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Abstract

Humans and other living beings have the ability of short and
long-term memorization during their entire lifespan. How-
ever, most existing Continual Learning (CL) methods can
only account for short-term information when training on in-
finite streams of data. In this paper, we develop a new un-
supervised continual learning framework consisting of two
memory systems using Variational Autoencoders (VAEs). We
develop a Short-Term Memory (STM), and a parameterised
scalable memory implemented by a Teacher model aiming
to preserve the long-term information. To incrementally en-
rich the Teacher’s knowledge during training, we propose the
Knowledge Incremental Assimilation Mechanism (KIAM),
which evaluates the knowledge similarity between the STM
and the already accumulated information as signals to ex-
pand the Teacher’s capacity. Then we train a VAE as a Stu-
dent module and propose a new Knowledge Distillation (KD)
approach that gradually transfers generative knowledge from
the Teacher to the Student module. To ensure the quality and
diversity of knowledge in KD, we propose a new expert prun-
ing approach that selectively removes the Teacher’s redun-
dant parameters, associated with unnecessary experts which
have learnt overlapping information with other experts. This
mechanism further reduces the complexity of the Teacher’s
module while ensuring the diversity of knowledge for the
KD procedure. We show theoretically and empirically that
the proposed framework can train a statistically diversified
Teacher module for continual VAE learning which is applica-
ble to learning infinite data streams.

Introduction

The continuous acquisition and learning of new concepts
from a dynamically evolving environment is a fundamen-
tal function for an artificial intelligent system. Modern
deep learning models have already outperformed humans
in learning certain single tasks (LeCun, Bengio, and Hin-
ton 2015), but would suffer dramatic performance degener-
ation when attempting to learn a sequence of different data
domains. The phenomenon of such a performance degener-
ation is referred in AI as “catastrophic forgetting”.

Existing work on continual learning mainly focuses on
the classification task and requires knowledge of the task
information during training. In this work, we focus on the
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lifelong generative modelling (Ramapuram, Gregorova, and
Kalousis 2017; Ye and Bors 2020a) and consider a more
sophisticated learning scenario, called the Task-Free Con-
tinual Learning (TFCL) (Aljundi, Kelchtermans, and Tuyte-
laars 2019), which would not require the task identity dur-
ing the training and testing. One popular way to reduce for-
getting in TFCL is the replay-based approach, which ei-
ther manages a fixed-capacity memory buffer (De Lange
and Tuytelaars 2021; Jin et al. 2021) or trains a generator
(Shin et al. 2017) which then can be used to reproduce the
data through a generative replay mechanism. The former ap-
proach requires a suitable sample selection criterion that se-
lectively stores incoming samples into the memory to relieve
forgetting (Aljundi et al. 2019b; De Lange and Tuytelaars
2021) while the latter aims to train a powerful generator that
produces high-quality generative replay samples, which are
statistically consistent with the training sets (Ye and Bors
2020a). However, these approaches rely on a single mem-
ory system, which is not scalable for learning infinite data
streams due to their limited memory capacity, while also re-
quiring frequent retraining (Ye and Bors 2020a).

Recently, the Dynamic Expansion Model (DEM) (Lee
et al. 2020; Rao et al. 2019) has shown promising results
for TFCL and can potentially be applied to infinite data
streams. The expansion criterion in DEM plays an impor-
tant role in balancing the complexity of the model and the
generalization performance. Existing DEM-based methods
implement the expansion criterion by considering the sam-
ple log-likelihood evaluation (Rao et al. 2019) and Dirich-
let processes (Lee et al. 2020), but they cannot guarantee
an optimal trade-off between the network architecture and
performance (See Theorem 2). They also have a multi-head
structure that requires performing the component selection
at the testing phase. In addition, they cannot model correla-
tions between different data domains in a single latent space
leading to additional computational resources. At the same
time, its application is rather limited to specific tasks such as
cross-domain image interpolation (Oring, Yakhini, and Hel-
Or 2021; Ye and Bors 2020a, 2022a,c,b).

In this paper, we study lifelong generative modelling un-
der TFCL, which aims to learn a model capable of gener-
ating images for all previously learnt data domains without
forgetting and without accessing any task information. To
address this issue, we propose a new knowledge distillation



framework that aims to train a compact model as a parame-
terised memory (Teacher module) together with a short-term
memory holder model to enable training a continual Vari-
ational Autoencoder (VAE) as a Student, under TFCL. To
achieve these goals, we propose the Knowledge Incremental
Assimilation Mechanism (KIAM) that evaluates the proba-
bility distance between the current memory buffer and the al-
ready accumulated knowledge by the Teacher module as sig-
nals to increase the Teacher’s memorization capacity. This
mechanism can ensure the knowledge diversity and prevent
forgetfulness in the Teacher module. Moreover, we propose
a new data-free KD approach, namely the Continual Gener-
ative Knowledge Distillation (CGKD), which transfers gen-
erative knowledge from the Teacher to the Student without
accessing real data samples. To further ensure the diversity
of knowledge for KD, we propose a new expert pruning ap-
proach that selectively removes redundant experts from the
Teacher module, aiming to reduce its complexity. Another
contribution consists in the derivation of the upper bound
for the negative sample log-likelihood, which provides new
insights into the forgetting behaviour and theoretical guar-
antees for the proposed framework.

In summary, our contributions are as follows: 1) We pro-
pose a new KD framework for lifelong generative modelling
under the challenging TFCL learning setting; 2) We pro-
pose the Knowledge Incremental Assimilation Mechanism
(KIAM) for the Teacher module, which enriches its knowl-
edge incrementally while also ensuring a minimal architec-
ture; 3) A new KD approach is introduced to transfer gen-
erative knowledge from a Teacher to a Student module in
an online manner; 4) We propose a new expert pruning ap-
proach for KD, which reduces the size of the Teacher mod-
ule while preserving its knowledge diversity. 5) This is the
first study to provide theoretical insights for lifelong gener-
ative modelling without knowing any task information.

Supplementary materials (SM) and source code are avail-
able1.

Related Work

Knowledge Distillation : The transfer of knowledge from a
complex Teacher model to a lightweight Student network,
called Knowledge Distillation (KD), has recently been stud-
ied (Heo et al. 2019; Hinton, Vinyals, and Dean 2014). Most
KD approaches use a fixed Teacher model trained on the
target dataset. Then a classifier is trained as a Student us-
ing Teacher’s generated predictions. The Teacher model can
also be implemented by an ensemble of networks framework
where the Student learns multi-mode knowledge from the
Teacher to improve its generalization performance (Phuong
and Lampert 2019; Nam et al. 2021). Recently, KD has been
used for continual learning while relieving forgetting (Li
and Hoiem 2017; Zhai et al. 2019). In these approaches,
the previously trained classifier is considered as the Teacher
while a new classifier is trained as the Student through the
KD process, where the Student’s predictions are forced to
match the Teacher’s outputs (Hinton, Vinyals, and Dean

1https://github.com/dtuzi123/CGKD

2014; Buzzega et al. 2020). However, these approaches still
require task information, which is not suitable for TFCL.

Continual learning : Most existing approaches to CL require
access to task information during training. There are three
categories of CL approaches : Regularisation-based methods
(Hinton, Vinyals, and Dean 2014; Kirkpatrick et al. 2017;
Kurle et al. 2020; Li and Hoiem 2017; Nguyen et al. 2018;
Polikar et al. 2001; Ren et al. 2017; Ritter, Botev, and Barber
2018), dynamic architectures (Fernando et al. 2017; Golkar,
Kagan, and Cho 2019; Hung et al. 2019; Rusu et al. 2016;
Wen, Tran, and Ba 2020; Ye and Bors 2023, 2021a, 2022d)
and memory-based approaches (Achille et al. 2018; Rama-
puram, Gregorova, and Kalousis 2017; Rao et al. 2019; Shin
et al. 2017; Sun et al. 2022; Ye and Bors 2020a,b, 2022e;
Zhai et al. 2019; Ye and Bors 2021b; Yoon et al. 2022). Be-
cause of requiring the task information (Aljundi et al. 2019a)
these approaches cannot be applied directly to TFCL. A pop-
ular method for TFCL is to have a small memory buffer
containing training samples to relieve forgetting (Aljundi
et al. 2019a; Aljundi, Kelchtermans, and Tuytelaars 2019).
The sample selection criterion for the memory buffer plays
a key role in the performance and can rely on the parame-
ters updating gradient (Aljundi et al. 2019b) or on a specific
loss function (De Lange and Tuytelaars 2021) during train-
ing. Moreover, the stored samples can be edited, aiming to
adapt them to learning new tasks while preserving the pre-
viously learnt information (Jin et al. 2021). However, these
approaches can only be used in a fixed-length data stream
learning context.

Lifelong generative modelling : Generative modelling in
continual learning aims to train a generative model capa-
ble of producing data generations and reconstructions with-
out forgetting (Egorov, Kuzina, and Burnaev 2021; Rama-
puram, Gregorova, and Kalousis 2017). The Variational Au-
toencoder (VAE) (Kingma and Welling 2013) was firstly ex-
plored for lifelong generative modelling in (Achille et al.
2018), while the Generative Adversarial Network (GAN)
was used in (Ye and Bors 2021b). The Generative Replay
Mechanism (GRM) was used to relieve forgetting by repro-
ducing data learnt in the past. More recently, the GRM has
been extended to several frameworks, including the Teacher-
Student structure (Ramapuram, Gregorova, and Kalousis
2017; Ye and Bors 2022e) and the VAE-GAN hybrid model
(Ye and Bors 2020a). However, these frameworks require
the task information and cannot be applied in TFCL. On
the other hand, the Dynamic Expansion Model (DEM) is
a promissing approach for generative modelling in TFCL.
The first work using DEM to TFCL, proposed in (Rao et al.
2019), was called the Continual Unsupervised Representa-
tion Learning (CURL). In CURL an expansion mechanism
is introduced to dynamically build new inference models for
capturing new concepts during the training. A similar idea
was used in the Continual Neural Dirichlet Process Mix-
ture (CN-DPM) (Lee et al. 2020), which dynamically creates
VAE-based experts in a mixture system through a Dirich-
let process-based expansion mechanism. However, these ap-
proaches lead to non-optimal architectures as they ignore
accounting for the knowledge diversity when performing
model expansion.



Methodology

Problem Definition

Let DT
i = {xT

j }
NT

i

j=1 and DS
i = {xS

j }
NS

i

j=1 be the test

and training sets, for the i-th data domain, where NT
i and

NS
i represent the number of samples for the test and train-

ing sets, respectively. In this work, we focus on sequen-
tial learning different data domains without accessing the
task/domain information. Therefore, we continuously cre-
ate a data stream S by including all incoming training sets

S =
∑k

i=1{S ∪ DS
i }. However, at a training step Tm, we

only access a small batch of samples {xm,j}bj=1 drawn from
S , where b is the batch size. We assume that learning the
whole data set S requires a total of t training steps. After
a model is done with the training step Tt, we evaluate the
performance of the model on all test sets {DT

1 , · · · , DT
k }.

Knowledge Incremental Assimilation Mechanism

Humans can incrementally learn and memorize novel con-
cepts throughout their entire lifespan (Banayeeanzade et al.
2021). Inspired by this, we introduce the Knowledge Incre-
mental Assimilation Mechanism (KIAM) for the Teacher
module, which gradually increases the knowledge capac-
ity of the Teacher. Let Mi represent a short-term memory
(STM) updated at Ti and Ai = {A1, · · · ,Ac} be a Teacher
model assumed to have already trained c experts up to the
training step (Ti), where each Aj is implemented by either
a GAN (Goodfellow et al. 2014) or a VAE to learn a gener-
ator distribution Pθj with trainable parameters θj . Detecting
when and what new concepts are provided is a real challenge
under the TFCL framework, where we do not have task la-
bels. To address this problem, KIAM evaluates probabilistic
distances between the current memory and the already learnt
information aiming to detect when the data distribution shift
would occur, according to :

c−1
min
j=1

Dp(Pθj ,PMi
) ≥ ν , (1)

where PMi
is the probability representation characterizing

the current memory buffer Mi and ν ∈ [0, 200] is a thresh-
old for controlling the number of experts for the Teacher
module. We omit the current expert Ac in Eq. (1) since Ac

is knowledgeable about Mi. Dp(·, ·) is used to evaluate the
knowledge similarity between the current memory Mi and
each previously learnt expert. We consider the Fréchet In-
ception Distance (FID) (Heusel et al. 2017) as the Dp(·, ·)
measure for evaluating the knowledge similarity between
two probabilities, because FID is an non-parametric mea-
sure which does not require explicit probabilistic represen-
tations. If Eq. (1) is satisfied, we freeze Ac that has already
preserved the knowledge of the current memory Mi, while
adding a new expert Ac+1 for next training step. We also
empty the current memory in order for the newly created
expert Ac+1 to be able to learn non-overlapping probability
densities.

Continual Generative Knowledge Distillation

Existing approaches to knowledge distillation usually trans-
fer the category information from a complex Teacher mod-

Figure 1: The learning procedure of the proposed framework
where we omit the updating of the memory for the sake of
simplification. During the training, we optimize the current
teacher component and the student module using the adver-
sarial and VAE loss, respectively. We then check the model
expansion and perform expert pruning.

ule to a lightweight Student for the classification task. How-
ever, these methods are not able to distil the knowledge for
generative modelling because previously learnt samples are
not available during the continual learning process. In this
paper, we introduce a data-free KD approach for lifelong
generative modelling. Let us consider a latent variable based
generative model pξ(x, z) = pξ(x | z)p(z), which is repre-
sented by the Student module in our framework, where x
and z represent the observed and latent variables, respec-
tively. pξ(x | z) and p(z) are the decoding and prior distri-
butions, respectively. An approach for distilling knowledge
when having a Teacher module characterized by a generator
distribution Pθj , would require to minimise the KL diver-
gence between Pθj and pξ(x). However, this is computation-
ally infeasible due to the lack of explicit density function for
Pθj . Instead, we propose to implement KD by minimizing
the cross entropy between Pθj and pξ(x) :

LKD =
∑c−1

j=1

{
− Ex∼Pθj

[log pξ(x)]
}
. (2)

The direct calculation of Eq. (2) is not possible because the
marginal log-likelihood log pξ(x) = log

∫
pξ(x | z)p(z)dz

requires the integration over all variables z from p(z). In
this paper, we introduce the use of a variational distribu-
tion qϕ(z |x), parameterised by ϕ, to approximate the true
posterior pξ(z |x), and therefore the marginal log-likelihood
log pξ(x) can be estimated by a lower bound (Kingma and
Welling 2013). Then, Eq (2) is calculated as :

LKD =
∑c−1

j=1

{
− Ex∼Pθj

[Eqϕ(z |x) [log pξ (x | z)]

−KL [qϕ (z |x) || p (z)]]
}
.

(3)

Together with the KD loss Eq. (3), and using the current
memory buffer Mi for training the model at Ti, we design a
unified objective function for training the student module at
Ti as :

LStu = −Ex∼PMi
[Eqϕ(z |x) [log pξ (x | z)]

−KL [qϕ (z |x) || p (z)]] + LKD ,
(4)



where the first term encourages the Student module to learn
samples drawn from Mi and the second term LKD transfers
the Teacher’s knowledge to the Student.

Expert Pruning for the KD Procedure

The Teacher’s ensembles cannot grow forever and in order
to keep the number of parameters in check and architec-
ture compact while preserving the statistical representation
diversity of the Teacher, we consider a component expert
pruning approach. We find and remove the component with
the highest statistical overlap, after defining a measure of
knowledge similarity between two expert components.

Suppose that the Teacher module has already trained c
experts, A = {A1, · · · ,Ac}, let Q ∈ Rc×c be a knowl-
edge discrepancy matrix, where each Q(a, b) represents the
discrepancy score between experts Aa and Ab. Given that
the Student module is already knowledgeable about the in-
formational content of all experts, it can be used for identi-
fying whether two experts contain statistically overlapping
knowledge. We evaluate Q(a, b) by calculating the square
loss ∥ · ∥2 on the latent variables, inferred by the inference
model qϕ (z |x) of the student :

Lks(Aa,Ab) = Exa∼Aa,xb∼Ab
∥fϕ(xa)− fϕ(xb)∥2 , (5)

where za and zb are latent variables, returned by the in-
ference model fϕ := qϕ (z |x) that receives the data sam-
ples xa and xb generated by Aa and Ab, respectively.
Eq. (5) is computational efficient since is evaluated on the
low-dimensional latent space. If the two experts, Aa and
Ab share significant information, their corresponding latent
variables za and zb tend to be similar, resulting in a small
Lks(Aa,Ab) in Eq. (5). Other criteria can be adapted for
the evaluation in Eq. (5) (See details in Appendix-I.7 from
SM1). Once the discrepancy matrix Q is evaluated, we iden-
tify a pair of experts containing overlapping information by
searching for the minimal discrepancy score in Q :

{a⋆, b⋆} = arg
c

min
{a,b}=1

{
Q(a, b)

}
, (6)

where a⋆ and b⋆ are the indices of the selected experts. We
then evaluate the discrepancy score between each other ex-
pert from the Teacher’s ensemble and either Aa⋆ or Ab⋆ :

c⋆ = argmin
{∑c−1

j=1
j ̸={a⋆,b⋆}

{
Q(a⋆, j)

}
,

∑c−1

j=1
j ̸={a⋆,b⋆}

{
Q(b⋆, j)

}}
,

(7)

where c⋆ represents the index of the selected expert to be re-
moved from the Teacher module. The main goal for Eq. (7)
is that we keep the expert with the largest discrepancy scores
in the Teacher module to ensure the knowledge diversity be-
tween Teacher’s experts. Then we continue with identify-
ing other redundant experts from the Teacher module using
Eq. (6) and Eq. (7) and designate them for removal. We it-
eratively remove experts from the Teacher module until the
number of experts is equal to a predefined n ∈ [3, 10]. An-
other approach for defining the number of Teacher’s experts
is explored in Appendix-G1 from SM1.

Implementation

Objective functions. We have two approaches, implement-
ing each expert of the Teacher by using either a VAE or a
GAN. For the GAN-based Teacher model, we have a dis-
criminator network Dϵ parameterized by ϵ and a generator
Gθj parameterized by θj . We consider the WGAN objective
function (Gulrajani et al. 2017) for training the j-th expert
Aj = {Dϵ, Gθj} at Ti :

min
Pθj

max
Dϵ∈Θ

{
Exi∼PMi

[Dϵ (xi)]− Ex
′∼Pθj

[Dϵ (x
′)]

+γE
x̂
′∼P

x̂
′

[
(∥∇

x̂
′Dϵ (x̂

′)∥2−1)
2
]}

,

(8)

where γ is a hyperparameter and the last term is used to
ensure the discriminator’s Lipschitz constraint, (Gulrajani
et al. 2017). P

x̂
′ is defined by data sampled equally from

the distribution of the buffer memory PMi
, representing the

incoming data, and from the generator distribution Pθj (Gul-
rajani et al. 2017). It should be noted that we only need a
single discriminator during the training to reduce the whole
model’s size since only generators are used for knowledge
distillation. For the VAE-based Teacher model, we introduce
two neural networks to model the encoding qη(z |x) and de-
coding distribution pθj (x | z), respectively. The VAE loss for
training the j-th expert Aj = {pθj (x | z), qη(z |x)} at Ti is
defined as :

LELBO(x;Aj) = Eqϕ(z |x)

[
log pθj (x | z)

]

−KL [qη (z |x) || p (z)] .
(9)

Eq. (9) represents the Evidence Lower Bound (ELBO) to the
marginal log-likelihood. Similar to GAN-based experts, we
only need a single encoding distribution qη(z |x) during the
training. The learning process is illustrated in Fig. 1.
Algorithm. We summarize the training algorithm in five
steps : (1) (Updating the memory buffer Mi). We update
Mi at Ti by adding a new batch of samples {xi,j}bi drawn
from the data stream S into its buffer if the memory is
not full |Mi| < |M|max, otherwise, we remove the ear-
liest batch of samples included in Mi and add {xi,j}bk=1;
(2) (Teacher learning). If the Teacher has only a single ex-
pert at the initial training phase, we automatically build
a new expert A2 at the training step T100 while freezing
A1. We train the newly added expert on Mi using either
Eq. (8) or (9); (3) (Checking the expansion). To avoid the
frequent evaluation, we check the expansion when the mem-
ory is full |Mi| = |M|max. When the expansion crite-
rion is satisfied Eq. (1), we add a new expert Ac+1 to
the Teacher module while cleaning up the memory Mi;
(4) (Expert pruning for KD). We remove the non-essential
experts from the Teacher module using the proposed expert
pruning approach until the number of experts in A matches
n; (5) (Student learning). We distill the data generated by the
Teacher to the Student while simultaneously learning the in-
formation from the current memory Mi using Eq. (4). Then
we return to Step 1 for the next training step Ti+1.

Theoretical Framework
In this section, we extend the theoretical framework (Ye
and Bors 2022f,d) got analyzing the model’s forgetting be-



haviour and defining theoretical guarantees for the proposed
approach. We start with providing necessary notations and
definitions as follows.

Preliminary

Notations. Let B be a single VAE model which has the
decoding pξ(x | z) and encoding distributions qϕ(z |x), re-
spectively. Let h be a hypothesis function in the space of
hypotheses {h ∈ H | H : X → X} where X ∈ Rd is
the data space with d dimensions. We implement h ∈ H by
the encoding-decoding process of B evaluated on the error
function L : X × X → R+ which is bounded, ∀(x,x′) ∈
X 2,L(x,x′) ≤ C for some C > 0. In our setting, the error
function L(x,x′) is implemented as the square-loss function
L(x,x′) = ∥x− x′∥2,x,x′ ∈ X .

Definition 1 (Model risk.) For a given memory distribution
PMi

, a risk for B on PMi
is defined as EPMi

(h, fPMi
) =

Ex∼PMi
L(h(x), fPMi

(x)), where fPMi
∈ H is an identity

function.

Following from (Ye and Bors 2022f,d), we define the dis-
crepancy distance for measuring the similarity between two
distributions.

Definition 2 (Discrepancy distance.) Let PDT
j

be a proba-

bility distribution for DT
j over X . The discrepancy distance

on two distributions PDT
i

and PDT
j

, is defined as:

Ldisc

(
PDT

i
,PDT

j

)
= sup

(h,h′)∈H

∣∣Ex∼P
DT

i

[L (h′ (x) , h (x))]

−Ex∼P
DT

j

[L (h′ (x) , h (x))]
∣∣. (10)

Definition 3 (Empirical discrepancy distance.) In practice,

we only have access to finite training sets D̂T
i and D̂T

j of

sample sizes mi and mj , respectively. Let P̂DT
i

and P̂DT
j

de-

note the empirical distribution for D̂T
i and D̂T

j , respectively.
Then we estimate the discrepancy distance with probability
1− δ, δ ∈ (0, 1) :

Ldisc

(
PDT

i
,PDT

j

)
≤ Ldisc

(
P̂DT

i
, P̂DT

j

)
+

8
(
Re

D̂T
i
(H) + Re

D̂T
i
(H)

)
(11)

+ 3M

(√
log

(
4
δ

)

2mi

+

√
log

(
4
δ

)

2mj

)
,

where M > 0 and ReUP
is the Rademacher complexity (See

Appendix-A from SM1). In the following we use L̂disc(·) to
represent the right-hand side (RHS) of Eq. (11).

Forgetting Analysis When Considering A Single
VAE Model

The ELBO which is used as the objective function for the
VAE model, can also be used as a criterion for the perfor-
mance evaluation (Burda, Grosse, and Salakhutdinov 2015;
Domke and Sheldon 2018; Kingma and Welling 2013). In
this section, we analyze the forgetting behaviour of a sin-
gle VAE model by deriving the upper bound to the negative
ELBO under TFCL.

Theorem 1 For a given data stream S , let P
x
′(1:i) be a

probability distribution for all previously seen i data batches
{{x1,j}bj=1, · · · , {xi,j}bj=1} ∈ S at Ti. Let the decoder of
a single VAE model be a Gaussian distribution with a diag-

onal covariance matrix (the diagonal element is 1/
√
2). We

then derive an upper bound to the negative ELBO at Ti, as :

EP
x
′(1:i)

[
− LELBO

(
x′(1 : i);h

)]
≤ EA

(
P
x
′(1:i),PMi

)

+ EPMi

[
− LELBO

(
xMi

;h
)]

+
∣∣KL1 −KL2

∣∣ , (12)

where x′(1 : i) and xMi
are the latent variables drawn from

P
x
′(1:i) and PMi

, respectively. EA(Px
′(1:i),PMi

) is defined
as :

EA
(
P
x
′(1:i),PMi

)
= L̂disc

(
P
x
′(1:i),PMi

)
+

EP
x
′(1:i)

(
h∗
x
′(1:i), fx′(1:i)

)
+ E

x
′(1:i)

(
h∗
x
′(1:i), h

∗
Mi

)
,

(13)

where h∗
x
′(1:i) = argminh∈HEP

x
′(1:i)

(h, f
x
′(1:i)) and

h∗
Mi

= argminh∈HEPxMi

(h, fMi
) are the optimal hy-

potheses for P
x
′(1:i) and PMi

, respectively. KL1 and KL2

are defined as :

KL1 = EP
x
′(1:i)

KL
(
qϕi(z |x′(1 : i)) || p(z)

)
,

KL2 = EPMi
KL

(
qϕi(z |xMi

) || p(z)
)
.

(14)

qϕi(z | ·) is the encoder of a single VAE model trained on
Mi at Ti.
The proof is provided in Appendix-A from SM1. From The-
orem 1 we can derive several observations. First, Eq. (12)
can measure the knowledge gain and loss of a single VAE
model at each training step {Ti | i = 1, · · · , t}. Second,
the discrepancy distance between all previously seen sam-

ples and the memory (L̂disc(Px
′(1:i),PMi

)) is crucial for
the generalization performance of h to the target distribu-
tion P

x
′(1:i). If the discrepancy distance term in Eq. (12)

increases, the Left-Hand Side (LHS) of Eq. (12) would also
increase, leading to a deterioration in performance. This usu-
ally happens in the training step when aiming to learnt many
data samples, where a fixed-capacity memory cannot store
all previously seen samples and therefore the discrepancy
distance term becomes large, resulting in forgetfulness. RHS
of Eq. (12) is also an upper bound to the negative sample
log-likelihood EP

x
′(1:i)

[− log pθ(x
′(1 : i))] (See Lemma 2

in Appendix-C from SM1).

Theoretical Guarantees

In this section, we extend the theoretical analysis for a sin-
gle VAE model to the proposed approach of using an en-
semble of experts, while also providing theoretical guaran-
tees. The proof is provided in Appendix-D from SM1. We
also extend the proposed theoretical analysis for other mod-
els and provide new insights for their forgetting behaviour
in Appendix-F from SM1.

Theorem 2 Suppose that the Teacher module has already
trained c experts A = {A1, · · · ,Ac} on Mi at Ti. Let h be
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Figure 2: The effect of varying ν.

a Student model which is implemented by a VAE model and
we derive an upper bound to the negative ELBO at Ti as :

EP
x
′(1:i)

[
− LELBO

(
x′(1 : i);h

)]
≤ EA

(
P
x
′(1:i),PMi⊗θ(1:c)

)

+ EPMi⊗θ(1:c)

[
− LELBO

(
x′′;h

)]
(15)

+
∣∣KL1 −KLMi⊗θ(1:c)

∣∣ ,
where the Kullback-Leibler divergence KLMi⊗θ(1:c) =

KL(qϕi(z |x′′) || p(z)) and x′′ is the latent variable
drawn from PMi⊗θ(1:c) which is a probability distri-
bution formed by the samples uniformly drawn from
{Pθ1 , · · · ,Pθc ,PMi

}. To compare with a single model
(Theorem 1), the proposed Teacher-Student framework
can significantly reduce forgetting by increasing the
Teacher’s knowledge using the KIAM mechanism, while
transferring its knowledge to the Student h, accord-
ing to Eq. (15) in which the discrepancy distance term
EA(Px

′(1:i),PMi⊗θ(1:c)) would be stable if the Teacher gains
more knowledge. The study from (Ye and Bors 2022d) also
provides a similar bound to Eq. (15). However, the bound in
(Ye and Bors 2022d) relies on the task label, which can not
be applied in TFCL. Moreover, (Ye and Bors 2022d) does
not analyze the knowledge diversity of the Student module,
which is one of our major theoretical contributions.

We can also observe that the diversity of the genera-
tor distributions {Pθ1 , · · · ,Pθc} can reduce the discrepancy
distance term by using a minimal number of experts. In-
spired by the component diversity analysis (Ye and Bors
2022f), one way to increase the expert diversity is by max-
imizing the distance between the existing trained experts
{A1, · · · ,Ac−1} and the current expert Ac, expressed as :

P
⋆
θm
c

= arg max
{Pθmc

|m=i+1,··· ,t}

1

c− 1

∑c−1

j=1

{
Dp(Pθj ,Pθm

c
)
}
,

(16)
where P

⋆
θm
c

is an optimal solution and m is the index of

the training step. Eq. (16) needs to access all future train-
ing steps {Ti+1, · · · , Tt} simultaneously, which is not fea-
sible in continual learning. Instead, the proposed criterion
from Eq. (1) can implement the goal expressed in Eq. (16)
since it evaluates the probability distance between all pre-

Real samples Fineturn CGKD-GAN Reservoir OGKD-VAE CN-DPM LTS
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Figure 3: The cross-domain reconstruction results of various
models under MSFIRC setting.

Methods MNIST SVHN Fashion IFashion RMNIST CIFAR10 Average No

finetune 174.1 148.3 237.0 229.1 159.2 216.4 194.0 1

Reservoir 127.2 159.3 213.4 201.6 110.2 113.3 154.2 1

LTS 44.8 62,9 92.9 83.1 41.8 80.3 67.7 1

LGM 104.8 134.3 194.3 168.1 94.8 91.5 131.3 1

CN-DPM 118.7 73.4 120.7 120.3 97.9 97.6 104.8 18

CGKD-GAN 11.6 70.6 101.9 29.9 11.41 68.6 49.0 16

CGKD-VAE 122.9 73.6 109.2 104.3 119.1 86.4 102.6 11

CGKD*-GAN 12.0 74.6 69.8 22.3 11.4 68.5 43.1 7

CGKD*-VAE 82.6 82.5 127.0 132.9 88.8 86.3 100.0 7

Table 1: FID for various models under the MSFIRC setting.

viously learnt experts and the current memory. To avoid ac-
cessing all future training steps at the same time, Eq. (1) uses
a threshold ν to dynamically increase the Teacher’s capacity,
which acquires new knowledge while preventing forgetting.
However, existing dynamic expansion approaches (Lee et al.
2020; Rao et al. 2019) do not fulfil the objective of Eq. (16)
as they do not consider the diversity of knowledge learnt by
the experts when performing model expansion.

Experiments

Settings and Baselines

Setting : We consider a series of six data domains including
MNIST (LeCun et al. 1998), SVHN (Netzer et al. 2011),
Fashion (Xiao, Rasul, and Vollgraf 2017), IFashion, RM-
NIST and CIFAR10 (Krizhevsky and Hinton 2009). We cre-
ate a data stream S from all training sets of these data
domains, namely MSFIRC. We also consider the class-
incremental setting where we split each data domain into
five parts, and each part consists of images from two differ-
ent classes (De Lange and Tuytelaars 2021). We then create
a data stream S by combining all parts of the six data do-
mains, namely Class Incremental (CL)-MSFIRC. The batch
size and the number of epochs for each training step are
64 and 1, respectively. The maximum memory size for MS-
FIRC and CI-MSFIRC is 5000. Since this paper focuses on
lifelong generative modelling under TFCL, we follow from
(Ye and Bors 2020a) which adopts the Fréchet Inception
Distance (FID) (Heusel et al. 2017) and Inception Score (IS)
(Salimans et al. 2016) to evaluate the performance of vari-
ous models. The detailed setting is provided in Appendix-H
from SM1.

Baselines : The majority of the existing lifelong learning ap-



Methods CelebA 3D-Chair Average No

finetune 35.79 9.90 22.85 1

Reservoir 20.82 11.04 15.93 1

LTS 20.68 11.47 16.07 1

LGM 21.58 11.84 16.71 1

CN-DPM 20.19 11.45 15.82 11

CGKD-GAN 18.05 11.32 14.68 3

CGKD-VAE 20.63 11.79 16.21 5

Table 2: FID evaluation for various models under the
CelebA-Chair learning setting.

Figure 4: Image interpolation results of CGKD-GAN under
CelebA-Chair setting.

proaches do not focus on generative modelling or require ac-
cessing the task information during training. Therefore, we
compare the proposed approach with more related methods
such as: Reservoir (Vitter 1985), Lifelong Teacher Student
(LTS) (Ye and Bors 2022e), Lifelong Generative Modelling
(LGM) (Ramapuram, Gregorova, and Kalousis 2017), and
CN-DPM (Lee et al. 2020), respectively. For a fair compar-
ison with CN-DPM, we also train a Student model to learn
generated data by CN-DPM and from the memory buffer.

Generative Modelling Task Under TFCL

The FID results for MSFIRC are shown in Table 1, where
‘No’ in the last column stands for the number of experts af-
ter lifelong learning. CGKD-GAN and CGKD-VAE repre-
sent using GAN and VAE as experts in the Teacher module
and ‘*’ indicates employing the proposed Expert Pruning
mechanism, according to Eq. (7). The IS result is provided
in Appendix-H2 of SM1. We can observe that GAN-based
approaches significantly outperform VAE-based methods in
terms of FID, as 67.7 by LTS versus 131.3 by LGM. The
proposed CGKD-GAN outperforms CN-DPM, despite the
latter using many more experts in its Teacher module. Over-
all, GAN-based approaches can provide high-quality gener-
ative replay patterns compared to the VAE-based models and
thus achieve better lifelong learning performance. The im-
age reconstruction results by CGKD-GAN are sharper than
most of the baselines, as we can observe in Fig. 3. Also
CGKD-GAN outperforms other baselines in the class incre-
mental setting of the lifelong learning of CI-MSFIRC, ac-
cording to the results from Table 3.

Learning Complex Data Stream Under TFCL

We examine the performance for the datasets consisting
of complex images. Following from (Ye and Bors 2022e),

Methods MNIST SVHN Fashion IFashion RMNIST CIFAR10 Average No

finetune 158.1 167.6 246.2 233.3 138.6 229.4 195.6 1

Reservoir 141.7 163.6 220.0 200.1 127.1 115.5 161.3 1

LTS 101.9 99.4 140.6 139.5 99.9 95.5 112.8 1

LGM 108.5 122.1 189.5 175.9 96.6 92.4 130.9 1

CN-DPM 90.9 62.0 109.0 95.0 77.9 95.5 88.4 18

CGKD-GAN 16.7 65.1 44.5 43.9 27.9 85.2 47.2 11

CGKD-VAE 102.6 69.9 117.1 99.5 113.0 82.7 97.5 11

CGKD*-GAN 13.5 72.7 89.9 52.1 12.4 71.9 52.1 7

CGKD*-VAE 131.0 70.3 106.7 92.2 126.5 87.7 102.4 7

Table 3: FID evaluation under the CI-MSFIRC setting.

we consider 5000 samples for testing from each database,
CelebA (Liu et al. 2015) and 3D-chair (Aubry et al. 2014),
and we create a data stream named CelebA-Chair consisting
of these training samples. We adopt the setting of MSFIRC
for CelebA-Chair and the results provided in Table 2 show
that the proposed approach is better than the other methods.

We also investigate the ability of the Student module to
learn cross-domain interpolations in a single latent space.
After the lifelong learning, we perform interpolations on the
latent space and the visual results are shown in Fig. 4. We
observe that a 3D chair can be seamlessly transformed into a
human face, with the outline of the chair gradually becoming
the eyes of a person. These results show that the Student can
learn cross-domain latent representations under TFCL and
would implicitly model the correlations between different
regions of two data domains into a single latent space.

Ablation Study

We first examine the performance of the proposed CGKD-
GAN when varying the threshold ν in Eq. (1). The average
FID score is provided in Fig. 2, where the result shows no
significant change for different ν. A small ν tends to result
in adding more experts for the Teacher module. This result
shows that more experts do not lead to greater performance
gains, and an appropriate ν would represent a trade-off be-
tween model complexity and performance. Additional ab-
lation studies are provided in Appendix-I of SM1. In addi-
tion, we also extend the proposed framework to the clas-
sification task (See Appendix-I.8 from SM1) and explore
another dynamic expansion mechanism (See Appendix-I.10
from SM1).

Conclusion

In this paper, we propose a new framework for task-agnostic
lifelong generative modelling from several different data
domains without forgetting. We introduce the Knowledge
Incremental Assimilation Mechanism (KIAM) to progres-
sively increase the Teacher’s knowledge, resulting in a
model with a minimal number of parameters. To enable the
Student to learn cross-domain representations, we introduce
a new data-free approach that transfers the Teacher’s knowl-
edge to the Student without accessing any past samples. For
maintaining a compact Teacher structure we propose a KD
pruning approach for removing those experts with overlap-
ping probabilistic representations.



References

Achille, A.; Eccles, T.; Matthey, L.; Burgess, C.; Watters,
N.; Lerchner, A.; and Higgins, I. 2018. Life-long disen-
tangled representation learning with cross-domain latent ho-
mologies. In Advances in Neural Information Processing
Systems (NeurIPS), 9873–9883.

Aljundi, R.; Belilovsky, E.; Tuytelaars, T.; Charlin, L.;
Caccia, M.; Lin, M.; and Page-Caccia, L. 2019a. On-
line Continual Learning with Maximal Interfered Retrieval.
In Advances in Neural Information Processing Systems
(NeurIPS), arXiv preprint arXiv:1908.04742.

Aljundi, R.; Kelchtermans, K.; and Tuytelaars, T. 2019.
Task-free continual learning. In Proc. of IEEE/CVF Conf. on
Computer Vision and Pattern Recognition, 11254–11263.

Aljundi, R.; Lin, M.; Goujaud, B.; and Bengio, Y. 2019b.
Gradient based sample selection for online continual learn-
ing. In Advances in Neural Information Processing Systems
(NeurIPS), arXiv preprint arXiv:1903.08671.

Aubry, M.; Maturana, D.; Efros, A. A.; Russell, B. C.; and
Sivic, J. 2014. Seeing 3D chairs: exemplar part-based 2D-
3D alignment using a large dataset of CAD models. In Proc.
of IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 3762–3769.

Banayeeanzade, M.; Mirzaiezadeh, R.; Hasani, H.; and So-
leymani, M. 2021. Generative vs. Discriminative: Rethink-
ing The Meta-Continual Learning. Advances in Neural In-
formation Processing Systems, 34.

Burda, Y.; Grosse, R.; and Salakhutdinov, R. 2015.
Importance weighted autoencoders. arXiv preprint
arXiv:1509.00519.

Buzzega, P.; Boschini, M.; Porrello, A.; Abati, D.; and
Calderara, S. 2020. Dark Experience for General Continual
Learning: a Strong, Simple Baseline. In Advances in Neural
Information Processing Systems (NeurIPS).

De Lange, M.; and Tuytelaars, T. 2021. Continual pro-
totype evolution: Learning online from non-stationary data
streams. In Proc. of the IEEE/CVF International Conference
on Computer Vision, 8250–8259.

Domke, J.; and Sheldon, D. R. 2018. Importance weighting
and variational inference. In Advances in Neural Informa-
tion Processing Systems, 4470–4479.

Egorov, E.; Kuzina, A.; and Burnaev, E. 2021. BooVAE:
Boosting Approach for Continual Learning of VAE. Ad-
vances in Neural Information Processing Systems, 34.

Fernando, C.; Banarse, D.; Blundell, C.; Zwols, Y.; Ha, D.;
Rusu, A. A.; Pritzel, A.; and Wierstra, D. 2017. Pathnet:
Evolution channels gradient descent in super neural net-
works. arXiv preprint arXiv:1701.08734.

Golkar, S.; Kagan, M.; and Cho, K. 2019. Continual Learn-
ing via Neural Pruning. CoRR, abs/1903.04476.

Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial nets. In Proc. Advances in
Neural Inf. Proc. Systems (NIPS), 2672–2680.

Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; and
Courville, A. C. 2017. Improved training of Wasserstein
GANs. In Proc. Advances in Neural Inf. Proc. Systems
(NIPS), 5767–5777.

Heo, B.; Lee, M.; Yun, S.; and Choi, J. Y. 2019. Knowl-
edge distillation with adversarial samples supporting deci-
sion boundary. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, 3771–3778.

Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; and
Hochreiter, S. 2017. GANs trained by a two time-scale up-
date rule converge to a local Nash equilibrium. In Proc. Ad-
vances in Neural Information Processing Systems (NIPS),
6626–6637.

Hinton, G.; Vinyals, O.; and Dean, J. 2014. Distilling the
knowledge in a neural network. In Proc. NIPS Deep Learn-
ing Workshop, arXiv preprint arXiv:1503.02531.

Hung, C.-Y.; Tu, C.-H.; Wu, C.-E.; Chen, C.-H.; Chan, Y.-
M.; and Chen, C.-S. 2019. Compacting, Picking and Grow-
ing for Unforgetting Continual Learning. In Advances in
Neural Information Processing Systems, 13647–13657.

Jin, X.; Sadhu, A.; Du, J.; and Ren, X. 2021. Gradient-based
Editing of Memory Examples for Online Task-free Contin-
ual Learning. In Advances in Neural Information Processing
Systems (NeurIPS), arXiv preprint arXiv:2006.15294.

Kingma, D. P.; and Welling, M. 2013. Auto-encoding varia-
tional Bayes. arXiv preprint arXiv:1312.6114.

Kirkpatrick, J.; Pascanu, R.; Rabinowitz, N.; Veness, J.;
Desjardins, G.; Rusu, A. A.; Milan, K.; Quan, J.; Ra-
malho, T.; Grabska-Barwinska, A.; Hassabis, D.; Clopath,
C.; Kumaran, D.; and Hadsell, R. 2017. Overcoming catas-
trophic forgetting in neural networks. Proc. of the National
Academy of Sciences (PNAS), 114(13): 3521–3526.

Krizhevsky, A.; and Hinton, G. 2009. Learning multiple lay-
ers of features from tiny images. Technical report, Univ. of
Toronto.

Kurle, R.; Cseke, B.; Klushyn, A.; van der Smagt, P.; and
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