hit a multiple of 2π (at which time the projections
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of the two processes onto the unit circle will meet). Using (7) we see that

dZt =
1

2

(

(1− θt)dBt −
√

1− θ2t dB̃t

)

+π
(

(1− ✶[Ut≤pt−])N
λ(dt)− ✶[Ũt>pt−] Ñ

λ(dt)
)

.

Thus Z has the same dynamics as a Lévy process on R whose continuous component

has volatility (1−θ)/2 and which makes jumps of size +π and −π each at rate λ(1−p).

For any z ∈ R the distances of z + π and z − π from the set 2πZ are equal, and so

the distribution of the time taken for Z to hit the set 2πZ is unchanged if we alter the

dynamics to make all jumps of size +π. Furthermore, the independence of N and Ñ

means that

(1− ✶[Ut≤pt−])N
λ(dt) + ✶[Ũt>pt−] Ñ

λ(dt)
D

= ✶[U ′

t
>pt−] N

2λ(dt) ,

where
D

= denotes equality in distribution, and where N2λ is a marked Poisson process

of rate 2λ with marks U ′ ∼ Uniform[0, 1]. Thus it suffices, for any given adapted

control process ct = (θt, pt), to consider the hitting time on the set 2πZ of the process

given by

dZt =

√

1− θt
2

dBt + π ✶[U ′

t
>pt−] N

2λ(dt) ; Z0 = X0 − X̂0 .

As in Section 1, we shall work in the sequel with the process Dt = |Zt−2πZ| ∈ [0, π],

which measures the distance between the projections of X and X̂ on the circumference

of the unit circle. Until the coupling time T = inf{t : Dt = 0}, D behaves like a

reflected Brownian motion (with volatility controlled by θ), and with a jump (controlled

by p) at time t having the effect of making Dt = π −Dt−. (That is, a jump of size π

in Z results in D being reflected about the point π/2.)

This allows us to view the search for an optimal co-adapted coupling as a stochastic

control problem. For a given value function, we seek a control process ct = (θt, pt) ∈
[−1, 1] × [0, 1] such that the time taken for the corresponding difference process D to

hit zero minimises/maximises the value function, as appropriate. As noted in [15], it

suffices to restrict attention to Markov controls of the form ct = c(Dt−).

Using this setup we can now give a precise definition of the Mirror and Synchronous

couplings for two JBM(λ) processes (cf Definition 1.2).
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Definition 3.1. Suppose Dt− = x ∈ [0, π]. The Mirror coupling is the co-adapted

coupling with control cM = (θM, pM) at time t given by

Diffusion: θM(x) = 2✶[x=0] −1 ; Jumps: pM(x) = ✶[x≤π/2] .

Similarly, the Synchronous coupling uses control cS = (θS, pS), where:

Diffusion: θS(x) = 2✶[x=0 or x=π] −1 ; Jumps: pS(x) = ✶[x≤π/2] .

As explained above, D behaves like a Brownian motion on (0, π), for which we can

control the speed using θ, and if D sees a jump then this simply reflects it around

the point π/2. Since we wish to minimise the time taken for D to hit 0, it seems

intuitively sensible to maximise the speed of the diffusion when Dt ∈ (0, π), and to

maximise/minimise the jump rate according to whether or not a jump would reduce

the value of Dt; this is exactly what both Mirror and Synchronous couplings achieve.

The only difference between the two couplings is in the choice of θ(π): θM(π) = −1

forces the Brownian component to reflect downwards from the barrier at π, whereas

θS(π) = 1 means that D waits an Exp(2λ) amount of time at level π before jumping

directly to 0.

3.1. LT-optimality

In this section we shall prove the LT-optimality of the Synchronous coupling when

λ ≥ λ⋆, as claimed in Theorem 1.1. We begin by proving explicit formulas for the

Laplace transforms of our two co-adapted coupling strategies.

Given the jump rate λ and a constant γ ≥ 0, we shall write

α =
√

2(2λ+ γ) , and β =
√

2γ ,

and use these to define the following four non-negative constants (depending implicitly

upon λ and γ):

κ1 =
2 cosh(απ

2 ) sinh(β
π
2 )

2 cosh(απ
2 ) cosh(β

π
2 )− 1

; κ2 = β
ακ1 sech(α

π
2 ) ;

κ3 = sech(β π
2 )
(

β
2α cosech(απ

2 ) + sinh(β π
2 )
)

; κ4 =
(

β
α

)2

cosech(απ
2 ) .
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Lemma 3.1. The Laplace transforms for the coupling times TM and TS under the

Mirror and Synchronous couplings started from distance x ∈ [0, π], are given by the

following formulas.

Mirror coupling:

Ex

[

e−γTM

]

= wM(x) :=











cosh(βx)− κ1 sinh(βx) 0 ≤ x ≤ π
2

wM(π − x)− κ2 sinh(α(x− π
2 ))

π
2 < x ≤ π .

Synchronous coupling:

Ex

[

e−γTS

]

= wS(x) :=











cosh(βx)− κ3 sinh(βx) 0 ≤ x ≤ π
2

wS(π − x)− κ4 sinh(α(x− π
2 ))

π
2 < x ≤ π .

Remark 3.1. Note that when x = π, the final formula in Lemma 3.1 simplifies to

Eπ

[

e−γTS

]

= 1−
(

β

α

)2

=
2λ

2λ+ γ
;

this is just the Laplace transform of an Exp(2λ) distribution, which is consistent

with the observation that under the Synchronous coupling the two processes will meet

precisely when one of them jumps to the other side of the circle. Similarly, the formula

for the Mirror coupling when λ = 0 and x = π reduces to

Eπ

[

e−γTM

]

= sech(π
√

2γ) ,

which is the Laplace transform of the time taken for a standard Brownian motion to

hit ±π (and hence of the time taken for a Brownian motion started from, and reflected

at, π to hit 0).

Before proceeding any further, it will be helpful to quickly establish some basic

properties of the function wS defined in Lemma 3.1.

Lemma 3.2. For any fixed γ ≥ 0, wS(x) is a convex function of x ∈ [0, π], and

w′′
S(π) = 0.

Proof. It is clear from the definition of wS that this function is continuous on [0, π]

and C2 on (0, π), with second derivative given by

w′′
S(x) =











β2wS(x) 0 ≤ x ≤ π/2

β2wS(π − x)− α2κ4 sinh(α(x− π
2 )) π/2 < x ≤ π .



14 S.B. CONNOR AND R. MERLI

This is clearly non-negative for x ≤ π/2, and zero for x = π. For x > π/2, inserting

the formula for wS(π − x) and expanding shows that

w′′
S(x) ∝ sβcβ cosh(β(π−x))−

(

βsβ
2αsα

+ s2β

)

sinh(β(π−x))− sβcβ
sα

sinh(α(x− π
2 )) , (8)

where we have written cu = cosh(uπ
2 ) and su = sinh(uπ

2 ). Now note that u 7→ usu

is an increasing function, and that u 7→ sinh(u(x − π
2 ))/su is decreasing for any fixed

x ∈ [π/2, π]. Thus (recalling that β ≤ α) the right-hand side of (8) can be bounded

below by

sβcβ cosh(β(π−x))−( 12+s2β) sinh(β(π−x))−cβ sinh(β(x− π
2 )) =

1
2 sinh(β(π−x)) ≥ 0 .

□

Proof of Lemma 3.1. We shall deal first with the Synchronous coupling. It is clear

that wS(0) = 1, and we have already observed that wS(π) = 2λ/(2λ + γ), so wS

certainly takes the correct values at the two boundary points. Given D0 = x ∈ [0, π],

consider the (bounded) process Wt(x) = e−γtwS(Dt). We shall show that W is a

martingale until time T S, and then the optional stopping theorem will quickly yield

that

Ex

[

e−γTS

]

= E [WTS
(x)] = W0(x) = wS(x) ,

as required.

The martingale property is trivial when x = π. For x ∈ (0, π), we apply Itô’s

formula to Wt(x) to obtain

eγtdWt(x) =

(

−γwS(Dt) +
1

2
w′′

S(Dt)

)

dt+ w′
S(Dt)dDt

=

(

−γwS(Dt) +
1

2
w′′

S(Dt)

)

dt+ dQt + ✶[Dt>π/2] {wS(π −Dt)− wS(Dt)}N2λ(dt) ,

(9)

where Qt is a martingale. Using the formula for w′′
S established in the proof of

Lemma 3.2, and recalling that α2 = 2(2λ+ γ) and β2 = 2γ, equation (9) simplifies to

become

eγtdWt(x) = dQt + ✶[Dt>π/2] κ4 sinh(α(Dt − π
2 ))(N

2λ(dt)− 2λdt) . (10)
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The final bracketed term on the right-hand side is of course a compensated Poisson

process, and we conclude that W is indeed a martingale.

The Mirror coupling case is almost identical: repeating the argument above using

wM in place of wS shows that, when x ∈ (0, π), equation (10) holds with κ4 replaced

by κ2. It only remains to check that the appropriate boundary conditions are satisfied

for wM: here we require wM(0) = 1 and w′
M(π) = 0, and these follow trivially from the

definition of wM. □

We are now in a position to complete the proof of Theorem 1.1. Let C denote the

set of all successful co-adapted couplings. For any coupling c ∈ C, and any fixed γ ≥ 0,

write

wc(x) = Ex

[

e−γTc

]

for the Laplace transform of the associated coupling time when starting from D0 =

x ∈ [0, π]. The value function

ŵ(x) = sup
c∈C

wc(x)

solves the HJB equation [15, Chapter 3], which may be derived here using Itô’s formula

in a similar manner to equation (9). We first of all deal with the case when x ∈ [0, π),

for which the HJB equation is as follows:

sup
θ, p

(

−γŵ(x) +
(1− θ(x))

4
ŵ′′(x) + 2λ(1− p(x)) {ŵ(π − x)− ŵ(x)}

)

= 0 . (11)

Consider the Laplace transform for the Synchronous coupling, wS(x). We saw in

Lemma 3.2 that this is convex on [0, π]; moreover, using the formula in Lemma 3.1 it

may quickly be checked that wS(π−x)−wS(x) > 0 if and only if x ∈ (π/2, π]. Thus if

we replace ŵ(x) with wS(x) in the left-hand side of (11), the corresponding supremum

for x ∈ [0, π) is obtained by taking θ(x) = −1 and p(x) = ✶[x≤π/2]; since these values

agree with the control (θS, pS) in Definition 3.1, it also follows that this supremum is

indeed zero. Therefore the function wS satisfies (11) for x ∈ [0, π); if we can also show

that wc(π) ≤ wS(π) for all couplings c ∈ C, then it will follow that ŵ = wS, i.e. that

the Synchronous coupling is LT-optimal (see Theorem 3.1 of [15]).

Starting from D0 = π, if θc(π) ̸= 1 then the diffusion component of D reflects

downwards off the barrier at π. This, along with the fact that w′′
S(π) = 0 (Lemma 3.2),
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Figure 1: The function h(λ, γ) for four representative values of λ. For λ < λ⋆ the function

takes first negative then positive values as γ increases; for λ ≥ λ⋆ the function is non-negative

for all γ.

implies that the relevant quantity to be maximised over admissible controls (θc, pc)

becomes

−γwS(π) + 2λ(1− pc(π)) {1− wS(π)} −
√

1− θc(π)

2
w′

S(π) . (12)

We therefore need to show that this expression is maximised by taking pc(π) =

pS(π) = 0 and θc(π) = θS(π) = 1. The first of these is trivial, since wS(π) ∈ (0, 1] for

all values of λ and γ; the second will follow if and only if w′
S(π) ≥ 0 for all values of

γ ≥ 0. To make explicit the dependence of w′
S(π) on the underlying parameters λ and

γ, let us define

h(λ, γ) := w′
S(π) = βκ3 − ακ4 cosh(α

π
2 ) .

The function h is continuous in both arguments, with h(λ, 0) = 0 and

dh(λ, γ)

dγ

∣

∣

∣

∣

γ=0

= π +
cosech(π

√
λ)

2
√
λ

− coth(π
√
λ)√

λ
.

This derivative at γ = 0 is a strictly increasing function of λ, equalling zero if and only

if λ = λ⋆ (recall the defining equation for λ⋆, (4)). Furthermore, h(λ, γ) is non-negative

for all γ if and only if λ ≥ λ⋆; if λ < λ⋆ then there exist values of γ > 0 for which h

is negative, and others for which it is positive: see Figure 1. It follows that w′
S(π) is

non-negative for all γ ≥ 0 exactly when λ ≥ λ⋆, and we conclude that for this range of

jump rates the Synchronous coupling is LT-optimal, as required.
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Remark 3.2. For λ < λ⋆, the proof given above fails only when x = π, when it is no

longer true that h(λ, γ) is non-negative for all γ. For such a λ, if γ is such that h(λ, γ) <

0, then the expression in (12) is clearly maximised by setting θc(π) = θM(π) = −1,

i.e. by using the Mirror coupling. However, any attempt to prove LT-optimality of

the Mirror coupling when λ < λ⋆ is thwarted by the function w′′
M(π) taking both

positive and negative values as γ varies: as above, we arrive at the situation where

for some values of γ the optimal control is to set θ(π) = 1, and for others it is to set

θ(π) = −1. Figure 2 shows that when λ < λ⋆, wM(π) ≥ wS(π) when γ is small, but

that this relationship is reversed for larger γ, and so neither the Mirror nor Synchronous

strategy is LT-optimal for these jump rates. This implies that when λ < λ⋆ there is no

co-adapted coupling which maximises the Laplace transform E
[

e−γT
]

simultaneously

for all values of γ.
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Figure 2: Difference between Laplace transforms corresponding to Mirror and Synchronous

strategies: both graphs show Eπ[e
−γTM − e−γTS ] as a function of γ, for different jump rates

λ ≤ λ⋆. Neither coupling is LT-optimal when λ < λ⋆.

3.2. Mean-optimality

In this final section we compare the mean coupling times under the Mirror and

Synchronous couplings.

Lemma 3.3. The expectation of the coupling times under the Mirror and Synchronous

couplings started from distance x ∈ [0, π], are given by

Ex [T ] =











x(π − x) + C(λ)x if 0 ≤ x ≤ π
2

x(π − x) + C(λ)(π − x) + C(λ) sinh(
√
λ(2x−π))√
λ

if π
2 < x ≤ π ,

(13)
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where

C(λ) =











CM(λ) = π
2 cosh(π

√
λ)−1

if T = TM (Mirror coupling)

CS(λ) =
cosech(π

√
λ)

2
√
λ

if T = TS (Synchronous coupling).

Proof. This can be proved in a couple of ways. Probably the simplest, but most

tedious, is to start from Lemma 3.1 and calculate Ex [T ] = limγ→0(− d
dγ Ex

[

e−γT
]

).

Alternatively, the line of argument used in Lemma 3.1 can be followed: letting v(x) be

given by the function in (13), it is straightforward to check that this has appropriate

boundary conditions and that the process Vt(x) = v(Dt) + t is a martingale until the

time that D first hits 0. □

Note that C(λ) = min{CM(λ), CS(λ)}, and that CM(λ) and CS(λ) are both positive,

decreasing functions of λ, which agree precisely when λ = λ⋆ (recall the definition of

λ⋆ in (4)). Thus, from any starting state x ∈ (0, π], Ex [TM] < Ex [TS] if and only if

λ < λ⋆.

The proof of Theorem 1.2—mean-optimality of the Mirror coupling for λ < λ⋆—is

very similar to that given above for the LT-optimality of the Synchronous coupling.

In this case it suffices to show that the function vM(x) = Ex [TM] satisfies the HJB

equation:

inf
θ, p

(

1 +
(1− θ(x))

4
v′′M(x) + 2λ(1− p(x)) {vM(π − x)− vM(x)}

)

= 0 ;

this is straightforward, and details are omitted for the sake of brevity.

Figure 3 gives an impression of how the mean coupling time formulas from Lemma 3.3

behave as functions of the jump rate and the starting distance x. The left-hand plot

shows that Ex [TM] < Ex [T S] for all x ∈ (0, π] when λ = 0.05 < λ⋆, with this inequality

being reversed for λ = 0.1 > λ⋆. The right-hand plot graphs Ex [TM] and Ex [T S] as

functions of λ, when x ∈ {π/4, π/2}: for both starting distances the intersection of the

two mean coupling times at λ = λ⋆ is evident.

Now let Tmin denote the coupling time of the mean-optimal co-adapted coupling

(i.e. Mirror for λ < λ⋆, Synchronous otherwise). As expected, when λ = 0 we have

Ex [Tmin] = x(2π − x), and when λ → ∞ we obtain Ex [Tmin] = x(π − x) (i.e. the

mean time for a Brownian motion started at x to hit {0, 2π} or {0, π}, respectively;
recall the comment immediately following Theorem 1.2). Figure 4 plots Ex [Tmin] =
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monotonic dependence upon the jump rate λ.
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Finally, let us compare Tmin to a maximal coupling. We know that the optimal co-

adapted coupling is maximal when λ = 0; given the construction of a maximal coupling

in Section 2 it should come as no surprise that this is not the case for any λ > 0. From

equation (5) we may easily calculate the Laplace transform and subsequently the mean
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of the maximal coupling time T ⋆ when starting from opposite sides of the circle (x = π):

Eπ

[

e−γT⋆
]

=
1

2λ+ γ

(

2λ+
γ

cosh(π
√

2(2λ+ γ))

)

; Eπ [T
⋆] =

1− sech(2π
√
λ)

2λ
.

(14)

On the other hand, Lemma 3.3 tells us that Tmin satisfies

Eπ [Tmin] = min {CM(λ), CS(λ)}
sinh(π

√
λ)√

λ
. (15)

Thus

Eπ [T
⋆]

Eπ [Tmin]
=











(π
√
λ)−1(2 cosh(π

√
λ)− 1) sinh(π

√
λ) sech(2π

√
λ) 0 ≤ λ < λ⋆

1− sech(2π
√
λ) λ⋆ ≤ λ ,

and we note that for all values of λ > 0 this ratio is strictly less than one. (For the

case λ < λ⋆, this follows from the observation that

(2 cosh(z)− 1) sinh(z) sech(2z)

z
=

∫ 2z

z
cosh(y)dy

z cosh(2z)
,

along with the convexity of cosh.) Graphs of the expressions in (14) and (15) are shown

in Figure 5: we see that the difference between the mean coupling times is largest when

λ = λ⋆.
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Figure 5: Expectation of the mean-optimal co-adapted coupling time (Tmin) and maximal

coupling time (T ⋆) when D0 = π.



Optimal Coupling of Jumpy Brownian Motion 21

Funding information

There are no funding bodies to thank relating to this creation of this article.

Competing interests

There were no competing interests to declare which arose during the preparation or

publication process of this article.

References

[1] Aldous, D. (1983). Random walks on finite groups and rapidly mixing markov
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