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Abstract 

Acoustic radiation forces and torques are very effective in manipulating micron-sized objects 

such as cells, droplets, particles, and organisms. In this work, we present analysis of acoustic 

radiation forces and torques on ring-shaped slender microstructures under a standing wave in 

an inviscid fluid using on a three-dimensional finite-element-method (FEM) model. The influ-

ence of geometric and physical parameters on the radiation forces and torques is characterized. 

The radiation force tends to push the rings towards the pressure nodes or anti-nodes depending 

on the contrast factor and exhibits a volumetric dependence in magnitude on geometric param-

eters. Moreover, a nonzero net torque develops when the ring is not co-planar with plane waves 

and varies in magnitude and direction depending on the position, orientation, and material prop-

erties of the ring. Large variations are observed only in torque values for specific combinations 

of geometric and physical parameters as an indicative of resonance. Furthermore, the FEM re-

sults are compared with a reduced-order model called chain-of-spheres, which works well in 

estimating the radiation forces at a fraction of the computational cost but deviates significantly 

in torque evaluations. Lastly, a segmented ring is used to understand the relative effect of sec-

ondary forces due to self-scattering. The findings of the study are applicable to development of 

acoustic manipulation systems for ring-like elastic microfilaments and slender bodies with ar-

bitrary shapes and orientations. These results also can be used in directional reinforcing of ring-

shaped composites. 

Keywords: micro rings; acoustic radiation force; acoustic radiation torque; elastic microfila-

ment loops; self-scattering effects; resonance 

 

1. Introduction 

Ultrasound waves in microfluidic devices provide versatile control for manipulation of 

microparticles such as cells [1-4], droplets and bubbles [5-6], particles [7-9], organisms [10,11] 

and colloids by means of acoustic radiation forces (ARF), which result from the second-order 

pressure and momentum flux acting on a particle’s surface in an inviscid fluid [12-18]. In the 

literature, ARF on simple structures such as spheres and cylinders have been studied 

extensively. King [19] was the first to study the acoustic radiation force on incompressible 

spherical particles in an inviscid fluid in both plane progressive and standing waves. Yosioka 

and Kawasima extended King’s study to compressible spheres [20] and Gor’kov [21] proposed 

a generalized potential for the calculation of the ARF for a wide range of applications in inviscid 

fluids. Hasegawa and Yosioka [22] and Hasegawa [23] reported simple analytical formulae for 

the ARF under travelling and standing acoustic waves, respectively. Moreover, in [14,17,18] 

viscous effects are considered, and thermal effects on the acoustic radiation force have been 
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studied extensively in [24-27]. ARF on spheroidal objects under arbitrary acoustic fields are 

studied in [28-32]. The acoustic pressure on disks was also modeled by King [33] and the theory 

was developed further for the forces on disks [34], deformed droplets [35], cylinders [36-39], 

and ellipsoids [40]. Later, experimental studies investigated the ARF for the entrapment of 

cylindrical particles [41]. 

Despite a wide range of studies utilizing analytical solutions for the ARF, numerical 

methods are necessary to solve the problem without overbearing simplifications on the 

properties of the fluid and the particle. The numerical studies can be classified under two broad 

categories. The first one approaches the problem as a fluid mechanics problem and the acoustic 

field is introduced as a flow field. Wang and Dual’s [39] finite volume method-based approach 

to calculate the acoustic radiation forces on cylinders utilizes such an approach. Their results 

match very well with the analytical calculations but solving for the whole flow field using the 

Navier-Stokes equations is computationally very expensive. Such an approach is not feasible 

especially if one is only concerned with the radiation force computation. Grinenko et al [42] 

calculated the acoustic radiation force directly from nonlinear governing equations using a 

finite-difference time-domain method based on the Lagrangian specification of the flow field; 

the method does not have any limitation on particle geometry and any overly constraining 

boundary condition. Wijaya et al [43-44] analyzed the acoustic radiation forces and torques on 

spherical and non-spherical particles using the boundary-element method. 

In the second category, the Helmholtz’s equation is solved by using perturbation methods 

for the time-harmonic acoustic field, velocity, and the density of the fluid. Using this approach, 

Glynne-Jones et al. [16] (for an inviscid fluid) and Baasch et al [15] (for a viscous fluid) 

calculated the ARF on a spherical particle under a standing acoustic field. Both methods take 

advantage of the spherical symmetry using a two-dimensional axisymmetric geometry, cutting 

the computational costs even further. Garbin et al. [45] propose a three-dimensional finite-

element model to compute the forces and torques on disk-shaped particles. Their cubic fluid 

domain is surrounded by perfectly matched layers (PML) to prevent the reflection of outgoing 

waves but it is observed in the literature that proper radiation boundary conditions work just as 

well as PMLs while reducing the computational cost [16,12].  

Perturbation-based methods are computationally more efficient, but they may remain 

costly especially for complex three-dimensional structures, such as helices, at high acoustic 

frequencies where the resolution of the acoustic field is more demanding. Recently, Caldag & 

Yesilyurt [12] introduced a reduced-order model called chain-of-spheres (CoS) to calculate the 
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acoustic radiation forces on slender objects in inviscid fluids by approximating the slender 

structure as a chain of small spheres, each having the same volume as the corresponding 

segment of the slender body. The total radiation force on the slender structure is evaluated from 

the sum of the individual forces acting on small spheres, which are calculated analytically either 

from [22] or [23]  depending on the incident acoustic wave. The approach is extremely efficient 

computationally and fairly accurate in comparison to the results obtained from the direct 

numerical solution of the total acoustic field. 

Acoustic manipulation is an extremely versatile method for handling of micro/nano 

particles of various shapes such as spheres, spheroids, disks and cylinders [46,47]. Yet, despite 

being a common topological structure in the microcosm, acoustic radiation forces and, 

especially, torques on three-dimensional slender structures, such as rings have not received 

much attention so far.  Especially biopolymers forming loops by knots and entanglements are 

ubiquitous structures that play important biological functions [48] and acoustic manipulation 

may be effective in studying them. Microrings are also used as mechanical sensors [49] and in 

nonlinear optics [50] as well. Ring-shaped structures have also attracted interest in cell-

patterning by acoustic fields that have potential applications in in vitro vascularization [51]. 

Moreover, bulk acoustic waves are used to align carbon nanotubes for reinforcing composite 

materials [52]. 

This work reports forces and torques on slender micro rings, to the best of authors’ 

knowledge first time, based on a finite-element model with a comprehensive analysis of the 

effects of position, orientation, geometrical and physical parameters of rings. According to 

simulation results, forces scale with the volume of rings and very similar to forces on spheres 

having the same volume, whereas the torques are mainly restorative in nature with respect to 

planar waves and depend strongly on physical properties; in particular, torque drops to a 

minimum at a low, positive acoustophoretic contrast factor. Moreover, effects of resonances 

are observed at certain geometries leading to very large variations in torque trends. 

Furthermore, we use the CoS approach [12], as a reduced-order model, for comparisons with 

computationally more expensive FEM simulations. Whilst the CoS method is very accurate for 

force comparisons, torque results vary greatly as the CoS cannot account for the elastic behavior 

of the slender structure. Lastly, a segmented ring structure is used to identify the conditions 

where self-scattering forces become important on the local force distribution and, hence, the 

torque acting on the ring.  
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2. Methodology 

2.1 The Calculation of the Acoustic Radiation Force and Torque 

For the calculation of the ARF on slender rings in fluids, we use linearized inviscid com-

pressible Navier-Stokes equations as adopted commonly in literature, e.g. [12-13]. Thermal 

effects are neglected, meaning that the density only depends on the pressure, 𝑝. The fluid is 

assumed to be inviscid. The perturbation method is used to expand the physical fields in series: 𝜌 = 𝜌0 + 𝜌1 + 𝜌2 + ⋯ (1) 𝑝 = 𝑝0 + 𝑐𝑎2𝜌1 + 𝑝2 + ⋯ (2) 𝒗 = 0 + 𝒗1 + 𝒗2 + ⋯ (3) 

where 𝜌 and 𝑝 are the fluid density and pressure, respectively and 𝑣 corresponds to the velocity 

vector and 𝑐𝑎 is the speed of sound inside the fluid. The subscripts in the terms indicate the 

order of the terms, with the subscript 0 indicating the values in a quiescent fluid, that is why 𝑣0 = 0. Assuming that all the fields inside the fluid are time-harmonic in the first-order, one 

can write: 𝜌1(𝑟, 𝑡) = 𝜌1(𝑟)𝑒−𝑖𝜔𝑡 (4) 𝑝1(𝑟, 𝑡) = 𝑐02𝜌1(𝑟)𝑒−𝑖𝜔𝑡 (5) 𝒗1(𝑟, 𝑡) = 𝒗1𝑒−𝑖𝜔𝑡 (6) 

where 𝜔 = 2𝜋𝑓 is the angular velocity of the acoustic field, 𝑓 is the frequency, and 𝑡 is time; 

hence, the acoustic wavelength is defined as 𝜆 = 𝑐0/𝑓. 

Inserting the first-order perturbed fields into the governing equations, leads to first-order 

continuity and inviscid Navier Stokes equations [13]: 𝜕𝑡𝜌1 = −𝜌0∇ ⋅ 𝒗1 (7) 𝜌0𝜕𝑡𝒗1 = −𝑐02∇𝜌1 (8) 

The subscript “𝑡” in the expressions indicates the time derivative. Substitution of the second-

order expansions into Eqs. (7) and (8), the time-averaged second-order continuity and inviscid 

Navier Stokes equations become: 𝜌0∇ ⋅ 〈𝒗2〉 = −∇ ⋅ 〈𝜌1𝒗1〉 (9) −∇〈𝑝2〉 = 〈𝜌1𝜕𝑡𝒗1〉 + 𝜌0〈(𝒗1 ⋅ ∇)𝒗1〉 (10) 



5 

 

For an inviscid fluid, the time-averaged acoustic radiation force (up to second order) can be 

calculated via an integration over a fixed surface enclosing the ring, 𝑆0 [16]: 

𝑭𝑟𝑎𝑑 = − ∫ 〈𝑝2𝒏 + ρ0(𝒏 ⋅ 𝒗1)𝒗1〉𝑑𝑆𝑆0 (11) 

where 𝐧 is the outward normal vector of the surface and "〈   〉" indicates the time average over 

a complete period, and the time-averaged second order acoustic pressure is given by 

〈𝑝2〉 = ( 12𝜌0𝑐02 〈𝑝12〉 − 𝜌02 〈|𝑣1|2〉) (12) 

Similarly, the time-averaged acoustic radiation torque is calculated from:  

𝛕𝑟𝑎𝑑 = − ∫ (𝐫 − 𝐫0) × 〈𝑝2𝒏 + ρ0(𝒏 ⋅ 𝒗1)𝒗1〉𝑑𝑆𝑆0 (13)  
where 𝐫 denotes the coordinates of a point on the surface, 𝑆0, and 𝐫0 denotes the center-of-mass 

of the ring. 

2.2 The Finite-Element Model 

Analytical calculation of forces and torques over a ring or torus in plane acoustic fields is 

extremely difficult especially in the case of a tilted ring with respect to the plane of propagation. 

Hence, we use the finite-element method, which is reliable to use for linear problems and ca-

pable of modeling complex three-dimensional structures such as rings. As sketched in FIG 1, 

an elastic ring of major radius 𝑅 and the minor radius 𝑎 is rotated around the y-axis by angle 𝜃 

and placed in a fluid domain. The finite-element model of the ring is built in COMSOL Mul-

tiphysics software.  Assuming a planar background pressure field in the z-direction that repre-

sents standing waves, we used time-harmonic formulations in the frequency domain for the 

pressure amplitude in the fluid and the displacement amplitude in the elastic solid. Acceleration 

and pressure terms are coupled at the solid-fluid interface and time-averaged forces and torques 

are obtained from Eqs. 12 and 13 by setting 𝑆0 as the surface of the ring. Planar non-reflection 

radiation boundary conditions (NRBC) are used to ensure a standing acoustic field without any 

reflections [55,56]. Planar NRBC is preferred over perfectly matched layers (PML) for compu-

tational efficiency as comparisons between NRBC and PML conditions show negligible differ-

ences. Moreover, the domain size is much bigger than the ring size to ensure the resolution of 

the acoustic field properly by keeping the boundaries away from the ring. We compared the 
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cubic fluid domain with spherical and cylindrical fluid domains and observed no significant 

difference.  

Tables I and II list the values of the physical and geometric parameters used in the simula-

tions. The fluid domain is taken as water, and polystyrene, copper and aluminum rings are sim-

ulated to observe the effects of rigidity on the forces and torques. 

 

FIG 1. (a) Geometric parameters of the ring. (b) Simulation domain with the ring placed inside a fluidic domain 

with radiation conditions at the boundaries. (c) Depiction of the ring rotation angle, 𝜃. 

TABLE I. Fluid properties and geometric parameters for the reference ring.  

Parameter Symbol            Value Units 

Density 𝜌0 998.2 kg m-3 

Compressibility (reciprocal 

of bulk the modulus) 
𝜅0 = 1𝐾 = 1𝜌0𝑐02 

4.76× 10−10 Pa-1 

Fluid speed of sound 𝑐0 1482 ms-1 

Pressure amplitude 𝑝𝑎 100 kPa 

Minor Radius 𝑎 3 𝜇m 

Major Radius 𝑅 25 𝜇m 

 

TABLE II. Solid properties of materials and the geometric parameters for the reference ring. 

Parameter Symbol Polystyrene Copper Aluminum Units 

Solid density 𝜌𝑝 1050 8930 2700 kg m-3 

Compressibility (reciprocal 

of the bulk modulus) 
𝜅𝑝 = 1𝐾 = 1𝜌𝑝𝑐𝑝2 

4.25× 10−10 8.26× 10−12 1.42× 10−11 Pa-1 

Longitudinal velocity 𝑐𝑝 2400 5010 6420 ms-1 

Shear velocity 𝑐𝑠 1150 2270 3040 ms-1 

 

The acoustic field is imposed as a standing wave via background pressure, defined as: 𝑝𝑏 = 𝑝𝑎cos (𝑘(𝑧 − Δ𝑧)) (14) 

where 𝑧 is the axial position along the wave propagation direction, 𝑘 is the acoustic wave-

number, 𝑘Δ𝑧 is the phase angle. At the solid-fluid interface, total pressure from the fluid domain 



7 

 

is specified as a boundary load onto the solid and the acceleration from the solid domain is 

specified as boundary acceleration onto the fluid. 

A mesh convergence study on the finite-element model is carried out over the acoustic ra-

diation force calculated from Eq. (11) with the first-order velocity and second-order pressure 

fields. 𝑓 = 6 MHz in this study as this is the case with the lowest wavelength in this work, hence 

the most constraining in terms of mesh element size. It is reported in the literature that the mesh 

element size [57] should be at least six times smaller than the acoustic wavelength for linear 

elements and twice smaller for second-order elements in finite-element models of acoustic 

waves for a proper resolution. Here, key dimensions of the ring are much smaller than the 

wavelength, hence the convergence mainly depends on the element size on the ring. A relative 

convergence error 𝑒 is calculated with respect to calculated forces in the z-direction obtained 

from the finest mesh: 

𝑒 = |𝐹𝑟𝑎𝑑 − 𝐹𝑟𝑎𝑑,𝑓𝑖𝑛𝑒𝑠𝑡𝐹𝑟𝑎𝑑,𝑓𝑖𝑛𝑒𝑠𝑡 | (15) 

The results of the convergence study are displayed at FIG 2. The relative error falls below 

2% for, 𝛿 = 0.002 × 𝜆, which is the maximum element size on the ring surface and corresponds 

to 1.25×106 degrees-of-freedom, which is used for the rest of the simulations reported here. 

  

FIG 2.  Convergence of 𝐹𝑟𝑎𝑑 with respect to the degrees of freedom. 

As there is no previous study that reports the radiation forces on rings, we validate the model 

by comparing the force values on spheres and cylinders. First, a polystyrene sphere with a radius 

of 3 μm is placed in a standing acoustic field with 𝑝𝑎 = 100 kPa and 𝑓 = 2 MHz. The radiation 

force on a sphere evaluated from Hasegawa’s model [23] comes out as 0.576 pN while our 3-
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dimensional model gives 0.569 pN. The relative percentile error between the Hasegawa [23] 

and the FEM model is 1.21, indicating high accuracy. Then, we validate the model by compar-

ing the force values for a copper cylinder of equal length and cross-section as the ring using the 

geometric and physical parameters in Table I. FIG 3 compares the magnitude of the acoustic 

force calculated on both structures via Eq. 11. The force values match for a great majority of 

cases tested, the values begin to diverge only slightly at large 𝑎, which corresponds to a ring 

less reminiscent of a cylinder as 𝑎 → 𝑅. 

 

FIG 3. Comparison of the acoustic radiation forces on a ring and cylinder with equal volumes. 

3. Results 

This section presents the effects of minor and major radii of the ring, its orientation and 

position with respect to the plane waves and material properties on the acoustic radiation force 

(ARF) in the z-direction and the acoustic radiation torque (ART) in the y-direction. All the 

forces and torques are reported in dimensional terms similar to studies in literature [15,16,45].  

Nonetheless, Appendix A presents a complete dimensional analysis for the acoustic radiation 

forces and torques on a ring with the help of analytical solutions for spheres. The analysis is 

extremely helpful in terms of elucidating the effects of orientation, position, and the geometric 

parameters of the ring. The baseline geometric parameters in Table I are used for a polystyrene 

ring in all simulations reported here except indicated otherwise.  

3.1 Effects of Position and Orientation 

First, we report how the position of the ring relative to the pressure field affects the radiation 

force and torque. The pressure nodes and values with respect to Δ𝑧 are shown in FIG 4a and 
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FIG 4b respectively, and the corresponding 𝐹𝑟𝑎𝑑 profiles for a horizontal (𝜃 = 0∘) and  rotated 

(𝜃 = 30∘) polystyrene ring are plotted in FIG 4c. Dependence of 𝐹𝑟𝑎𝑑 on the position follows 

a sine profile as shown in Appendix A. Moreover, the effect of orientation is negligible as the 

force for a non-rotated ring (𝜃 = 0∘) differs only slightly from the values for the rotated ring 

since 𝑅/𝜆 = 0.0337 ≪ 1. Similar to spherical particles, rings located near the pressure nodes, Δ𝑧 = 𝜆/4, will be driven towards that node, as 𝐹𝑟𝑎𝑑 > 0 for Δ𝑧 < 𝜆/4 and vice versa. Whereas 

the pressure nodes are not stable since 𝐹𝑟𝑎𝑑 > 0 for Δ𝑧 > 𝜆/4 and vice versa as a ring slightly 

away from the node will be driven away further. The maximum force is observed when Δ𝑧 =𝜆/8, at a distance of 𝜆/8 away from the pressure node, which is shown in FIG 4a. Acoustic 

radiation torque on the ring is plotted with respect to position in FIG 4d. As shown in Appendix 

A (Eq. A8), we see a cosine dependence with respect to the position for the tilted ring with 𝜃 =30∘. The torque is negligible when 𝜃 = 0.  

FIG 5a shows the force values for a wide range of 𝜃 for both Δ𝑧 = 0 and Δ𝑧 = 𝜆/8 . 𝐹𝑟𝑎𝑑 

is near zero when Δ𝑧 = 0 as expected, showing that the pressure nodes are stable equilibrium 

points for the rings similarly to spheres. For Δ𝑧 = 𝜆/8,  𝐹𝑟𝑎𝑑varies slightly with respect to 𝜃, 

the ratio of force values for  𝜃 = 𝜋/2 and 0 is 0.9657. Simple analysis in Appendix A gives 𝐽0(2𝑘𝑅sin𝜃) dependence (Eq. A5) for the force; for  2𝑘𝑅 = 0.424, 𝐽0(0.424 × sin𝜃) varies 

between 1 and 0.9556 for 0 < 𝜃 < 𝜋/2.   

We present the radiation torque values as a surface plot where we vary both Δ𝑧 and 𝜃 in 

FIG 5b. The torque is, as expected, 0 for 𝜃 = 0∘ and 𝜃 = 90∘. For other values, it is mostly 

restoring, i.e. negative or clockwise in the y-direction (see FIG 1c) at low 𝜃, meaning that the 

ring would align with the pressure wave on the xy-plane (𝜃 = 0, see FIG 5c). The restoring 

torque is the strongest when Δ𝑧 is close to an odd multiple of 𝜆/4. At large 𝜃 values, the torque 

value becomes positive, i.e. counter-clockwise in the y-direction, meaning that the ring is ro-

tated to  align perpendicular to the standing wave (𝜃 = 90∘, see FIG 5d). Also notice that there 

is a  region separating positive torque values from the negative values (identified with a solid 

line in FIG 5b), a crude approximation for the curve separating the two regions is given by 𝜃 =62.5 − 27.5 cos (𝑘𝛥𝑧2 ). This curve tells that the ring can be rotated and kept at any angle simply 

by tuning Δ𝑧. Another point of interest would be the contributions from the momentum and 

pressure components to the torque, given at FIG 5e for Δ𝑧 = 0. It is observed that the force 

terms due to pressure and momentum flux, i.e. the first and the second terms in the force calcu-

lation in Eq. (11), are acting against each other. The momentum flux component is dominant 
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at low 𝜃, aligning the ring horizontally whereas at larger 𝜃, pressure-induced torque is domi-

nant, and the ring is rotated into a vertical alignment. Lastly, ART has a mild sinusoidal de-

pendence on the orientation angle, 𝜃, consistently with Eq. A8 in Appendix A. 

 

FIG 4. The radiation force and torque with respect to Δ𝑧 in a standing wave on a horizontal (𝜃 = 30∘) and tilted 

(𝜃 = 30∘) polystyrene ring in water for a frequency of 2 MHz (R/𝜆 = 0.0337). a) Color plot of the pressure 

amplitude, b) Change of 𝑝 with respect to Δ𝑧 and the corresponding c) 𝐹𝑟𝑎𝑑 and d) 𝜏𝑟𝑎𝑑 profiles.   
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FIG 5. The change of (a) 𝐹𝑟𝑎𝑑  with respect to 𝜃. (b) shows a colormap of 𝜏𝑟𝑎𝑑 with respect to Δ𝑧 and 𝜃. The solid 

line on the plot is the curve with zero torque. (c) shows the ring’s orientation when 𝜃 = 0∘ and (d) shows the 

orientation when 𝜃 = 90∘. The standing field is applied in the z- direction. (e) shows the pressure and momentum 

flux-driven component of the radiation torque on a polystyrene ring when Δ𝑧 = 0. 

3.2 Effects of Minor and Major Radii  

The effects of the ring’s minor and major radii on the ARF and ART are plotted at FIG 6. 𝐹𝑟𝑎𝑑 increases quadratically with 𝑎 in FIG 6a due to the scaling of the force with the volume 

of the ring. Looking at the corresponding torque values for a rotated ring (𝜃 = 30∘), we initially 

observe a quadratic increase in the magnitude of 𝜏𝑟𝑎𝑑 with respect to 𝑎, but then at 𝑎 = 4 μm 

the torque value increases more than two times after which it passes through 0 and goes above 

500 pN ⋅ μm at 𝑎 = 4.2 μm. The change in the geometry leads to a change in the sign of the 

torque. At low 𝑎, the torque is a restoring one that tends to align the ring horizontally (𝜃 = 0). 

At larger 𝑎 values, the torque tends to align the ring vertically (𝜃 = 90∘). Similarly, increasing 

the major radius of the ring increases the ARF linearly as the volume of the ring varies linearly 

with 𝑅 (FIG 6c) and the torque exhibits a sudden jump (FIG 6d) as observed in FIG 6b. This 
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time, we see that the radiation force tends to align rings with small 𝑅 vertically (𝜃 = 90∘) while 

the rings with larger 𝑅 are rotated towards a horizontal alignment (𝜃 = 0∘).  
Dramatic change in torque values stems from resonance effects on the magnitude of vibra-

tions and resulting pressures. The magnitude of local vibrations and, hence, the local momen-

tum flux (since velocity is the product of frequency and displacement amplitude) and pressure 

increase greatly near the resonance frequencies of a free-standing ring in a standing wave.  

These effects average out in the calculation of the total force (Eq. 11) since the total volume 

change due to the compressibility is very small and out-of-phase displacements tend to cancel 

out. Whereas the torque depends on the amplitude of local vibrations, and due to the cross-

product with the position as given by Eq. 13, those effects do not cancel out. Displacement and 

pressure amplitudes are shown in FIG 7 to further elaborate the effects of vibrations near reso-

nance. FIG 7a shows the displacement field for the ring with a minor radius of 𝑎 = 3.1𝜇𝑚, for 

which the displacements are on the order of nanometers. Whereas in FIG 7b, for 𝑎 = 4.1𝜇, 
displacements are on the order of microns, about four orders of magnitude larger than displace-

ments for 𝑎 = 3.1𝜇𝑚 as the indicative or resonance. Similarly, FIG 7c and FIG 7d show the 

corresponding pressure profiles and the maximum amplitude increases four orders of magnitude 

in the resonating case. Furthermore, dramatic effects of resonance on acoustic torques are ob-

served for other asymmetrical structures such as discs as well [45].  

 

FIG 6. (a) Change of 𝐹𝑟𝑎𝑑 with respect to 𝑎, (b) change of 𝜏𝑟𝑎𝑑 with respect to 𝑎, (c) change of 𝐹𝑟𝑎𝑑 with respect 

to 𝑅 and (d) Change of 𝜏𝑟𝑎𝑑 with respect to 𝑅. 
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FIG 7. The displacement ((a)-(b)) and the pressure ((c)-(d)) distributions on non-resonating ((a) and (c)) and 

resonating ((b) and (d)) rings. 

3.3 Effects of Physical Parameters 

This section reports how the physical parameters affect the radiation forces and torques on 

a tilted ring (𝜃 = 30∘). The first parameter investigated is the acoustophoretic contrast factor 𝜙, defined as [13]: 

𝜙(�̃�, �̌�) = 13 [5�̃� − 22�̃� + 1 − �̃�] (16) 

where �̃� = 𝜌𝑝/𝜌𝑓 and �̃� = 𝜅𝑝/𝜅𝑓 represent the ratios of densities and compressibility values of 

the particle to the fluid, respectively. The sensitivity analysis contains both negative and posi-

tive 𝜙 values which indicate whether the particle is attracted (𝜙 > 0) or repelled (𝜙 < 0) from 

a pressure node. 𝐹𝑟𝑎𝑑 values plotted at FIG 8a show the transition from negative (repulsive) to 

positive (attractive) values. The force exhibits a steeper decrease at low 𝜙 but as 𝜙 approaches 

0 the rate of decrease becomes linear. On the other hand, the torque values, plotted at FIG 8b 

show that the torque is minimum in magnitude at 𝜙 ≈ 0.1. All torque values are negative, 

meaning that the torques tend to align the ring horizontally at all 𝜙 values. Lastly, we demon-

strate the effect of the acoustic frequency 𝑓 on forces and torques in FIG 8c and FIG 8d 
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respectively. The force increases linearly with respect to 𝑓 while 𝜏𝑟𝑎𝑑 increases with respect to 𝑓 with a higher order dependence. According to the dimensional analysis in Appendix A, the 

ART is expected to scale with the square of the wavenumber, or the square of the frequency for 

standing waves.  Moreover, there is a resonance-type behavior at 𝑓 = 4 MHz similarly to the 

behavior in FIG 7. Insets in FIG 8d show the deformation modes of the vibrating ring, which 

are magnified by 5000 times for visual clarity (actual displacements are on the order of na-

nometers). At 4 MHz, amplitude of the Mises stresses increases nearly ten folds associated with 

the resonance between the solid ring and the standing waves in the fluid medium. A coupled 

eigenfrequency analysis for the deformation of the polystyrene ring and the pressure in the fluid 

medium shows that a deformation mode with the same shape as the one shown in FIG 8d occurs 

at 4.0118 MHz even though the same mode is observed at 5.221 MHz for free-standing ring. 

Resonance effects are also reported for torques on other nonspherical particles in standing 

waves, such as on discs by Garbin et. Al [45]  and on helices by Caldag & Yesilyurt [12]. 

Finite-element (FEM) results are compared with the results of a reduced-order model 

called the chain-of-spheres method (CoS), which is developed for the calculation of the acoustic 

radiation forces and torques on slender helices for microswimming applications [12]. Accord-

ing to the CoS, a ring can be divided into a number of segments and each segment can be 

represented by an equal volume sphere, for which analytical force calculations are available. 

By virtue of the approach, the CoS method neglects two types of interaction forces: first, the 

forces that develop within the solid due to higher order modes of deformation of the ring, such 

as bending, extension, stretching and so on that differ from the deformation modes of a sphere, 

and second, the forces that develop within the fluid due to the scattered waves. Those secondary 

effects are intrinsically considered by the three-dimensional modeling approach in the FEM 

model. Therefore, discrepancies between the CoS and FEM results are used as an indication of 

these secondary effects. 
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FIG 8. The change of (a) 𝐹𝑟𝑎𝑑  and (b) 𝜏𝑟𝑎𝑑 with respect to 𝜙. The change of (c) 𝐹𝑟𝑎𝑑 and (d) 𝜏𝑟𝑎𝑑 with respect to 𝑓. Insets show the deformations (5000 times scaled-up for visual clarity) and Mises stresses in the rings. 

In CoS calculations, the ring is divided into 𝑁𝑠𝑝ℎ equal segments that are approximated by 

spheres having the same volume as each segment, which extends between 𝜑𝑗 and 𝜑𝑗+1, where 𝜑 is the azimuthal angle and  𝑗 = 1, … , 𝑁𝑠𝑝ℎ − 1; 𝑗th sphere is placed at the centroid of the 𝑗th 

segment, which is given by: 

𝐜𝑗 = 𝑁𝑠𝑝ℎ2𝜋 ∫ 𝐑𝛉𝐩𝑟(𝜑)𝑑𝜑 𝜑𝑗+1𝜑𝑗 (17) 

where the position vector, 𝐩𝑟(𝜑) = 𝑅[cos 𝜑 , sin 𝜑 , 0]′, gives the centerline of the ring in the 

reference frame, and 𝐑𝛉 is the rotation matrix for the frame rotated by 𝜃 with the ring as shown 

in FIG 1. The radius of spheres is set to  𝑎𝑠 = (3𝜋𝑎2𝑅2𝑁𝑠𝑝ℎ )1/3
 to ensure that spheres have the same 

volume as the segments. A simple schematic of the approach is depicted in FIG 9. 
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FIG 9. Application of chain-of-spheres. (a) Shows the original ring geometry, (b) shows the representation of the 

ring with 𝑁𝑠𝑝ℎ = 14 spheres with radius 𝑎𝑠 placed along the circle of the ring which is 𝑅 away from the center of 

the ring. The circle is shown in red dashes. 

For standing waves, Hasegawa [23] reported a simple analytical formula for the acoustic 

radiation force on each elastic sphere: 𝐹𝑗𝑟𝑎𝑑 = 𝜋𝑎𝑠2𝐸𝑌𝑠𝑡 sin(2𝑘Δ𝑧) (18) 

where 𝐸 = 12 𝜌0𝑘2|𝐴|2 is the acoustic energy density (with 𝐴 being the potential amplitude of 

the field), and 𝑌𝑠𝑡 is called the acoustic radiation force function [23]. Thus, the total radiation 

force and torque are calculated from the summations over each sphere: 

𝐹𝑟𝑎𝑑 = ∑ 𝐹𝑗𝑟𝑎𝑑𝑁𝑠𝑝ℎ
𝑗=1 (19) 

𝜏𝑟𝑎𝑑 = ∑ (𝐜𝑗 − 𝐫0) × 𝐹𝑗𝑟𝑎𝑑𝑁𝑠𝑝ℎ
𝑗=1 (20) 

The reader is referred to [12] for further details on CoS and reference [23] for the calculation 

of the acoustic radiation force in a standing field. 

Comparisons are carried out with respect to varying Δ𝑧 for a tilted ring with 𝜃 = 30∘ for 

polystyrene, copper and aluminum rings and the results are shown in FIG 10. In CoS calcula-

tions, first a convergence study is carried out and the number of segments is set to 𝑁𝑠𝑝ℎ = 25 

as a sufficiently large value to control the error due to the segmentation of the ring. For the 

polystyrene and copper rings, 𝐹𝑟𝑎𝑑 values exhibit a good agreement with the FEM results (FIG 

10a and FIG 10c) for all Δ𝑧; agreement is much better for polystyrene than copper, for which a 
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maximum of 5% relative error is observed. Whereas the agreement is poor for the aluminum 

ring for 𝐹𝑟𝑎𝑑, as depicted in FIG 10e. Similarly, torque values, 𝜏𝑟𝑎𝑑, are plotted in FIG 10b, 

FIG 10d and FIG 10f, where we observe a significant discrepancy between the FEM and the 

CoS results for polystyrene and copper rings and the discrepancy is more pronounced for the 

copper ring. Interestingly, despite the deviations between the FEM and the CoS results for 𝐹𝑟𝑎𝑑 

computation in the aluminum ring, the torque values exhibit a very good agreement.  

 

FIG 10. Comparison of the radiation forces ((a), (c) and (e)) and torques ((b), (d) and (f)) obtained from the FEM 

model and with the CoS approach. (a) and (b) show the results for polystyrene, (c) and (d) show the results for 

copper and (e) and (f) show the results for aluminum. 

To elucidate on the discrepancies in torque computations, we first confirm that the force 

and torque contributions from each sphere in the CoS model match with the values evaluated 

from the FEM model by simulating individual ring segments in separate FEM simulations. This 

is not shown in the plots separately as it will be a repetition of the CoS results in FIG 10a and 

FIG 10b. This step indicates that the basic premise of the CoS approach holds, i.e., individual 

segments of the ring can be considered as spheres and both the force and torque computations 

are consistent. Next, we compare the radiation forces on rings that are composed of 10 toroidal 

segments using the FEM model.  FIG 11a shows the toroidal segments forming the ring with a 

small gap of 2˚ between them, this gap size is kept negligibly small with minimal ramifications 

on the convergence of FEM simulations. Acoustic radiation forces (ARF) are calculated for 

segmented polystyrene, copper and aluminum rings at the baseline configuration in Table I with Δ𝑧 = 𝜆/8 and 𝜃 = 30∘. Segments are placed one by one in their original position according to 

the numbering given in Fig. 11a. Thus, each segment’s position is obtained from the complete 

ring placed at the same Δ𝑧 = 𝜆/8 and 𝜃 = 30∘ to keep the position of each segment the same. 

Forces on segments are calculated for three different arrangements: (i) for each single segment 
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individually placed in the acoustic field one at a time; (ii) for all detached segments that form 

the ring shape as shown in FIG 11a; and (iii) for the complete ring composed of segments 

connected to each other. ARF values are shown in FIG 11b-d for polystyrene, copper, and alu-

minum rings respectively. For the polystyrene ring, it is observed that force values vary negli-

gibly (less than .05 pN) between the segments either placed one at a time individually or alto-

gether as shown in FIG 11b. This result indicates clearly that self-scattering between the seg-

ments does not play an important role on local forces whereas the elastic behavior of the whole 

slender structure does for which the maximum deviation takes place at segment 6 as high as 9.9 

pN. For the copper ring, we see the force values vary slightly between 9.05 and 10.57 pN for 

individual segments placed one at a time (black circles in FIG 11c), small deviations are due to 

numerical error in calculating stresses around the sharp edges of segments, further improve-

ments to the mesh up to 3M dof (exceeding a memory requirement of 140 GB) do not alter the 

results significantly. Forces on the detached segments, when they are placed in the acoustic 

field together, differ significantly than the forces on individual segments, up to 7.5 pN for the 

first segment. Moreover, for segments 3-8, forces on the detached segments (red stars) are very 

close to the forces on the corresponding segments in the ring (blue squares), as the difference 

is within 1.8 pN for these segments. This result indicates that, scattering of waves between the 

segments have an important role on the ARF. Lastly, for the aluminum ring, we observe that 

the ARF behavior is closer to polystyrene than copper as the deviation between the forces on 

singled and detached segments is less than 2.8 pN, and overall, smaller than the deviation be-

tween the local forces on detached segments and the complete ring segments, which reaches up 

to 5.8 pN for the 6th segment. The conclusion is that decomposing the ring into detached seg-

ments changes the local forces without affecting the total net force. Hence, the chain-of-spheres 

approach fails at evaluating the torques properly whereas it gives close results in aggregation 

to the FEM results for the whole ring.  The CoS approach needs to be improved by including 

the links between the spheres to capture the bending moments and the effects of the scattered 

acoustic field to check the importance of those effects.  
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FIG 11. (a) The depiction of the ring decomposed into segments; local acoustic radiation forces (ARF) on each 

segment of polystyrene (b), copper (c) and aluminum (d) rings. ARF on each individual segment placed in the 

acoustic field without others is shown with black circles; forces on the detached segments forming a ring (see the 

picture in (a)) is shown with red stars; and the forces on the complete ring composed of segments in contact are 

shown with blue squares. 

4. Conclusions 

This study reports the effects of minor and major radii, position, orientation and physical 

properties on the acoustic radiation forces (ART) and torques (ART) on a micro ring placed in 

a standing acoustic wave in water based on a finite-element model (FEM). The ARF is 

proportional to the volume of the ring and reaches to maximum when the ring is 𝜆/8 away from 

the pressure node, similarly to the force on spherical particles. On the other hand, the ART 

tends to align the rings with respect to plane waves and hits its maximum amplitude at the 

pressure anti-node.  The stable alignment of the ring could be horizontal (𝜏𝑟𝑎𝑑 < 0 for 𝜃 > 0) 

or vertical (𝜏𝑟𝑎𝑑 > 0 for 0 < 𝜃 < 𝜋/2) depending on geometric and physical parameters. For Δ𝑧 = 0, the torque is negative for rings with orientations 𝜃 < ~35∘ and vertical otherwise, 

whereas the alignment is always horizontal for Δ𝑧 = 𝜆/8.  Since the torque depends on the 

local force distribution, in certain configurations very large torque values are observed because 

of the resonant behavior of the ring, which is not manifest in force results.  

Moreover, the ARF on a ring is sensitive to the acoustophoretic contrast factor and 

attractive (𝐹𝑟𝑎𝑑 < 0) for 𝜙 < 0 and repulsive otherwise. Whereas the torque does not change 

sign with 𝜙 but hits a minimum in magnitude at a small positive contrast factor for the 

configurations studied here. Furthermore, we compared the FEM results with a reduced-order-

model called chain-of-spheres model (CoS), which predicts the ARF very well especially for 
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soft materials, but the torque predictions are not accurate because of the contributions from 

local forces are more important and as the approach does not include self-scattering effects. The 

importance of the local forces is demonstrated by separate FEM simulations for a segmented 

ring. It is observed that for the polystyrene ring, self-scattering does not contribute to local 

forces, which is dominated by the elastic behavior of the solid. On the other hand, for the copper 

ring, self-scattering plays a very important role on the local force.  Overall findings of this study 

are expected to be useful for acoustophoretic manipulation and reorientation of ring-like micro 

filaments and other non-spherical slender bodies. Our analysis shows that self-scattering of 

acoustic waves and bending of the slender rods play an important role on the overall acoustic 

torque on the structure, which may be helpful to determine the orientation of the structure at 

equilibrium as well as orientational instabilities under resonance. The predictions can be 

utilized in controlled rotation and manipulation of such structures in a non-invasive manner, an 

attribute particularly useful for manipulating the orientation of a biological sample for imaging 

purposes. As acoustic fields are widely used in biomedicine, we anticipate that such 

applications can be realized effectively. Lastly, the chain-of-spheres approach is very useful 

determining the acoustic radiation forces, but improvements are necessary for accurate torque 

predictions via including self-scattering of the acoustic waves and internal stresses.  

 

Appendix A 

Appendix A. Dimensional Analysis 

Consider a ring of minor radius, 𝑎, major radius, 𝑅, density, 𝜌𝑝, speed of sound, 𝑐𝑝, is placed 

in a standing acoustic wave of pressure amplitude, 𝑝𝑎, frequency, 𝑓, in a fluid of density, 𝜌0 

and speed of sound, 𝑐0. The distance of the ring from the pressure node is Δ𝑧 and its orientation 

with respect to the x-y plane is given by 𝜃 as shown in Fig. A1.  Among the ten variables, 𝑎, 𝜌0 

and 𝑐0 can be picked as representatives of length, mass, and time dimensions. Then, the dimen-

sionless Π numbers for the remaining six variables are: 

Π{𝑅,𝑧,𝜌𝑝,𝑐𝑝,𝑝𝑎,𝑓} = { 𝑅𝑎 , Δ𝑧𝑎 , 𝜌𝑝𝜌0 , 𝑐𝑝𝑐0 , 𝑝𝑎𝜌0𝑐02 , 𝑎𝑓𝑐0 } (A1)    
The derived variables 𝜆 = 𝑐0𝑓  and 𝑘 = 2𝜋𝜆  are not included in this list since they are already given 

by the combination of other variables already in the list, hence instead of Π𝑓, we can use Π𝜆 =𝜆/𝑎 or Π𝑘 = 𝑘𝑎 when it is convenient.  
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By nondimensionalizing the pressure terms by 𝜌0𝑐02, we can obtain dimensionless groups 

for the acoustic radiation force and torque as: 

Π{𝐹,𝜏} = { 𝐹𝑟𝑎𝑑𝜌0𝑐02𝑎2 , 𝜏𝑟𝑎𝑑𝜌0𝑐02𝑎3} (A2) 

Thus the Π terms for the force and torque are functions of the six terms given in Eq. (A1) plus 

angle 𝜃.  

 

Fig. A1. Representation of the local acoustic radiation force on a tilted ring, which is approxi-

mated by a chain of spherical particles. 

To obtain the dimensionless form of the force we can resort to the analytical solution for 

the spherical particle in a standing cosine wave reported by Yosioka and Kawasima  [20] and 

modified by Settnes & Bruus [14]:  

𝐹𝑟𝑎𝑑 = 𝜋𝑎3𝑝𝑎2𝜙𝑘𝜌0𝑐02 sin(2𝑘Δ𝑧)  ⇒   Π𝐹 = 𝜋Π𝑝𝑎2 Π𝑘 sin(2ΠΔ𝑧Π𝑘) 𝜙 (Π𝜌𝑝 , Π𝑐𝑝) (A3) 

where 𝜙 is the acoustophoretic contrast factor given by Eq. 16. This expression is more con-

venient in showing the parametric dependences than the one used in Eq. (18) but less accurate.   

For the effect of 𝜃 on the force, we assume that the ring consists of a chain of spherical 

particles as shown in Fig. A1. To estimate the total force on the tilted ring we estimate the 

integral of the sine term over the toroidal angle 𝜁 as shown in A3 as follows: 
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∫ sin(2𝑘(Δ𝑧 + 𝑅sin𝜃sin𝜁)) 𝑑𝜁𝜋
−𝜋 = ∫ sin(2𝑘(Δ𝑧 + 𝑅sin𝜃sin𝜁)) + sin(2𝑘(Δ𝑧 − 𝑅sin𝜃sin𝜁)) 𝑑𝜁𝜋

0= ∫ 2 cos(2𝑅𝑘 sin𝜁 sin𝜃) sin(2𝑘Δ𝑧)  𝑑𝜁𝜋
0= 2𝜋 sin(2𝑘Δ𝑧) 𝐽0 (2𝑅𝑘sin𝜃)                                                                 (A5) 

Hence the 𝜃 dependence of the force on the ring is expressed with the zeroth order Bessel 

function of the first kind 𝐽0(2𝑅𝑘sin𝜃). From the definition of the wave number, 𝑘 = 2𝜋𝜆 , we 

have 2𝑅𝑘𝑠𝑖𝑛𝜃 = 4𝜋sinθ𝑅/𝜆. Therefore, in the case of 𝑅 ≪ 𝜆, this effect is negligible since 𝐽0(𝑥) → 1 as 𝑥 → 0. Thus, the orientation angle of the ring has a minor effect on the ARF for 

small rings.  

Using the analytical solution for the sphere given by Eq. (A3) and the sketch of the ring 

shown in Fig. A1, we postulate that the acoustic radiation force scales with the volume of the 

particle, thus the 𝑎3 term for the spherical particle should be replaced by 𝑎2𝑅. However, the 

pre-factor can be different in that case, therefore the nondimensional force would be propor-

tional to other dimensionless quantities as  Π𝐹 ∝  Π𝑅Π𝑝𝑎2 Π𝑘 sin(2ΠΔ𝑧Π𝑘) 𝜙 (Π𝜌𝑝 , Π𝑐𝑝) 𝐽0(4Π𝑅Π𝑘 sin 𝜃) (A6) 

To obtain the effect of orientation on the torque we integrate the torque due to each spherical 

particle over the toroidal angle 𝜁 as shown in Fig. A1 

∫ sin(2𝑘(Δ𝑧 + 𝑅sin𝜃sin𝜁)) 𝑅cos𝜃sin𝜁 𝑑𝜁𝜋
−𝜋  

However, this integral cannot be obtained in the closed form. Nonetheless, with a simplistic 

approach that the ring consists of two spherical particles which represent the opposing segments 

placed at 𝜁 = ±𝜋/2, we can obtain an approximation for the orientation effect on the torque: 𝑇 ∝ 𝑅cos𝜃 (𝐹𝜁=𝜋2 − 𝐹𝜁=−𝜋2) = 𝑅cos𝜃[sin(2𝑘(Δ𝑧 + 𝑅sin𝜃)) − sin(2𝑘(Δ𝑧 − 𝑅sin𝜃))] (A7) 

The sine terms in the square brackets can be simplified as: sin(2𝑘(Δ𝑧 + 𝑅sin𝜃)) − sin(2𝑘(Δ𝑧 − 𝑅sin𝜃)) = cos(2𝑘Δ𝑧) sin(2𝑘𝑅sin𝜃) 

The sin(2𝑘𝑅 sin 𝜃) = sin(4𝜋𝑅sin𝜃/𝜆) term represents the effect of the orientation on the 

torque. Thus, in the case of 𝑅 ≪ 𝜆 the net torque scales with 𝑘𝑅sin 𝜃. Therefore, the 
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dimensionless acoustic torque for small rings is cast in the following form with a cosine de-

pendence on the position and sinusoidal dependence on the orientation: Π𝑇 ∝ Π𝑅3Π𝑝𝑎2 Π𝑘2 cos(2ΠΔ𝑧Π𝑘) sin𝜃 𝜙 (Π𝜌𝑝 , Π𝑐𝑝) (A8) 

However, this expression does not have the bending and resonance effects, which dominate 

the time-harmonic torque on the ring in a standing wave. The acoustophoretic coefficient, 𝜙(Π𝜌𝑝 , Π𝑐𝑝), accounts only for the compression of spherical particles here, and not suitable for 

time-harmonic deformation of a slender body.   
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