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Abstract

The Variational Autoencoder (VAE) suffers from a significant
loss of information when trained on a non-stationary data dis-
tribution. This loss in VAE models, called catastrophic forget-
ting, has not been studied theoretically before. We analyse the
forgetting behaviour of a VAE in continual generative mod-
elling by developing a new lower bound on the data likeli-
hood, which interprets the forgetting process as an increase in
the probability distance between the generator’s distribution
and the evolved data distribution. The proposed bound shows
that a VAE-based dynamic expansion model can achieve bet-
ter performance if its capacity increases appropriately con-
sidering the shift in the data distribution. Based on this anal-
ysis, we propose a novel expansion criterion that aims to pre-
serve the information diversity among the VAE components,
while ensuring that it acquires more knowledge with fewer
parameters. Specifically, we implement this expansion crite-
rion from the perspective of a multi-player game and propose
the Online Adversarial Expansion Strategy (OAES), which
considers all previously learned components as well as the
currently updated component as multiple players in a game,
while an adversary model evaluates their performance. The
proposed OAES can dynamically estimate the discrepancy
between each player and the adversary without accessing task
information. This leads to the gradual addition of new com-
ponents while ensuring the knowledge diversity among all
of them. We show theoretically and empirically that the pro-
posed extension strategy can enable a VAE model to achieve
the best performance given an appropriate model size.

Introduction

The Variational Autoencoder (VAE) (Kingma and Welling
2013) is one of the most popular deep generative models,
which defines an encoding-decoding process for images. A
VAE consists of two modules : an inference model map-
ping an image x to a low-dimensional latent variable z and
a decoder recovering x from z. The VAE is a likelihood-
based model which is optimized by maximizing the sample
log-likelihood log pθ(x) = log

∫
pθ(x | z)p(z)dz. However,

this objective function is intractable for optimization since
it requires integrating over all z. A VAE introduces a lower
bound to the sample log-likelihood, called Evidence Lower

Copyright © 2023, Association for the Advancement of Artificial
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Figure 1: The scheme for the proposed Online Adversarial
Expansion Strategy (OAES). We assume that a VAE-based
Dynamic Expansion Model has already trained t compo-
nents. At each training step, the generator, discriminator,
and the current component (t) are trained on the memory
buffer while all other components are frozen. At the evalu-
ation phase, we treat the generation of all previously learnt
components (1,· · · ,t-1) and the current component (t) as real
and fake images, which are then fed into the discriminator
for deciding the model’s expansion.

Bound (ELBO), used as its objective function :

log pθ(x) ≥ Eqω(z|x) [log pθ (x | z)]

−DKL [qω (z |x) || p (z)] := LELBO (x; {θ, ω}) ,
(1)

where p(z) = N (0, I) and pθ(x | z) are the prior and
decoding distribution, respectively. DKL[·] is the Kull-
back–Leibler divergence. Existing works aiming for the im-
provement of VAE are mainly deriving a tighter ELBO
to the data log-likelihood, which is implemented by us-
ing importance sampling (Burda, Grosse, and Salakhutdi-
nov 2015; Domke and Sheldon 2018), a more expressive
posterior (Kim and Pavlovic 2020; Maaløe et al. 2016;
Kim and Pavlovic 2020), or hierarchical variational models
(Molchanov et al. 2019; Vahdat and Kautz 2020).

However, these methods can only guarantee a tight ELBO
for a static data domain and do not consider the circum-
stances of lifelong learning. Recently, (Ye and Bors 2022f)



provided for the first time a theoretical analysis for the for-
getting behaviour of VAEs. However, this theoretical anal-
ysis requires two strong assumptions : a Gaussian decoder
and knowing the task information. These two assumptions
are not guaranteed in a more realistic continual learning sce-
nario called Task-Free Continual Learning (TFCL) (Aljundi,
Kelchtermans, and Tuytelaars 2019), where task identity is
unavailable. In this paper, we focus on the realistic CL sce-
nario and develop a novel theoretical framework for the
VAE, which overcomes the limitations of the previous work
(Ye and Bors 2022f). The proposed theoretical framework
interprets the forgetting process of VAEs as an increase in
the Jensen-Shannon divergence (JS) between the generator
and evolved data distribution, which provides new insights
into the forgetting behaviour of VAEs under TFCL. Further-
more, the proposed theoretical analysis shows that a VAE-
based Dynamic Expansion Model (DEM), which appropri-
ately increases its capacity when facing the data distribution
shift, can significantly improve its performance. This takes
place while also maintaining the knowledge diversity among
components while inducing a compact model structure with-
out sacrificing the performance (Theorem 3).

Inspired by the proposed theoretical analysis, we aim
to learn a diverse VAE-based Dynamic Expansion Model
(VAE-DEM) for TFCL. Unlike other dynamic expansion
criteria (Rao et al. 2019), which recognise input shifts as ex-
pansion signals, we implement a dynamic criterion derived
from a novel perspective, that of a multi-player game. More
specifically, we can consider all the previously learned VAE
components and the currently updated VAE component as
multiple players while an adversary discriminator estimates
the discrepancy between each player and the adversary, as
an evaluator. In contrast to traditional adversarial learning
(Goodfellow et al. 2014), which learns a static data do-
main with only two players, we propose the Online Adver-
sarial Expansion Strategy (OAES), which can learn a non-
stationary data distribution and dynamically add new play-
ers during training. OAES consists of two stages, as shown
in Fig. 1. In the first stage (training), we use an episode mem-
ory to store some past samples that are used to train a gener-
ator and a discriminator using adversarial learning (Eq. (14))
while training the current VAE component (‘VAE t’) us-
ing VAE loss (Eq. (1)) as well. In the second phase (eval-
uation), we treat the data generations by all players (‘VAE
1’,. . . ,‘VAE t-1’) and by the adversary (‘VAE t’) as the real
and fake images, which are fed into the discriminator to pro-
duce t − 1 pairs of probability measures. We evaluate the
difference between each pair of measures as the discrepancy
value for each player and the adversary, which guides us to
dynamically add a new adversary (‘VAE t+1’) and transfer
(‘VAE t’) to the player if (‘VAE t’) learns sufficient novel
knowledge. Such a strategy promotes information diversity
among components during expansion leading to learning a
compact and diverse VAE-DEM for TFCL. Extensive exper-
iments show that OAES can significantly improve the per-
formance of VAE-DEM for TFCL with a minimum number
of components.

We summarize our contributions as follows : (1) We pro-
pose a novel theoretical framework that provides new in-

sights into the forgetting behaviour of the VAE model under
TFCL; (2) The theoretical analysis can be used in realistic
continual learning scenarios without the need to know task
boundaries; (3) We extend the proposed theoretical frame-
work to analyze the forgetting behaviour of existing VAE
models (Appendix-F from Supplemental Material (SM));
(4) Inspired by the theoretical analysis, we propose a plug-
and-play dynamic extension strategy which can be used in
any VAE model; (5) To the best of our knowledge, this is the
first work to propose a novel solution for model expansion
in TFCL from the perspective of an adversarial criterion;
(6) The proposed approach achieves state of the art perfor-
mance in both classification and generative tasks.

Supplementary materials (SM) and source code are avail-
able1.

Related Work

Continual learning. A natural approach to relieve forgetting
in CL is to build a memory-based replay system, which
stores some past training samples from each task and re-
plays them during the subsequent task learning (Bang et al.
2021, 2022). Memory-based approaches can further improve
the performance by combining with regularization methods
(Kirkpatrick et al. 2017; Kemker et al. 2018; Martens and
Grosse 2015; Aljundi et al. 2019b; Chaudhry et al. 2019,
2018; Lopez-Paz and Ranzato 2017; Derakhshani et al.
2021; Shi et al. 2021; Wang et al. 2021; Nguyen et al. 2017;
Ahn et al. 2019). In addition, training a generator such as a
Generative Adversarial Net (GAN) (Goodfellow et al. 2014)
or a Variational Autoencoder (VAE) (Kingma and Welling
2013), used to produce generative samples corresponding
to past tasks, was shown to effectively relieve forgetting
in CL (Ramapuram, Gregorova, and Kalousis 2020; Rao
et al. 2019; Ye and Bors 2021a, 2020a, 2022f, 2023, 2022a,
2021b, 2022d, 2020b). The other approach in CL is to dy-
namically build new hidden layers, which would preserve
the best performance for past tasks (Ye and Bors 2022c;
Hung et al. 2019; Li and Hoiem 2017; Polikar et al. 2001;
Rao et al. 2019; Rusu et al. 2016; Wen, Tran, and Ba 2020;
Xiao et al. 2014; Ye and Bors 2020c, 2021a, 2023; Zhou,
Sohn, and Lee 2012).
Task-Free Continual Learning. TFCL defines a realistic sit-
uation in CL, which has attracted recently significant atten-
tion. The first work in TFCL (Aljundi, Kelchtermans, and
Tuytelaars 2019) trains a classifier with a memory buffer.
This approach was extended to train both VAEs and clas-
sifiers through a retrieval mechanism that selectively stores
the most perturbed samples, called the Maximal Interfered
Retrieval (MIR) (Aljundi et al. 2019a). The approach from
(Aljundi et al. 2019b) further treats the sample selection of
the memory buffer as a constrained optimization problem,
called the Gradient Sample Selection (GSS). More recently,
(De Lange and Tuytelaars 2021) propose a new learner-
evaluator framework which manages a balanced memory
buffer, called the Continual Prototype Evolution (CoPE).
The Gradient-based Memory EDiting (GMED) (Jin et al.
2021) modifies the memorized samples such that it increases

1https://github.com/dtuzi123/OAES



the loss in the upcoming model updates. However, these
memory-based methods are not scalable for learning infinite
data streams due to their fixed memory capacity. The Dy-
namic Expansion Model (DEM) can solve these limitations
by dynamically expanding the model’s capacity to deal with
incoming samples (Rao et al. 2019; Lee et al. 2020; Ye and
Bors 2022e). However, the expansion mechanism in these
approaches relies on the sample log-likelihood evaluation
(Rao et al. 2019) or the Dirichlet process (Lee et al. 2020),
which do not have theoretical guarantees.
Variational Autoencoder. The tightness of the VAE objective
function (ELBO) is crucial for improving the performance
of the VAE. One possible approach is to use the Impor-
tance Weighted Autoencoder (IWELBO) (Burda, Grosse,
and Salakhutdinov 2015), which generates a set of weighted
samples for the given input resulting in a tighter ELBO.
Another approach aims to use a more informative approx-
imate posterior distribution, such as the Normalizing Flows
(Kingma et al. 2016; Rezende and Mohamed 2015), Implicit
Distributions (Mescheder, Nowozin, and Geiger 2017) or
the Hierarchical Variational Inference (Huang et al. 2019).
Moreover, these approaches can further improve perfor-
mance by integrating the IWELBO loss into their primary
objective function. In addition, online variation inference
(Nguyen et al. 2017) was used in the VAE framework, but
it requires to store a subset of training samples for comput-
ing the approximate posterior which is impractical for learn-
ing an unlimited number of tasks. Moreover, the study of the
ELBO’s tightness under TFCL has not been explored before.

Preliminary
We first introduce the learning setting of TFCL and then the
probabilistic representation of each data domain.

Definition 1 (The stream of data samples.) Let us define

DS
k = {xSj }

n(S,k)
j=1 and DT

k = {xTj }
n(T,k)
j=1 be the unla-

belled training and testing sets of the k-th domain/dataset,
where xSj is the unlabelled data sample. n(S, k) and n(T, k)

represent the total number of samples for DS
k and DT

k , re-

spectively. DS
k can be divided into C(S, k) parts accord-

ing to the category or the task information, expressed as
{DS(1, k), · · · , DS(C(S, k), k)}. In TFCL, where there are
no task labels, each DS(i, k) is represented by its proba-
bilistic representation P

S
(i,k). Let us define a data stream in

a class-incremental manner :

W =
⋃C(S,k)

j=1
DS(j, k) , (2)

At the i-th training step (Ti), the model only accesses a data
batch Bi ∈ DS

k with the batch size of 10. Once the model
finishes all training steps, its performance is evaluated on
the testing set DT

k .

In the following we define a VAE model and a fixed-
length memory buffer which continually stores training sam-
ples from W during training.

Definition 2 (VAE model.) Let Vi be a single model up-
dated at Ti, where i represents the index of the training step.
Vi consists of an inference model qωi(z |x) and the genera-
tor pθi(x | z). Let Pθi represent the generator’s distribution.

Definition 3 (Memory buffer.) Let Mi denote a memory
buffer updated at Ti. Let |Mi| and |M|max represent the
number of memorized samples and the maximum memory
size, respectively. Let PMi

denote the distribution of the
memory buffer Mi updated at Ti.

Theoretical Framework

Forgetting Analysis of A Single VAE Model

The VAE is a likelihood model and a higher log-likelihood
estimation indicates a good performance of the VAE (Chen
et al. 2018), which, however, is only evaluated on a static
distribution. In this section, we develop a novel lower bound
to the sample log-likelihood, which can be used to analyze
the VAE’s performance on a non-stationary data distribution.

Theorem 1 Let pθi(x) be a probability density function for
a single model Vi updated at Ti. Let PWi denote a distri-
bution of all visited data batches {B1, · · · ,Bi} drawn from
W at Ti. Let pMi

(x) and pW i(x) denote the density func-
tions for PMi

and P
W
i , respectively. We then derive a lower

bound for a single VAE model trained on Mi at Ti as :

EP
W
i

[
log pθi(x)

]
≥ EPMi

[
log pθi(x)

]
−DJS

(
P
W
i || PMi

)

−FDL

(
PMi

,PWi ,Pθi
)
+ Fdis

(
P
W
i ,PMi

)
, (3)

where we have :

FDL

(
PMi

,PWi ,Pθi
) ∆
=

∣∣DKL

(
PMi

|| Pθi
)

−DKL

(
P
W
i || Pθi

)∣∣ ,
(4)

Fdis

(
P
W
i ,PMi

) ∆
= EP

W
I

[
pW i(x) log pW i(x)

]

− EPMi

[
pMi

(x) log pMi
(x)

]
.

(5)

We can observe that Fdis(P
W
i ,PMi

) is constant if and only

if PWi and PMi
are fixed. Fdis(PW i ,PMi

) is bounded by

|DKL(P
W
i ||PMi

)−DKL(PMi
|| (PWi )|. From Eq. (3), we

can estimate the sample log-likelihood of PWi by ELBO :

EP
W
i

[
log pθi(x)

]
≥ EPMi

[
LELBO(x; θ

i, ωi)
]

−DJS

(
P
W
i || PMi

)
−FDL

(
PMi

,PWi ,Pθi
)

+ Fdis

(
P
W
i ,PMi

)
, (6)

where DJS is the Jensen-Shannon divergence. We then find
that Eq. (6) can be recovered to a standard ELBO (Eq. (1))
if and only if PWi is equal to PMi

. We provide the proof in
Appendix-B from SM1.

Remark. We have several observations from Theorem 1 :
(1) The term DJS(P

W
i || PMi

) in Eq. (6) plays an im-
portant role for the generalization performance. Reducing
DJS(P

W
i || PMi

) would lead to increasing the right-hand-
side (RHS) of Eq. (6) and therefore the model Vi can have
a good performance on P

W
i . (2) A large DJS(P

W
i || PMi

)
indicates a significant reduction in the RHS of Eq. (6), re-
sulting in a poor performance on P

W
i . This usually happens

when the memory buffer does not store sufficient informa-
tion about PWi , due to the forgetting process; (3) Unlike the
theoretical analysis from (Ye and Bors 2022f, 2021a) which



relies on the task information, Eq. (3) can analyze the for-
getting behaviour of a single VAE model without accessing
any task information at each training step. In the following,
we evaluate the generalization performance achieved by a
single model on the target set.

Lemma 1 Let {DT (1, k), · · · , DT (C(T, k), k)} be several
target sets, where each DT (j, k) is represented by the prob-
abilistic representation P

T
(j,k). We derive a lower bound to

the sample log-likelihood for a single VAE model Vi at Ti :

C(T,k)∑

j=1

{
EP

T
(j,k)

[
log pθi(x)

]}
≥

C(T,k)∑

j=1

{
Fdis

(
P
T
(j,k),PMi

)

+ EPMi

[
LELBO(x; θ

i, ωi)
]
−DJS

(
P
T
(j,k) || PMi

)

−FDL

(
PMi

,PT(j,k),Pθi
)}

, (7)

The proof is to sum up the the bound of all target sets ac-
cording to Eq. (3).
Remark. We have several observations from Lemma 1 :
(1) Eq. (7) indicates that encouraging the sample diversity in
the memory would relieve forgetting by minimizing the JS
divergence terms since the diversity can allow Mi to store
the information corresponding to all target sets, empirically
demonstrated in (Bang et al. 2021); (2) In practice, a single
model has significant limitations when aiming to learn infi-
nite data streams or a data stream involving more underly-
ing data distributions (C(T, k) is large). In addition, a single
model would also suffer from interference between the old
and newly seen samples (Lee, Goldt, and Saxe 2021) . In
the following, we provide the theoretical analysis and show
how the Dynamic Expansion Model (DEM) can overcome
the limitations of a single model.

Forgetting Analysis of DEM

The DEM can dynamically adapt its network architecture
according to the complexity of the data stream. In this sec-
tion, we theoretically demonstrate that the DEM can achieve
better generalization performance than a single model.

Definition 4 Dynamic expansion model (DEM). Let us de-
fine a DEM, V = {Vc11 , · · · ,Vctt } with t components where
the superscript ci denotes that the i-th component (Vcii ) fin-
ished its training and froze at Tci . Each component Vcii has
already preserved the knowledge of the memory buffer Mci

with the parameters {θcii , ω
ci
i }.

In the following, we derive a new lower bound to analyze
the forgetting behaviour of a dynamic expansion model dur-
ing the training.

Theorem 2 Let PWi represent the distribution of all visited
data batches {B1, · · · ,Bi} at Ti where each data batch Bj
is denoted by the probabilistic representation P

B
j . Let V =

{Vc11 , · · · ,Vctt } be a dynamic mixture model trained on Mi

at Ti where ct = i. We derive a lower bound as :

i∑

j=1

{
EP

B
j

[
log pΘi(x)

]}
≥

i∑

j=1

{
Fs(P

B
j ,V)

}
, (8)

where Θi represent the parameters of V and Fs(·, ·) is the
component selection function defined as :

Fs(P
B
j ,V)

∆
= arg max

c1,··· ,ct

{
EPMci

[
LELBO(x; θ

ci
i , ω

ci
i )

]

−DJS

(
P
B
j || PMci

)
−FDL

(
PMci

,PB
j ,Pθci

i

)

+ Fdis

(
P
B
j ,PMci

)}
. (9)

Eq. (9) can be seen as an optimal component selection func-
tion which always returns the component with the highest
selectivity function value.

Remark. We have several observations from Theorem 2 :
(1) Since each component V

cj
j preserved the information of

the associated memory buffer Mcj , V would capture more
information about W when compared with a single VAE
model. (2) By increasing the number of components in V

we improve the performance since more components cap-
ture more underlying distributions and thus increase RHS of
Eq. (8); In the following, we study the generalization perfor-
mance of V on target sets by deriving a new lower bound.

Lemma 2 Let {DT (1, k), · · · , DT (C(T, k), k)} be several
target sets where each target set DT (c, k) can be divided
into several data batches {BT (c, 1), · · · ,BT (c, n(T, c, k))}
where n(T, c, k) is the total number of data batches for
DT (c, k). Let PB

T (c, j) represent the probabilistic represen-

tation of the data batch BT (c, j). We suppose that V has
already learnt t components trained on Mi at Ti. The gen-
eralization performance on all target sets, achieved by V at
Ti, is defined as :

∑C(T,k)

c=1

{∑n(T,c,k)

j=1

{
EP

B
T
(c,j)

[
log pΘi(x)

]}}
≥

∑C(T,k)

c=1

{∑n(T,c,k)

j=1

{
Fs(P

B
T (c, j),V)

}}
, (10)

Similar to the conclusion of Theorem 2, increasing the
number of components in V leads to a better generalisa-
tion performance on all target sets. In practice, we use the
sample log-likelihood comparison for component selection,
which would introduce additional errors compared to us-
ing the optimal component selection Eq. (9) (see details in
Appendix-C from SM1). In addition, we also extend our the-
oretical analysis to the existing VAE models in Appendix-F
as well as to general continual learning with explicit task
boundary in Appendix-G from SM1.

Theoretical Analysis for The Component Diversity

In this section, we study how component diversity can in-
fluence the trade-off between the model’s complexity and
generalization performance.

Assumption 1 Let us consider that V has already learnt t
components at Ti. Under the optimal component selection
(Eq. (8)), we can treat the DEM V as a single model that
has been trained on all memory buffers {Mc1 , · · · ,Mct}.
Let PMc1:t

represent the distribution of all memories data.



Split MNIST Split Fashion Split MNIST-Fashion Cross-domain

Methods Log Memory N Log Memory N Log Memory N Log Memory N

VAE-reservoir -144.17 3.0K 1 -276.60 3.0K 1 -240.02 3.0K 1 -239.42 3.0K 1

VAE-ELBO-MIR (Aljundi et al. 2019a) -143.27 3.0K 1 -274.72 3.0K 1 -238.68 3.0K 1 -237.93 3.0K 1

VAE-ELBO-Random -150.79 3.0K 1 -280.54 3.0K 1 -247.46 3.0K 1 -239.71 3.0K 1

LIMix (Ye and Bors 2021a) -146.23 2.0K 30 -262.52 2.0K 30 -238.63 2.0K 30 -226.63 2.0K 30

CNDPM (Lee et al. 2020) -120.71 2.0K 30 -257.56 2.0K 30 -236.79 2.0K 30 -218.15 2.0K 30

VAE-ELBO-OCM (Ye and Bors 2022b) -132.07 1.6K 1 -250.74 1.6K 1 -215.62 2.0K 1 -201.31 2.0K 1

VAE-IWVAE50-OCM (Ye and Bors 2022b) -127.11 1.6K 1 -247.90 1.6K 1 -224.34 2.0K 1 -204.35 2.0K 1

Dynamic-ELBO-OCM (Ye and Bors 2022b) -115.89 1.6K 5 -237.69 1.8K 10 -187.49 1.9K 10 -177.29 2.0K 11

OAES-ELBO -103.93 1.5K 5 -231.10 1.5K 10 -171.62 1.9K 8 -165.29 2.0K 11

Table 1: The log-likelihood estimation on all testing samples by using the IWVAE bound with 1000 importance samples.

Theorem 3 Based on Assumption 1, we derive a lower
bound for V on all target sets at Ti as :

C′∑

j=1

{
EP

T
(j,k)

[
log pΘi(x)

]}
≥

C′∑

j=1

{
Fdis

(
P
T
(j,k),PMc1:t

)

+ EPMc1:t

[
LELBO(x; Θ

i,Ωi)
]
−DJS

(
P
T
(j,k) || PPMc1:t

)

−FDL

(
PMc1:t

,PT(j,k),PΘi
)}

, (11)

where C ′ = C(T, k) and PΘi is the distribution of samples
uniformly drawn from generators (decoders) of V at Ti.

Eq. (11) indicates that V can achieve an excellent perfor-
mance by minimising the JS divergence terms. In practice,
using a large number of components may not always ensure
good performance for V, as some components would model
the same underlying data distribution and ignore other dis-
tributions (See details in Appendix-D from SM1). The di-
versity of knowledge among the components plays a vital
role in the trade-off between the model complexity and its
generalisation performance. However, existing DEM mod-
els (Rao et al. 2019; Lee et al. 2020) cannot guarantee this
optimal trade-off because they do not consider the knowl-
edge diversity during the expansion process. This inspires
us to develop a novel dynamic expansion mechanism with
theoretical guarantees, described in the next section.

Methodology

Based on the analysis of Theorem 3, we desire to train a di-
verse and compact VAE-DEM by ensuring the knowledge
diversity among its components. In this section, we first in-
troduce a new dynamic expansion criterion and then imple-
ment it using the proposed OAES.

Dynamic Expansion Criterion

Let us consider that V has already learnt t components at Ti.
According to the theoretical analysis from Theorem 3, we
aim to promote the knowledge diversity among components,
which can be realized as an optimization function :

Pθi
⋆

t
= arg max

i=c′,··· ,n

{∑t−1

u=1

{
Dp(Pθcuu ||Pθit)

}}
, (12)

where c′ = ct−1 + 1 and n is the total number of train-
ing steps. i is the index of the training step, beginning from
ct−1 + 1 (the initial index of the training step for the t-th
component) to n. Dp(· || ·) is an arbitrary probability mea-
sure which can be the JS divergence or Wasserstein distance.
In this paper, we employ the Wasserstein distance in Eq. (12)
since it is more robust than the JS divergence (Arjovsky,
Chintala, and Bottou 2017). Eq. (12) aims to find an opti-
mal model’s distribution Pθi

⋆

t
that maximizes the Wasser-

stein distance between each previously learnt model’s distri-
bution Pθcuu and itself. However, directly optimizing Eq. (12)
in TFCL is infeasible because it requires fulfilling all train-
ing steps. Therefore, we propose a new dynamic expansion
criterion to implement the goal of Eq. (12), by involving a
threshold β ∈ [0, 20] at Ti :

min
{
Dp(Pθc11 ||Pθit), · · · , Dp(Pθct−1

t−1
||Pθit)

}
≥ β . (13)

If Eq. (13) is satisfied, we add a new component Vi+1
t+1 ∈ V

at the next training step (Ti+1), while Vit is frozen to increase
the diversity among components. The threshold β controls
the trade-off between the model’s complexity and its gener-
alization performance while also avoiding passing through
all training steps. When decreasing β, the model V tends to
create more components during the training, which would
improve the performance but would require more parame-
ters. In contrast, a large threshold β would encourage V to
use fewer components, leading to degenerated performance.
The theoretical analysis for the choice of β can be found in
Appendix-E from SM1.

Online Adversarial Expansion Strategy (OAES)

The proposed criterion (Eq. (13)) employs the Wasserstein
distance for assessing the similarity between two probability
distributions. However, evaluating Wasserstein distance in
the high-dimensional image space still requires enormous
computational resources. To address this issue, instead of
directly estimating Wasserstein distance, we formulate the
expansion strategy as a multi-player game and introduce the
proposed OAES to solve this game. OAES consists of two
stages, as shown in Fig. 1 : training and evaluation stages..
Training stage : Let Gεi and Dψi represent a generator and
a discriminator, trained on the memory buffer Mi at Ti. The



Methods Split MNIST Split CIFAR10 Split CIFAR100

finetune* 19.75 ± 0.05 18.55 ± 0.34 3.53 ± 0.04

GEM* 93.25 ± 0.36 24.13 ± 2.46 11.12 ± 2.48

iCARL* 83.95 ± 0.21 37.32 ± 2.66 10.80 ± 0.37

reservoir* 92.16 ± 0.75 42.48 ± 3.04 19.57 ± 1.79

MIR* 93.20 ± 0.36 42.80 ± 2.22 20.00 ± 0.57

GSS* 92.47 ± 0.92 38.45 ± 1.41 13.10 ± 0.94

CoPE-CE* 91.77 ± 0.87 39.73 ± 2.26 18.33 ± 1.52

CoPE* 93.94 ± 0.20 48.92 ± 1.32 21.62 ± 0.69

ER + GMED† 82.67 ± 1.90 34.84 ± 2.20 20.93 ± 1.60

ERa + GMED† 82.21 ± 2.90 47.47 ± 3.20 19.60 ± 1.50

CURL* 92.59 ± 0.66 - -

CNDPM* 93.23 ± 0.09 45.21 ± 0.18 20.10 ± 0.12

Dynamic-OCM 94.02 ± 0.23 49.16 ± 1.52 21.79 ± 0.68

OAES 94.69 ± 0.18 52.16 ± 0.25 26.01 ± 1.02

Table 2: Classification accuracy results for five independent
runs when testing various models on three datasets. * and
† denote the results cited from (De Lange and Tuytelaars
2021) and (Jin et al. 2021), respectively.

objective function (Wasserstein GAN loss) for training Gεi

and Dψi at Ti is defined as (Gulrajani et al. 2017) :

min
P
εi

max
D
ψi

∈Θ
Exj∼Mi

[
Dψi (xj)

]
− Ex

′∼P
εi

[
Dψi (x

′)
]

+ γE
x̂∼P

x̂

[(∥∥∇
x̂
Dψi (x̂)

∥∥
2
−1

)2]
, (14)

where x̂ is an interpolated image produced by x̂ = axi +
(1 − a)x′ where a is drawn from a uniform distribution
U(0, 1) and P

x̂
is the distribution of the interpolated im-

ages. Different from WGAN (Gulrajani et al. 2017) which
is trained on a static dataset, we train Gεi and Dψi on the
evolved memory buffer Mi in an online fashion.
Evaluation stage : At this stage, we evaluate the discrepancy
between each previously learnt component and the current
component by comparing the discriminator’s outputs and
therefore Eq. (13) is reformulated as :

min
{
Cψi(Pθc11 ,Pθit), · · · , Cψi(Pθ

ct−1
t−1

,Pθit)
}
≥ β , (15)

where Cψi(Pθc11 ,Pθit) is defined as :

Cψi(Pθc11 ,Pθit) =
1

n′

∑n′

j=1

∣∣Dψi

(
x
′
j

)
−Dψi (xj)

∣∣ (16)

where x
′
j ∼ Pθ

c1
1

and xj ∼ Pθit
are treated as the real and

fake images in the context of the adversarial criterion. | · |
is the absolute value and n′ = 128 is the number of sam-
ples. A small

∣∣Dψi

(
x
′
j

)
− Dψi (xj)

∣∣ indicates that Pθc11
is

similar to Pθit
since Pθit

is trained to approximate PMi
. The

implementation for the OAES is explained in the following.

Algorithm Implementation

In this section, we provide the algorithm implementation
of OAES (See the pseudocode in Appendix-A from SM1),
which is summarized into three stages :

Methods M-S Param M-C Param Split IM Param

ER 10.89 161M 15.28 161M 25.10 125M

ER + GMED 16.23 161M 21.26 161M 27.26 125M

CoPE 22.45 161M 26.85 161M 26.37 125M

CNDPM 47.64 237M 66.25 185M 27.98 102M

OAES 55.35 157M 72.56 173M 29.62 78M

Table 3: Classification accuracy of various models in the
cross-domain setting.

Stage 1 . Memory updating : Let |M| be the number of sam-
ples in the memory buffer and |M|max be the maximum
memory buffer size. The memory buffer Mi when reaching
|M|max at the i-th training step, is updated by removing the
earliest stored samples, while adding newly given samples.

Stage 2 . Training the component : Let us suppose that we
have already learnt t components V = {Vc11 , · · · ,Vctt } at
Ti. We only train Vctt on Mi at Ti by using Eq. (1) to avoid
forgetting previously learnt knowledge. In addition, we train
the generator Gεi and the discriminator Dψi on Mi using
adversarial loss (Eq. (14)).

Stage 3 . Check the expansion : When reaching |M|max we
check the expansion criterion using Eq. (15) (OAES evalua-
tion stage). If Eq. (15) is satisfied, we add a new component
Vt+1 ∈ V and clear up the memory Mi in order to learn
statistically non-overlapping data in the following training
step. We return to Stage 1 for next training step (Ti+1).

Experiments

Experiment Setting and Datasets

Datasets. For the generative modelling task, we have the
following datasets : (1) Split MNIST/Fashion. We split
MNIST/Fashion (LeCun et al. 1998) into ten parts accord-
ing to the class. (2) Split MNIST-Fashion. We combine Split
MNIST and Split Fashion in a class-incremental manner;
(3) Cross-Domain. We consider to combine Split MNIST-
Fashion and OMNIGLOT (Lake, Salakhutdinov, and Tenen-
baum 2015). See more details in Appendix-H2 from SM1.

Criteria. The task classification task is employed for testing
the accuracy. For testing the generative modelling task, we
estimate the sample log-likelihood (Log) by using IWVAE
bound (Burda, Grosse, and Salakhutdinov 2015), consider-
ing 1000 importance samples, as in (Ye and Bors 2022b).

Baseline. We introduce several baselines which are used for
density estimation (Ye and Bors 2022b): (1) VAE-ELBO-
OCM : A single VAE model with ELBO using the Online
Cooperative Memorization (OCM) (Ye and Bors 2022b).
(2) VAE-IWVAE50-OCM : A single VAE model with IW-
VAE using the OCM where the number of importance sam-
ples is 50. (3) VAE-ELBO-Random : A single VAE model
with a memory that randomly removes samples when it
reaches the maximum memory size. (4) Dynamic-ELBO-
OCM : A mixture model with ELBO using OCM (Ye and
Bors 2022b). (5) CNDPM (Lee et al. 2020); (6) LIMix (Ye
and Bors 2021a) : we assign an episodic memory with a
fixed buffer size for the LIMix model used for TFCL. The
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Figure 2: Ablation study results. (a) The performance and the number of components for OAES on Split MNIST when changing
β. (b) The performance of various models on Split MNIST when changing the memory buffer size.

maximum number of components for various models is set
to 30 to avoid memory overload.

Density Estimation

The results of various models on the density estimation
task are shown in Table 1, where ‘Memory’ and ‘N’ de-
notes the memory size and the number of components. The
threshold β for Split MNIST, Split Fashion, Split MNIST-
Fashion and Cross-domain is 4.2, 3, 4 and 4.2, respectively.
We observe that dynamic expansion models usually outper-
form static models while using a small memory buffer, es-
pecially in the cross-domain setting involving multiple data
domains. These results demonstrate that DEM provides a
better generalization performance than a single model when
the data stream involves more underlying data distributions,
which is theoretically explained in Theorem 2. In addition,
the OAES-ELBO outperforms other DEM baselines in all
settings. Compared with the Dynamic-ELBO-OCM, which
performs the sample selection for the memory buffer, the
OAES-ELBO requires less training while achieving better
performance since it does not require the sample selection.

Classification Task

We replace each component using a conditional VAE or train
a classifier along with each VAE component in order to test
the classification task performance. We employ the learn-
ing setting and network architecture from (De Lange and
Tuytelaars 2021). We adopt Split MNIST, Split CIFAR10
and Split CIFAR100 from (De Lange and Tuytelaars 2021)
for the classification tasks. The details of all classification
baselines and the threshold β are provided in Appendix-H3
from SM1. The results for Split MNIST, Split CIFAR10 and
Split CIFAR100 are reported in Table 2. We also consider
Split MiniImageNet (Split IM) (Vinyals et al. 2016) which
divides MiniImageNet into 20 tasks, where each task col-
lects the images of five classes (Aljundi et al. 2019a).

In the following we consider evaluating our model in the
more challenging setting where a data stream involves multi-
ple data domains. First, we create a data stream named M-S,

combining Split MNIST and SVHN. Then, we create an-
other data stream M-C, which combines Split MNIST and
Split CIFAR10. The memory buffer size is 1000 for Split
M-S and Split M-C, and the results are reported in Table 3,
where ’Param’ denotes the number of parameters. Together
with the results from Tables 2 and 3, we show that DEM
methods outperform other baselines on all datasets. In addi-
tion, the proposed OAES achieves better performance while
using fewer parameters than other baselines,according to the
results from Table 3.

Ablation Study

The impact of the threshold β : We consider different values
for β in Eq. (13) when training OAES on Split MNIST and
the results are reported in Fig. 2a where ‘Negative log’ de-
notes the negative sample log-likelihood. We can observe
that a small β leads to training more components while im-
proving the performance. In contrast, a large β leads to fewer
components in OAES.
The impact of the memory buffer size : We train various
models under Split MNIST by using different memory
buffer sizes and the results are shown in Fig. 2b. These re-
sults show that a large-scale memory buffer can improve
the performance of all DEM models. The proposed OAES
outperforms other baselines, especially when the memory
buffer size is small (500 samples).
More ablation studies are provided in Appendix-I from SM1.

Conclusion
In this paper, we develop a novel theoretical framework for
VAEs, which interprets their forgetting process, when used
in continual learning, as an increase in the JS divergence
between the generator distribution and the evolved data dis-
tribution. Based on the theoretical analysis, we propose a
novel dynamic expansion strategy that provides appropri-
ate signals for the VAE-based Dynamic Expansion Model
(DEM) expansion. The proposed model is shown to outper-
form other models in continual learning applications while
ensuring a minimal architecture.
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