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1. Introduction

Graph products arise from many sources and provide an important and wide ranging 

construction. They are defined by presentations, where the edges of a simple, non-directed 

graph determine commutativity of elements associated with the vertices. Further details 

are given in Section 2. Graph products of monoids are defined in the same way as graph 

products of groups, a notion introduced by Green in her thesis [25], and generalise at one 

and the same time free products, restricted direct products, free (commutative) monoids 

and graph monoids1. The latter are graph products of free monogenic monoids, and were 

introduced by Cartier and Foata [6] to study combinatorial problems for rearrangements 

of words; they have been extensively studied by mathematicians and computer scientists, 

having applications to the study of concurrent processes [12,13]. Graph monoids are 

also known as free partially commutative monoids, right-angle Artin monoids and trace 

monoids (sometimes with the condition the underlying graph is finite); corresponding 

terminology applies in the case for groups. Graph groups were first defined by Baudisch 

[4]; for a recent survey see [16] and for the analogous notion for inverse semigroups see 

[10,14].

Although mentioned in [25] and in other earlier works focussing on groups, graph 

products of monoids per se were first defined in [8], and have subsequently been studied in 

various contexts, e.g. [8,19]. Much of the existing work in graph products of monoids, and 

groups, has been to show that various properties are preserved under graph product, see 

e.g. [28,15,9,32]. These properties are often of algorithmic type, for example, automaticity 

[28,9]. In a different direction, articles such as [2,3,24] consider algebraic conditions. Of 

particular interest to us here is that Fountain and Kambites [24] show that a graph 

product of right cancellative monoids is right cancellative.

A monoid M is regular if for any a ∈ M there is a b ∈ M such that a = aba; note 

that ab, ba are, respectively, idempotent left and right identities for a. From an algebraic 

point of view, regularity is often the first property to look for in a monoid. Yet, it is easy 

to see that only in very special cases will a graph product of regular monoids be regular.

The aim of this paper is easy to state. We consider two properties that each provide 

a natural weakening of regularity, and show that the classes of monoids satisfying these 

properties are closed under graph product. In general, the properties we consider provide 

the natural framework to study classes of monoids that need not be regular, but which 

have behaviour strongly influenced by idempotent elements. We first prove:

Theorem 5.22. The graph product of left abundant monoids is left abundant.

A monoid M is left abundant if every principal left ideal is projective (so that some-

times a left abundant monoid is called left PP [20]). This property may handily be 

1 The existing terminology is a little unfortunate. Graph monoids are a strict subclass of the class of graph 
products of monoids. Note also that graph groups should not be confused with the fundamental groups of 
graphs of groups.
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expressed by saying that every R∗-class of M contains an idempotent. We define the 

relation R∗ in Section 2; it suffices to say here that R∗ contains Green’s relation R, 

whence it follows immediately that regular semigroups are left abundant. We note that 

a monoid is a single R∗-class if and only if it is right cancellative. Certainly then such 

monoids are abundant. The above mentioned result of [24] easily follows.

Corollary 7.1. [24, Theorem 1.5] The graph product of right cancellative monoids is right 

cancellative.

Our second main result is:

Theorem 6.10. The graph product of left Fountain monoids is left Fountain.

One way to define a left Fountain (also known as weakly left abundant, or left semi-

abundant) monoid M is to say that every R̃-class of M must contain an idempotent; 

we give further details in Section 2. Here R̃ is a relation containing R∗, whence it is 

clear that left abundant monoids are left Fountain. As for left abundancy, there is a 

natural approach to left Fountainicity using principal one-sided ideals. Again as for left 

abundancy, such semigroups arise independently from a number of sources. They (and 

their two-sided versions) appear in the work of de Barros [11], in that of Ehresmann on 

certain small ordered categories [17] and in the thesis of El Qallali [18]. A systematic 

study of such semigroups was initiated by Lawson, who establishes in [33] the connec-

tion with Ehresmann’s work. A useful source for the genesis of these ideas is Holling’s 

survey [29]. We note here that the class of left Fountain monoids contains a number of 

important subclasses: we have mentioned left abundant, but we also have left ample and 

left restriction [29]. The study of left abundant monoids, left Fountain monoids, their 

two-sided versions, and monoids in related classes, continues to provide one focus in 

algebraic semigroup theory. Some results show similarities with the structure of regular 

and inverse monoids [26,23], whereas others illustrate significantly different behaviour 

[31,37,5].

In order to prove Theorems 5.22 and 6.10 we have considerable work to do to get 

a grip on normal forms of elements of graph products. Essentially, the difficulty in the 

transition from graph monoids to graph products of monoids lies in the fact that for 

the broader concept the group of units of the monoids in question need not be trivial. 

Some of our techniques and results concerning normal forms and reduction of products 

of words may be of independent interest. In particular, in Proposition 3.18, we establish 

that elements in graph products of monoids have a left Foata normal; previously this 

was an important tool in the study of graph monoids, and the same holds here.

The structure of this paper is as follows. In Section 2 we give the necessary definitions 

and gather together the results we need from the literature. In Section 3 we begin our 

analysis of the form of words, and how these behave with respect to products. We 

establish the left Foata normal form for elements of graph products, not relying on any 
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assumption of cancellativity. In the next two sections we build a suite of techniques 

that allow us to simplify the words we need to consider when determining the relation 

R∗, these then enable us eventually to prove Theorem 5.22. In Section 6 we use the 

earlier techniques, together with a further analysis of words, to establish Theorem 6.10. 

There is a corresponding notion of graph product for semigroups; the behaviour of the 

resulting semigroup is similar to that of a graph monoid and hence sheds some of the 

technical difficulties we encounter in graph products of monoids. We apply our results to 

the semigroup case in Section 7, and mention a number of other applications. We finish 

with some open questions.

2. Preliminaries

We outline the notions required to read this article. For further details, we recommend 

the classic texts [7] and [30].

2.1. Presentations and graph products of monoids

We begin with an account of the notion on which this article is based: that of graph 

product of monoids. They are determined by monoid presentations. Let X be a set. The 

free monoid X∗ on X consists of all words over X with operation of juxtaposition. We 

denote a non-empty word by x1 ◦ · · · ◦ xn where xi ∈ X for 1 ≤ i ≤ n; we also use ◦

for juxtaposition of words. The empty word is denoted by ǫ and is the identity of X∗. 

Throughout, our convention is that if we say x1 ◦ · · · ◦ xn ∈ X∗, then we mean that 

xi ∈ X for all 1 ≤ i ≤ n, unless we explicitly say otherwise. We write |x| for the length 

of a word x = x1 ◦ · · · ◦ xn ∈ X∗ and denote by xr the word xn ◦ · · · ◦ x1 ∈ X∗.

A monoid presentation 〈X | R〉, where X is a set and R ⊆ X∗ × X∗, determines the 

monoid X∗/R♯, where R♯ is the congruence on X∗ generated by R. In the usual way, we 

identify (u, v) ∈ R with the formal equality u = v in a presentation 〈X | R〉.

We now define graph products of monoids [25,8]. Let Γ = Γ(V, E) be a simple, undi-

rected, graph with no loops. Here V is a non-empty set of vertices and E ⊆ V2 is the set 

of edges of Γ, where V2 is the set of 2-element subsets of V . We think of {α, β} ∈ E as 

joining the vertices α, β ∈ V . For notational reasons we denote an edge {α, β} as (α, β)

or (β, α); since our graph is undirected we are identifying (α, β) with (β, α).

Definition 2.1. Let Γ = Γ(V, E) be a graph and let M = {Mα : α ∈ V } be a set of 

mutually disjoint monoids. We write 1α for the identity of Mα and put I = {1α : α ∈ V }. 

The graph product G P = G P(Γ, M) of M with respect to Γ is the monoid defined by 

the presentation

G P = 〈X | R〉

where X =
⋃

α∈V Mα and R = Rid ∪ Rv ∪ Re are given by:
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Rid = {1α = ǫ : α ∈ V },

Rv = {x ◦ y = xy : x, y ∈ Mα, α ∈ V },

Re = {x ◦ y = y ◦ x : x ∈ Mα, y ∈ Mβ , (α, β) ∈ E)}.

The monoids Mα in Definition 2.1 are known as vertex monoids. Throughout we 

assume |V | ≥ 2, as otherwise G P is isomorphic to the single vertex monoid. We denote 

the R♯-class of w ∈ X∗ in G P by [w]. It is worth noting that there are various different 

ways to set up graph products, which all yield equivalent constructions. In particular, if 

one starts with monoids that are groups, the process above yields the graph product of 

groups.

The main focus of this article is on monoids, although we briefly visit graph products of 

semigroups in Section 7. Free products of semigroups, and a discussion of their universal 

properties, may be found in [7,30]. Free products of monoids may be viewed as a special 

case of an amalgamated free product of semigroups; this is commented on explicitly in 

[30, p. 266]. Here we remark that a free product of monoids is a graph product for a 

graph Γ(V, ∅).

We now touch on the other extreme where E = V2. Let M = {Mα : α ∈ V } be as 

above. The restricted direct product (or direct sum) ⊕α∈V Mα of M is defined by

⊕α∈V Mα = {f ∈ Πα∈V Mα : αf �= 1v for only finitely many v ∈ V }.

Clearly ⊕α∈V Mα is a submonoid of Πα∈V Mα and ⊕α∈V Mα = Πα∈V Mα if and only if V

is finite. It is easy to see that a restricted direct product of monoids is a graph product 

for a graph Γ(V, V2).

Graph products of monoids behave beautifully with respect to certain substructures, 

as we now demonstrate. To do so we need some terminology.

Definition 2.2. Let G P = G P(Γ, M). Let s : X → V be a map defined by s(a) = α if 

a ∈ Mα. The support s(x) of x = x1 ◦ · · · ◦ xn ∈ X∗ is defined by

s(x) = {s(xi) : 1 ≤ i ≤ n}.

In particular, s(ǫ) = ∅.

Notice that when s(x) is a singleton, we simply drop braces around it. Below we use 

[ , ] for the equivalence class of a word under two different relations, so the reader should 

bear in mind the context in each case.

Proposition 2.3. Let V ′ ⊆ V and let Γ′ = Γ(V ′, E′) be the resulting full subgraph of Γ. 

Let G P
′ be the corresponding graph product of the monoids M′ = {Mα : α ∈ V ′}. Then 

G P
′ is a retract of G P.

Proof. Let η := ηV,V ′ : X∗ → G P
′ be the morphism extending the map defined on X

by
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xη =

{
[x] s(x) ∈ V ′

[ǫ] else.

We show that R♯ ⊆ ker η.

First, for any α ∈ V , whether or not α ∈ V ′, we have 1αη = [ǫ] = ǫη so that 

Rid ⊆ ker η.

To see that Rv ⊆ ker η, let α ∈ V and let u, v ∈ Mα. If α /∈ V ′, then

(u ◦ v)η = (uη)(vη) = [ǫ][ǫ] = [ǫ] = (uv)η.

If α ∈ V ′, then

(u ◦ v)η = (uη)(vη) = [u][v] = [u ◦ v] = [uv] = (uv)η.

Now consider u ∈ Mα, v ∈ Mβ with (α, β) ∈ E. If neither α nor β is in V ′, then

(u ◦ v)η = (uη)(vη) = [ǫ][ǫ] = (vη)(uη) = (v ◦ u)η.

If α, β ∈ V ′ with (α, β) ∈ E, then, as Γ′ is a full subgraph of Γ, we have (α, β) ∈ E′, so 

that

(u ◦ v)η = (uη)(vη) = [u][v] = [u ◦ v] = [v ◦ u] = [v][u] = (vη)(uη) = (v ◦ u)η.

If α ∈ V ′ but β /∈ V ′ then

(u ◦ v)η = (uη)(vη) = [u][ǫ] = [ǫ][u] = (vη)(uη) = (v ◦ u)η

and dually if α /∈ V ′ but β ∈ V ′. Thus Re ⊆ ker η.

It follows that R♯ ⊆ ker η and so η := ηV,V ′ : G P → G P
′ given by [w]η = wη is a 

well defined morphism.

It is easy to see that ι := ιV ′,V : G P
′ → G P such that [w]ι = [w] is well defined, 

and by considering ιη it is clear that ι is an embedding. It is then immediate that ηι is 

a retraction of G P onto a submonoid G P
′ι. �

We identify G P
′ with its image under ι and regard G P

′ as a submonoid of G P.

Remark 2.4. Let α ∈ V . By taking V ′ = {α} in Proposition 2.3, we immediately see 

that Mα is naturally embedded in GP via ια : Mα → G P, where for x ∈ Mα we have 

xια = [x].

Proposition 2.5. A graph product GP = G P(Γ, M) is a direct limit of the graph products 

corresponding to the finite full subgraphs of Γ.
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Proof. The finite full subgraphs of Γ are partially ordered by inclusion, and form a 

directed set under union. It is routine to see that the direct limit of the graph products 

G P
′, corresponding to finite full subgraphs with vertex set V ′ ⊆ V and embeddings 

ιV ′,V ′′ where V ′ ⊆ V ′′, is isomorphic to G P. �

We end this subsection by remarking that there are universal approaches to describe 

graph products of monoids as indicated in [24, Proposition 1.6], in the same way as there 

are for direct and free products.

2.2. Regular, abundant and Fountain monoids

We will denote the set of idempotents of a monoid M by E(M). We recall that Green’s 

relation R is defined on M by the rule a R b if and only if aM = bM . Equivalently, a = bt

and b = as for some s, t ∈ M , thus, R is a relation of mutual divisibility. The relation 

L is defined dually. It is easy to see that M is regular if and only if every a ∈ M is 

R-related to an idempotent and so, from considerations of duality, if and only if every 

a ∈ M is L-related to an idempotent. Graph products do not behave well with regard 

to regularity. Let M and N be regular monoids containing elements m, n respectively 

which do not have one-sided inverses. Then [m ◦ n] is not regular in the graph product 

G P(Γ, M) where Γ = ({1, 2}, ∅) and M = {M1, M2} (that is, in the free product). See 

[8] for a discussion of regularity in graph products. We therefore consider relations larger 

than R and L and ask whether they contain idempotents.

The relation R∗ on a monoid M was first defined in [35,36]. For elements a, b ∈ M

we have a R∗ b if and only if a R b in some over-monoid N of M . Equivalently, for any 

x, y ∈ M we have

xa = ya if and only if xb = yb.

Thus, R∗ is a relation of mutual cancellativity. A third equivalent condition is that the 

principal left ideals Ma and Mb are isomorphic under a left ideal isomorphism where 

a �→ b [21]. It is easy to see that R ⊆ R∗ with equality if M is regular. The relation L∗

is the left-right dual of R∗.

Definition 2.6. A monoid M is left abundant if every element in M is R∗-related to an 

idempotent. The notion of right abundant is defined dually, and M is abundant if it is 

both left and right abundant.

Examples of (left) abundant monoids abound; regular monoids are, of course, abun-

dant; for a favourite non-regular example take the monoid Mn(Z) of n ×n integer matrices 

under matrix multiplication [22].

Remark 2.7. It is easy to see that for a ∈ M and e ∈ E(M) we have that a R∗ e if and 

only if ea = a and for any x, y ∈ M



120 Y. Dandan, V. Gould / Journal of Algebra 620 (2023) 113–156

xa = ya ⇒ xe = ye.

A monoid M is right cancellative if for all a, b, c ∈ M , from ac = bc we deduce that 

a = b; left cancellative is dual and M is cancellative if it is right and left cancellative. It is 

easy to see that M is right cancellative if and only if it is a single R∗-class. Thus, a right 

cancellative monoid is left abundant. A right cancellative monoid has no non-identity 

idempotents, and need not be left cancellative. It follows that left abundancy does not 

imply right abundancy, which contrasts with the case for regularity.

The relation R̃ arose from many sources, as indicated in the Introduction. It extends 

the relation R∗ and coincides with it in the case where the monoid is left abundant. For 

elements a, b of a monoid M we have that

a R̃ b if and only if ea = a ⇔ eb = b for all e ∈ E(M).

The relation L̃ is defined dually.

Definition 2.8. A monoid M is left Fountain if every element in M is R̃-related to an 

idempotent. The notion of right Fountain is defined dually, and M is Fountain if it is 

both left and right Fountain.

Remark 2.9. Similarly to Remark 2.7, it is easy to see that for a ∈ M and e ∈ E(M) we 

have that a R̃ e if and only if ea = a and for any f ∈ E(M)

fa = a ⇒ fe = e.

Formerly, left Fountain was referred to as weakly left abundant, but in view of the 

perceived significance the notion was renamed by Margolis and Steinberg in [34]. It is easy 

to see that M is left Fountain if and only if for any a ∈ M the intersection of the principal, 

idempotent generated, right ideals containing a is principal and idempotent generated. 

As for abundancy, there are many natural examples of (non-abundant) (left) Fountain 

semigroups. These include finite monoids such that every principal (left) ideal has at most 

one idempotent generator, for instance, any finite monoid with commuting idempotents 

[34]. For some recent examples of Fountain monoids, consisting of semigroups of tropical 

matrices, see [27].

Remark 2.10. The relation R on a monoid M is easily seen to be a left congruence, for 

any a, b, c ∈ M , if a R b then ca R cb. Similarly, R∗ is a left congruence. The same is 

not true, in general, for R̃, even for some quite natural monoids (see, for example, [27, 

Proposition 6.10]). Thus we do not assume that R̃ is a left congruence in our calculations.

3. (Left) Foata normal forms

Throughout we let G P = G P(Γ, M) and follow the notation as established in Sec-

tion 2. We show that elements in G P may be written in a normal form we refer to as 
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left Foata normal form. Such normal forms were previously known for elements of graph 

monoids, that is, where all the vertex monoids are free monogenic. The existing proofs 

rely on cancellativity, which is not available to us. Moreover, the presence of units in our 

vertex monoids provides an added complication.

Definition 3.1. Let x1 ◦ · · · ◦ xn ∈ X∗. A reduction step is one of:

(id) x1 ◦ · · · ◦ xn → x1 ◦ · · · ◦ xi−1 ◦ xi+1 ◦ · · · ◦ xn where xi ∈ I;

(v) x1 ◦ · · · ◦ xn → x1 ◦ · · · ◦ xi−1 ◦ xixi+1 ◦ xi+2 ◦ · · · ◦ xn where xi, xi+1 ∈ Mα for some 

α ∈ V .

A shuffle is a step:

(e) x1 ◦ · · · ◦ xn → x1 ◦ · · · ◦ xi−1 ◦ xi+1 ◦ xi ◦ xi+2 ◦ · · · ◦ xn where (s(xi), s(xi+1)) ∈ E.

Definition 3.2. Two words in X∗ are shuffle equivalent if one can be obtained from the 

other by applying relations in Re, or, equivalently, by shuffle steps.

Definition 3.3. A word x = x1 ◦ · · · ◦ xn ∈ X∗ is pre-reduced if it is not possible to apply 

a reduction step to x.

A word x = x1 ◦ · · · ◦ xn ∈ X∗ is reduced if for all 1 ≤ i ≤ n, xi /∈ I, and for all 

1 ≤ i < j ≤ n with s(xi) = s(xj), there exists some i < k < j with (s(xi), s(xk)) /∈ E.

We denote by K the set of reduced words in X∗.

If x = x1 ◦ · · · ◦ xn ∈ X∗ is reduced, then any factor xi ◦ xi+1 ◦ · · · ◦ xj is reduced. 

A reduced word is pre-reduced, but the converse is not necessarily true. For example, 

x1 ◦ x2 ◦ x3 where s(x1) = s(x3) = α, s(x2) = β, (α, β) ∈ E and no xi is an identity, 

is pre-reduced, but not reduced. Notice that ǫ is always reduced. The following remarks 

are clear from Definition 3.3.

Remark 3.4. A word is reduced if and only if any word shuffle equivalent is pre-reduced. 

In particular, any word shuffle equivalent to a reduced word is reduced.

Remark 3.5. Let x = x1 ◦ · · · ◦ xn and y = y1 ◦ · · · ◦ yn ∈ X∗ be such that xi, yi /∈ I and 

s(xi) = s(yi) for all 1 ≤ i ≤ n. If one of x, xr, y, yr is reduced, then so are all four.

We will frequently concatenate reduced words in X∗, wanting to know if the product 

is reduced. The next remark is useful in this regard.

Remark 3.6. Let x = x1 ◦ · · · ◦ xm, y = y1 ◦ · · · ◦ yn ∈ X∗ be reduced. Then x ◦ y is not

reduced exactly if there exists i, j with 1 ≤ i ≤ m, 1 ≤ j ≤ n such that s(xi) = s(yj) and 

for all h, k with i < h ≤ m, 1 ≤ k < j we have (s(xi), s(z)) ∈ E where z = xh or z = yk.
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The lemma below is standard but it is worth making explicit.

Lemma 3.7. Let w ∈ X∗. Applying reduction steps and shuffles leads in a finite number 

of steps to a reduced word w with [w] = [w].

Proof. Note that applying reduction steps to w reduces its length. There are finitely 

many words shuffle equivalent to w. Either these are all pre-reduced, and we let w = w, 

or we can apply a reduction step to some w′ shuffle equivalent to w. Continue applying 

reduction steps to w′ until we arrive at a pre-reduced word w1. Notice that |w1| < |w|. 

Repeat this process, obtaining a finite list of words w = w0, w1, w2, . . . , wm where all 

words shuffle equivalent to wm are pre-reduced. By Remark 3.4, wm is reduced; let 

w = wm. �

The next result is fundamental to our arguments. As commented in [24], it is the 

monoid version of Theorem 3.9 of Green [25] (which can be applied directly to monoids). 

It can also be deduced from [8, Theorem 6.1]; the reader should note that [8] uses different 

terminology to ours. However, we note that [25] and [8] deal only with the case of a finite 

graph. Here we give the general result, calling upon Proposition 2.3.

Proposition 3.8. Every element of G P is represented by a reduced word. Two reduced 

words represent the same element of GP if and only if they are shuffle equivalent. An 

element x ∈ [w] is of minimal length if and only if it is reduced.

Proof. We have already shown the first part.

For the second, it is clear that if two reduced forms are shuffle equivalent then they 

represent the same element of GP. Conversely, suppose that w, w′ ∈ X∗ are reduced 

forms and [w] = [w′] in G P. Let V ′ = s(w) ∪ s(w′) and let Γ′ = (V ′, E′) be the 

corresponding full subgraph. Let X ′ =
⋃

α∈V ′ Mα and let G P
′ be the corresponding 

graph product. Clearly, w, w′ ∈ (X ′)∗ are pre-reduced and from Proposition 2.3, [w] =

[w′] in G P
′. Theorem 1.1 of [24], which may be deduced directly from original case for 

groups in [25], now tells us that w and w′ are shuffle equivalent in G P
′ and hence clearly 

shuffle equivalent in G P.

For the final point, it is clear that a word w ∈ X∗ such that |w| is minimal in [w] is 

a reduced form. For the converse, suppose that x ∈ X∗ is a reduced form and [x] = [y]. 

Choosing y as in Lemma 3.7 we have that [x] = [y] = [y] where y is reduced and |y| ≥ |y|. 

By the above x, y are shuffle equivalent and hence |x| = |y| ≤ |y|. �

Definition 3.9. If x ∈ X∗ and [x] = [w] for a reduced word w ∈ X∗, then we say that w

is a reduced form of x.

Notice that:
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(1) The equality [x] = [y] where x = x1 ◦ · · · ◦ xn and y = y1 ◦ · · · ◦ ym, does not, in 

general, imply that s(x) = s(y). However, if both x and y are reduced, we must have 

m = n and s(x) = s(y), by Proposition 3.8.

(2) If x1◦· · ·◦xn is reduced and s(x1◦· · ·◦xn) is a complete subgraph, then s(xi) �= s(xj)

for all 1 ≤ i < j ≤ n, again by Proposition 3.8.

We now show that, starting with a reduced word x ∈ X∗, and multiplying by a single 

letter p from X, we have a narrow range of possibilities for any reduced form of the 

product p ◦ x.

Lemma 3.10. Let p ∈ X, where p /∈ I, and let x = x1 ◦ · · · ◦ xn ∈ X∗ be reduced. Then 

one of the following occurs:

(i) p ◦ x1 ◦ · · · ◦ xn is reduced;

(ii) there exists 1 ≤ k ≤ n such that s(xk) = s(p) and (s(p), s(xl)) ∈ E for all 1 ≤ l ≤

k − 1, and p ◦ x1 ◦ · · · ◦ xn reduces to

pxk ◦ x1 ◦ · · · ◦ xk−1 ◦ xk+1 ◦ · · · ◦ xn (1)

and also to

x1 ◦ · · · ◦ xk−1 ◦ pxk ◦ xk+1 ◦ · · · ◦ xn. (2)

Further, in Case (ii)

(a) if pxk is not an identity then (1) and (2) are reduced;

(b) if pxk is an identity then p ◦ x1 ◦ · · · ◦ xn reduces to the reduced word

x1 ◦ · · · ◦ xk−1 ◦ xk+1 ◦ · · · ◦ xn. (3)

Consequently, if α ∈ s(x) and q ∈ X with s(q) �= α, then α must be in the support of 

any reduced form of q ◦ x.

Proof. Suppose that p ◦x is not reduced. Then, by the definition of reduced, k as defined 

in the statement must exist. Clearly, for p ◦ x, we may shuffle xk and glue it to p to 

obtain

pxk ◦ x1 ◦ · · · ◦ xk−1 ◦ xk+1 ◦ · · · ◦ xn

which is shuffle equivalent to

x1 ◦ · · · ◦ xk−1 ◦ pxk ◦ xk+1 ◦ · · · ◦ xn.
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If pxk is not an identity, then these words are reduced, by Remark 3.5.

If pxk is an identity then p ◦ x reduces to

x1 ◦ · · · xk−1 ◦ xk+1 ◦ · · · ◦ xn,

which is reduced, since it is a right factor of the word xk ◦ x1 ◦ · · · xk−1 ◦ xk+1 ◦ · · · ◦ xn, 

which is shuffle equivalent to the reduced word x.

The final statement is clear if q ∈ I; if q /∈ I it follows by examining the cases 

above. �

Corollary 3.11. Let x, y ∈ X∗ where y is reduced. If α ∈ s(y) but α /∈ s(x), then α must 

be in the support of any reduced form of x ◦ y.

Proof. Let x = x1 ◦ · · · ◦ xm and proceed by induction on m. If m = 1 then the result is 

true by Lemma 3.10. Suppose therefore that m ≥ 2 and the result is true for m − 1. Let 

z1 ◦ · · · ◦ zk be a reduced form of x2 ◦ · · · ◦ xm ◦ y. Then α is in the support of z1 ◦ · · · ◦ zk

by assumption, and so α is in the support of the reduced form of x1 ◦ z1 ◦ · · · ◦ zk and 

hence x ◦ y, again by Lemma 3.10. �

We will make extensive use of Corollary 3.11 to find reduced forms of products of 

reduced words. The expression of elements in GP using reduced forms has a very useful 

cancellation-type property, as we now explain. First, another technical result using a 

strategy that will be key in this paper. Recall from Definition 3.3 that K = {w ∈ X∗ :

w is reduced}.

Lemma 3.12. Let α ∈ V and define maps

θα : K −→ G P and ηα : K −→ G P

where for each x = x1 ◦ · · · ◦ xn ∈ K,

xθα =

{
[xi(α)] α ∈ s(x)

[ǫ] else
and xηα =

{
[xi(α)] α ∈ s(x)

[ǫ] else.

Here i(α) is the smallest i such that s(xi) = α and xi(α) is obtained by deleting xi(α)

from x. Then θα and ηα are constant on R♯-classes, that is, they extend to maps

θα : G P −→ G P and ηα : G P −→ G P

given by

[w]θα = w′θα and [w]ηα = w′ηα

where w′ is any reduced form of w.
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Proof. Let [p] = [q] where both p, q ∈ K are reduced. We need show pθα = qθα and 

pηα = qηα. By Proposition 3.8, p and q are shuffle equivalent; by finite induction we can 

assume that q is obtained from p by exactly one shuffle.

Let

p = x1 ◦ · · · ◦ xj−1 ◦ xj ◦ xj+1 ◦ xj+2 ◦ · · · ◦ xn

and

q = x1 ◦ · · · ◦ xj−1 ◦ xj+1 ◦ xj ◦ xj+2 ◦ · · · ◦ xn.

If α /∈ s(p) (and so α /∈ s(q)), then

pθα = [p] = [q] = qθα and pηα = [ǫ] = qηα.

Suppose now that α ∈ s(p). Considering p, pick the smallest k such that s(xk) = α. 

If 1 ≤ k ≤ j − 1 or j + 2 ≤ k ≤ n, then, clearly, pθα = qθα and pηα = qηα. If k = j, then 

since (s(xj), s(xj+1)) ∈ E we have s(xj) �= s(xj+1); it follows that pηα = qηα = [xj ] and 

pθα = qθα = [x1 ◦ · · · ◦ xj−1 ◦ xj+1 ◦ xj+2 ◦ · · · ◦ xn]. Similarly if k = j + 1. �

It is useful to state the dual of Lemma 3.12.

Lemma 3.13. Let α ∈ V and define maps

δα : K −→ G P and τα : K −→ G P

where for each x = x1 ◦ · · · ◦ xn ∈ K,

xδα =

{
[xj(α)] α ∈ s(x)

[x] else
and xτα =

{
[xj(α)] α ∈ s(x)

[ǫ] else.

Here j(α) is the largest j such that s(xj) = α and xj(α) is obtained by deleting xj(α)

from x. Then δα and τα are constant on R♯-classes, that is, they extend to maps

δα : G P −→ G P and τα : G P −→ G P

given by

[w]δα = w′δα and [w]τα = w′τα

where w′ is any reduced form of w.

We use the maps defined in Lemmas 3.12 and 3.13 to prove our first cancellation-type 

result.
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Lemma 3.14. Let [x] = [y] where x = x1 ◦ · · · ◦ xn and y = y1 ◦ · · · ◦ yn are reduced and 

let 1 ≤ m ≤ n. Then [x1 ◦ · · · ◦ xm] = [y1 ◦ · · · ◦ ym] if and only if [xm+1 ◦ · · · ◦ xn] =

[ym+1 ◦ · · · ◦ yn].

Proof. Suppose that [x1 ◦ · · · ◦ xm] = [y1 ◦ · · · ◦ ym]. Since [x1 ◦ · · · ◦ xn] = [y1 ◦ · · · ◦ yn], 

we have

[x1 ◦ · · · xm ◦ xm+1 ◦ · · · ◦ xn] = [x1 ◦ · · · xm ◦ ym+1 ◦ · · · ◦ yn].

As x1 ◦ · · · xm ◦ xm+1 ◦ · · · ◦ xn is reduced and x1 ◦ · · · xm ◦ ym+1 ◦ · · · ◦ yn has the same 

length, we deduce that x1 ◦ · · · xm ◦ ym+1 ◦ · · · ◦ yn is reduced, by Proposition 3.8. Let 

s(xr) = αr for all 1 ≤ r ≤ m. Then, observing that any right factor of a reduced word 

is reduced,

[x1 ◦ · · · ◦ xm ◦ xm+1 ◦ · · · ◦ xn]θα1
· · · θαm

= [x1 ◦ · · · ◦ xm ◦ ym+1 ◦ · · · ◦ yn]θα1
· · · θαm

by Lemma 3.12, which gives [xm+1 ◦ · · · ◦ xn] = [ym+1 ◦ · · · ◦ yn] as desired.

The remainder of the lemma follows dually from Lemma 3.13, by applying the maps 

δα. �

Definition 3.15. A word w ∈ X∗ is a complete block if it is reduced, and s(w) forms a 

complete subgraph of Γ = Γ(V, E).

We now show that any reduced word in X∗ may be shuffled into a word that is a 

product of complete blocks.

Definition 3.16. Let w ∈ X∗. Then w is a left Foata normal form with block length k and 

blocks wi ∈ X∗, 1 ≤ i ≤ k, if:

(i) w = w1 ◦ · · · ◦ wk ∈ X∗ is a reduced word;

(ii) s(wi) is a complete subgraph for all 1 ≤ i ≤ k;

(iii) for any 1 ≤ i < k and α ∈ s(wi+1), there is some β ∈ s(wi) such that (α, β) /∈ E.

If [x] = [w] where w is a left Foata normal form, then we may say w is a left Foata 

normal form of x.

Remark 3.17. (i) The empty word ǫ is a left Foata normal form with block length 0. (ii) 

A complete block is precisely a word in left Foata normal form with block length 1. (iii) 

If w = w1 ◦ · · · ◦ wk ∈ X∗ is in left Foata normal form with blocks wi, 1 ≤ i ≤ k, then 

for any 1 ≤ j ≤ j′ ≤ k we have wj ◦ wj+1 ◦ · · · ◦ wj′ is also in left Foata normal form, 

with blocks wh, j ≤ h ≤ j′.

Proposition 3.18. Every element in G P may be represented by a left Foata normal form.
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Proof. We know that any element of GP may be represented by a reduced word. Take 

a reduced word w = y0 and let w1 be chosen such that w1 ◦ y1 is shuffle equivalent to w

for some y1, s(w1) is complete, and |w1| is maximum with respect to these constraints. 

Assume that w1, y1, w2, y2, . . . , wk, yk have been chosen such that for each 1 ≤ j ≤ k we 

have that yj−1 is shuffle equivalent to wj ◦ yj , s(wj) is complete, and |wj | is maximum 

with respect to these constraints. Clearly this process must end after a finite number of 

steps with yk = ǫ.

For any 1 ≤ j ≤ k we have by finite induction that yj−1 is shuffle equivalent to 

wj ◦ wj+1 ◦ · · · ◦ wk and, in particular, w is shuffle equivalent to w1 ◦ · · · ◦ wk. We now 

claim that w1 ◦· · ·◦wk is a left Foata normal form with blocks wi for 1 ≤ i ≤ k. Certainly 

(i) and (ii) of Definition 3.16 hold. To see that (iii) holds, suppose that 1 ≤ i < k and let 

α ∈ s(wi+1); say wi+1 = p ◦a ◦q where a ∈ X and s(a) = α. Suppose for contradiction that 

for all β ∈ s(wi) we have (α, β) ∈ E. Since yi−1 is shuffle equivalent to wi ◦wi+1 ◦ · · · ◦wk

we would have yi−1 being shuffle equivalent to wi ◦a ◦y′

i+1 for some y′

i+1, where s(wi ◦a)

is complete and |wi ◦ a| > |wi|, a contradiction. �

Remark 3.19. Let x = x1 ◦ · · · ◦ xn and z = z1 ◦ · · · ◦ zn be reduced forms of w. Pick 

α ∈ s(x)(= s(z)). Let i be least such that s(xi) = α and j be least such that s(zj) = α. 

Since x and z are shuffle equivalent, xi = zj . Suppose that there exists some 1 ≤ i′ < i

such that s(xi′) = β with (β, α) /∈ E; note that by minimality of i we have β �= α. Then, 

again as x and z are shuffle equivalent, there exists some 1 ≤ j′ < j such that s(zj′) = β

and zj′ = xi′ .

We are now in a position to prove the main result of this section, which tells us that 

the left Foata normal form of an element of any GP is essentially unique.

Theorem 3.20. Let w ∈ X∗ and let w1 ◦ w2 ◦ · · · ◦ wk and w′

1 ◦ w′

2 ◦ · · · ◦ w′

h be left 

Foata normal forms of w with blocks wi, w
′

j for 1 ≤ i ≤ k, 1 ≤ j ≤ h. Then k = h and 

[wi] = [w′

i] for 1 ≤ i ≤ k.

Proof. Let p1 = w2 ◦ · · · ◦wk and p′

1 = w′

2 ◦ · · · ◦w′

h; by Remark 3.17 p1 and p′

1 are also in 

left Foata normal form. We claim that s(w1) = s(w′

1). Expressing as products of letters, 

let

w1 = a1 ◦ · · · ar, p1 = b1 ◦ · · · ◦ bm, w′

1 = u1 ◦ · · · ◦ ut and p′

1 = v1 ◦ · · · ◦ vn.

Suppose that there exists some δ ∈ s(w1) but not in s(w′

1), so that δ ∈ s(p′

1). Let 

i be least such that s(ai) = δ and let j be least such that s(vj) = δ. By definition of 

left Foata normal form, either (i) vj is in the first block w′

2 of p′

1, in which case there 

exists some 1 ≤ t′ ≤ t with (s(ut′), δ) /∈ E, or (ii) vj is in a subsequent block of p′

1 in 

which case certainly there exists 1 ≤ j′ < j with (s(vj′), δ) /∈ E. Let γ = s(ut′) (in 

Case (i)) and γ = s(vj′) (in Case (ii)). In either case we have γ �= δ and (δ, γ) /∈ E. 

By Remark 3.19 there must be some i′ with 1 ≤ i′ < i such that s(ai′) = γ. This is 
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impossible since s(w1) is a complete subgraph. Together with the converse argument we 

deduce that s(w1) = s(w′

1).

We now show that [w1] = [w′

1] and [p1] = [p′

1]. Let s(w1) = {α1, · · · , αr}. It then 

follows from Lemma 3.12 that

[p1] = [w1 ◦ p1]θα1
· · · θαr

= [w′

1 ◦ p′

1]θα1
· · · θαr

= [p′

1]

and

[w1] = [w1 ◦ p1]ηα1
· · · [w1 ◦ p1]ηαr

= [w′

1 ◦ p′

1]ηα1
· · · [w′

1 ◦ p′

1]ηαr
= [w′

1]

as required.

Noticing that |p1| < |w1 ◦ p1|, the result now follows by induction. �

Clearly, we may define the notion of a right Foata normal form of an element in X∗, 

and the dual arguments to those for left Foata normal form hold.

4. Towards a characterization of R∗

We continue to consider a fixed, but arbitrary, graph product of monoids GP. We 

now show how we can use the left Foata normal forms developed in Section 3 to describe 

the relation R∗ in G P. We will build on this in Section 5 to show that if each vertex 

monoid is abundant, then so is G P.

The next lemma can be deduced from [8, Proposition 7.1], together with our Propo-

sition 2.3 and Remark 2.4. Note that if x = x1 ◦ · · · ◦ xn is reduced, then in Costa’s 

terminology, the xi are components.

Lemma 4.1. Let x = x1 ◦ · · · ◦ xn ∈ X∗ be reduced. Then the following are equivalent:

(1) [x] is left invertible in G P;

(2) [xi] is left invertible in G P for 1 ≤ i ≤ n;

(3) xi ∈ Ms(xi) is left invertible in Ms(xi) for 1 ≤ i ≤ n.

Moreover, if any of the above conditions hold, then any left inverse of [x] has the form 

[y] where y = yn ◦ · · · ◦ y1 and yi is a left inverse of xi for 1 ≤ i ≤ n.

The arguments in the next lemma essentially rely on the following simple observations. 

If x = x1◦· · ·◦xn ∈ X∗ is shuffle equivalent to y = xj1
◦· · ·◦xjn

, then for any 1 ≤ i < k ≤ n

with ji > jk we have (s(xji
), s(xjk

)) ∈ E. Suppose we can shuffle x to a word x′ ◦ x′′, 

where x′ has length m. Consequent to the previous remark, we can then shuffle x′ to a 

word xi1
◦xi2

◦ · · · ◦xim
where i1 < i2 < · · · < im and x′′ to the word obtained from x by 

deleting the letters xi1
, · · · , xim

. Moreover, for any 1 ≤ ℓ ≤ m we can shuffle the letters 

x1, · · · , xiℓ−1, xiℓ
in x′ ◦ x′′ back to the first iℓ positions, resulting in having shuffled x
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to x1 ◦ x2 · · · ◦ xiℓ−1 ◦ xiℓ
◦ xiℓ+1

◦ · · · ◦ xim
◦ z where z is xiℓ+1 ◦ xiℓ+2 ◦ · · · ◦ xn with 

xiℓ+1
, · · · , xim

deleted.

Lemma 4.2. Let u ∈ X∗. Then:

(1) [u] = [a][x] where a ◦ x is reduced, [a] is left invertible, and |a| is maximum with 

respect to these constraints;

(2) with [u] = [a][x] as in (1), if in addition [a][x] = [b][y] where (in addition) b ◦ y is 

reduced, [b] is left invertible, and |b| = |a|, then [a] = [b] and [x] = [y];

(3) with [u] = [a][x] as in (1), x has a left Foata normal form x1 ◦ · · · ◦ xm with blocks 

xi, 1 ≤ i ≤ m, such that x1 contains no left invertible letters.

Proof. We begin by finding a reduced form p = p1 ◦ · · · ◦ pn for u. By shuffling p we 

may find a and x as in (1). By Lemma 4.1 and the above remark we may assume that 

a = pi1
◦ · · · ◦ pik

where i1 < i2 < · · · < ik, with pih
is left invertible for all 1 ≤ h ≤ k.

Suppose now that b, y are as given; again we may assume that b = pj1
◦ · · · ◦pjk

where 

j1 < j2 < · · · < jk. If i1 < j1 then we notice that we can shuffle p to pi1
◦ p1 ◦ · · · ◦

pj1−1 ◦ pj1
◦ pj1+1 ◦ · · · ◦ pn and then to pi1

◦ pj1
◦ pj2

◦ · · · ◦ pjk
◦ y′ where y′ is y with pi1

deleted. But, this contradicts the maximality of |a|. With the dual argument we obtain 

that i1 = j1.

Suppose for finite induction that iℓ = jℓ for 1 ≤ ℓ ≤ s < k and that is+1 < js+1. Then 

similarly to the preceding argument we have that p shuffles to pi1
◦pi2

◦ · · · ◦pis
◦pis+1

◦z

where z is p with pi1
, pi2

, · · · , pis+1
deleted. But then we can shuffle z to obtain a word 

pjs+1
◦pjs+2

◦· · ·◦pjk
◦w where w is p with pi1

, pi2
, · · · , pis+1

, pjs+1
, pjs+2

, · · · , pjk
deleted. 

Again, this contradicts the maximality of |a|. We deduce that is = js for 1 ≤ s ≤ k and 

hence [a] = [b]. Clearly then [x] = [y] follows.

Suppose now that [u] = [a][x] as in (1), and shuffle x to left Foata normal form 

x1 ◦ · · · ◦ xm, where the xi are the blocks for 1 ≤ i ≤ m. Clearly, since s(x1) is complete, 

x1 cannot contain any left invertible letters, else this would contradict the maximality 

of |a|. �

To simplify the description of R∗ on G P we now present two technical lemmas.

Lemma 4.3. Let x = x1 ◦ · · · ◦ xn ∈ X∗ and (α, β) /∈ E. Suppose that xl is non-left 

invertible with s(xl) = β, for some 1 ≤ l ≤ n, and s(xk) is neither α nor β for all 

l < k ≤ n. Let z = z1 ◦ · · · ◦ zm ∈ X∗ be any reduced form of x1 ◦ · · · ◦ xn. Then β ∈ s(z)

and if j is greatest such that 1 ≤ j ≤ m with s(zj) = β, then zj is non left invertible, 

and s(zt) �= α for all j < t ≤ m.

Proof. We begin by observing that if we can find one reduced form of x with the required 

property, then all reduced forms will have the required property.
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We proceed by induction on n. If n = 1 = l the result is clear, since x = x1 is the 

only reduced form of x. Suppose now that n > 1 and the result is true for all words of 

length strictly less than n.

Let w1 = x1 ◦ · · · ◦ xl−1, w2 = xl+1 ◦ · · · ◦ xn and let w′

1, w′

2 ∈ X∗ be reduced such 

that [w1] = [w′

1] and [w2] = [w′

2]. Certainly α, β /∈ s(w′

2). Let w′

1 = u1 ◦ · · · ◦ uh and 

w′

2 = v1 ◦ · · · ◦ vr. If w′

1 ◦ xl ◦ w′

2 is a reduced form, then we are done.

Suppose therefore that w′

1 ◦ xl ◦ w′

2 is not a reduced form, and consider first

w′

1 ◦ xl = u1 ◦ · · · ◦ uh ◦ xl.

If w′

1 ◦xl is not a reduced form then, from Remark 3.6, there exists some t with 1 ≤ t ≤ h

with s(ut) = β and (s(uk), β) ∈ E for all t < k ≤ h. By shuffling w′

1, without loss of 

generality we can assume that t = h. Let p = uhxl and notice that as xl is not left 

invertible, then neither is p, and certainly p �= ǫ. Then

y = u1 ◦ · · · ◦ uh−1 ◦ p ◦ v1 ◦ · · · ◦ vr

has length strictly less than n, s(p) = β, p is not left invertible, and α, β /∈ s(v1 ◦ · · ·◦vr).

On the other hand, if w′

1 ◦xl is a reduced form, then again by Remark 3.6, and making 

use of the fact β /∈ s(w′

2), we may assume that s(uh) = s(v1) and (β, s(uh)) ∈ E. Then

y = u1 ◦ · · · ◦ uh−1 ◦ uhv1 ◦ xl ◦ v2 ◦ · · · ◦ vr

has length strictly less than n, and α, β /∈ s(v2 ◦ · · · ◦ vr).

In each case we have found a word y with [y] = [x] to which we can apply the induction 

hypothesis. The result follows. �

Lemma 4.4. Let x = x1 ◦ · · · ◦ xn be a left Foata normal form with blocks xi, 1 ≤ i ≤ n, 

such that x1 contains no left invertible letters. Let u ∈ X∗ and let z be a reduced form 

of u ◦ x1. Then z ◦ x2 ◦ · · · ◦ xn is a reduced form of u ◦ x.

Proof. Certainly [u ◦x] = [z ◦x2 ◦· · ·◦xn]. Let z = z1 ◦· · ·◦zm. As both z and x2 ◦· · ·◦xn

are reduced, if z ◦ x2 ◦ · · · ◦ xn is not reduced, then by Remark 3.6 we can shuffle a letter 

zk of z to the end of z and a letter a of x2 ◦ · · · ◦ xn to the start of x2 ◦ · · · ◦ xn where 

s(zk) = s(a) = α say. We may assume that k = m and as x2 ◦ · · · ◦ xn is a left Foata 

normal form, that a is a letter of x2, and then that it is the first letter of x2. Since x is 

in left Foata normal form, it follows that α /∈ s(x1) and there exists a (unique) letter b

in x1 such that (α, s(b)) /∈ E. Let s(b) = β; recall that b is non-left invertible. It then 

follows from Lemma 4.3 that β ∈ s(z) and if t is greatest such that 1 ≤ t ≤ m with 

s(zt) = β, then s(zh) �= α for all t < h ≤ m. This contradicts the fact s(zm) = α.

We deduce that z ◦ x2 ◦ · · · ◦ xn is a reduced form of u ◦ x, as required. �
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We can now get our first handle on the consideration of the R∗-class of an element 

of G P in the general case. Subsequently, we will focus on the case where the vertex 

monoids are abundant.

Proposition 4.5. (1) Let x = x1 ◦ · · · ◦ xn be a left Foata normal form with blocks xi, 

1 ≤ i ≤ n, such that x1 contains no left invertible letters. Then [x] R∗ [x1].

(2) Let p ∈ X∗. Then [p] = [a][x] where a ◦ x is reduced, the letters of a are all left 

invertible, |a| is maximum with respect to these constraints and x is a left Foata 

normal form x as in (1). Further, [p] R∗ [a][x1].

Proof. (1) Let [p], [q] ∈ G P. Clearly it suffices to show that if [p][x] = [q][x], then 

[p][x1] = [q][x1]. Suppose therefore that [p][x] = [q][x] and let (p ◦ x1)′ and (q ◦ x1)′ be 

reduced forms of p ◦x1 and q ◦x1, respectively. By Lemma 4.4, (p ◦x1)′ ◦x2 ◦ · · · ◦xn and 

(q ◦x1)′ ◦x2 ◦ · · ·◦xn are reduced forms of p ◦x1 ◦ · · ·◦xn and q ◦x1 ◦ · · ·◦xn, respectively. 

It then follows from Lemma 3.14 that [(p ◦ x1)′] = [(q ◦ x1)′] and so [p][x1] = [q][x1].

(2) This existence of a and x is guaranteed by Lemma 4.2, and then the result follows 

from (1) and the fact that R∗ is a left congruence. �

5. Graph products of left abundant monoids are left abundant

The aim of this section is to prove the claim of the heading; this will involve us in some 

combinatorial intricacies. It might be helpful to the reader if we outline our strategy here. 

Proposition 4.5 is our first step in describing R∗ in G P. In Proposition 5.20 we show 

that if z = z1 ◦ · · · ◦ zn ∈ X∗ is a complete block, then [z] R∗ [z′] where z′ = z′

1 ◦ · · · ◦ z′

n

is chosen such that z′

i ∈ Ms(zi) and zi R∗ z′

i in Ms(zi) for all 1 ≤ i ≤ n. In particular, if 

each Mi is left abundant, then for any idempotents z+
i with zi R∗ z+

i in Ms(zi), we have 

that [z] is R∗-related to the idempotent [z+] where z+ = z+
1 ◦ · · · ◦ z+

n . Proposition 4.5

tells us that for p ∈ X∗ we can write [p] = [a][x] where a ◦ x is reduced, the letters of a

are all left invertible, and x is a left Foata normal form, the first block of which contains 

no left invertible letters. Moreover, calling this first block z we have that [p] R∗ [a][z]. 

As R∗ is a left congruence, [p] R∗ [a][z+] and then as [a] has a left inverse [a′] (so that 

[a′] R [ǫ]) we have [p] R∗ [a][z+][a′]. The fact that [a][z+][a′] is idempotent is easily seen.

To arrive at Proposition 5.20 we cannot escape a very careful analysis of products 

[x][z] in G P (remember, we are considering equations of the form [x][z] = [y][z]). To 

this end we find a new factorisation of elements in G P that allows us to cancel and 

replace a final term in equalities. This we achieve in Lemma 5.19.

To arrive at Lemma 5.19 we now define the notions of α-absorbing, α-good and sub-

sequently a stronger version of being α-good that we call α-amenable, where α ∈ V . 

We show in Proposition 5.14 that in an α-amenable word, the inner factor reduces to a 

word which does not have α in its support. This enables us to pin down exactly which 

letters we can move to the right of a word (see Definition 5.16) and hence we arrive at 

the factorisation of Lemma 5.19.
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First, we need to recall the description of idempotents in G P from [8].

Definition 5.1. We say that an idempotent of G P is in standard form if it is written as 

[u] where u = b ◦ e ◦ b′ ∈ X∗ is reduced,

b = b1 ◦ · · · ◦ bn, e = e1 ◦ · · · ◦ em, b′ = b′

n ◦ · · · ◦ b′

1

where b′

ibi is an identity for 1 ≤ i ≤ n, s(e) is complete and e2
i = ei for 1 ≤ i ≤ m.

Note that [u] is idempotent for any word u of the form in Definition 5.1.

Lemma 5.2. [8, Theorem 14.2] Any idempotent in G P can be written in standard form.

Definition 5.3. Let α ∈ V . A word x ∈ X∗ is said to be α-absorbing if α is not in the 

support of any reduced form of x.

Definition 5.4. Let α ∈ V . A word x ∈ X∗ is said to be α-good if for all β in the support 

of any reduced form of x, we have β = α or (β, α) ∈ E.

We remark that in Definitions 5.3 and 5.4, α may not be in the support of x. If for 

any β in the support of x, we have β = α or (β, α) ∈ E, then certainly x is α-good, but 

the converse need not be true. If [x] = [y], or x, y are reduced and s(x) = s(y), then x

is α-good (resp. α-absorbing) if and only if y is α-good (resp. α-absorbing). Further, as 

s(ǫ) = ∅, we have that ǫ is both α-good and α-absorbing, and hence so is 1β for all β ∈ V . 

Finally, if w ∈ X+ and s(w) = {α} for some α ∈ V , then w is α-good. By Remark 3.5

we have:

Lemma 5.5. Let x = x1 ◦ · · · ◦ xn, y = y1 ◦ · · · ◦ yn ∈ X∗ be such that xi, yi /∈ I and 

s(xi) = s(yi) for all 1 ≤ i ≤ n. If one of x, xr, y, yr is a reduced word that is α-good, 

then so are all four.

The next lemma is crucial in allowing us to deduce the α-goodness (or otherwise) of 

a word in terms of its factors.

Lemma 5.6. Let α ∈ V and x = x1 ◦ · · · ◦ xn ∈ X∗.

(i) If xk ◦ · · · ◦ xn is α-good for some 1 ≤ k ≤ n, then x1 ◦ · · · ◦ xn is α-good if and only 

if x1 ◦ · · · ◦ xk−1 is α-good.

(ii) If x1 ◦ · · · ◦ xk−1 is α-good for some 1 ≤ k ≤ n + 1, then x1 ◦ · · · ◦ xn is α-good if 

and only if xk ◦ · · · ◦ xn is α-good.

Proof. Suppose that xk ◦ · · · ◦ xn is α-good.
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If x1 ◦ · · · ◦ xk−1 is α-good, then from Remark 3.6 and comments above it is clear that 

x1 ◦ · · · ◦ xn is α-good.

Conversely, suppose that x1 ◦ · · · ◦ xn is α-good but x1 ◦ · · · ◦ xk−1 is not α-good. Let 

u1 ◦ · · · ◦ um be a reduced form of x1 ◦ · · · ◦ xk−1. Then, by Definition 5.4, there exists 

some 1 ≤ t ≤ m such that s(ut) = β with β �= α and (β, α) /∈ E. As x1 ◦ · · · ◦ xn is 

α-good, β is not in the support of the reduced form of x1 ◦ · · · ◦ xn. Let v1 ◦ · · · ◦ vl be 

a reduced form of xk ◦ · · · ◦ xn. As xk ◦ · · · ◦ xn is α-good, β is not in the support of 

v1 ◦ · · · ◦ vl. Now consider the word (u1 ◦ · · · ◦ um) ◦ (v1 ◦ · · · ◦ vl). Of course,

[(u1 ◦ · · · ◦ um) ◦ (v1 ◦ · · · ◦ vl)] = [x1 ◦ · · · ◦ xn].

By the dual of Corollary 3.11, β lies in the support of the reduced form of (u1 ◦ · · · ◦ut) ◦

(v1 ◦ · · · ◦ vl), and hence that of x1 ◦ · · · ◦ xn, contradiction.

The proof of (ii) is the dual of (i). �

Corollary 5.7. Let x ∈ X∗ and let z, z′, t ∈ X where s(z) = s(z′) = α, s(t) = β and 

(α, β) ∈ E. Then the following are equivalent:

(1) x is α-good;

(2) z ◦ z′ ◦ x is α-good;

(3) z′ ◦ x is α-good;

(4) zz′ ◦ x is α-good;

(5) z ◦ t ◦ x is α-good.

Proof. From the remarks following Definition 5.4, z, z ◦ z′, zz′ and z ◦ t are α-good. The 

result follows by Lemma 5.6. �

Our next definition is more subtle, but crucial for subsequent analysis of products in 

G P.

Definition 5.8. Let α ∈ V and x = x1 ◦ · · · ◦ xn ∈ X∗ be α-good. Then x is said to be 

α-amenable if one of the following holds:

(i) n ≤ 2;

(ii) n > 2 and either α /∈ s(x2 ◦ · · · ◦ xn−1), or α ∈ s(x2 ◦ · · · ◦ xn−1) and for all xk with 

2 ≤ k ≤ n − 1 such that s(xk) = α, the word xk ◦ · · · ◦ xn is not α-good.

It might help to bear in mind that xk ◦ · · · ◦xn is not α-good if and only if there exists 

some β �= α in the support of a reduced form, such that (α, β) /∈ E. Notice that ǫ is 

α-amenable for any α ∈ V .

As we remarked earlier, for x, y ∈ X∗, if [x] = [y], then x is α-good if and only if 

y is α-good. One might ask: Is it always true that x is α-amenable if and only if y is 



134 Y. Dandan, V. Gould / Journal of Algebra 620 (2023) 113–156

α-amenable? The answer is no, as illustrated by the following easy example. Let α, β, γ

be distinct elements of V with (α, β), (α, γ) ∈ E and a ∈ Mα, b ∈ Mβ and c ∈ Mγ

non-identity elements. The word a ◦ b ◦ c is reduced, α-amenable (by virtue of α /∈ s(b)). 

On the other hand it shuffles to b ◦a ◦c which is α-good but not α-amenable (as s(a) = α

and (α, γ) ∈ E).

On the positive side, we have the following result.

Lemma 5.9. Let α ∈ V and x = x1 ◦ · · · ◦ xn ∈ X∗ be α-amenable. Let y be any word 

obtained by applying reduction steps and shuffles to x2 ◦ · · · ◦ xn−1. Then x1 ◦ y ◦ xn is 

also α-amenable.

Proof. Clearly the result is true for n ≤ 2 as here x2 ◦ · · · ◦ xn−1 = ǫ and there are no 

steps to apply.

Assume now that n > 2. Since x is α-good, so is any word in the same equivalence 

class, so that x1 ◦ y ◦ xn is also α-good. To show x1 ◦ y ◦ xn is α-amenable, it is sufficient 

to consider the case where y is obtained from p = x2 ◦ · · · ◦ xn−1 in a single step.

Clearly, if α /∈ s(p), then we are done; suppose therefore that α ∈ s(p). We consider 

the following cases.

Case (1): s(xj) = β and s(xj+1) = γ with (β, γ) ∈ E, where 2 ≤ j < n − 1. We show 

that the word

x′ = x1 ◦ x2 ◦ · · · ◦ xj−1 ◦ xj+1 ◦ xj ◦ xj+2 ◦ · · · ◦ xn−1 ◦ xn

is α-amenable. Clearly, we are fine in the case where neither β nor γ equals α. If β = α

(and so γ �= α), then, by Definition 5.8, xj ◦xj+1 ◦xj+2 ◦· · ·◦xn−1 ◦xn is not α-good. But, 

on the other hand, as xj ◦xj+1 is α-good, xj+2 ◦· · ·◦xn is not α-good by Lemma 5.6, and 

hence, again by Lemma 5.6, xj ◦xj+2 ◦· · ·◦xn is not α-good. For any k with 2 ≤ k ≤ n −1

and k �= j, j + 1 with s(xk) = α, it is clear that the factor xk ◦ · · · ◦ xn of x′ is not α-good 

by the assumption that x is α-amenable. Similarly if γ = α.

Case (2): s(xj) = s(xj+1) = β where 2 ≤ j < n − 1. We show that the word

x′′ = x1 ◦ x2 ◦ · · · ◦ xj−1 ◦ xjxj+1 ◦ xj+2 ◦ · · · ◦ xn−1 ◦ xn

is α-amenable. As in Case (1) it is enough to show that if β = α then xjxj+1 ◦ xj+2 ◦

· · · ◦ xn is not α-good. To this end, if β = α, then as xj ◦ xj+1 and xjxj+1 are α-

good but xj ◦ xj+1 ◦ xj+2 ◦ · · · ◦ xn is not α-good, we deduce from Corollary 5.7 that 

xjxj+1 ◦ xj+2 ◦ · · · ◦ xn is not α-good.

Case (3): s(xj) = β and xj = 1β . An essentially vacuous argument easily gives that 

the word

x′′′ = x1 ◦ x2 ◦ · · · ◦ xj−1 ◦ xj+1 ◦ xj+2 ◦ · · · ◦ xn−1 ◦ xn

is α-amenable. �
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The next corollary is immediate from Lemmas 3.7 and 5.9.

Corollary 5.10. Let α ∈ V and x = x1 ◦ · · · ◦ xn ∈ X∗ be α-amenable. Let y be a reduced 

form of x2 ◦ · · · ◦ xn−1. Then x1 ◦ y ◦ xn is also α-amenable.

Lemma 5.11. Let x = x1 ◦ · · · ◦ xm, y = y1 ◦ · · · ◦ yn ∈ X∗ be reduced words. If s(xm) = α

but α /∈ s(y) and there exists β ∈ s(y) with (β, α) /∈ E, then β must be in the support of 

the reduced form of x ◦ y.

Proof. We proceed by induction on n. If n = 1, then x ◦ y = x1 ◦ · · · ◦ xm ◦ y1. We must 

have s(y1) = β so that x ◦ y is clearly reduced by Remark 3.6. Suppose now that n > 1

and the result is true for all words y of length strictly less than n.

Clearly, the result is true if (x1 ◦ · · · ◦ xm) ◦ (y1 ◦ · · · ◦ yn) is reduced. If not, by 

Remark 3.6, there exists some 1 ≤ k ≤ m, 1 ≤ j ≤ n such that s(xk) = s(yj) and 

(s(yj), s(z)) ∈ E for any z = xh or z = yt with k + 1 ≤ h ≤ m, 1 ≤ t ≤ j − 1. Let 

y′ = y1 ◦ · · · ◦ yj−1 ◦ yj+1 ◦ · · · ◦ yn; notice that y shuffles to yj ◦ y′, so that y′ is a reduced 

form. Further, let p = x1 ◦ · · · ◦ xk−1 ◦ xkyj ◦ xk+1 ◦ · · · ◦ xm. Let x′ = p if xkyj is not 

an identity and otherwise let x′ = x1 ◦ · · · ◦ xk−1 ◦ xk+1 ◦ · · · ◦ xm; in either case, x′ is 

a reduced form. Now consider x′ ◦ y′. Clearly, [x ◦ y] = [x′ ◦ y′]. As α /∈ s(y), we have 

α /∈ s(y′) and s(xk) = s(yj) �= α, so that k �= m. Moreover, as s(xm) = α and (β, α) /∈ E, 

we have s(yj) �= β, and so β ∈ s(y′). By induction, β is in the support of any reduced 

form of x′ ◦ y′, and hence in that of x ◦ y. �

Lemma 5.12. Let α ∈ V and x = x1 ◦ · · · ◦ xn ∈ X∗ be α-amenable with s(xn) �= α. Then 

the word x′ = x2 ◦ · · · ◦ xn−1 is α-absorbing.

Proof. If n ≤ 2, then we may take x2 ◦ · · · ◦ xn−1 as ǫ, which is certainly α-absorbing. 

Assume now that n > 2. Let y = y1 ◦ · · · ◦ym be a reduced form of x′. By Corollary 5.10, 

x1 ◦ y ◦ xn is α-amenable. We claim that x′ is α-absorbing. To prove this, we assume the 

contrary, so that T �= ∅ where

T = {k : 1 ≤ k ≤ m, s(yk) = α}.

Let l and l′ be the least and greatest elements of T , respectively. Since x1 ◦ y ◦ xn is 

α-amenable, we have that for any k ∈ T the word yk ◦ yk+1 ◦ · · · ◦ ym ◦ xn is not α-good. 

We consider the following cases.

Case (1): x1 ◦ y is a reduced form. It follows that x1 ◦ y1 ◦ · · · ◦ yl′ is also a reduced 

form. Let z be a reduced form of yl′+1 ◦ · · · ◦ ym ◦ xn. As commented, α-amenability 

gives us that yl′ ◦ yl′+1 ◦ · · · ◦ ym ◦ xn is not α-good. We deduce yl′+1 ◦ · · · ◦ ym ◦ xn

is not α-good by Corollary 5.7, hence neither is z. Thus there exist β ∈ s(z) such that 

β �= α and (β, α) /∈ E. Further, as s(xn) �= α and by the minimality of l′ in T , we have 

α /∈ s(yl′+1 ◦ · · · ◦ ym ◦ xn) and so α /∈ s(z). By Lemma 5.11, β is in the support of the 
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reduced form of x1 ◦ y1 ◦ · · · ◦ yl′ ◦ z, but (β, α) /∈ E, implying that x1 ◦ y1 ◦ · · · ◦ yl′ ◦ z

is not α-good, and hence neither is x, a contradiction.

Case (2): x1 ◦ y is not a reduced form and s(x1) = α. By Remark 3.6, (β, α) ∈ E for 

all β ∈ s(y1 ◦ · · · ◦ yl−1), and so

[x] = [x1 ◦ y ◦ xn] = [x1 ◦ y1 ◦ · · · ◦ ym ◦ xn] = [y1 ◦ · · · ◦ yl−1 ◦ x1yl ◦ yl+1 ◦ · · · ◦ ym ◦ xn].

Notice that y1 ◦ · · · ◦ yl−1 ◦ x1yl is α-good. By α-amenability yl ◦ yl+1 ◦ · · · ◦ ym ◦ xn is not 

α-good. As s(yl) = α, we deduce that yl+1 ◦ · · · ◦ ym ◦ xn is not α-good by Corollary 5.7, 

so that y1 ◦· · · yl−1 ◦x1yl ◦yl+1 ◦· · ·◦ym ◦xn is not α-good by Lemma 5.6, a contradiction.

Case (3): x1 ◦ y is not a reduced form and s(x1) �= α. Then, by Remark 3.6, there 

exists some 1 ≤ j ≤ m, j /∈ T , such that s(yj) = s(x1) and (s(x1), s(yk)) ∈ E for all 

1 ≤ k ≤ j − 1. We consider two sub-cases.

Case (3)(a): j < l′. Let w = y1 ◦ · · · ◦ yj−1 ◦ x1yj ◦ yj+1 ◦ · · · ◦ yl′ . Let w′ = w if x1yj

is not an identity, and otherwise let w′ = y1 ◦ · · · ◦ yj−1 ◦ yj+1 ◦ · · · ◦ yl′ , so that w′ is a 

reduced form of w. Let z be a reduced form of yl′+1 ◦ · · · ◦ ym ◦ xn. Then [w′ ◦ z] = [x]. 

Since yl′ ◦ yl′+1 ◦ · · · ◦ ym ◦ xn is not α-good, we deduce yl′+1 ◦ · · · ◦ ym ◦ xn is not α-good 

by Corollary 5.7, so that neither is z. Hence there exists β ∈ s(z) such that β �= α and 

(β, α) /∈ E. Further, as s(xn) �= α, we have α /∈ s(yl′+1 ◦ · · · ◦ ym ◦ xn) and so α /∈ s(z). 

It then follows from Lemma 5.11 that β is in the support of the reduced form of w′ ◦ z. 

But, (β, α) /∈ E, implying that w′ ◦ z and hence x is not α-good, a contradiction.

Case (3)(b): j > l′. Notice first that [yl′+1 ◦ · · · ◦ yj−1 ◦ x1yj ◦ yj+1 ◦ · · · ◦ ym ◦ xn] = [w]

where w = x1yj ◦ yl′+1 ◦ · · · ◦ yj−1 ◦ yj+1 ◦ · · · ◦ ym ◦ xn. We claim that w is not α-good. 

As s(yj) = s(x1) and (s(x1), s(yl′)) ∈ E, we have (s(yj), α) ∈ E, so that yj is α-good. 

By α-amenability, yl′ ◦ yl′+1 ◦ · · · ◦ ym ◦ xn is not α-good and so yl′+1 ◦ · · · ◦ ym ◦ xn is 

not α-good by Corollary 5.7. As [yl′+1 ◦ · · · ◦ yj−1 ◦ yj ◦ yj+1 ◦ · · · ◦ ym ◦ xn] = [w′] where 

w′ = yj ◦ yl′+1 ◦ · · · ◦ yj−1 ◦ yj+1 ◦ · · · ◦ ym ◦ xn we deduce that w′ is not α-good and so 

yl′+1 ◦ · · · ◦ yj−1 ◦ yj+1 ◦ · · · ◦ ym ◦ xn is not α-good by Lemma 5.6; similarly, as x1yj is 

α-good, we deduce x1yj ◦ yl′+1 ◦ · · · ◦ yj−1 ◦ yj+1 ◦ · · · ym ◦ xn is not α-good. Let z be 

a reduced form of x1yj ◦ yl′+1 ◦ · · · ◦ yj−1 ◦ yj+1 ◦ · · · ym ◦ xn and notice α /∈ s(z). As 

z is not α-good, there is β ∈ s(z) such that β �= α and (β, α) /∈ E. Consider the word 

v = y1 ◦ · · · ◦ yl′ ◦ z. Clearly [x] = [v]. By Lemma 5.11, β is in the support of the reduced 

form of v and hence that of x. But (β, α) /∈ E, contradicting x being α-good.

We conclude that x2 ◦ · · · ◦ xn−1 is α-absorbing, thus completing the proof. �

Corollary 5.13. Let α ∈ V and x = x1 ◦ · · · ◦ xn ∈ X∗ be α-amenable with s(xn) = α, 

and let β ∈ V . Then x1 ◦ · · · ◦ xn−1 ◦ 1β is also α-amenable.

Proof. Certainly 1β is α-good, as its unique reduced form is ǫ. Since s(xn) = α and x is 

α-good, two applications of Lemma 5.6 give that x1 ◦ · · · ◦ xn−1 ◦ 1β is α-good. Suppose 

that n ≥ 3 and s(xk) = α where 2 ≤ k ≤ n − 1. By α-amenability, xk ◦ · · · ◦ xn is not 

α-good, but as xn is α-good, two applications of Lemma 5.6 give that xk ◦ · · · ◦ xn−1 ◦ 1β

is not α-good. Therefore x1 ◦ · · · ◦ xn−1 ◦ 1β is α-amenable. �
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We have been working towards the following:

Proposition 5.14. Let α ∈ V and x = x1 ◦ · · · ◦ xn ∈ X∗ be α-amenable. Then the factor 

x2 ◦ · · · ◦ xn−1 is α-absorbing.

Proof. The result is true when s(xn) �= α, by Lemma 5.12. Suppose that s(xn) = α. By 

Corollary 5.13, x1 ◦ · · · ◦ xn−1 ◦ 1β is α-amenable, for any β ∈ V . Since |V | ≥ 2, taking 

β �= α Lemma 5.12 tells us that x2 ◦ · · · ◦ xn−1 is α-absorbing. �

Corollary 5.15. Let α ∈ V and x = x1 ◦ · · · ◦ xn ∈ X∗ be α-amenable.

(i) If s(x1) = s(xn) = α, then for all β in the support of the reduced form of x2◦· · ·◦xn−1

we have β �= α and (α, β) ∈ E.

(ii) If s(x1) = α, s(xn) �= α, then for all β in the support of the reduced form of x2◦· · ·◦xn

we have β �= α and (α, β) ∈ E.

Proof. Clearly we may assume that n > 2. Let y be a reduced form of x2 ◦ · · · ◦ xn−1, so 

that α /∈ s(y) by Proposition 5.14.

(i) The result is true when y = ǫ, so we assume that y �= ǫ. Let w be a reduced 

form of x1 ◦ y. It follows from Corollary 3.11 that s(y) ⊆ s(w). Further, by the dual of 

Corollary 3.11, s(y) is contained in the support of the reduced form of w ◦ xn. As x is 

α-good, so are x1 ◦ y ◦ xn and w ◦ xn, implying (α, β) ∈ E for all β ∈ s(y).

(ii) Let w be a reduced form such that [w] = [y ◦ xn] = [x2 ◦ · · · ◦ xn]. Since s(xn) �= α, 

we deduce that α /∈ s(w). Let v be a reduced form of x1 ◦ w. Since x is α-good and 

[v] = [x1 ◦ w] = [x], we have that v is α-good, so that β = α or (β, α) ∈ E for all 

β ∈ s(v). Further, as s(x1) = α but α /∈ s(w), we have s(w) ⊆ s(v) by Corollary 3.11, so 

that (β, α) ∈ E for all β ∈ s(w). �

In what follows we use the foregoing analysis to allow us to factorise elements of G P

in a way that will enable us to achieve the aim of this section. First, another definition.

Definition 5.16. Let x = x1 ◦ · · · ◦ xn ∈ X∗ and α ∈ V . We define a set

Nα(x) = {k ∈ {1, · · · , n} : s(xk) = α and xk ◦ · · · ◦ xn is α-good}.

We will show that for a word x as in Lemma 5.16 we can move the letters indexed 

by elements of Nα(x) to the right of x (maintaining their order). Where convenient, in 

situations where the enumeration of indices is particularly involved, and where there is 

no danger of ambiguity, we may identify Nα(x) with {xk : k ∈ Nα(x)}.

Notice that Nα(x) may be empty and, in particular, Nα(ǫ) = ∅. Further, s(xn) = α

if and only if n ∈ Nα(x). If l, k ∈ Nα(x) with l < k, there may exist some l < j < k

with s(xj) = α such that j /∈ Nα(x). For example, suppose that n = 6, s(x1) = s(x3) =
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s(x4) = s(x6) = α, and s(x2) = s(x5) = β where α �= β, (α, β) /∈ E, x3x4 = 1α, 

x2, x5 /∈ I and x2x5 = 1β . Then Nα(x) = {1, 6}. This also provides an example of an 

α-amenable word.

Lemma 5.17. Let α ∈ V and x = x1 ◦ · · · ◦ xn ∈ X∗ with s(xn) = α. Write

Nα(x) = {l1, · · · , lr : 1 ≤ l1 < · · · < lr = n}.

Then

[x] = [x′][xl1
◦ · · · ◦ xlr

]

where x′ is the word obtained from x1 ◦ · · · ◦ xn by deleting the letters xl1
, · · · , xlr

.

Further, if z is a word obtained from x by replacing xl1
, · · · , xlr

by letters zl1
, · · · , zlr

∈

Mα, respectively, we have

[z] = [x′][zl1
◦ · · · ◦ zlr

].

Proof. Let 1 ≤ k ≤ r − 1.

Definition 5.16, and two applications of Lemma 5.6 give xlk
◦ · · · ◦ xlk+1

is α-good. We 

now claim that xlk
◦ · · · ◦ xlk+1

is α-amenable.

Clearly, xlk
◦ · · · ◦ xlk+1

is α-amenable if either lk+1 = lk + 1 or lk+1 > lk + 1 and there 

exists no lk < j < lk+1 such that s(xj) = α. Suppose now that there exists lk < j < lk+1

such that s(xj) = α. Since j /∈ Nα(x), the word xj ◦ · · · ◦ xn is not α-good. On the other 

hand, we know xlk+1+1 ◦ · · · ◦ xn is α-good, giving that xj ◦ · · · ◦ xlk+1
is not α-good by 

Lemma 5.6, and hence xlk
◦ · · · ◦ xlk+1

is α-amenable.

For each k in the range above let wk be a reduced form of xlk+1 ◦ · · · ◦ xlk+1−1. By 

Corollary 5.15, since xlk
◦ · · · ◦ xlk+1

is α-amenable, for any β ∈ s(wk) we have β �= α

and (β, α) ∈ E. Further,

[x] = [x1 ◦ · · · ◦ xlr
] = [x1 ◦ · · · ◦ xl1

◦ w1 ◦ xl2
◦ · · · ◦ xlr−1

◦ wr−1 ◦ xlr
],

so that

[x] = [y′ ◦ xl1
◦ · · · ◦ xlr

] = [y′][xl1
◦ · · · ◦ xlr

] = [x′][xl1
◦ · · · ◦ xlr

]

where y′ is the word obtained form x1 ◦· · ·◦xl1
◦w1 ◦xl2

◦· · ·◦xlr−1
◦wr−1 ◦xlr

by deleting 

xl1
, · · · , xlr

and x′ is the word obtained from x1 ◦ · · · ◦ xn by deleting xl1
, · · · , xlr

.

Suppose now that z is a word obtained from x by replacing xl1
, · · · , xlr

by letters 

zl1
, · · · , zlr

∈ Mα, respectively. Since [y′] = [x′], we have

[z] = [y′ ◦ zl1
◦ · · · ◦ zlr

] = [y′][zl1
◦ · · · ◦ zlr

] = [x′][zl1
◦ · · · ◦ zlr

]. �

We now remove the restriction that s(xn) = α in Lemma 5.17.



Y. Dandan, V. Gould / Journal of Algebra 620 (2023) 113–156 139

Lemma 5.18. Let α ∈ V and x = x1 ◦ · · · ◦ xn ∈ X∗. Write

Nα(x) = {l1, · · · , lr : 1 ≤ l1 < · · · < lr ≤ n}.

Then

[x] = [x′][xl1
◦ · · · ◦ xlr

]

where x′ is the word obtained from x1 ◦ · · · ◦ xn by deleting the letters xl1
, · · · , xlr

.

Further, if z is a word obtained from x by replacing xl1
, · · · , xlr

by letters zl1
, · · · , zlr

∈

Mα, respectively, we have

[z] = [x′][zl1
◦ · · · ◦ zlr

].

Proof. We are done with the case where s(xn) = α, by Lemma 5.17. Suppose now that 

s(xn) �= α, and so lr �= n. Let p = x1 ◦ · · · ◦ xlr
. Applications of Lemma 5.6 that are now 

standard yield Nα(p) = {l1, · · · , lr}. By Lemma 5.17, [p] = [p′ ◦ xl1
◦ · · · ◦ xlr

] where p′

is the word obtained from p by deleting letters xl1
, · · · , xlr

. We now have

[x] = [p ◦ xlr+1 ◦ · · · ◦ xn] = [p′ ◦ xl1
◦ · · · ◦ xlr

◦ xlr+1 ◦ · · · ◦ xn].

To show the required result, we now consider the α-good word xlr
◦ · · · ◦ xn. We now 

claim that it is α-amenable. Clearly, we are done with the cases where either n = lr + 1

or n > lr + 1 and there exists no lr < j < n such that s(xj) = α. Suppose therefore that 

there exists lr < j < n such that s(xj) = α. As j /∈ Nα(x), we have that xj ◦ · · · ◦ xn is 

not α-good, and so xlr
◦· · ·◦xn is α-amenable. Let q be a reduced form of xlr+1 ◦· · ·◦xn. 

Since xlr
◦ · · · ◦ xn is α-amenable and s(xn) �= α, we have that β �= α and (α, β) ∈ E for 

all β ∈ s(q) by Corollary 5.15. Therefore,

[x] = [p′ ◦ xl1
◦ · · · ◦ xlr

◦ xlr+1 ◦ · · · ◦ xn] = [p′ ◦ xl1
◦ · · · ◦ xlr

◦ q] = [p′ ◦ q ◦ xl1
◦ · · · ◦ xlr

].

Since [p′ ◦ q] = [x′], we have

[x] = [x′][xl1
◦ · · · ◦ xlr

].

Suppose now that z is a word obtained from x by replacing xl1
, · · · , xlr

by letters 

zl1
, · · · , zlr

from Mα, respectively. Clearly, z = z′ ◦ xlr+1 ◦ · · · ◦ xn where z′ is the word 

obtained from p by replacing xl1
, · · · , xlr

by zl1
, · · · , zlr

∈ Mα. We have shown that 

Nα(p) = {l1, · · · , lr} and so from Lemma 5.17 we have [z′] = [p′ ◦ zl1
◦ · · · ◦ zlr

]. Then

[z] = [z′ ◦ xlr+1 ◦ · · · ◦ xn] = [p′ ◦ zl1
◦ · · · ◦ zlr

◦ q]

= [p′ ◦ q ◦ zl1
◦ · · · ◦ zlr

] = [x′][zl1
◦ · · · ◦ zlr

]. �
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The reader should note that we are not claiming that the maps φα and ψα in 

Lemma 5.19 are morphisms.

Lemma 5.19. Let α ∈ V . Then the maps

φα : X∗ −→ G P and ψα : X∗ −→ G P

defined by

xφα = [xl1
◦ · · · ◦ xlr

] and xψα = [xm1
◦ · · · ◦ xmt

]

where x = x1 ◦ · · · ◦ xn, with

Nα(x) = {l1, · · · , lr}, 1 ≤ l1 < · · · < lr ≤ n

and

{m1, · · · , mt} = {1, · · · , n}\Nα(x), 1 ≤ m1 < · · · < mt ≤ n,

induce maps

φα : G P −→ G P and ψα : G P −→ G P

defined by

[x]φα = xφα and [x]ψα = xψα.

Further, [x] = (xψα)(xφα).

Proof. To show that φα and ψα are well defined we need to show that R♯ ⊆ ker φα and 

R♯ ⊆ ker ψα. Let L be the binary relation on X∗ defined by

L = {(y ◦ a ◦ z, y ◦ b ◦ z) : y, z ∈ X∗, (a, b) ∈ R}.

Since R♯ is the transitive closure of L, and ker φα and ker φα are, of course, equivalence 

relations, it suffices to show that L ⊆ ker φα and L ⊆ ker ψα. This can be seen in a 

routine manner by using Corollary 5.7 and considering (a, b) ∈ Rid, Rv and Re in turn.

It follows from Lemma 5.18 that [x] = (xψα)(xφα). �

Proposition 5.20. Let z = z1 ◦ · · · ◦ zn ∈ X∗ such that s(z) is a complete subgraph such 

that s(zj) �= s(zk) for any 1 ≤ j < k ≤ n. Suppose that zk R∗ z′

k in Ms(zk) for 1 ≤ k ≤ n

and put z′ = z′

1 ◦ · · · ◦ z′

n. Then [z] R∗ [z′] in G P.
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Proof. Let x = x1 ◦· · ·◦xm, y = y1 ◦· · ·◦yh ∈ X∗ be such that [x][z] = [y][z]. We proceed 

by induction on n to show [x][z′] = [y][z′]. Clearly, the result is true when n = |z| = 0, 

i.e. z = ǫ = z′. Suppose now that n > 0 and the result is true for all such z with |z| < n. 

Let s(z1) = α. Then s(zk) �= α and (α, s(zk)) ∈ E for all 1 < k ≤ n, so that certainly z

is α-good. Suppose that

Nα(x ◦ z) = {r1, · · · , rl} and Nα(y ◦ z) = {d1, · · · , dt}

where

r1 < · · · < rl and d1 < · · · < dt.

Since z = z1 ◦ · · · ◦zn is a complete block and s(z1) = α, we have that z1 is the last letter 

in x ◦ z with support α and z is clearly α-good, so that rl = m + 1 by Definition 5.16. 

Similarly, dt = h + 1. By Lemma 5.18,

[x ◦ z] = [x′ ◦ z2 ◦ · · · ◦ zn][xr1
◦ · · · ◦ xrl−1

◦ z1]

and

[y ◦ z] = [y′ ◦ z2 ◦ · · · ◦ zn][yd1
◦ · · · ◦ ydt−1

◦ z1].

By replacing the first letter z1 of z by z′

1 in x ◦ z, we have

[x ◦ z′

1 ◦ · · · ◦ zn] = [x′ ◦ z2 ◦ · · · ◦ zn][xr1
◦ · · · ◦ xrl−1

◦ z′

1]

by Lemma 5.18. Similarly,

[y ◦ z′

1 ◦ · · · ◦ zn] = [y′ ◦ z2 ◦ · · · ◦ zn][yd1
◦ · · · ◦ ydt−1

◦ z′

1].

On the other hand, by applying the maps φα and ψα to each side of [x ◦ z] = [y ◦ z], 

we have

[x′ ◦ z2 ◦ · · · ◦ zn] = [y′ ◦ z2 ◦ · · · ◦ zn], and [xr1
◦ · · · ◦ xrl−1

◦ z1] = [yd1
◦ · · · ◦ ydt−1

◦ z1].

Using Remark 2.4, the latter gives xr1
· · · xrl−1

z1 = yd1
· · · ydt−1

z1. As z1 R∗z′

1 in Mα, 

we have

xr1
· · · xrl−1

z′

1 = yd1
· · · ydt−1

z′

1

so that [xr1
◦ · · · ◦ xrl−1

◦ z′

1] = [yd1
◦ · · · ◦ ydt−1

◦ z′

1]. Therefore,

[x ◦ z′

1 ◦ · · · ◦ zn] = [y ◦ z′

1 ◦ · · · ◦ zn]
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and so

[x ◦ z′

1][z2 ◦ · · · ◦ zn] = [y ◦ z′

1][z2 ◦ · · · ◦ zn].

Our inductive assumption now gives

[x][z′

1 ◦ z′

2 ◦ · · · ◦ z′

n] = [x ◦ z′

1][z′

2 ◦ · · · ◦ z′

n] = [y ◦ z′

1][z′

2 ◦ · · · ◦ z′

n]

= [y][z′

1 ◦ z′

2 ◦ · · · ◦ z′

n].

The result follows by induction. �

Proposition 5.21. Let u ∈ X∗ and let [u] = [a][v] where a, v ∈ X∗ are such that all 

letters contained in a are left invertible, and v = v1 ◦ · · · ◦ vm is a left Foata normal 

form with blocks vk, 1 ≤ k ≤ n, such that v1 contains no left invertible letters. Let 

v1 = z1 ◦ · · · ◦ zs ∈ X∗. Suppose that for each 1 ≤ j ≤ s an idempotent z+
j ∈ Ms(zj) is 

chosen such that z+
j R∗ zj in Ms(zj), and put v+

1 = z+
1 ◦ · · · ◦z+

s . Let [a′] be a left inverse 

of [a] in G P. Then

[u] R∗ [a][v+
1 ][a′]

and [a][v+
1 ][a′] is idempotent.

Proof. Under the conditions of the hypothesis, it follows from (1) of Proposition 4.5 that 

[v] R∗ [v1] and then from Proposition 5.20 that [v1] R∗ [v+
1 ]. Since [a′][a] = [ǫ], we have 

[a′] R [ǫ] and so certainly [a′] R∗ [ǫ]. Then

[u] = [a][v] R∗ [a][v+
1 ] R∗ [a][v+

1 ][a′],

using the fact that R∗ is a left congruence. Further, [a][v+
1 ][a′] is idempotent by 

Lemma 5.2. �

The main result of our paper now follows.

Theorem 5.22. The graph product G P = G P(Γ, M) of left abundant monoids M =

{Mα : α ∈ V } with respect to Γ is left abundant.

Proof. Let [u] ∈ G P. By Lemma 4.2 we are guaranteed a decomposition of u as in 

Proposition 5.21. The result now follows from the assumption that each vertex monoid 

is left abundant. �

Of course, the left-right dual of Theorem 5.22 holds, and hence one may also deduce 

that the graph product of abundant monoids is abundant. A consequence is worth stating 

separately.
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Corollary 5.23. The graph product G P = G P(Γ, M) of regular monoids M = {Mα :

α ∈ V } with respect to Γ is abundant.

6. Graph products of left Fountain monoids are left Fountain

We now discuss the left Fountainicity of the graph product GP = G P(Γ, M) of left 

Fountain monoids M = {Mα : α ∈ V } with respect to Γ.

Our strategy is as follows. We know from Lemma 4.2 that any element of G P has 

reduced form a ◦x where the letters of a are all left invertible, x = x1◦· · ·◦xn is a left Foata 

normal form with blocks xi, 1 ≤ i ≤ n, such that x1 contains no left invertible letters. 

From Proposition 4.5 we then have [a ◦ x] R∗ [a ◦ x1] and so certainly [a ◦ x] R̃ [a ◦ x1]. 

We take an idempotent of G P in standard form u and examine the reduction processes 

for the word u ◦ a ◦ x1 in the case [u ◦ a ◦ x1] = [a ◦ x1]. This eventually enables us to 

show that [u ◦ a ◦ x1] = [a ◦ x1] if and only if [u ◦ a ◦ x1] = [a ◦ x1] where x1 is obtained 

from x1 by replacing each letter by an idempotent in the same R̃-class in the relevant 

vertex monoid. Hence [a ◦ x1] R̃ [a ◦ x1] but then with [a′] being a left inverse for [a] we 

arrive at [a ◦ x1] R̃ [a ◦ x1 ◦ a′]. The latter element is clearly idempotent.

To proceed, we rely on the analysis of α-good suffices of words provided in Section 5. 

In addition, we need some further analysis of the way in which the product of two reduced 

words reduces in G P.

It is worth remarking that if every vertex monoid has the property that left invertible 

elements are also right invertible, then our arguments would need to be less delicate. 

Since, in that case, [u ◦ a ◦ x1] = [a ◦ x1] if and only if [a′ ◦ u ◦ a ◦ x1] = [x1], and the fact 

that s(x1) is complete then makes the subsequent analysis somewhat easier.

Lemma 3.10 shows the different ways in which multiplying a reduced word by p ∈ X\I

leads to a reduced word. In some cases, we need to delete a letter of I, that is, use Step 

(id) of Definition 3.1; in other cases, we need only Steps (v) and (e). This leads to the 

following notion.

Definition 6.1. Let x = x1 ◦ · · · ◦ xn, y = y1 ◦ · · · ◦ ym ∈ X∗ be reduced words. We say 

that x ◦ y is S-reducible if in reducing x ◦ y to a reduced form we only use Steps (v) and 

(e) in Definition 3.1.

We use the term ‘S-reducible’ since using Steps (v) and (e) would be allowed in the 

corresponding notion of a semigroup graph product: see Section 7.

Lemma 6.2. Let x = x1 ◦ · · · ◦ xn, y = y1 ◦ · · · ◦ ym ∈ X∗ be reduced words. Suppose that 

x ◦ y is S-reducible. Then x ◦ y shuffles to

p1 ◦ · · · ◦ pn ◦ y′

and has reduced form
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q1 ◦ · · · ◦ qn ◦ y′

where for all 1 ≤ j ≤ n, qj = xj = pj or pj = xj ◦ yrj
and qj = xjyrj

for some distinct 

indices rj ∈ {1, · · · , m}, and y′ ∈ X∗ is the word obtained from y by deleting the letters 

yrj
.

Proof. We use induction on the length n of x. Clearly, the result is true for n = 1 by 

Lemma 3.10. Suppose that n > 1 and the result is true for all reduced words x of length 

strictly less than n. Let x′ = x2 ◦ · · · ◦ xn. Clearly, x′ ◦ y is also S-reducible, and so x′ ◦ y

shuffles to

u1 = p2 ◦ · · · ◦ pn ◦ y′

and has a reduced form

u2 = q2 ◦ · · · ◦ qn ◦ y′

where for all 2 ≤ j ≤ n, qj = xj = pj or pj = xj ◦ yrj
and qj = xjyrj

for some distinct 

indices rj ∈ {1, . . . , m}, and y′ is the word obtained from y by deleting the letters yrj
.

Now consider the words

w1 = x1 ◦ u1 and w2 = x1 ◦ u2.

If w2 is reduced then we are done, with p1 = q1 = x1. Suppose therefore that w2 is not 

reduced. Since s(qj) = s(xj) for all 2 ≤ j ≤ n, the word x1 ◦ q2 ◦ · · · ◦ qn is reduced 

by Remark 3.5. So, there must exist some letter yt in y′ with s(x1) = s(yt) that can be 

shuffled to the front of both u1 and u2. Clearly t is distinct from any existing rj ; we put 

r1 = t. As x ◦ y is S-reducible, x1yr1
is not an identity. Therefore, w shuffles to

p1 ◦ p2 ◦ · · · ◦ pn ◦ y′′

and, from Lemma 3.10, has reduced form

q1 ◦ q2 ◦ · · · ◦ qn ◦ y′′

where p1 = x1 ◦ yr1
and q1 = x1yr1

and y′′ is the word obtained by deleting yr1
from 

y′. �

Corollary 6.3. Let α ∈ V and let x, y ∈ X∗ be reduced words such that x is not α-good 

but x ◦ y is α-good. Then x ◦ y is not S-reducible.

Proof. Let x, y be as given. If x ◦ y is S-reducible, then s(x) is a subset of the support 

of the reduced form of x ◦ y, by Lemma 6.2. Since x is not α-good, neither is x ◦ y, a 

contradiction. �
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In what follows, we use u = b ◦ e ◦ b′ to denote a standard form of an idempotent 

[u] ∈ G P, as described in Definition 5.1. We use a ◦ x to denote a word in X∗ satisfying 

the following conditions:

(a) a = a1 ◦ · · · ◦ al is a reduced word such that all letters in a are left invertible;

(b) x = x1 ◦ · · · ◦ xk such that s(x) is complete and s(xj) �= s(xt) for all 1 ≤ j < t ≤ k;

(c) there exists no j with 1 ≤ j ≤ l such that (s(aj), s(at)) ∈ E for all j + 1 ≤ t ≤ l and 

s(aj) ∈ s(x).

The reader by now might think we should assume a ◦ x is reduced and no letter in 

x is left invertible. However, we need this rather looser set up. The reason for this will 

become apparent later, when we apply Lemma 6.8 iteratively in Corollary 6.9.

Lemma 6.4. Let a ◦ x be defined as above. Then

(i) for any y = y1 ◦ · · · ◦ yk ∈ X∗ such that s(yj) = s(xj) for all 1 ≤ j ≤ k, a ◦ y is of 

the same form as a ◦ x;

(ii) a ◦ x′ is a reduced form of a ◦ x, where x′ is the word obtained from x by deleting 

all letters in x which are identities;

(iii) for each α ∈ s(x), Nα(a ◦ x) contains the unique letter xj in x such that s(xj) = α.

Proof. (i) and (ii) are clear.

(iii) Let α ∈ s(x) and let j be the unique index guaranteed by (b) such that s(xj) = α. 

Since s(x) is complete, xj ∈ Nα(a ◦ x). Suppose (with some abuse of notation) that 

ah ∈ Nα(a ◦x). Then s(ah) = α and ah ◦· · ·◦al ◦x is α-good, hence so is its reduced form 

ah ◦ · · · ◦ al ◦ x′. Let h ≤ t ≤ l be the largest such that s(at) = α. Then (s(at), s(ar)) ∈ E

for all t + 1 ≤ r ≤ l, contradicting (c). Thus, Nα(a ◦ x) = {xj}. �

In Corollary 6.6, and Lemmas 6.7 and 6.8 let a ◦ x and u = b ◦ e ◦ b′ be defined as 

above such that [u][a ◦ x] = [a ◦ x], and let w = u ◦ a ◦ x.

Lemma 6.5. Suppose that u is α-good. For any j ∈ {1, · · · , n} we have b′

j ∈ Nα(u) if and 

only if bj ∈ Nα(u).

Proof. Using Lemma 5.6, Corollary 5.7 and Lemma 5.5, the following are equivalent

b′

j ∈ Nα(u)

b′

j ◦ · · · ◦ b′

1 is α-good

bj ◦ · · · ◦ b1 is α-good

b1 ◦ · · · ◦ bj is α-good

bj+1 ◦ · · · ◦ bn ◦ e ◦ b′ is α-good

bj ◦ bj+1 ◦ · · · ◦ bn ◦ e ◦ b′ is α-good

bj ∈ Nα(u). �
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We can now make progress in the case where s(x1) = α and a ◦ x is α-good.

Corollary 6.6. Suppose that s(x1) = α and a ◦ x is α-good. Then for any j ∈ {1, · · · , n}

we have b′

j ∈ Nα(w) if and only if bj ∈ Nα(w).

Proof. Since a ◦ x is α-good, so is u ◦ a ◦ x and hence from Lemma 5.6 so is u. Moreover 

(with substantial abuse of notation), z ∈ Nα(u) if and only if z ∈ Nα(w), for any letter 

z of u. The result follows from Lemma 6.5. �

Without the assumption that a ◦ x is α-good, our analysis of the elements of Nα(w)

becomes more delicate. We remark that in what follows, we could replace the suffix a ◦ x

of w by any word v and the same argument would apply to u ◦ v as it does to w.

Lemma 6.7. Let α ∈ V . If b′

j /∈ Nα(w) for all 1 ≤ j ≤ n, then bj /∈ Nα(w) for all 

1 ≤ j ≤ n.

Proof. If α /∈ s(b) there is nothing to show. Otherwise, let h be greatest such that 

s(b′

h) = α, so that

v = b′

h ◦ b′

h−1 ◦ · · · ◦ b′

1 ◦ a ◦ x

is not α-good. Suppose that there exists some bj ∈ Nα(w), so that

z = bj ◦ · · · ◦ bn ◦ e ◦ b′

n ◦ · · · ◦ b′

1 ◦ a ◦ x

is α-good. Notice that j ≤ h.

Suppose for contradiction that b′ ◦ a ◦ x is not α-good. Then neither is e ◦ b′ ◦ a ◦ x. To 

see this, let y = y1 ◦ · · · ◦yr be a reduced form of b′ ◦a ◦x, so that y is not α-good. Notice 

that a product pq of two elements p, q in the same vertex monoid with at least one of 

p, q being a non-identity idempotent cannot be the identity, so that using Lemma 3.10

iteratively we see that e ◦ y is S-reducible. It follows from Lemma 6.2 that e ◦ y reduces 

to

q1 ◦ · · · ◦ qm ◦ y′

where for all 1 ≤ t ≤ m, qt = et or qt = etyrt
for some distinct indices rt, and y′ is the 

word obtained from y by deleting the letters yrt
. Clearly, s(y) ⊆ s(q1 ◦ · · · ◦ qm ◦ y′), 

implying that q1 ◦ · · · ◦ qm ◦ y′ is not α-good, and hence neither is e ◦ b′ ◦ a ◦ x.

By assumption,

z′ = bj ◦ · · · ◦ bn ◦ q1 ◦ · · · ◦ qm ◦ y′

is α-good. We next claim that it is a reduced form. Since s(qt) = s(et) for 1 ≤ t ≤ m

and bj ◦ · · · ◦ bn ◦ e1 ◦ · · · ◦ em is a reduced form, we deduce that bj ◦ · · · ◦ bn ◦ q1 ◦ · · · ◦ qm
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is also reduced by Remark 3.5. Further, it is impossible to shuffle some bt (j ≤ t ≤ n) 

in z′ and glue it to some letter in y′, as this would imply that in the reduced form 

bj ◦ · · · ◦ bn ◦ e ◦ b′

n ◦ · · · ◦ b′

j we may shuffle bt and glue it to b′

t, contradicting the fact 

b ◦e ◦b′ is reduced. Thus z′ is indeed reduced. Since q1 ◦· · ·◦qm ◦y′ is not α-good, neither 

is z′, contradicting the fact that [z] = [z′] and bj ∈ Nα(w).

We have shown that b′ ◦ a ◦ x must be α-good. Since v is not α-good, there exists 

β �= α in the support of the reduced form of v such that (α, β) /∈ E. On the other hand, 

b′ ◦ a ◦ x and hence b′

n ◦ · · · ◦ b′

h+1 ◦ v are α-good, Corollary 3.11 forces there to be some 

l with h < l ≤ n such that s(b′

l) = β. Since s(b′

l) = s(bl) and h ≥ j, and z′ is a reduced 

form, we have that z is not α-good, which again contradicts our initial assumption that 

bj ∈ Nα(w). �

We can now show that, given [u ◦ a ◦ x] = [a ◦ x], we can replace a letter of x by any 

corresponding element in the same R̃-class in the relevant vertex monoid. Note that it 

may be we replace a letter not in I by a letter in I. It is for this reason that our set-up 

for a ◦ x is so delicate.

Lemma 6.8. Let s(x1) = α and let x̃ = x′

1 ◦ x2 ◦ · · · ◦ xk where x′

1 ∈ Mα is chosen so that 

x1 R̃ x′

1 in Mα. Then

[u][a ◦ x] = [a ◦ x]

implies that

[u][a ◦ x̃] = [a ◦ x̃].

Proof. If a ◦ x is α-good, then by Corollary 6.6 and Lemma 6.4 (iii)

Nα(w) = {bt1
, · · · , btr

, eh, b′

tr
, · · · , b′

t1
, x1} or Nα(w) = {bt1

, · · · , btr
, b′

tr
, · · · , b′

t1
, x1}

for some 0 ≤ r ≤ n and 1 ≤ t1 < · · · < tr ≤ n and 1 ≤ h ≤ m. Whether or not 

a ◦ x is α-good, in the case where b′

j /∈ Nα(u ◦ a ◦ x) for all 1 ≤ j ≤ n, we have that 

bj /∈ Nα(u ◦ a ◦ x) for all 1 ≤ j ≤ n, by Lemma 6.7, so that Nα(u ◦ a ◦ x) equals either 

{eh, x1} or {x1} for some 1 ≤ h ≤ m.

In either of these two special cases, let f be the idempotent bt1
· · · btr

ehb′

tr
· · · b′

t1
or 

bt1
· · · btr

b′

tr
· · · b′

t1
; note that we could have f = ǫ. Then by Lemma 5.18,

[u][a ◦ x] = [u][a ◦ x1 ◦ · · · ◦ xk] = [w′][f ◦ x1], or [x1] if f = ǫ,

where w′ is the word obtained from w by deleting all letters in Nα(w). By replacing the 

first letter x1 of x by x′

1 in u ◦ a ◦ x, we have

[u][a ◦ x′

1 ◦ x2 ◦ · · · ◦ xk] = [w′][f ◦ x′

1], or [x1],
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again by Lemma 5.18.

On the other hand, by applying the maps φα and ψα to [u][a ◦ x] and [a ◦ x], we have 

[w′] = [(a ◦ x)′] and [f ◦ x1] = [x1] (if f �= ǫ) where (a ◦ x)′ is the word obtained from 

a ◦ x by deleting the first letter x1 of x. The latter gives fx1 = x1 in Mα (if f �= ǫ). If 

f ∈ Mα is idempotent, then given x1 R̃ x′

1 in Mα, we have fx′

1 = x′

1. Therefore

[u][a ◦ x′

1 ◦ x2 ◦ · · · ◦ xk] = [(a ◦ x)′][x′

1] = [a ◦ x′

1 ◦ x2 ◦ · · · ◦ xk]

so that

[u][a ◦ x̃] = [a ◦ x̃].

We now proceed by induction on the length of u. If |u| = 1, then u = e1 for some non-

identity idempotent e1 from a vertex monoid. Clearly b′

j /∈ Nα(w) for all j ∈ {1, . . . , n}

so that if [u][a ◦ x] = [a ◦ x], then [u][a ◦ x̃] = [a ◦ x̃], by the above.

Suppose now that 1 < |u| and the result is true for all idempotents having length 

less than u, when written in standard form. By the above we only need to consider the 

case where a ◦ x is not α-good and there exists some b′

j ∈ Nα(u ◦ a ◦ x). We pick j to 

be smallest such index. Then b′

j−1 ◦ · · · ◦ b′

1 ◦ a ◦ x is α-good. Since x is α-good we have 

b′

j−1 ◦· · ·◦b′

1 ◦a is α-good and since a ◦x is not α-good we also have that a is not α-good. 

We see from Corollary 6.3 that b′

j−1 ◦ · · · ◦ b′

1 ◦ a is not S-reducible. There must therefore 

be a smallest t such that b′

t ◦ · · · ◦ b′

1 ◦ a is S-reducible, but b′

t+1 ◦ b′

t ◦ · · · ◦ b′

1 ◦ a is not. 

By Lemma 6.2, we know b′

t ◦ · · · ◦ b′

1 ◦ a shuffles to some

pt ◦ · · · ◦ p1 ◦ a′

and reduces to a reduced form

qt ◦ · · · ◦ q1 ◦ a′

where for all 1 ≤ r ≤ t we have qr = b′

r = pt or pt = b′

r ◦ arj
and qr = b′

rarj
, for some 

distinct indices rj ∈ {1, . . . , l}, and a′ is the word obtained from a by deleting the letters 

arj
.

Now consider the reduced form of

b′

t+1 ◦ qt ◦ · · · ◦ q1 ◦ a′ or, equivalently, b′

t+1 ◦ pt ◦ · · · ◦ p1 ◦ a′.

Since s(qr) = s(b′

r) = s(pr) for all 1 ≤ r ≤ t and b′

t+1 ◦ b′

t ◦ · · · ◦ b′

1 is a reduced form, 

we have that b′

t+1 ◦ qt ◦ · · · ◦ q1 is a reduced form. As b′

t+1 ◦ bt ◦ · · · ◦ b1 ◦ a and hence 

b′

t+1 ◦ qt ◦ · · · ◦ q1 ◦ a′ is not S-reducible, there must be a letter art+1
in a′ such that 

s(b′

t+1) = s(art+1
), b′

t+1art+1
is an identity and such that we must be able to shuffle art+1

to the front of qt ◦ · · · ◦ q1 ◦ a′. Note that we can therefore also shuffle art+1
to the front 

of pt ◦ · · · ◦ p1 ◦ a′ and hence to the front of a, and b′

t+1 to the right of pt ◦ · · · ◦ p1 and 
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hence to the right of b′

t ◦ · · · ◦ b′

1. We can therefore assume that t + 1 = 1 = rt+1 so that 

b′

1a1 is an identity.

We now have

[u ◦ a ◦ x] = [b1 ◦ · · · ◦ bn ◦ e ◦ b′

n ◦ · · · ◦ b′

2 ◦ a2 · · · ◦ al ◦ x] = [a ◦ x]

so that multiplying by [b′

1] on the left we have

[b2 ◦ · · · ◦ bn ◦ e ◦ b′

n ◦ · · · ◦ b′

2][a2 · · · ◦ al ◦ x] = [a2 ◦ · · · ◦ al ◦ x]. (4)

We note that a2 · · · ◦ al ◦ x is a word of the correct form for us to apply our inductive 

assumption, which gives us that

[b2 ◦ · · · ◦ bn ◦ e ◦ b′

n ◦ · · · ◦ b′

2][a2 · · · ◦ al ◦ x̃] = [a2 ◦ · · · ◦ al ◦ x̃]. (5)

Now multiplying Equation (5) by [b1] on the left and re-instating b′

1 ◦ a1 we obtain

[u ◦ a ◦ x̃] = [b1 ◦ a2 ◦ · · · ◦ al ◦ x̃].

But multiplying Equation (4) by [b1] on the left and re-instating b′

1 ◦ a1 we also obtain

[u ◦ a ◦ x] = [a ◦ x] = [b1 ◦ a2 ◦ · · · ◦ al ◦ x].

Let x′ be the word obtained from x by deleting letters which are identities. Then

[u ◦ a ◦ x′] = [a ◦ x′] = [b1 ◦ a2 ◦ · · · ◦ al ◦ x′].

Since a ◦ x′ is a reduced form by Lemma 6.4 (ii) and |b1 ◦ a2 ◦ · · · ◦ al ◦ x′| = |a ◦ x′|, we 

deduce that b1 ◦ a2 ◦ · · · ◦ al ◦ x′ is a reduced form, so that [a] = [b1 ◦ a2 ◦ · · · ◦ al] by 

Lemma 3.14. Therefore,

[u ◦ a ◦ x̃] = [a ◦ x̃]. �

Corollary 6.9. Suppose that for each 1 ≤ j ≤ k we have x′

j ∈ Ms(xj) such that xj R̃ x′

j in 

Ms(xj). Let x̄ = x′

1 ◦ x′

2 ◦ · · · ◦ x′

k. Then

[a ◦ x] R̃ [a ◦ x̄].

Proof. Suppose that

[u][a ◦ x] = [a ◦ x].

By Lemma 6.8, we have
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[u][a ◦ x′

1 ◦ x2 ◦ · · · ◦ xk] = [a ◦ x′

1 ◦ x2 ◦ · · · ◦ xk].

Clearly, we may shuffle x′

1 to the back of x′

1 ◦ x2 ◦ · · · ◦ xk and note that, by Lemma 6.4

(i), a ◦ x2 ◦ · · · ◦ xk ◦ x′

1 is of the correct form to apply Lemma 6.8. By repeating this 

process, and reshuffling, we obtain [u][a ◦ x̄] = [a ◦ x̄].

Since a ◦ x̄ is of the same form as a ◦ x, we may show that [u][a ◦ x̄] = [a ◦ x̄] implies 

[u][a ◦x] = [a ◦x] by exactly the same arguments as above. Therefore, [a ◦x] R̃ [a ◦ x̄]. �

We can now prove our second main result.

Theorem 6.10. The graph product G P = G P(Γ, M) of left Fountain monoids M =

{Mα : α ∈ V } with respect to Γ is a left Fountain monoid.

Proof. Let [w] ∈ G P. From Proposition 4.5 we may write [w] = [a][v], where all letters 

contained in a are left invertible, a ◦v is a reduced form, and v = v1◦· · ·◦vm is a left Foata 

normal form with blocks vi, 1 ≤ i ≤ m, such that v1 contains no left invertible letters; we 

prefer to use v here since for convenience in this section we have been using x to denote 

a single block. Suppose that v1 = x1 ◦ · · · ◦ xk = x and for each j ∈ {1, . . . , k} choose an 

idempotent x+
j ∈ Ms(xj) such that xj R̃ x+

j in Ms(xj). Let v+
1 = x+

1 ◦ · · · ◦ x+
k = x̄. Let 

[a′] be a left inverse for [a]. Using the fact that R and R∗ are left congruences contained 

in R̃, Proposition 4.5 and Corollary 6.9 give us that

[a][v] R̃ [a][v1] R̃ [a][v+
1 ] R̃ [a][v+

1 ][a′],

the final step following from the fact [a′], being right invertible, is R-related to the 

identity of G P. We have earlier seen that [a][v+
1 ][a′] is an idempotent, so that G P is 

indeed a left Fountain monoid. �

Of course, the left-right dual of Theorem 6.10 holds, and hence one may also deduce 

that the graph product of Fountain monoids is Fountain.

7. Applications and open questions

The aim of this section is to explore some applications of Theorems 5.22 and 6.10. 

Further, we will discuss some open problems related to this work.

We make the following observation before re-obtaining one of the main results of [24]. 

If M is a right cancellative monoid with identity 1 and b ∈ M is a left inverse of a ∈ M , 

then 1a = a1 = a(ba) = (ab)a, giving 1 = ab, so that b is also a right inverse of a, and 

hence an inverse.

Corollary 7.1. [24, Theorem 1.5] The graph product G P = G P(Γ, M) of right cancella-

tive monoids M = {Mα : α ∈ V } with respect to Γ is right cancellative.
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Proof. In Proposition 5.21 we take z+
j as the identity of the vertex monoid Ms(zj) for 

each 1 ≤ j ≤ s. By Lemma 4.1, bearing in mind [a] is a reduced form, we have that [a′]

as a product of left inverses (hence two-sided inverses) of the letters in a. Then

[u] R∗ [a][v+
1 ][a′] = [a][ǫ][a′] = [ǫ],

and it follows from the comment after Remark 2.7 that G P is right cancellative. �

Of course, the corresponding result is true for graph products of left cancellative, and 

cancellative, monoids.

We now turn our attention to graph products of semigroups [1]. This is an essentially 

different construction to that for monoids, since semigroups are algebras with a different 

signature from that for monoids. The combinatorics of graph products of semigroups 

are significantly easier to handle than graph products of monoids; they behave in a way 

more akin to graph monoids, where the only unit in any vertex monoid is the identity.

As in the case for monoids, graph products of semigroups are given by a presentation. 

The difference here is that a presentation denotes a quotient of a free semigroup X+ on 

a set X, where X+ = X∗ \ {ǫ} is the set of non-empty words on X under juxtaposition. 

Still with Γ = Γ(V, E), let S = {Sα : α ∈ V } be a set of semigroups, called vertex 

semigroups, such that Sβ ∩ Sγ = ∅ for all β �= γ ∈ V .

Definition 7.2. The graph product G PS = G PS (Γ, S) of S with respect to Γ is defined 

by the presentation

G PS = 〈X | Rs〉

where X =
⋃

α∈V Sα and Rs = Rv ∪ Re, with Rv and Re as in Definition 2.1.

As before, identifying a relation in Rs with a pair in X+ × X+, we have

G PS = X+/(Rs)♯

where (Rs)♯ is the congruence on X+ generated by Rs.

Note that, in Definition 7.2, even if Sα and Sβ are monoids for some α, β ∈ V , we do 

not identify their identities in GPS . We denote the (Rs)♯-class of x1 ◦ · · · ◦ xn ∈ X+

in G PS by ⌊x1 ◦ · · · ◦ xn⌋. As we remarked in Section 1, graph products of semigroups 

do not possess the complexities existing for monoid (or, indeed, group) graph products. 

Essentially, this is because (with obvious notation), for words x, y ∈ X+ we have s(x) ⊆

s(w) for any word w such that ⌊w⌋ = ⌊xy⌋ or ⌊yx⌋. Moreover, if x is of minimal length 

in its (Rs)♯-class, then |x| ≤ |w|. Details will appear in [1]. However, the following result 

will enable us to use results for graph products of monoids to deduce corresponding 

results for semigroups.
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Proposition 7.3. Let G PS be the graph product of semigroups S = {Sα : α ∈ V } with 

respect to Γ = Γ(V, E). For each α ∈ V let Mα be the semigroup Sα with an identity 1α

adjoined whether or not Sα is a monoid and put M = {Mα : α ∈ V }.

Let G P be the graph product of monoids M with respect to Γ. Then the map

θ : G PS −→ G P : ⌊x1 ◦ . . . xn⌋ �→ [x1 ◦ . . . ◦ xn]

is a (semigroup) embedding.

Proof. For clarity here we take Y =
⋃

v∈V Sv and X =
⋃

v∈V Mv. Let a semigroup 

morphism

κ : Y + → G P

be defined by its action on generators as yκ = [y] for all y ∈ Y . We have (with slight 

abuse of notation) Rs ⊆ R, and it follows that κ induces the semigroup morphism θ as 

given.

We now show that θ is one-one. Let G PS
1 be the monoid obtained from GPS by 

adjoining an identity 1. We define a monoid morphism

ξ : X∗ −→ G PS
1

by its action on generators as

xξ =

{
⌊x⌋ x ∈ Y

1 x = 1α for some α ∈ V.

We claim that R♯ ⊆ ker ξ.

Let u, v ∈ Mα for some α ∈ V . If u, v ∈ Sα, then

(u ◦ v)ξ = (uξ)(vξ) = ⌊u⌋⌊v⌋ = ⌊u ◦ v⌋ = ⌊uv⌋ = (uv)ξ.

If u = 1α and v ∈ Sα, then

(u ◦ v)ξ = (uξ)(vξ) = 1⌊v⌋ = ⌊v⌋ = vξ = (uv)ξ

and dually if u ∈ Sα and v = 1α. If u = v = 1α, then

(u ◦ v)ξ = (uξ)(vξ) = 11 = 1 = (uv)ξ.

Now consider u ∈ Mα, v ∈ Mβ with (α, β) ∈ E. If u = 1α and v = 1β , then

(u ◦ v)ξ = (1α ◦ 1β)ξ = (1αξ)(1βξ) = 11 = (1βξ)(1αξ) = (1β ◦ 1α)ξ = (v ◦ u)ξ.
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If u = 1α and v ∈ Sβ , then

(u ◦ v)ξ = 1⌊v⌋ = ⌊v⌋1 = (v ◦ u)ξ

and dually if u ∈ Sα and v = 1β . If u ∈ Sα and v ∈ Sβ , then

(u ◦ v)ξ = ⌊u⌋⌊v⌋ = ⌊u ◦ v⌋ = ⌊v ◦ u⌋ = ⌊v⌋⌊u⌋ = ⌊v ◦ u⌋ξ.

Finally, for α ∈ V , we have 1αξ = 1 = ǫξ.

We have shown that R ⊆ ker ξ. It follows that R♯ ⊆ ker ξ and hence

ξ : G P −→ G PS
1, [w] �→ wξ

is a well defined morphism. Further, for any ⌊w⌋ ∈ G PS , we have

⌊w⌋θξ = [w]ξ = wξ = ⌊w⌋

so that θξ = 1G PS , and hence θ is an embedding. �

The result below will appear in [1].

Corollary 7.4. The graph product G PS of left abundant semigroups S = {Sα : α ∈ V }

with respect to Γ is left abundant.

Proof. Let Y =
⋃

α∈V Sα and X =
⋃

α∈V Mα, where Mα = Sα ∪ {1α} as in Proposi-

tion 7.3. Since each Sα is left abundant, it is easy to check that the same is true of each 

Mα, and, moreover, if u, v ∈ Sα then u R∗ v in Sα if and only if u R∗ v in Mα.

It follows from Proposition 7.3 that G PS is isomorphic to a subsemigroup N of 

G P, where

N = {[x1 ◦ · · · ◦ xn] : xi ∈ Y, 1 ≤ i ≤ n}

and

ϕ : G PS −→ N , ⌊x1 ◦ · · · ◦ xn⌋ �→ [x1 ◦ · · · ◦ xn]

is an isomorphism.

Let x = x1 ◦ · · · ◦ xn ∈ Y + and let v = v1 ◦ · · · ◦ vm ∈ X∗ be a left Foata normal 

form of x with blocks vi, 1 ≤ i ≤ m. Since the only left or right invertible element of any 

vertex monoid Mα is 1α, we have that v ∈ Y + and v contains no left invertible letters. 

Choosing v+
1 ∈ Y + as in Proposition 5.21 and noticing that a = ǫ in that result, we have 

that [x] = [v] R∗ [v+
1 ] in G P and hence in N . It follows that ⌊x⌋ R∗ ⌊v+

1 ⌋ in G PS . �

The proof of the following result is similar to that of Corollary 7.4.
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Corollary 7.5. The graph product GPS of left Fountain semigroups S = {Sα : α ∈ V }

is a left Fountain semigroup.

Of course, the right (two-sided) versions of Corollaries 7.4 and 7.5 also hold.

We remarked in Section 2 that free products and restricted direct products of monoids 

can be regarded as special cases of graph products of monoids. We therefore have the 

following result.

Corollary 7.6. The free product FPM and the restricted direct product ⊕α∈V Mα of left 

abundant monoids (resp. left Fountain monoids) M = {Mα : α ∈ V } are left abundant 

(resp. left Fountain).

Remark 7.7. The corresponding statement to that of Corollary 7.6 is true for semigroups 

and in the right/two-sided case for both monoids and semigroups.

We finish this paper by posing the following open problems. Let M be a monoid. We 

have commented that the relations R and R∗ are left congruences on M but, in general, 

this need not be true of R̃. Since R̃ being a left congruence is an important property in 

many structural results for left Fountain monoids and semigroups we first pose:

Question 7.8. Let G P = G P(Γ, M) be a graph product of monoids M = {Mα : α ∈ V }

with respect to Γ, where R̃ is a left congruence on each Mα. Is R̃ a left congruence on 

G P?

The above could first be asked in the corresponding case for semigroups, and starting 

with the vertex semigroup being left Fountain.

A monoid is inverse if it is regular and its idempotents commute. Inverse monoids 

form a variety not of monoids but of unary monoids, that is, monoids equipped with 

an additional unary operation. In this case the unary operation is given by a �→ a−1, 

where a−1 is the unique element such that a = aa−1a and a−1 = a−1aa−1. The notion 

of a graph product of inverse monoids (see [10,14], at least for the case where the vertex 

monoids are free) is analogous to that for monoids and semigroups, and is obtained as a 

quotient of a free inverse monoid, by relations given as for R; from its very construction, 

it is inverse. A monoid is left adequate if it is left abundant and its idempotents commute. 

These are the first non-regular analogues of inverse monoids, and form quasivarieties of 

unary monoids. Here the unary operation is a �→ a+ where a+ is the unique idempotent 

in the R∗-class of a. We therefore ask the following question, which can be interpreted 

in more than one way. Of course, one could also begin with the semigroup case.

Question 7.9. Is the graph product of left adequate monoids left adequate?

Finally, we would hope that using left Foata normal forms and other reduction tech-

niques developed in this article we could both find new approaches to old results (such as 



Y. Dandan, V. Gould / Journal of Algebra 620 (2023) 113–156 155

calculating centralizers in graph products of groups [3]) and extend these to the monoid 

case. For example, we pose:

Question 7.10. Determine centralisers in graph products of monoids.
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