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Abstract 

In order to maximise fuel cell reliability of operation and useful life span, an accurate 

online health assessment of the fuel cell system is essential. Existing algorithms for 

fault detection in fuel cell systems are based on sensing elements, control methods, 

and statistical/probabilistic models. In this paper, an artificial neural network (ANN) will 

be developed to detect and classify faults in proton-exchange membrane (PEM) fuel 

cell systems. As the ANN model developed within the PEM system relies on the input 
and output current and voltage, additional sensing devices are not required within the 

system. Based on an experimental setup using a 3-kW fuel cell system, it was found 

that the proposed model was able to detect faults associated with the 

reduction/increase of fuel pressure, H2 consumption rate, and voltage regulation 

changes in the dc-dc converter with >90% accuracy. In the proposed model, historical 

data is required to train and validate the ANN algorithm, but after this is complete, no 
human intervention is required afterward. 

 

Keywords:  Fuel cell system; Fault detection algorithm; Fault classification; Artificial 
Neural Networks (ANN); Machine learning algorithm 
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1. Introduction 

Thermal, fluidic, and electrochemical phenomena all play a part in fuel cell  energy 
generation systems. To maintain optimal performance, they need a set of auxiliary 

elements (valves, compressors, sensors, regulators, etc.) [1]. Because of this, they 

are susceptible to faults that can lead to fuel cell malfunctions and permanent damage. 

In addition to heating and cooling systems, humidifiers and cooling systems are also 

used to ensure that the materials react at optimum conditions [2]. Thermal, fluid-

mechanical, and electrolytic phenomena occur during the chemical reaction in the 

stack, where the energy is generated [3]. 

In order to implement advanced control techniques and fault diagnosis algorithms 

based on linear models, the dynamics of fuel cell power generation systems are 

complex and non-linear. This makes it necessary to use linear models with parameters 

varying with operating point. Additionally, due to the complexity of such systems' data, 
some recently developed models for fault identification are based on artificial 

intelligence (AI) [4,5]. 

As an example, in a recent study [6], they demonstrated a data-driven fault diagnosis 

scheme in which the plant model is used only off-line for training the classifier. This 

paper proposes and tests both support vector machine and random forest classifiers. 
Using a support vector machine classifier, they found that the data-driven system 

outperformed the hybrid system in both fault detection and fault identification. This 

system performs well regardless of how many combinations of working conditions and 

fault sizes are used. 

Fuel cell fault identification is also frequently carried out using heuristic optimization 

techniques (such as differential evolution, genetic algorithms, and particle swarm 

optimization [7-10]). Despite the fact that satisfactory results can be obtained based 

on the fitted model output, the heuristic optimization of non-linear, dynamic models 

requires considerable computational time and effort. Moreover, an over-parameterized 

model often results in a non-unique solution to an optimization problem that is ill-posed 

[11-13]. A false sense of security is created when heuristic optimization techniques 
are used, suggesting that if a model is highly accurate it must be because the 

parameters were correctly set. 

Considering how highly non-linear the PEM fuel cell model is, it is unreasonable to 

assume you can use a local linear model to estimate all non-linear parameters [14]. 

To identify multiple linear structured state space models at once, we must identify 
multiple linear structured state space models simultaneously [15]. Thus, using AI-

based algorithms for fuel cell fault detection is a better option as compared to purely 

statistical or probabilistic methods. Due to the lack of models and existing techniques 

for fuel cell AI-based detection systems, further application of AI must be considered 

as an emerging technology in this research area, which we have attempted to do in 

this paper. 
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In essence, AI algorithms are extended subsets of machine learning that teach the 

computer to operate independently [16]. Through continuous learning, the device 

improves processes and runs tasks more efficiently as a result. There are three types 

of machine learning algorithms: unsupervised, semi-supervised, and reinforcement 
learning. Classification, regression, and forecasting fall under supervised learning [17-

20], while semi-supervised learning uses both labelled and unlabelled data [21]. The 

difference between labelled and unlabelled data is that labelled data has meaningful 

tags for the algorithm to understand, while unlabelled data lacks those tags.  

An algorithm used in reinforcement learning receives a set of actions, parameters, and 
end values to determine how to proceed [22,23]. In order to determine which option is 

the best, the machine learning algorithm explores different options and possibilities, 

monitoring and evaluating each result as it goes along. The machine learns by trial 

and error through reinforcement learning. In response to the situation, it adapts its 

approach based on past experiences to achieve the best results. 

There are several factors to consider when choosing an algorithm for machine 

learning, such as the size, quality, and diversity of the data, as well as the answers 

businesses want to obtain from the data. There are many other considerations as well, 

including accuracy, training time, parameters, and data points. For example, an 

artificial neural network (ANN) [24-26] is built up of a series of layers, each with a 

connection to the layer adjacent to it. Brains and other biological systems are used as 
models for ANNs. This ANN is made up of many interconnected processing elements 

that are integrated to solve specific problems. One example is solving the nonlinear 

characteristics of the dataset of full cell systems by focusing on the high degree of 

detail in the points. Therefore, in our work we have carefully considered the 

advantages and disadvantages of ANN over other AI-based techniques. The purpose 

of this is to ensure the success of the real-time fault detection algorithm when applied 

to a fuel cell experiment setup. 

This paper presents ground-breaking work on developing a highly accurate ANN-

based model for fuel system fault detection. Our model considers six different types of 

faults, including fuel pressure, H2 consumption rate, and dc-dc converter regulation 

faults, and is validated using a variety of experimental tests based on real -time 

measurements from a fuel cell system. The results show that our model is capable of 
detecting fuel cell system faults with an impressive accuracy rate of over 93% in most 

cases. This work has significant implications for the field of fuel cell technology and 

represents a significant advancement in the field. 

The paper is organized as follows: Section 2 presents the methodology including fuel 
system setup, fault types, and ANN model. In section 3, we present the results of our 

proposed fault detection model and compare it to other recently published papers. 

Lastly, section 4 concludes the work and proposes future directions. 
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2. Methodology 

 

2.1 Fuel system and dc-dc converter Setup 

In this study, an ANN evaluation is used to evaluate a 3.0 kW hydrogen PEM fuel cell 

system. For the fuel cell to produce its peak output power, it requires pure hydrogen 

gas (0.99%) at 0.5 bar pressure. Compressed hydrogen gas at 175 bars provides the 

low-pressure hydrogen supply. Overpressure safety vents and purge/drain points are 

installed as well as the controls. 

An output voltage range of 50 V to 105 V is provided by the fuel system. The output 

terminals are connected to a buck/boost dc-dc converter with an efficiency of 98.5%. 

To utilize this converter with purely resistive loads, the output terminals are connected 

to the converter. Figures 1(a-d) shows the fuel cell, ventilation system, test chamber 

for a fuel cell, and the detailed schematic of the fuel cell system. 

 

          
                             (a)                                                           (b) 

     
                               (c)                                                       (d) 
Figure. 1 – (a) Fuel cell setup, (b) Fuel cell hydrogen supply, (c) Resistive load and 

the fuel cell chamber, (d) Detailed schematic of the fuel cell system. 
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In Figure 2, the output characteristics of a fuel cell system (voltage versus current) at 

varying pressure are shown. It can be noted that as we increase the fuel pressure, we 

are expected to see an increase in the output voltage 

The key characteristics of the fuel cell and the dc-dc converter are summarized in 
Table 1. Fuel cell systems consume 39 L/min of H2 at full load, and the maximum stack 

temperature should not exceed 69°C. By feeding the converter's main input terminals 

with fuel cell power, the fuel cell system can achieve a continuous working cycle. 

 
 

Figure. 2 – Voltage-current curve characteristics of the fuel system at varying fuel 
pressure. 

Table 1 – Fuel cell and dc-dc converter key characteristics 

Parameter Value (unit) 

Fuel cell system 

Unregulated output voltage range 50 – 105 Vdc 

H2 consumption at full load 39 L/min (0.2 Kg/h) 

Maximum rated output power 3 kW 

Total Number of cells  120 (2 x 60 per stack) 

Maximum Stack temperature 69 °C 

Fuel supply Pure hydrogen (0.99) 

Working cycle Continuous 

dc-dc converter 

Converter power rating 3.5 kW 

Input voltage range 40 – 175 V 

Output voltage range 24 – 48 V (buck); 72 – 96 (boost) 

Input maximum current  20 A 

Conversation efficiency 99% at full load 
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Increasing fuel pressure increases the output power of the fuel cell system (Figure 3). 

The maximum power obtained when purging the system with fuel pressure of 0.5 bar, 

for example, was 2835 W. On the other hand, the maximum power at 0.1 bar is 2135 

W. 

As a test to determine whether the dc-dc converter has a stable output voltage, the 

converter was tested at a fixed output voltage of 36 V while varying the fuel pressure. 

Based on the results shown in Figure 4, the maximum ripple (variation of converter 

output voltage) is 0.12 V, proving the precision of high voltage conversions. In this 
case, we can also see that the converter can observe the fluctuations in the fuel cell 

input voltage and mitigate them accurately. 

Tests such as these were conducted to confirm the quality of the converter, which 

could then affect the accuracy of the ANN algorithm. A converter, for example, may 

have a wide range of voltage ripples, which must be implemented or compensated 
later in the development of the ANN network. However, Figure 4 explains that the 

converter's regulated voltage varies only slightly. 

 

 
Figure. 3 – Power-current curve characteristics of the fuel system at varying fuel 

pressure. 

 
Figure. 4 – Output voltage of the dc-dc converter at varying the fuel cell voltage. 
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2.2 Fault types 

It is possible for the fuel cell system, including the converter, to suffer from various 
types of faults. It is relatively easy to distinguish faults such as drying, or flooding since 

they require monitoring the water level in the system. In addition, the hydraulic faults 

such as the decrease in compressibility or the mechanical fault such as crank shaft 

stall can also be monitored by checking the friction rate of the fuel cell, as well as the 

controller's fault, which is easily detected (when the controller breakdowns or the 

monitoring unit lags). Our work focuses on the detection and classification of six fault 

categories that are hard to detect by observing only parameters of the entire system; 
they are presented in Table 2. One reason is that these fault categories may not be 

directly reflected in the parameters of the entire fuel cell system. For example, if a fault 

is occurring within a specific component of the fuel cell system, it may not be 

immediately apparent by looking at the overall performance or output of the system. 

Another reason is that the fault categories considered in this work are difficult to 

distinguish from other types of faults or normal variations in the system. For example, 
if the system suffers from low/high voltage regulation of the dc-dc converter which 

might end up causing a small change in the fuel cell system's performance, it may be 

difficult to detect this change among the normal variations that occur within the system. 

Overall, the complexity of fuel cell systems and the various factors that can affect their 

performance make it challenging to accurately detect certain types of faults by 

observing only the parameters of the entire system, and hence, the development of 

an AI-based system is a suitable solution to solve such challenge. 

 

In anticipation of developing an intelligent tool to detect these faults, the first class was 

introduced to ensure that there is a category without faults. Classes 2 and 3 indicate 

whether the fuel system has the correct level of fuel pressure. We have seen in Figure 

3 that if the system is not supplied with enough pressure, its output power will 

drastically decrease. Contrary to this, classes 4 and 5 indicate H2 consumption levels. 

With increasing output system current, the consumption rate is expected to increase. 

The low/high rate indicates a problem with the fuel level, so it is usually a sign of 
low/high fuel. 

Table 2 – Fuel cell fault categories considered in this work 

Class number Fault Type 

Class 1 Normal operation mode 

Class 2 Reduction in the fuel pressure 

Class 3 Increase in the fuel pressure 

Class 4 Reduction in the H2 consumption rate 

Class 5 Increase in the H2 consumption rate 

Class 6 High voltage regulation of the dc-dc converter 

Class 7 low voltage regulation of the dc-dc converter 
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In the last classes, we will detect whether the converter's regulation is higher or lower 

than expected. The output converter's voltage might go down from 24 V to 12 V and 

still be connected to the load without any fault identification even though it can be 

monitored externally (with a voltmeter). The problem usually occurs when the 
converter's current rating is restricted, so the voltage is reduced (buck) to a lower 

value. 

The outputs of the fuel cell system parameters (voltage and current) and the converter 

outputs (voltage and current) can be used to observe changes in these different faults, 

as shown in Figure 5. The output measurements are then logged into a database 
(Google cloud) and processed using MATLAB software to develop an ANN model. As 

a consequence, the ANN algorithm is able to first indicate the fault and then to classify 

it according to the classes mentioned above (class 1 to 7). The architecture of the 

proposed ANN model will be discussed in more detail in the next section. 

 

 

 
Figure. 5 – Flowchart of the developed algorithm. 
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2.3 Proposed ANN model 

Four inputs are used to implement the ANN (fuel cell output voltage and current and 
converter output voltage and current). A hidden layer containing eight neurons is 

formed from these inputs. An extensive simulation process was used to determine the 

number of neurons. Thus, the MATLAB program ran from 1 to 100 neurons. A 

maximum ANN training accuracy of 98.6% was achieved at eight neurons, as shown 

in Figure 6. 

 

Each neuron in the hidden layer takes a formed linear combination of the outputs of 

previous neurons. This linear combination is weighted using the strength between the 

neurons (𝑤𝑖𝑗) and multiplied by both inputs (𝑥𝑗). An activation threshold (𝑤𝑗0) was also 

assigned to each neuron. This process is expressed using (1). Note: i is equal to 

number of hidden neurons (1 to 8), j is equal to number of inputs (1 to 4). 

 ∑ (𝑤𝑖𝑗𝑥𝑗 +  𝑤𝑗0)4𝑗=1                                          (1) 

 

The weighted activation process is then multiplied by the non -liner function 𝑓1 as 

shown in (3), this is done using a sigmoid function, 𝑓1 = 11+𝑒−𝑥. Finally, the output value 

of the hidden layers 𝑦𝑖 is determined by (3). 

 𝑓1  × ∑ (𝑤𝑖𝑗𝑥𝑗 + 𝑤𝑗0)4𝑗=1                          (2) 

     𝑦𝑖 = 𝑓(𝑢) =  11+ 𝑒− ∑ (𝑤𝑖𝑗 𝑥𝑗+ 𝑤𝑗0)4𝑗=1                              (3) 

 

 
Figure. 6 – Number of hidden neurons vs ANN accuracy. 
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There are seven different classes in the output layer, each representing a specific 

condition (these classes have already been discussed in the previous section). The 

overall architecture of the developed ANN model can be seen in Figure 7. 

A summary of the ANN model characteristics is presented in Table 3. The model 

comprises four inputs and a single output using one hidden layer. The training process 

is supervised, meaning that we provided a set of input/output data of appropriate 

network behaviour. We randomly divided 85% of the samples for training, 15% for 

validation. The training algorithm chosen is Levenberg-Marquardt, considering it is a 

faster algorithm for networks of moderate sizes. The data were randomly selected for 

training and validating, and all data samples were normalised to 0 to 1 range using 
(4). Here i ∈ {imin , imax } is the original data value, and J ∈ {jmin , jmax } is the 

corresponding normalised value with jmin= 0 and jmax = +1. 

 J =  (jmax − jmin )(i− imin)(imax− imin) +  jmin                        (4) 

 

In order to prevent overfitting of the ANN model, the dropout rate is used. Input and 

hidden layers dropout at a rate of 0.5. Weights are set to zero to initiate the dropout 

process. There are 100 iterations in the training process, and there are 10 batches. 

 

 

Figure. 7 – Developed ANN model architecture. 
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The Levenberg-Marquardt algorithm is an optimization algorithm that is often used in 

training ANNs. It is a hybrid algorithm that combines the features of both gradient 

descent and the Gauss-Newton algorithm, and it is known for being efficient and 

effective at minimizing the error between the predicted outputs of the ANN and the 
target outputs. In the training process, the Levenberg-Marquardt algorithm works by 

iteratively adjusting the weights and biases of the ANN to minimize the error between 

the predicted and target outputs. It does this by calculating the gradient of the error 

function with respect to the weights and biases and using this gradient to update the 

weights and biases in a direction that reduces the error. The algorithm also utilizes a 

damping factor to balance the importance of the gradient descent and Gauss-Newton 

steps, and to prevent the algorithm from oscillating or diverging. 

We have considered using Sigmoid activation function, defined in (5), where 𝑥 is the 

input to the function and 𝑒 is the base of the natural logarithm. Below are the Sigmoid 

key characteristics that contributed to the choice for its use in our work: 

• It maps the input values to a range of 0 to 1. 

• It is continuously differentiable, which makes it suitable for use in 

backpropagation algorithms for training ANNs. 

• It has a smooth and monotonic shape, which allows it to approximate a wide 

range of functions. 

• It saturates at the extremes of the range, which can cause problems with the 

training process if the inputs to the function are not properly scaled. 𝑓(𝑥) = 11+𝑒−𝑥      (5) 

 

Table 3 – ANN model characteristics 

Parameter Value 

Input variables 4 (Vin, Iin, Vout, Iout) 

Output variables 7 

Number of hidden layers 1 

Number of neurons 8 

Training process Supervised 

Training algorithm Levenberg-Marquardt 

Activation function Sigmoid 

Type of division samples Random 

Training 85% 

Validation 15% 

Normalization (0,1) 

Dropout rate for input layer 0.5 

Dropout rate for hidden layer 0.5 
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Real-time data measurements were used to train the ANN model. Figure 8(a) shows 

the fuel cell system voltage and output power at different pressures (0.1 to 0.5 bar) 

and loading conditions (full and half-load). Additionally, Figure 8(b) shows H2 

consumption rates during the experiment.  

A sampling rate of one sample per second was used in this experiment, with the 

pressure remaining at the same level every five minutes. A total of 3000 samples were 

collected for each parameter. Later in the next section, we will demonstrate that the 

ANN network was not overtrained. 

In this case, it is reasonable to observe changes in the fuel cell system output voltage 

and H2 consumption rate at full-load (at 35 A). By contrast, we are unlikely to observe 

a difference in measurements as the load decreases (at 15 A). Even though the fuel 

pressure changed, there were no noticeable differences in H2 consumption rate. As a 

result, this is another compelling reason why ANNs are appropriate for solving such 
problems. Contrary to the data, the model can detect minor changes, and the 

variations of all parameters are classified accordingly. 

(a) 

(b) 
Figure. 8 – Output measured data. (a) Fuel cell system voltage and power, (b) H2 

consumption rate. 
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According to Figure 8(a), the output voltage of the converter was 36 V at the beginning 

of the experiment, but 48 V when the half-load was applied. In addition to measuring 

the output power at load, Figure 9(b) illustrates the converter's efficiency (always 

greater than 97.5%). In order to calculate the efficiency, we used (6). Furthermore, 
Figure 9(c) shows a 98.7% fit curve between fuel cell system power and dc-dc 

converter power. 

  𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 𝑂𝑢𝑡𝑝𝑢𝑡 𝑃𝑜𝑤𝑒𝑟  𝑎𝑡  𝐿𝑜𝑎𝑑𝑂𝑡𝑝𝑢𝑡 𝑃𝑜𝑤𝑒𝑟  𝑜𝑓  𝑡ℎ𝑒 𝐹𝑢𝑒𝑙  𝐶𝑒𝑙𝑙 𝑆𝑦𝑠𝑡𝑒𝑚 × 100%                         (6) 

(a) 

(b) 

 
(c) 

Figure. 9 – (a) Output measured data of the dc-dc converter voltage and power at 
the load, (b) Converter efficiency, (c) Fit curve for the output power. 
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An ANN model was trained using the data set shown in Figures 8 and 9. 85% of the 

data were used for training, and 15% for validation. As this will be evaluated using a 

different data set (discussed in the next section), we did not choose any data for 

testing. This confusion matrix shows the model's training and validation confusion, 
where red labels indicate classes that have been misclassified and green diagonal 

labels indicate samples that have been correctly classified. Achieving accuracy rates 

of 99.3% and 98.6% for training and validation, respectively, suggests that the model 

is able to accurately classify the different fault categories in most cases. 

Figure 10(b) shows the cross-entropy versus epochs to ensure no overtraining hinders 
the proposed model. We can note that the ANN model needs to be reprocessed 32 

times (32 epochs) to achieve a cross-entropy of 1.63% for its best validation. In th is 

case, we can conclude that there hasn't been any overtraining in the network as a 

result of the low cross-entropy rate. According to Figure 10(b), the training and 

validation are almost saturated. 

(a) 

(b) 
Figure. 10 – (a) ANN training and validation confusion matrix, (b) Best validation 

performance. 



15 
 

A receiver operating characteristic curve (ROC) shows the performance of ANN 

models at all classification thresholds. In the end, it shows a correlative relationship 

between the true-positive and false-positive rates of the different classes. Detecting 

the correct class classification is more likely when the true positive is higher (ideally 1 
= 100%). 

 According to Figure 11, the ROC response for the developed ANN model is displayed 

for all classes during training and validation. A true positive rate of 0.99 was observed 

for all classes. A ROC of 0.96 was observed for class 1 as the lowest. 

3. Results 

 

3.1 Test #1 

A total of 300 samples were collected by different experimental routines, each lasting 

5 minutes at a sampling rate of 1 sample/second. Figure 12 shows the measurements 

of the fuel cell system and the dc-dc converter. As a matter of fact, the data records in 

Figure 12 are the input data for the ANN model that predicts the output operating class 

(faulty condition). Accordingly, the system's normal operating condition (class 1) is 

used when the fuel pressure is 0.4 bar and the dc-dc converter is set at 36 V (as shown 
by the first 300 samples). As a result of the second cycle, the fuel pressure has 

decreased to 0.3 bar, while in the subsequent cycle, the fuel pressure returns to its 

normal level. 

Fuel pressure increased after 15 minutes (900 seconds) (fault class category 3). The 

system was reset to normal operation in the 1200s - 1500s. From 1500 to 1800, the 
voltage regulation of the dc-dc converter was increased to 48 V (class 6), while 

between 1800 and 2100, it was reduced to 24 V (class 7). From 2100s onwards, the 

system is operating normally. 

 

 

Figure. 11 – ROC response of the developed ANN network. 
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Based on the data from this experiment, Figure 13(a) shows the accuracy of predicting 

the correct class (fault condition). Three key findings are expressed in the confusion 

matrix, 

1) The ANN model predicted the various fault conditions applied to the fuel system 

and dc-dc converter with an accuracy of 93.4%. 

2) Due to the fact that we have not taken the rate of H2 consumption into account, 

the ANN model accurately did not include any samples within these two classes 

(see row of output class 4 and 5, no samples are observed). 

3) The most misclassified data (93 samples) were obtained when the system was 

operating normally. Due to rapid fluctuations in the faulty routines during the 
experiment, this is expected. By contrast, it is impressive to confirm that 93% 

of the changes in voltage levels for dc-dc converter can be predicted based on 

the ANN model as shown by output classes 6 and 7. 

In Figure 13(b), the ROC response of the ANN model shows that class 2 had the 
lowest true-positive rate of just over 0.9. This is due to the fact that the output voltage 

of the fuel cell system drops insignificantly when the fuel pressure is reduced (class 

2). Therefore, predicting the fault condition with just a few data samples (in our case, 

300 samples were used) can be quite challenging. Despite this, a true-positive rate of 

90% resembles excellent performance. For all other classes, however, the true-

positive rate is always above 0.95.   

 

(a) 

(b) 
Figure. 12 – Test #1. (a) Voltage measurements, (b) Current measurements. 
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3.2 Test #2 

During this test, different routines were applied to the fuel cell system. Figure 14 shows 

that each experiment lasted for 5 minutes with a sampling rate of 1 sample/second, 

totalling 300 samples/routine. Like the previous section, the system's normal operating 

condition (class 1) is achieved when the fuel pressure is 0.4 bar, and the dc-dc 
converter is set to 36 V (presented by the first 300 samples). Using the second routine, 

the level of H2 in the tank is increased in an attempt to reduce H2 consumption. As a 

result of the same reduction in H2 level in the third cycle, the converters' voltage is 

also decreased to 24 volts. 

During the fourth cycle, the H2 in the tank is increased to achieve Class 5. During the 
sixth cycle, however, the H2 level is maintained and the output voltage of the converter 

is changed to 48 volts, restoring the system to its normal state. 

Finally, the system was operating under two faulty conditions during the 1800s-2100s, 

a reduction in fuel pressure (0.3 bar) and a reduction in H2 consumption. This system 
was operated under an increased fuel pressure (0.5 bar) in the last cycle, as well as a 

higher H2 consumption rate. 

Figure 15 shows the confusion matrix of the ANN model using the data of this 

experiment. Overall, 94.5% of the faulty conditions were detected accurately. Class 4 

and 5 achieved 89.8% and 91.4% detection accuracy, respectively, while classes 6 
and 7 achieved 100% detection accuracy. The ROC response, Figure 15(b), confirms 

the same conclusion since class 4 and 5 true positive rates are nearly 0.9, compared 

to roughly 0.99 for all other classes. 

 

 

             

(a)                                                                  (b) 
Figure. 13 – Output results of the ANN model using the data measurements of 

test#1. (a) output confusion matrix, (b) ROC response. 
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The data for Classes 4 and 5 are more difficult to classify or distinguish from other 
classes. This is due to a number of factors, such as the similarity of the data to other 

classes, the presence of noise or other confounding factors, and the complexity of the 

relationships between inputs and outputs. In addition, changes in the H2 consumption 

rate may be small or subtle, making it difficult to detect them by observing only the 

parameters of the entire fuel cell system. In addition, the H2 consumption rate may be 

influenced by a variety of factors, such as the load on the fuel cell, the temperature 

and humidity of the environment, and the age and condition of the system. These 
factors can make it challenging to accurately attribute changes in the H2 consumption 

rate to specific faults. 

(a) 

(b) 
Figure. 14 – Test #2. (a) Voltage measurements, (b) Current measurements. 

             

(a)                                                                 (b) 
Figure. 15 – Output results of the ANN model using the data measurements of 

test#2. (a) output confusion matrix, (b) ROC response. 
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3.3 Comparative Study 

In Table 4, we compare the proposed work to several relevant papers [27-31] on fuel 
cell fault diagnostics. One key difference is that we propose identifying failure modes 

such as changes in H2 consumption rate or dc-dc converter regulation, which have not 

been addressed in previous work. While data-driven fault diagnostic methods have 

been used in [27-29] to identify flooding issues in fuel cell systems, these tasks are 

relatively straightforward due to the availability of modern sensing devices. In contrast, 

our work defines seven different types of operational conditions and uses an ANN-

based approach to detect faults. In [31], an ANN-based method is also used for fuel 
cell fault detection, but without categorizing the faults. Additionally, [30] proposes using 

BinE-CNN to detect faults based on images of the fuel cell system. However, this 

approach requires the input of images and may not function without them. 

 

 

Table 4 – Comparison of this work with recent work in fuel cell fault identification [27-31] 

Ref Year Technique Fuel Cell System Fault Types Average 
Detection 

Accuracy 

[27] 2019 In this diagnostic approach, advanced features 
are extracted and patterns are classif ied based 
on the individual fuel cell voltage signal and an 

algorithm is developed to accomplish this 

High air stoichiometry, f looding, 
membrane drying, and high stack 

currents or temperatures 

85% to 94% 

[28] 2020 Fuel cell powered systems are designed with 
diagnostic algorithms that use lumped modelling 

as a method of  fault mitigation based on model-

based mathematical methodology 

A generic method of  identifying f ault 
signals received by a fuel cell 

system. There has been no 
discussion of  specific fault 

categories 

82% to 96% 

[29] 2021 Based on the embedded platform, a Long Short-
Term Memory (LSTM) network model is 

developed and applied to f looding fuel cell 

system fault diagnosis. 

Flooding Not mentioned 

[30] 2022 Using binary matrix encoding neural networks, a 
fault diagnosis algorithm called BinE-CNN is 

proposed. BinE-CNN achieves seven-category 
fault classif ication through the extraction of  high-
dimensional features using binary encoding and 

convolutional neural networks (CNNs) 

Slight or sever drying, slight or 
severe f looding, and slight or severe 

starvation of  the fuel cell system 

Experimentally 

95.1% 

Simulation 

97% 

[31] 2022 Data-driven approach using ANN and sensor 
pre-selection. For sensitivity analysis, time-

domain and f requency-domain features of  

sensor data are extracted. 

There is no categorization of  the 
fault. By using the model, you can 

determine whether or not the fuel 

cell system has encountered a fault 

99.2% but 
only to 

indicate if  the 
fuel cell is 

faulty 

This 

work 
2022 ANN model developed within the PEM system 

relies on the input and output current and 
voltage, additional sensing devices are not 

required within the system. 

Increase/decrease in the fuel 
pressure, increase/decrease in the 
H2 consumption rate, and DC/DC 

converter regulation  

90% to 95% 
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4. Conclusions 

ANN-based model is proposed in this paper for the detection of faults in PEM fuel cell 
systems. A seven-type fault system is developed, which takes fuel pressure, H2 

consumption rate, and DC/DC converter regulation into account. As a starting point, 

the ANN network was trained using measurements taken from a laboratory experiment 

using a 3-kW fuel cell system operating at various pressures (0.1 to 0.5 bar). In 

summary, the results of the ANN are as follows: 

1) Greater than 95% accuracy is always achieved in detecting increases or 

decreases in fuel pressure. 

2) Any change in the dc-dc converter regulation voltage can be detected with an 

accuracy rate of at least 93%. 

3) When the H2 consumption rate is reduced or increased in the fuel cell system, 

the ANN model has the lowest detection accuracy of about 90%. During this 
particular operational condition, the parameters of the fuel cell system do not 

change significantly, so it is likely that the ANN will  misclassify the fault type. 

In this work, the ANN model is trained on inputs and outputs of current and voltage 

from PEM fuel cell system. Thus, if the fuel cell system does not have monitoring units 

or sensing elements, our proposed model is unlikely to be as effective as it can be 
when such parameters are present. While datasets are initially required to run our 

proposed model, it can be run without human intervention, making it easier to run the 

algorithm and detect the full cell system fault without any additional input requirements. 

There are a few possible ways to extend this work on detecting and classifying faults 
in fuel cell systems using artificial neural networks (ANNs). One potential direction is 

to develop a more generic AI model that can be applied to fuel cells of different 

capacities and types. This could involve training the model on a diverse dataset of fuel 

cell systems in order to improve its generalizability and adaptability to different 

environments and operating conditions. Another possibility is to incorporate a fuzzy 

logic sub-layer into the neural network model to improve the accuracy of fault 

classification and mitigate misclassified fault categories. Fuzzy logic can be used to 
represent uncertainty and imprecision in the data, allowing the model to make more 

nuanced and context-dependent decisions. This could be particularly useful for 

handling complex and subtle fault patterns that may be difficult to identify using 

traditional statistical or probabilistic models. Overall, there are many opportunities for 

further research and development in this area, and these are just a few examples of 

the ways in which the work presented in this paper could be extended and refined. 
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