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1. Introduction

Graph products arise from many sources and provide an important and wide ranging
construction. They are defined by presentations, where the edges of a simple, non-directed
graph determine commutativity of elements associated with the vertices. Further details
are given in Section 2. Graph products of monoids are defined in the same way as graph
products of groups, a notion introduced by Green in her thesis [25], and generalise at one
and the same time free products, restricted direct products, free (commutative) monoids
and graph monoids'. The latter are graph products of free monogenic monoids, and were
introduced by Cartier and Foata [6] to study combinatorial problems for rearrangements
of words; they have been extensively studied by mathematicians and computer scientists,
having applications to the study of concurrent processes [12,13]. Graph monoids are
also known as free partially commutative monoids, right-angle Artin monoids and trace
monoids (sometimes with the condition the underlying graph is finite); corresponding
terminology applies in the case for groups. Graph groups were first defined by Baudisch
[4]; for a recent survey see [16] and for the analogous notion for inverse semigroups see
[10,14].

Although mentioned in [25] and in other earlier works focussing on groups, graph
products of monoids per se were first defined in [8], and have subsequently been studied in
various contexts, e.g. [8,19]. Much of the existing work in graph products of monoids, and
groups, has been to show that various properties are preserved under graph product, see
e.g. [28,15,9,32]. These properties are often of algorithmic type, for example, automaticity
[28,9]. In a different direction, articles such as [2,3,24] consider algebraic conditions. Of
particular interest to us here is that Fountain and Kambites [24] show that a graph
product of right cancellative monoids is right cancellative.

A monoid M is regular if for any a € M there is a b € M such that a = aba; note
that ab, ba are, respectively, idempotent left and right identities for a. From an algebraic
point of view, regularity is often the first property to look for in a monoid. Yet, it is easy
to see that only in very special cases will a graph product of regular monoids be regular.

The aim of this paper is easy to state. We consider two properties that each provide
a natural weakening of regularity, and show that the classes of monoids satisfying these
properties are closed under graph product. In general, the properties we consider provide
the natural framework to study classes of monoids that need not be regular, but which
have behaviour strongly influenced by idempotent elements. We first prove:

Theorem 5.22. The graph product of left abundant monoids is left abundant.

A monoid M is left abundant if every principal left ideal is projective (so that some-
times a left abundant monoid is called left PP [20]). This property may handily be

L The existing terminology is a little unfortunate. Graph monoids are a strict subclass of the class of graph
products of monoids. Note also that graph groups should not be confused with the fundamental groups of
graphs of groups.
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expressed by saying that every R*-class of M contains an idempotent. We define the
relation R* in Section 2; it suffices to say here that R* contains Green’s relation R,
whence it follows immediately that regular semigroups are left abundant. We note that
a monoid is a single R*-class if and only if it is right cancellative. Certainly then such
monoids are abundant. The above mentioned result of [24] easily follows.

Corollary 7.1. [2/, Theorem 1.5] The graph product of right cancellative monoids is right
cancellative.

Our second main result is:
Theorem 6.10. The graph product of left Fountain monoids is left Fountain.

One way to define a left Fountain (also known as weakly left abundant, or left semi-
abundant) monoid M is to say that every R-class of M must contain an idempotent;
we give further details in Section 2. Here R is a relation containing R*, whence it is
clear that left abundant monoids are left Fountain. As for left abundancy, there is a
natural approach to left Fountainicity using principal one-sided ideals. Again as for left
abundancy, such semigroups arise independently from a number of sources. They (and
their two-sided versions) appear in the work of de Barros [11], in that of Ehresmann on
certain small ordered categories [17] and in the thesis of El Qallali [18]. A systematic
study of such semigroups was initiated by Lawson, who establishes in [33] the connec-
tion with Ehresmann’s work. A useful source for the genesis of these ideas is Holling’s
survey [29]. We note here that the class of left Fountain monoids contains a number of
important subclasses: we have mentioned left abundant, but we also have left ample and
left restriction [29]. The study of left abundant monoids, left Fountain monoids, their
two-sided versions, and monoids in related classes, continues to provide one focus in
algebraic semigroup theory. Some results show similarities with the structure of regular
and inverse monoids [26,23], whereas others illustrate significantly different behaviour
[31,37,5].

In order to prove Theorems 5.22 and 6.10 we have considerable work to do to get
a grip on normal forms of elements of graph products. Essentially, the difficulty in the
transition from graph monoids to graph products of monoids lies in the fact that for
the broader concept the group of units of the monoids in question need not be trivial.
Some of our techniques and results concerning normal forms and reduction of products
of words may be of independent interest. In particular, in Proposition 3.18, we establish
that elements in graph products of monoids have a left Foata normal; previously this
was an important tool in the study of graph monoids, and the same holds here.

The structure of this paper is as follows. In Section 2 we give the necessary definitions
and gather together the results we need from the literature. In Section 3 we begin our
analysis of the form of words, and how these behave with respect to products. We
establish the left Foata normal form for elements of graph products, not relying on any
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assumption of cancellativity. In the next two sections we build a suite of techniques
that allow us to simplify the words we need to consider when determining the relation
R*, these then enable us eventually to prove Theorem 5.22. In Section 6 we use the
earlier techniques, together with a further analysis of words, to establish Theorem 6.10.
There is a corresponding notion of graph product for semigroups; the behaviour of the
resulting semigroup is similar to that of a graph monoid and hence sheds some of the
technical difficulties we encounter in graph products of monoids. We apply our results to
the semigroup case in Section 7, and mention a number of other applications. We finish
with some open questions.

2. Preliminaries

We outline the notions required to read this article. For further details, we recommend
the classic texts [7] and [30].

2.1. Presentations and graph products of monoids

We begin with an account of the notion on which this article is based: that of graph
product of monoids. They are determined by monoid presentations. Let X be a set. The
free monoid X* on X consists of all words over X with operation of juxtaposition. We
denote a non-empty word by x1 0 ---o0x, where z; € X for 1 < i < n; we also use o
for juxtaposition of words. The empty word is denoted by € and is the identity of X*.
Throughout, our convention is that if we say x10--- 0z, € X* then we mean that
x; € X for all 1 <4 < n, unless we explicitly say otherwise. We write |z| for the length
ofaword xt =x10---0x, € X" and denote by " the word x, 0---o0x; € X*.

A monoid presentation (X | R), where X is a set and R C X* x X*, determines the
monoid X*/R¥, where R is the congruence on X* generated by R. In the usual way, we
identify (u,v) € R with the formal equality v = v in a presentation (X | R).

We now define graph products of monoids [25,8]. Let I' = I'(V, E') be a simple, undi-
rected, graph with no loops. Here V' is a non-empty set of vertices and E C V5 is the set
of edges of T', where V3 is the set of 2-element subsets of V. We think of {«, 8} € E as
joining the vertices «, 5 € V. For notational reasons we denote an edge {a, 8} as («, 8)
or (8, a); since our graph is undirected we are identifying (o, 8) with (3, ).

Definition 2.1. Let I' = T'(V, E) be a graph and let M = {M, : o € V} be a set of
mutually disjoint monoids. We write 1, for the identity of M, and put I = {1, : o € V'}.
The graph product 9P = 4P (T', M) of M with respect to I' is the monoid defined by
the presentation

4% = (X | R)

where X = M, and R = R;qU R, U R, are given by:

acV



Y. Dandan, V. Gould / Journal of Algebra 620 (2023) 115-156 117

Ry = {la=€:aeV},
R, = {zoy=uzy: x,y€ My, a €V},
R, = {zoy=yox:xe M, yec M, (a,p)cE)}

The monoids M, in Definition 2.1 are known as vertex momnoids. Throughout we
assume |V| > 2, as otherwise ¢4 & is isomorphic to the single vertex monoid. We denote
the Ri-class of w € X* in 42 by [w]. It is worth noting that there are various different
ways to set up graph products, which all yield equivalent constructions. In particular, if
one starts with monoids that are groups, the process above yields the graph product of
groups.

The main focus of this article is on monoids, although we briefly visit graph products of
semigroups in Section 7. Free products of semigroups, and a discussion of their universal
properties, may be found in [7,30]. Free products of monoids may be viewed as a special
case of an amalgamated free product of semigroups; this is commented on explicitly in
[30, p. 266]. Here we remark that a free product of monoids is a graph product for a
graph T'(V, 0).

We now touch on the other extreme where £ = V5. Let M = {M, : « € V} be as
above. The restricted direct product (or direct sum) Sqcv M, of M is defined by

Dacv My ={f € Uyev M, : af # 1, for only finitely many v € V'}.

Clearly ®ocv M, is a submonoid of Il,cy M, and ®ocy My = yev M, if and only if V/
is finite. It is easy to see that a restricted direct product of monoids is a graph product
for a graph I'(V, V3).

Graph products of monoids behave beautifully with respect to certain substructures,
as we now demonstrate. To do so we need some terminology.

Definition 2.2. Let ¥ = 9 2(I', M). Let s : X — V be a map defined by s(a) = « if
a € M,. The support s(x) of x =21 0---0x, € X* is defined by

s(z) ={s(x;) : 1 <i<n}
In particular, s(e) = 0.

Notice that when s(x) is a singleton, we simply drop braces around it. Below we use
[, ] for the equivalence class of a word under two different relations, so the reader should
bear in mind the context in each case.

Proposition 2.3. Let V! C V and let T/ = T(V', E') be the resulting full subgraph of T.
Let 9" be the corresponding graph product of the monoids M’ = {M, : a € V'}. Then
4P is a retract of 2.

Proof. Let ) := nyv/ : X* — 42 be the morphism extending the map defined on X
by
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o — { 2] s(z) eV’

[e] else.

We show that R! C ker1.

First, for any o € V, whether or not « € V', we have 1,0 = [¢] = en so that
R;q C kern.

To see that R, C kern, let « € V and let u,v € M,. If « ¢ V', then

(uov)n = (un)(vn) = [€]le] = [e] = (uo)n.

If a € V’, then

(uov)n = (un)(vn) = [u][v] = [uov] = [uv] = (uv).

Now consider u € M,,v € Mg with (a, 8) € E. If neither o nor 3 is in V’, then

(wo )y = (un)(vn) = [e][e] = (vn)(un) = (vou).

If o, B € V' with («a, 5) € E, then, as I is a full subgraph of T', we have («, 5) € E’, so
that

(uow)n = (un)(vn) = [u][v] = [uov] = [vou] = [v][u] = (vn)(un) = (vou).

If a e V' but 8¢ V' then

(uow)n = (un)(vn) = [u][e] = [€]lu] = (vn)(un) = (vou)n

and dually if o ¢ V' but 8 € V'. Thus R, C kern.

It follows that R C kern and so 7 := Tyy 9P — 4P given by [w]f = wn is a
well defined morphism.

It is easy to see that ¢ := 1ty y : 9P — 4P such that [w]. = [w] is well defined,
and by considering ¢ it is clear that ¢ is an embedding. It is then immediate that ne is
a retraction of 4.2 onto a submonoid ¥ 2'.. 0O

We identify ¥ 27’ with its image under ¢ and regard 4.2’ as a submonoid of ¥ Z.

Remark 2.4. Let o € V. By taking V' = {a} in Proposition 2.3, we immediately see
that M, is naturally embedded in ¢ & via ¢, : M, — 4%, where for x € M, we have
Tl = [z].

Proposition 2.5. A graph product ¥ 2 = 42T, M) is a direct limit of the graph products
corresponding to the finite full subgraphs of T.
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Proof. The finite full subgraphs of I are partially ordered by inclusion, and form a
directed set under union. It is routine to see that the direct limit of the graph products
42" corresponding to finite full subgraphs with vertex set V/ C V and embeddings
tyr v where V! C V" is isomorphic to ¥ #. O

We end this subsection by remarking that there are universal approaches to describe
graph products of monoids as indicated in [24, Proposition 1.6], in the same way as there
are for direct and free products.

2.2. Regular, abundant and Fountain monoids

We will denote the set of idempotents of a monoid M by E(M). We recall that Green’s
relation R is defined on M by the rule a R b if and only if aM = bM . Equivalently, a = bt
and b = as for some s,t € M, thus, R is a relation of mutual divisibility. The relation
L is defined dually. It is easy to see that M is regular if and only if every a € M is
R-related to an idempotent and so, from considerations of duality, if and only if every
a € M is L-related to an idempotent. Graph products do not behave well with regard
to regularity. Let M and N be regular monoids containing elements m, n respectively
which do not have one-sided inverses. Then [m o n] is not regular in the graph product
G A (T, M) where I = ({1,2},0) and M = {M;, M5} (that is, in the free product). See
[8] for a discussion of regularity in graph products. We therefore consider relations larger
than R and £ and ask whether they contain idempotents.

The relation R* on a monoid M was first defined in [35,36]. For elements a,b € M
we have a R* b if and only if a R b in some over-monoid N of M. Equivalently, for any
z,y € M we have

za = ya if and only if zb = yb.

Thus, R* is a relation of mutual cancellativity. A third equivalent condition is that the
principal left ideals Ma and Mb are isomorphic under a left ideal isomorphism where
a — b [21]. Tt is easy to see that R C R* with equality if M is regular. The relation £*
is the left-right dual of R*.

Definition 2.6. A monoid M is left abundant if every element in M is R*-related to an
idempotent. The notion of right abundant is defined dually, and M is abundant if it is
both left and right abundant.

Examples of (left) abundant monoids abound; regular monoids are, of course, abun-
dant; for a favourite non-regular example take the monoid M,,(Z) of nxn integer matrices
under matrix multiplication [22].

Remark 2.7. It is easy to see that for a € M and e € E(M) we have that a R* e if and
only if ea = a and for any =,y € M
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Ta = ya = xre = ye.

A monoid M is right cancellative if for all a,b,c € M, from ac = bc we deduce that
a = b; left cancellative is dual and M is cancellative if it is right and left cancellative. It is
easy to see that M is right cancellative if and only if it is a single R*-class. Thus, a right
cancellative monoid is left abundant. A right cancellative monoid has no non-identity
idempotents, and need not be left cancellative. It follows that left abundancy does not
imply right abundancy, which contrasts with the case for regularity.

The relation R arose from many sources, as indicated in the Introduction. It extends
the relation R* and coincides with it in the case where the monoid is left abundant. For
elements a, b of a monoid M we have that

aRbif and only if ea = a < eb = b for all e € E(M).
The relation £ is defined dually.

Definition 2.8. A monoid M is left Fountain if every element in M is R-related to an
idempotent. The notion of right Fountain is defined dually, and M is Fountain if it is
both left and right Fountain.

Remark 2.9. Similarly to Remark 2.7, it is easy to see that for a € M and e € E(M) we
have that a R e if and only if ea = a and for any f € E(M)

fa=a= fe=e.

Formerly, left Fountain was referred to as weakly left abundant, but in view of the
perceived significance the notion was renamed by Margolis and Steinberg in [34]. It is easy
to see that M is left Fountain if and only if for any a € M the intersection of the principal,
idempotent generated, right ideals containing « is principal and idempotent generated.
As for abundancy, there are many natural examples of (non-abundant) (left) Fountain
semigroups. These include finite monoids such that every principal (left) ideal has at most
one idempotent generator, for instance, any finite monoid with commuting idempotents
[34]. For some recent examples of Fountain monoids, consisting of semigroups of tropical
matrices, see [27].

Remark 2.10. The relation R on a monoid M is easily seen to be a left congruence, for
any a,b,c € M, if a’Rb then caR cb. Similarly, R* is a left congruence. The same is
not true, in general, for ﬁ,, even for some quite natural monoids (see, for example, [27,
Proposition 6.10]). Thus we do not assume that Risaleft congruence in our calculations.

3. (Left) Foata normal forms

Throughout we let 42 = 42(I', M) and follow the notation as established in Sec-
tion 2. We show that elements in 4% may be written in a normal form we refer to as
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left Foata normal form. Such normal forms were previously known for elements of graph
monoids, that is, where all the vertex monoids are free monogenic. The existing proofs
rely on cancellativity, which is not available to us. Moreover, the presence of units in our
vertex monoids provides an added complication.

Definition 3.1. Let 1 0--- oz, € X*. A reduction step is one of:

(id) xy0--+0oxy - X1 0---0X;_10X;y1 O+ 0 X, Where x; € I
(V) T10+ -0y — T10+++0T;_10T;Tj11 0 Ti120 0T, Where z;, x;11 € M, for some
acV.

A shuffle is a step:
() T10+ - 0Ty —> T10-+-0T4j_10Ti11]OT;0Tita0 0T, where (s(x;),s(z;+1)) € E.

Definition 3.2. Two words in X* are shuffle equivalent if one can be obtained from the
other by applying relations in R., or, equivalently, by shuffle steps.

Definition 3.3. A word z = x10---0x, € X* is pre-reduced if it is not possible to apply
a reduction step to x.
A word x =z10 -0z, € X* is reduced if for all 1 < i < n, x; ¢ I, and for all
1 <i<j<n with s(z;) = s(z;), there exists some i < k < j with (s(x;), s(zx)) ¢ E.
We denote by K the set of reduced words in X*.

Ift =2y0---0x, € X" is reduced, then any factor z; o ;41 o --- o x; is reduced.
A reduced word is pre-reduced, but the converse is not necessarily true. For example,
x1 0 Tg o x3 where s(x1) = s(x3) = «, s(xz2) = B, (a, ) € E and no z; is an identity,
is pre-reduced, but not reduced. Notice that € is always reduced. The following remarks
are clear from Definition 3.3.

Remark 3.4. A word is reduced if and only if any word shuffle equivalent is pre-reduced.
In particular, any word shuffle equivalent to a reduced word is reduced.

Remark 3.5. Let xt = 210---0ox, and y =y o--- oy, € X* be such that x;,y; ¢ T and
s(x;) = s(y;) for all 1 <i <mn. If one of z,2",y,y" is reduced, then so are all four.

We will frequently concatenate reduced words in X*, wanting to know if the product
is reduced. The next remark is useful in this regard.

Remark 3.6. Let t =z;0-- 02y, y=y10---0y, € X* be reduced. Then x oy is not
reduced exactly if there exists 4, j with 1 <i <m,1 < j < n such that s(z;) = s(y;) and
for all h, k with ¢ < h <m,1 <k < j we have (s(z;),s(z)) € E where z = x5 or z = y.
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The lemma below is standard but it is worth making explicit.

Lemma 3.7. Let w € X*. Applying reduction steps and shuffles leads in a finite number
of steps to a reduced word W with [w] = [W].

Proof. Note that applying reduction steps to w reduces its length. There are finitely
many words shuffle equivalent to w. Either these are all pre-reduced, and we let w = w,
or we can apply a reduction step to some w’ shuffle equivalent to w. Continue applying
reduction steps to w’ until we arrive at a pre-reduced word wi. Notice that |wi| < |w].
Repeat this process, obtaining a finite list of words w = wq, w1, ws,...,w,, where all
words shuffle equivalent to w,, are pre-reduced. By Remark 3.4, w,, is reduced; let
W= Wy,. 0O

The next result is fundamental to our arguments. As commented in [24], it is the
monoid version of Theorem 3.9 of Green [25] (which can be applied directly to monoids).
It can also be deduced from [8, Theorem 6.1]; the reader should note that [8] uses different
terminology to ours. However, we note that [25] and [8] deal only with the case of a finite
graph. Here we give the general result, calling upon Proposition 2.3.

Proposition 3.8. Every element of 427 is represented by a reduced word. Two reduced
words represent the same element of 4 if and only if they are shuffle equivalent. An
element x € [w] is of minimal length if and only if it is reduced.

Proof. We have already shown the first part.

For the second, it is clear that if two reduced forms are shuffle equivalent then they
represent the same element of 4.22. Conversely, suppose that w,w’ € X* are reduced
forms and [w] = [w'] in Y. Let V' = s(w) U s(w') and let TV = (V' E’) be the
acy’ Mo and let 42" be the corresponding
graph product. Clearly, w,w’ € (X’)* are pre-reduced and from Proposition 2.3, [w] =

corresponding full subgraph. Let X' = |J

[w'] in ¥ 2'. Theorem 1.1 of [24], which may be deduced directly from original case for
groups in [25], now tells us that w and w’ are shuffle equivalent in ¢4 22" and hence clearly
shuffle equivalent in ¢ 2.

For the final point, it is clear that a word w € X* such that |w| is minimal in [w] is
a reduced form. For the converse, suppose that € X* is a reduced form and [x] = [y].
Choosing 7 as in Lemma 3.7 we have that [x] = [y] = [y] where T is reduced and |y| > |7].

By the above z,7 are shuffle equivalent and hence |z| = [g| < |y|. O

Definition 3.9. If © € X* and [z] = [w] for a reduced word w € X*, then we say that w
is a reduced form of x.

Notice that:
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(1) The equality [x] = [y] where 2 = z10---0x, and y = y; 0 -+ 0 Yy, does not, in
general, imply that s(z) = s(y). However, if both z and y are reduced, we must have
m =n and s(x) = s(y), by Proposition 3.8.

(2) If zy0---oxy, is reduced and s(zj0- - -ox,) is a complete subgraph, then s(z;) # s(z;)
for all 1 <14 < j < n, again by Proposition 3.8.

We now show that, starting with a reduced word x € X*, and multiplying by a single
letter p from X, we have a narrow range of possibilities for any reduced form of the
product p o x.

Lemma 3.10. Let p € X, where p ¢ I, and let x = 21 0---0x, € X* be reduced. Then
one of the following occurs:

(i) poxyo--- oz, is reduced;
(ii) there exists 1 < k < n such that s(zx) = s(p) and (s(p),s(z1)) € E for all1 <1 <
k—1, and poxio---ox, reduces to
PTR OXLL O+ OTf_ 10 Xpy10 0Ty (1)
and also to
L10++OLp_1O0PLEOTps1O O Ty. (2)

Further, in Case (ii)

(a) if pxy is not an identity then (1) and (2) are reduced;
(b) if pxy is an identity then poxy o --- o x, reduces to the reduced word

210" 0Tp_10Lpy10 0Ly, (3)

Consequently, if a € s(x) and ¢ € X with s(q) # «, then o must be in the support of
any reduced form of qo x.

Proof. Suppose that pox is not reduced. Then, by the definition of reduced, k as defined
in the statement must exist. Clearly, for p o x, we may shuffle z; and glue it to p to
obtain

PR OLL O+ OTp 1 OTk 10 0Ty

which is shuffle equivalent to

$10"'0$k—10p$k0$k+1O"'0$n~



124 Y. Dandan, V. Gould / Journal of Algebra 620 (2023) 115-156

If pxy is not an identity, then these words are reduced, by Remark 3.5.
If pzy is an identity then p o z reduces to

TLO-: Tp—1 O Tp41 0O T,

which is reduced, since it is a right factor of the word oz 0 k10X 10 - 0Ty,
which is shuffle equivalent to the reduced word x.

The final statement is clear if ¢ € I; if ¢ ¢ I it follows by examining the cases
above. O

Corollary 3.11. Let x,y € X* where y is reduced. If o € s(y) but o ¢ s(x), then o must
be in the support of any reduced form of x oy.

Proof. Let x = x10---0x,, and proceed by induction on m. If m = 1 then the result is
true by Lemma 3.10. Suppose therefore that m > 2 and the result is true for m — 1. Let
z10---02 be a reduced form of zo0---0x,, oy. Then « is in the support of z10---0 2
by assumption, and so « is in the support of the reduced form of 1 027 0---0 z; and
hence x oy, again by Lemma 3.10. O

We will make extensive use of Corollary 3.11 to find reduced forms of products of
reduced words. The expression of elements in ¥ & using reduced forms has a very useful
cancellation-type property, as we now explain. First, another technical result using a
strategy that will be key in this paper. Recall from Definition 3.3 that K = {w € X* :
w is reduced}.

Lemma 3.12. Let o € V' and define maps
O K —92 andn,: K — 9GP

where for each x =x10---0x, € K,

and xn, =

6, = { [24)] € s(z)

€] else

{ [Ti)] € s(x)

€] else.

Here i(a) is the smallest i such that s(z;) = a and z*(®) is obtained by deleting x;,)
from . Then 0, and 1, are constant on R*-classes, that is, they extend to maps

00 9P — 4P and7, 9P — 4GP
given by
[w]ga = wlea and [w]ﬁa = w/na

where w' is any reduced form of w.
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Proof. Let [p] = [q] where both p,q € K are reduced. We need show pf, = ¢f, and
PNa = @M. By Proposition 3.8, p and q are shuffle equivalent; by finite induction we can
assume that ¢ is obtained from p by exactly one shuffle.

Let

p:;plon-oxj_l omjoxj+loxj+20-~-oxn
and
q:.IlO"'OI]'_l Ol‘j+1 OIjOI‘j_;,_QO-"OI’n.
If a ¢ s(p) (and so a ¢ s(q)), then
pbo = [p] = [g] = q0a and pra = [€] = qna.

Suppose now that a € s(p). Considering p, pick the smallest k& such that s(zy) = a.
If1<k<j—1lorj+2<k<n, then, clearly, pf, = g0, and pn, = qn.. If kK = j, then
since (s(x;), s(z;+1)) € E we have s(z;) # s(z;+1); it follows that pn, = ¢n. = [z;] and
Pl =qbo =[r10---0xj_10x;110T4900--0x,]. Similarly if k=j7+1. O

It is useful to state the dual of Lemma 3.12.

Lemma 3.13. Let o € V' and define maps

b0 K —92P and 1, . K — 9GS

where for each x =x10---0x, € K,

o5 — [27()] € s(z) and o — [Tj)] € s(x)
0a = { [x] else 4270 = { €] else.

Here j(a) is the largest j such that s(x;) = a and 27(*) is obtained by deleting Tj(a)
from z. Then 8, and T4 are constant on Rf-classes, that is, they extend to maps

00:9P —GP and Ty 4GP — 4GP
given by
[W]de = W'da and [W]Tq = w'T,
where w' is any reduced form of w.

We use the maps defined in Lemmas 3.12 and 3.13 to prove our first cancellation-type

result.
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Lemma 3.14. Let [x] = [y] where x =x10-- 02, and y = y; 0 --- oy, are reduced and
let 1 <m <n. Then [z10---0xy] =[y1 0 0yn] if and only if [Tmy1 0 0xp] =
[Ym+1 0+ 0 yYn].

Proof. Suppose that [z 0 0xy] =[y1 0+ 0yp]. Since [z10---0xy] =[y1 00 yyl,
we have

[1 0 Ty OXypp1 00Xy =[T1 0+ Ty O Ymg1 0+ O Yyl

Aszio0- -y 0Xpmy1 0 0x, is reduced and 1 0 -+ - Ty © Yipp1 © - - - 0 Yy, has the same
length, we deduce that x1 0 -+ Xy, © Ypy1 0 - -+ 0 3y, is reduced, by Proposition 3.8. Let
s(x;) = a, for all 1 < r < m. Then, observing that any right factor of a reduced word

is reduced,
[{Elo...ommoxm+lo...oxn]§al ...gam — [xlo...oxmoym+1o...oyn]gal...?anL
by Lemma 3.12, which gives [Zm41 0+ 0 Zpn] = [Ym+t1 © -+ 0 Y] as desired.

The remainder of the lemma follows dually from Lemma 3.13, by applying the maps
0o O

Definition 3.15. A word w € X* is a complete block if it is reduced, and s(w) forms a
complete subgraph of I' = T'(V, E).

We now show that any reduced word in X* may be shuffled into a word that is a
product of complete blocks.

Definition 3.16. Let w € X*. Then w is a left Foata normal form with block length k and
blocks w; € X*, 1 <i <k, if:

(i) w=wjo---ow, € X* is a reduced word;
(ii) s(w;) is a complete subgraph for all 1 < i < k;
(iii) for any 1 < ¢ < k and « € s(w;+1), there is some S € s(w;) such that (o, 3) ¢ E.

If [z] = [w] where w is a left Foata normal form, then we may say w is a left Foata
normal form of x.

Remark 3.17. (i) The empty word € is a left Foata normal form with block length 0. (ii)
A complete block is precisely a word in left Foata normal form with block length 1. (iii)
If w=wjo---ow, € X* is in left Foata normal form with blocks w;, 1 < i < k, then
for any 1 < j < j/ < k we have w; o wjq 0+ owj is also in left Foata normal form,
with blocks wy, j < h < j'.

Proposition 3.18. Every element in 92 may be represented by a left Foata normal form.
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Proof. We know that any element of 4% may be represented by a reduced word. Take
a reduced word w = yo and let w; be chosen such that wy o y; is shuffle equivalent to w
for some y;, s(wy) is complete, and |w;]| is maximum with respect to these constraints.
Assume that wi, y1, w2, Yo, - - ., Wk, Yy have been chosen such that for each 1 < j < k we
have that y;_; is shuffle equivalent to w; o y;, s(w;) is complete, and |w,| is maximum
with respect to these constraints. Clearly this process must end after a finite number of
steps with yr = e.

For any 1 < j < k we have by finite induction that y;_; is shuffle equivalent to
Wj © Wj4q O -+ o wy and, in particular, w is shuffle equivalent to w; o --- o wy. We now
claim that wy o- - -owy is a left Foata normal form with blocks w; for 1 < i < k. Certainly
(i) and (ii) of Definition 3.16 hold. To see that (iii) holds, suppose that 1 < i < k and let
a € s(wi41); say w1 = poaoq where a € X and s(a) = «. Suppose for contradiction that
for all 8 € s(w;) we have (a, 8) € E. Since y;_1 is shuffle equivalent to w; ow;410--owy
we would have y;_; being shuffle equivalent to w;oa oy, for some y; ,, where s(w;oa)
is complete and |w; o a| > |w;], a contradiction. O

Remark 3.19. Let x = z;0---0x, and 2 = z; 0--- 0 2, be reduced forms of w. Pick
a € s(x)(= s(z)). Let i be least such that s(x;) = o and j be least such that s(z;) = a.
Since = and z are shuffle equivalent, z; = z;. Suppose that there exists some 1 <4’ <3
such that s(z;) = 8 with (8, «) ¢ E; note that by minimality of ¢ we have 8 # «. Then,
again as « and z are shuffle equivalent, there exists some 1 < j’ < j such that s(z;) = 3
and zj = xy.

We are now in a position to prove the main result of this section, which tells us that
the left Foata normal form of an element of any ¥ .&7 is essentially unique.

Theorem 3.20. Let w € X* and let wy owy 0 --- 0wy and wj o wh o --- o wy, be left
Foata normal forms of w with blocks wi,w;- for1<i<k1<j<h. Thenk=h and
[w;] = [w]] for 1 <i<k.

Proof. Let p1 = wao0---owy and pj = who---owy; by Remark 3.17 p; and p} are also in
left Foata normal form. We claim that s(w;) = s(w}). Expressing as products of letters,
let

!/ /
W1 =a10-Qp,p1 =bjo---0by, wy =ug0---0ou and p; =v10---0vy,.

Suppose that there exists some 6 € s(wy) but not in s(w}), so that § € s(p}). Let
i be least such that s(a;) = ¢ and let j be least such that s(v;) = . By definition of
left Foata normal form, either (i) v; is in the first block w? of p/, in which case there
exists some 1 < ¢/ <t with (s(uy),d) ¢ E, or (ii) v; is in a subsequent block of p/ in
which case certainly there exists 1 < j* < j with (s(v;),d) ¢ E. Let v = s(uy) (in
Case (i)) and v = s(v;7) (in Case (ii)). In either case we have v # ¢ and (6,7) ¢ E.
By Remark 3.19 there must be some i’ with 1 < ¢’ < i such that s(a;) = . This is
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impossible since s(wq) is a complete subgraph. Together with the converse argument we
deduce that s(w;) = s(wy).

We now show that [wi] = [w]] and [p1] = [p}]. Let s(wy) = {a1, -+ ,a,}. It then
follows from Lemma 3.12 that

[p1] = [w1op1]ba, -+ Oa, = [wll Opll]eal o ba, = [pll]
and

[w] = [wy © p1]7g, -+ (w1 0 p1]N,, = [wi 0 Ph]7a, - [w) 0 Ph]T,, = [w)]
as required.
Noticing that |p1| < |wy o p1|, the result now follows by induction. O

Clearly, we may define the notion of a right Foata normal form of an element in X*,
and the dual arguments to those for left Foata normal form hold.

4. Towards a characterization of R*

We continue to consider a fixed, but arbitrary, graph product of monoids ¥ &?. We
now show how we can use the left Foata normal forms developed in Section 3 to describe
the relation R* in ¥42. We will build on this in Section 5 to show that if each vertex
monoid is abundant, then so is ¥ Z.

The next lemma can be deduced from [8, Proposition 7.1], together with our Propo-
sition 2.3 and Remark 2.4. Note that if ©+ = 21 o --- o 2, is reduced, then in Costa’s
terminology, the x; are components.

Lemma 4.1. Let x =x10---0ox, € X* be reduced. Then the following are equivalent:

(1) [x] @s left invertible in G P;
(2) [x4] is left invertible in 42 for 1 <i<mn;
(3) w; € My(y,y is left invertible in My, for 1 <i<n.

Moreover, if any of the above conditions hold, then any left inverse of [x] has the form
ly] where y =y, 0---0oyy and y; is a left inverse of x; for 1 <i < n.

The arguments in the next lemma essentially rely on the following simple observations.
If x = x10- - -0x,, € X*isshuflle equivalent toy = x;,0-- -0z, ,thenforany 1 <i <k <n
with j; > jr we have (s(z;,),s(z;,)) € E. Suppose we can shuffle z to a word 2’ o 2",
where 2’ has length m. Consequent to the previous remark, we can then shuffle ' to a
word 2;, 0x;,0---0x; where i1 < iy < -+ < i, and 2’ to the word obtained from z by
deleting the letters z;,,--- ,x;,, . Moreover, for any 1 < ¢ < m we can shuffle the letters
X1, 0, Xi—1, T, in @’ o x” back to the first iy positions, resulting in having shuffled x
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to xy 0@y 0 Liy—1 0 Ty, © Ty, O O Ty, 0z Where z is i, 41 © Tj40 0 - 0 Ty With
Ligrrs " 3 Liyy, deleted.

Lemma 4.2. Let u € X*. Then:

(1) [u] = [a][z] where a o x is reduced, [a] is left invertible, and |a| is mazimum with
respect to these constraints;

(2) with [u] = [a]lz] as in (1), if in addition [a][x] = [b][y] where (in addition) boy is
reduced, [b] is left invertible, and |b| = |a|, then [a] = [b] and [z] = [y];

(3) with [u] =
i, 1 <1 < m, such that 1 contains no left invertible letters.

[a][z] as in (1), x has a left Foata normal form xy o -+« o &, with blocks

Proof. We begin by finding a reduced form p = p; o --- o p,, for u. By shuffling p we
may find a and x as in (1). By Lemma 4.1 and the above remark we may assume that
a =p;, ©---op; where i3 <ip <--- <1y, with p;, is left invertible for all 1 < h < k.

Suppose now that b,y are as given; again we may assume that b = p;, o---op;, where
J1 < jJ2 < --- < jg. If i1 < ji then we notice that we can shuffle p to p;; op1o---o0
Pji—10Dj, OPj, 410 -0 py, and then to p;, op;, op;, o---op;, oy where y' is y with p;,
deleted. But, this contradicts the maximality of |a|. With the dual argument we obtain
that i1 = j1.

Suppose for finite induction that iy = j, for 1 < ¢ < s < k and that is11 < jsy1. Then
similarly to the preceding argument we have that p shuffles to p;, op;, 0---op;, op;, ., 02
where z is p with p;,,ps,, -+, pi,,, deleted. But then we can shuffle z to obtain a word
Djoy1 OPjesn O 0Pj, 0w Where w is p With pi,, iy, s Piciys Pisyrs Piasas** 5 Pjy, deleted.
Again, this contradicts the maximality of |a|. We deduce that is = js for 1 < s < k and
hence [a] = [b]. Clearly then [z] = [y] follows.

Suppose now that [u] = [a][z] as in (1), and shuffle = to left Foata normal form
Z1 0+ 0&y,, where the x; are the blocks for 1 < i < m. Clearly, since s(z1) is complete,
x1 cannot contain any left invertible letters, else this would contradict the maximality
of la|l. O

To simplify the description of R* on ¥ & we now present two technical lemmas.

Lemma 4.3. Let ¢ = 21 0---0ox, € X* and (o,8) ¢ E. Suppose that x; is non-left
invertible with s(x;) = B, for some 1 <1 < n, and s(xy) is neither a nor B for all
l<k<n.Letz=z0---02z, € X* be any reduced form of x10---ox,. Then 5 € s(z)
and if j is greatest such that 1 < j < m with s(z;) = B3, then z; is non left invertible,
and s(z) # a for all j <t < m.

Proof. We begin by observing that if we can find one reduced form of z with the required
property, then all reduced forms will have the required property.
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We proceed by induction on n. If n = 1 = [ the result is clear, since x = x is the
only reduced form of x. Suppose now that n > 1 and the result is true for all words of
length strictly less than n.

Let wy = 2100251, we = Tj41 0 -+ 0y, and let wi, w) € X* be reduced such
that [wy1] = [w]] and [ws] = [w}]. Certainly «, 8 ¢ s(w}). Let w] = uy o --- o up and
wh =v10---0ov.. If w] ox;owlisareduced form, then we are done.

Suppose therefore that w) o z; o w) is not a reduced form, and consider first

w’loxl:ulo-nouhoxl.

If w} ox; is not a reduced form then, from Remark 3.6, there exists some ¢ with 1 <t < h
with s(u;) = S and (s(ug),B) € E for all t < k < h. By shuffling w/, without loss of
generality we can assume that ¢ = h. Let p = upa; and notice that as x; is not left
invertible, then neither is p, and certainly p # €. Then

Y=Upo--0U,_10POVLO- 0,

has length strictly less than n, s(p) = §, p is not left invertible, and «, 8 ¢ s(vio---ow,.).
On the other hand, if w) ox; is a reduced form, then again by Remark 3.6, and making
use of the fact 8 ¢ s(wj), we may assume that s(upn) = s(v1) and (3, s(up)) € E. Then

Y=Up 0+ 0UHRL-1 OCURVL OX]OV20 " -+0Vp

has length strictly less than n, and o, 8 ¢ s(vg 0 --- o v,.).
In each case we have found a word y with [y] = [x] to which we can apply the induction
hypothesis. The result follows. O

Lemma 4.4. Let x = x1 0---0x, be a left Foata normal form with blocks z;,1 < i < n,
such that x1 contains no left invertible letters. Let uw € X* and let z be a reduced form
ofuoxy. Then zoxg 0---0x, is a reduced form of uo x.

Proof. Certainly [uoz] = [zoxg0---0xy]. Let 2 = 210 -02,,. As both z and zg0-- -0z,
are reduced, if zoxyo0---0x, is not reduced, then by Remark 3.6 we can shuffle a letter
2z, of z to the end of z and a letter a of 9 0 --- o x, to the start of x5 0 --- 0z, where
s(zr) = s(a) = a say. We may assume that &k = m and as 29 0 --- 0z, is a left Foata
normal form, that a is a letter of x5, and then that it is the first letter of x5. Since x is
in left Foata normal form, it follows that a ¢ s(x1) and there exists a (unique) letter b
in x1 such that (o, s(b)) ¢ E. Let s(b) = ; recall that b is non-left invertible. It then
follows from Lemma 4.3 that 8 € s(z) and if ¢ is greatest such that 1 < ¢ < m with
s(z) = B, then s(z1,) # « for all t < h < m. This contradicts the fact s(z,) = a.
We deduce that zoxg0---0x, is a reduced form of u o x, as required. O
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We can now get our first handle on the consideration of the R*-class of an element
of 42 in the general case. Subsequently, we will focus on the case where the vertex
monoids are abundant.

Proposition 4.5. (1) Let x = x1 0 --- o x, be a left Foata normal form with blocks x;,
1 <@ <mn, such that 1 contains no left invertible letters. Then [z] R* [x1].

(2) Let p € X*. Then [p] = [a][z] where a o x is reduced, the letters of a are all left
invertible, |a| is maximum with respect to these constraints and x is a left Foata
normal form x as in (1). Further, [p]| R* [a][z1].

Proof. (1) Let [pl,[q] € ¥Z. Clearly it suffices to show that if [p][z] = [g][z], then
[p][z1] = [q][z1]. Suppose therefore that [p][z] = [¢][z] and let (p o x1)" and (g o x1)" be
reduced forms of pox; and goxy, respectively. By Lemma 4.4, (poxy) oxgo---ox, and
(goxy) omgo---ox, are reduced forms of poxio---ox, and goxjo---ox,, respectively.
It then follows from Lemma 3.14 that [(p o z1)'] = [(¢ o z1)'] and so [p][z1] = [¢][z1]-

(2) This existence of a and z is guaranteed by Lemma 4.2, and then the result follows
from (1) and the fact that R* is a left congruence. O

5. Graph products of left abundant monoids are left abundant

The aim of this section is to prove the claim of the heading; this will involve us in some
combinatorial intricacies. It might be helpful to the reader if we outline our strategy here.
Proposition 4.5 is our first step in describing R* in ¢ Z2. In Proposition 5.20 we show
that if 2 =27 0---02, € X* is a complete block, then [z] R* [¢/] where 2’ = 2] 0---02],
is chosen such that zj € M.,y and z; R* 2] in M., for all 1 <4 < n. In particular, if
each M; is left abundant, then for any idempotents zl+ with z; R* zj' in My(.,), we have
that [2] is R*-related to the idempotent [zF] where z* = z{" o --- o 2. Proposition 4.5
tells us that for p € X* we can write [p] = [a][z] where a o z is reduced, the letters of a
are all left invertible, and x is a left Foata normal form, the first block of which contains
no left invertible letters. Moreover, calling this first block z we have that [p] R* [a][z].
As R* is a left congruence, [p] R* [a][z"] and then as [a] has a left inverse [a’] (so that
[a'] R [€]) we have [p] R* [a][2"][a’]. The fact that [a][zT][a’] is idempotent is easily seen.

To arrive at Proposition 5.20 we cannot escape a very careful analysis of products
[][2] in ¥ (remember, we are considering equations of the form [z][z] = [y][z]). To
this end we find a new factorisation of elements in ¥ that allows us to cancel and
replace a final term in equalities. This we achieve in Lemma 5.19.

To arrive at Lemma 5.19 we now define the notions of a-absorbing, a-good and sub-
sequently a stronger version of being a-good that we call a-amenable, where a € V.
We show in Proposition 5.14 that in an a-amenable word, the inner factor reduces to a
word which does not have « in its support. This enables us to pin down exactly which
letters we can move to the right of a word (see Definition 5.16) and hence we arrive at
the factorisation of Lemma 5.19.
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First, we need to recall the description of idempotents in ¥4 from [8].

Definition 5.1. We say that an idempotent of ¥ & is in standard form if it is written as
[u] where u =boeob’ € X* is reduced,

b=0byo--0b,, e=e€10--0ey,b =0, 00l
where b}b; is an identity for 1 < i < n, s(e) is complete and e? = e; for 1 <i < m.
Note that [u] is idempotent for any word u of the form in Definition 5.1.
Lemma 5.2. [8, Theorem 14.2] Any idempotent in 4.2 can be written in standard form.

Definition 5.3. Let a € V. A word = € X* is said to be a-absorbing if a is not in the
support of any reduced form of x.

Definition 5.4. Let o € V. A word = € X* is said to be a-good if for all 5 in the support
of any reduced form of x, we have 8 = a or (8,«a) € E.

We remark that in Definitions 5.3 and 5.4, a may not be in the support of z. If for
any [ in the support of x, we have § = « or (8, ) € E, then certainly z is a-good, but
the converse need not be true. If [z] = [y], or z,y are reduced and s(z) = s(y), then
is a-good (resp. a-absorbing) if and only if y is a-good (resp. a-absorbing). Further, as
s(€) = 0, we have that € is both a-good and a-absorbing, and hence so is 15 for all g € V.
Finally, if w € X+ and s(w) = {a} for some a € V, then w is a-good. By Remark 3.5
we have:

Lemma 5.5. Let t = z10-+-0xy,y = y10--- 0y, € X* be such that x;,y; ¢ I and
s(x;) = s(y;) for all 1 < i < n. If one of z,a",y,y" is a reduced word that is a-good,
then so are all four.

The next lemma is crucial in allowing us to deduce the a-goodness (or otherwise) of
a word in terms of its factors.

Lemma 5.6. Leta €V and x =x10---0x, € X*.
(i) If xpo---oxy, is a-good for some 1 < k < n, then x10---ox, is a-good if and only
ifxy0---0xp_1 i a-good.
(ii) If x1 0---0oxp_1 s a-good for some 1 < k < n+ 1, then x10--- 0z, is a-good if

and only if Ty o -+ oz, s a-good.

Proof. Suppose that z;o---ox, is a-good.
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If z10---0xp_1 is a-good, then from Remark 3.6 and comments above it is clear that
T10---0x, is a-good.

Conversely, suppose that x1 o--- oz, is a-good but z; o---oxg_1 is not a-good. Let
U1 0 -+ 0 Uy, be a reduced form of z1 o --- o xg_1. Then, by Definition 5.4, there exists
some 1 < ¢ < m such that s(u;) = 8 with § # « and (8,a) ¢ E. As x10--- 0oz, is
a-good, [ is not in the support of the reduced form of z1 o---ox,. Let v; 0---0wv; be
a reduced form of xy o ---o0x,. As xp o0z, is a-good, ( is not in the support of
vy 0 -+ owv;. Now consider the word (uy 0+« oup) o (vy0--- o). Of course,

[(ulO...oum)o(vlo...ovl)] — [leo...oxn].
By the dual of Corollary 3.11, § lies in the support of the reduced form of (ujo0---ou)o
(vy 0---owy), and hence that of 21 o - - - o 2, contradiction.

The proof of (ii) is the dual of (i). DO

Corollary 5.7. Let x € X* and let z,2',t € X where s(z) = s(z) = «a,s(t) = 8 and
(o, B) € E. Then the following are equivalent:

(1) z is a-good;

(2) zoz' ox is a-good;
(3) 2/ ox is a-good;
(4) 22’ oz is a-good;
(5) zotox is a-good.

Proof. From the remarks following Definition 5.4, z,z0 2/, 22’ and zot are a-good. The
result follows by Lemma 5.6. O

Our next definition is more subtle, but crucial for subsequent analysis of products in

GP.

Definition 5.8. Let « € V and x = x10--- 0z, € X* be a-good. Then z is said to be
a-amenable if one of the following holds:

(i) n < 2;
(ii) m > 2 and either oo ¢ s(xg0---0xp_1), 0r @ € s(x30---0xy_1) and for all z; with
2 <k <n—1 such that s(z) = «, the word x} o - - - o x,, is not a-good.

It might help to bear in mind that zyo---ox, is not a-good if and only if there exists
some 3 # a in the support of a reduced form, such that (a, ) ¢ E. Notice that e is
a-amenable for any v € V.

As we remarked earlier, for z,y € X*, if [x] = [y], then x is a-good if and only if
y is a-good. One might ask: Is it always true that x is a-amenable if and only if y is
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a-amenable? The answer is no, as illustrated by the following easy example. Let «, 3,y
be distinct elements of V' with (o, ), (o,7) € E and a € M,,b € Mg and ¢ € M,
non-identity elements. The word aobo ¢ is reduced, a-amenable (by virtue of « ¢ s(b)).
On the other hand it shuffles to boaoc which is a-good but not a-amenable (as s(a) = «
and (a,v) € E).

On the positive side, we have the following result.

Lemma 5.9. Let « € V and x = x10---0ox, € X* be a-amenable. Let y be any word
obtained by applying reduction steps and shuffles to xo0---oxy_1. Then x1 oy oz, is
also a-amenable.

Proof. Clearly the result is true for n < 2 as here x5 0---0x,_1 = € and there are no
steps to apply.

Assume now that n > 2. Since z is a-good, so is any word in the same equivalence
class, so that x1 oy ox, is also a-good. To show x; o y 0 x,, is a-amenable, it is sufficient
to consider the case where y is obtained from p = x5 0---0x,_1 in a single step.

Clearly, if o ¢ s(p), then we are done; suppose therefore that o € s(p). We consider
the following cases.

Case (1): s(z;) = 8 and s(xj+1) =y with (8,7v) € E, where 2 < j < n — 1. We show
that the word

x’:xlox20---oxj,1oxj+1oxjoxj+20~-~oxn,10xn

is a-amenable. Clearly, we are fine in the case where neither 8 nor v equals a. If § = «
(and so v # «), then, by Definition 5.8, z;0x,410x 420 -0x,_1 0y, is not a-good. But,
on the other hand, as xjox;4; is a-good, ;490 - -0z, is not a-good by Lemma 5.6, and
hence, again by Lemma 5.6, zjox 400 - -0z, is not a-good. For any k with2 <k <n-1
and k # j,j+ 1 with s(xx) = a, it is clear that the factor zg o --ox, of 2’ is not a-good
by the assumption that z is a-amenable. Similarly if v = a.

Case (2): s(zj) = s(xj41) = f where 2 < j < n — 1. We show that the word

' =x10x90+ 0L 1 0OL;Tj11 OTj420  +OLp_10Ty

is a-amenable. As in Case (1) it is enough to show that if § = a then xjz;41 0 2j42 0

-0z, is not a-good. To this end, if 8 = «, then as x; o x;41 and z;x;41 are o-
good but z; 0 xj11 0 xj400--- 02, is not a-good, we deduce from Corollary 5.7 that
TjTjy1 O Tjqp2 O+ 0Ty is Not a-good.

Case (3): s(zj) = B and z; = 15. An essentially vacuous argument easily gives that
the word

"

T =X10X20:-+0Tj_10Tj410X;j420 - 0Tp_10Tp

is a-amenable. O
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The next corollary is immediate from Lemmas 3.7 and 5.9.

Corollary 5.10. Let a € V and x = x10---0x, € X* be a-amenable. Let y be a reduced
form of xg0---0xy_1. Then x1 0oy oz, is also a-amenable.

Lemma 5.11. Let x =210+ -0Zp,, Yy =y10--- 0y, € X* be reduced words. If s(x,,) = «
but o ¢ s(y) and there exists 5 € s(y) with (B,a) ¢ E, then § must be in the support of
the reduced form of x oy.

Proof. We proceed by induction on n. If n =1, then xoy =z 0--- 02y, oy;. We must
have s(y1) = B so that z o y is clearly reduced by Remark 3.6. Suppose now that n > 1
and the result is true for all words y of length strictly less than n.

Clearly, the result is true if (x1 0 -+ 0 xy,) o (y; o --- 0 y,) is reduced. If not, by
Remark 3.6, there exists some 1 < k < m,1 < j < n such that s(zx) = s(y;) and
(s(yj),s(z)) € Eforany z =z, or z =y, with k+1 < h <m,1 <t < j—1. Let
Yy =y10---0yj_10yj410---0Yy; notice that y shuffles to y; oy’, so that 3’ is a reduced
form. Further, let p = 210+ 0 Tp_1 0 TRY;j © Tp41 0 - -* © Tyy. Let ' =pif Zry; is not
an identity and otherwise let ' = zy 0+ 0Xp_1 0 Tp11 0 -+ 0 Xy; in either case, 2’ is
a reduced form. Now consider z’ o y'. Clearly, [z o y] = [z’ 0o y/]. As a ¢ s(y), we have
a ¢ s(y') and s(zx) = s(y;) # a, so that k # m. Moreover, as s(z,,) = a and (5, «a) ¢ E,
we have s(y;) # (8, and so 8 € s(y’). By induction, S is in the support of any reduced
form of x’ o 3/, and hence in that of xoy. O

Lemma 5.12. Let« € V and x = x10---0x, € X* be a-amenable with s(x,) # «. Then
the word ' = x9 0+ 0x,_1 is a-absorbing.

Proof. If n < 2, then we may take x5 0---0x,_1 as €, which is certainly a-absorbing.
Assume now that n > 2. Let y = y1 0+ - - oy, be a reduced form of z’. By Corollary 5.10,
21 0y ox, is a-amenable. We claim that 2’ is a-absorbing. To prove this, we assume the
contrary, so that T' # () where

T={k:1<k<m,s(yx) = a}.

Let [ and I’ be the least and greatest elements of T, respectively. Since x1 o y o x,, is
a-amenable, we have that for any k € T the word yx o yg41 0+ - 0 Y © Z,, is nOt -good.
We consider the following cases.

Case (1): x1 oy is a reduced form. It follows that xq oyj o --- oy is also a reduced
form. Let z be a reduced form of yp 41 0 -+ 0y, © x,. As commented, a-amenability
gives us that yy o ypy10---0yy o x, is not a-good. We deduce ypr41 0 -+ 0y 0 Ty
is not a-good by Corollary 5.7, hence neither is z. Thus there exist S € s(z) such that
8 # « and (B,«) ¢ E. Further, as s(x,) # « and by the minimality of I’ in T, we have
a ¢ s(Yyr410 - 0ymoxy) and so a ¢ s(z). By Lemma 5.11, 8 is in the support of the
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reduced form of z1 oyy o---oyp oz, but (5,a) ¢ E, implying that 21 oyj 0o---oyp oz
is not a-good, and hence neither is x, a contradiction.

Case (2): 1 oy is not a reduced form and s(x1) = o. By Remark 3.6, (5,a) € E for
all € s(yyo---oy;—1), and so

[] = [z1oyom,] =[x10y10  0Ypoxy] = [y1 0 OY_1 OTIYI O Y1110 O Y O Tyy).

Notice that y; o---oy;—1 ox1y; is a-good. By a-amenability y; oy410- - -0y, 0y is nOL
a-good. As s(y;) = a, we deduce that y; 410 0y, oz, is not a-good by Corollary 5.7,
so that yy0---yj_10x1Yy;0Y;+10- - -0y, 0y, is nOt a-good by Lemma 5.6, a contradiction.

Case (3): 21 oy is not a reduced form and s(x1) # «. Then, by Remark 3.6, there
exists some 1 < j < m, j ¢ T, such that s(y;) = s(z1) and (s(z1),s(yx)) € E for all
1 <k <j—1. We consider two sub-cases.

Case (3)(a): j<U'.Let w=yj0---0y;_10x1yj 0 yjp10---oyy. Let w' = w if z1y;
is not an identity, and otherwise let w’ =y, 0---oy;_1 0yj410---oyy, so that w' is a
reduced form of w. Let z be a reduced form of y;r4q 0 -+ 0y, 0 xy,. Then [w' o 2] = [x].
Since yy oy 410+ 0 Yy © Xy is not a-good, we deduce yy41 0+ - 0 Yy, 0 X4, is nOt -good
by Corollary 5.7, so that neither is z. Hence there exists 5 € s(z) such that 8 # « and
(8,a) ¢ E. Further, as s(x,) # «, we have a ¢ s(yyr41 0+ 0ym 0 xy,) and so « ¢ s(z).
It then follows from Lemma 5.11 that § is in the support of the reduced form of w’ o z.
But, (8,«) ¢ E, implying that w’ o z and hence «x is not a-good, a contradiction.

Case (3)(b): j > I'. Notice first that [y; 410 0Y;—10T1YjOYj+1 0" OYm 0Ty] = [W]
where w = 21y 0 Y410+ 0Y;—1 0 Y41 O+ O Ym © Tp. We claim that w is not a-good.
As s(y;) = s(z1) and (s(x1),s(yr)) € E, we have (s(y;j),a) € E, so that y; is a-good.
By a-amenability, y o ypy1 0+ 0y, 0 2, is not a-good and so Y41 00 Yy O Ty IS
not a-good by Corollary 5.7. As [yy410--0Yj_10Yj 0Yj41 0+ 0Ym 0 Zy] = [w'] where
W =Y 0Ypr41 0+ 0Yj_10Yj41 00 Ym 0z, we deduce that w’ is not a-good and so
Y410 - 0Yj_10%Yj41 0" OYm O Ty is not a-good by Lemma 5.6; similarly, as z1y; is
a-good, we deduce T1Y; © Y410+ 0Y;—1 0 Yj41 O - Ym O Ty, is not a-good. Let z be
a reduced form of z1y; o yyy10---0Y;—10Y;j11 0 Ym 0 Ty and notice a ¢ s(z). As
z is not a-good, there is 8 € s(z) such that § # « and (8,«) ¢ E. Consider the word
v=uyjo---oypoz. Clearly [x] = [v]. By Lemma 5.11, 8 is in the support of the reduced
form of v and hence that of z. But (8, «) ¢ F, contradicting x being a-good.

We conclude that z9 0 --- o0 x,_1 is a-absorbing, thus completing the proof. O

Corollary 5.13. Let « € V and © = x10--- 02, € X* be a-amenable with s(x,) = a,
and let S € V. Then xy0---oxy_101g is also a-amenable.

Proof. Certainly 15 is a-good, as its unique reduced form is e. Since s(z,,) = « and = is
a-good, two applications of Lemma, 5.6 give that xy0---0x,_1 01g is a-good. Suppose
that n > 3 and s(zx) = o where 2 < k < n — 1. By a-amenability, xj o --- o x,, is not
a-good, but as z,, is a-good, two applications of Lemma 5.6 give that zyo0---0xz,_1013
is not a-good. Therefore x1 o --- o x,_1 0 15 is @-amenable. O
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We have been working towards the following;:

Proposition 5.14. Let « € V and x = x10---0ox, € X* be a-amenable. Then the factor
ToO---0x,_1 1S a-absorbing.

Proof. The result is true when s(x,,) # «, by Lemma 5.12. Suppose that s(z,) = a. By
Corollary 5.13, z1 0 --- o x,_1 0 13 is a-amenable, for any 8 € V. Since |V| > 2, taking
8 # o Lemma 5.12 tells us that 29 0 --- 0z, _1 is a-absorbing. O

Corollary 5.15. Let a € V and x =x10---0x, € X* be a-amenable.

(i) Ifs(xz1) = s(xn) = a, then for all 5 in the support of the reduced form of xo0- - -0xy_1
we have B # a and (a, B) € E.

(ii) If s(x1) = o, s(xy) # «, then for all 5 in the support of the reduced form of xgo- - -oxy,
we have B # a and (a, B) € E.

Proof. Clearly we may assume that n > 2. Let y be a reduced form of z90---0x,_1, so
that o ¢ s(y) by Proposition 5.14.

(i) The result is true when y = €, so we assume that y # €. Let w be a reduced
form of z;1 o y. It follows from Corollary 3.11 that s(y) C s(w). Further, by the dual of
Corollary 3.11, s(y) is contained in the support of the reduced form of w o z,,. As x is
a-good, so are 1 o y oz, and w o x,, implying («, ) € E for all 8 € s(y).

(ii) Let w be a reduced form such that [w] = [yox,] = [zg0---0ox,]. Since s(z,,) # «,
we deduce that a ¢ s(w). Let v be a reduced form of z; o w. Since z is a-good and
[v] = [x1 o w] = [z], we have that v is a-good, so that § = « or (8,a) € E for all
B € s(v). Further, as s(z1) = a but a ¢ s(w), we have s(w) C s(v) by Corollary 3.11, so
that (8,«) € E for all § € s(w). O

In what follows we use the foregoing analysis to allow us to factorise elements of ¢4 &
in a way that will enable us to achieve the aim of this section. First, another definition.

Definition 5.16. Let x = x70---0x, € X* and o € V. We define a set
No(z)={ke{l,--- ,n}:s(zx) =aand zx o oxm, is a-good}.

We will show that for a word z as in Lemma 5.16 we can move the letters indexed
by elements of N, (z) to the right of 2 (maintaining their order). Where convenient, in
situations where the enumeration of indices is particularly involved, and where there is
no danger of ambiguity, we may identify N, (z) with {zy : k € N (z)}.

Notice that N, (x) may be empty and, in particular, N, (€¢) = (). Further, s(z,) = «
if and only if n € N,(x). If I,k € N,(x) with | < k, there may exist some | < j < k
with s(z;) = a such that j ¢ N, (z). For example, suppose that n =6, s(z1) = s(x3) =
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8(374) = S({L‘(;) = and s(‘TQ) = S(.’Eg,) = 5 where « 7é ﬁ, (avﬁ) ¢ E7 T3xy = ]-aa
x2, x5 ¢ I and xoxs = 1g. Then N,(x) = {1,6}. This also provides an example of an
a-amenable word.

Lemma 5.17. Let a € V and x = x10--- oz, € X* with s(x,) = a. Write

No(z)={l, -, : 1<l <--- <l =n}.

Then
[2] = [2][xy, 0+ 0@y, ]
where &' is the word obtained from x1 o0 --- oz, by deleting the letters xy,, - ,xy, .
Further, if z is a word obtained from x by replacing x;,,--- ,x;,. by letters z;,,--- , 21, €
M., respectively, we have
[2] = [&'[z1, 0+ 0 2, ].

Proof. Let 1 <k <r—1.

Definition 5.16, and two applications of Lemma 5.6 give ;, o---ox, , is a-good. We
now claim that x;, o---o®,, is a-amenable.

Clearly, z;, 0+ --ox, ., is a-amenable if either I 11 = lp +1 or lp41 > lp + 1 and there
exists no I < j < li41 such that s(acj) = «. Suppose now that there exists I < j < lp41
such that s(z;) = . Since j ¢ Nq(z), the word z;0--- oz, is not a-good. On the other
hand, we know x;, 41 0--- 0z, is a-good, giving that z; 0---ox;, . is not a-good by
Lemma 5.6, and hence x;, o---oxy,,, is a-amenable.

For each k in the range above let wy, be a reduced form of z;, 110 0z, 1. By
Corollary 5.15, since x;, o --- oy, , is a-amenable, for any 8 € s(wy) we have 3 # «
and (8,«a) € E. Further,

[] =[x10--0mx, ] =[x10- - 0m), owy 0T, 0 0my_, OwWr_1 0xTy, ],
so that
2l = [y oy 0+ 0wy) = [y, o0, = ][y, o---o ]
owyr_joxy, by deleting

where g is the word obtained form zj0- - oz, owjox,0---0my, _,

xp, -+, and 2’ is the word obtained from z; o --- o, by deleting ;,, - , ;...
Suppose now that z is a word obtained from x by replacing z;,,--- ,z;, by letters
2l 2, € My, respectively. Since [y'] = [2'], we have
[l=[y om0 oz ]=[ylz, 0 0n]=Tao0z] O

We now remove the restriction that s(z,) = @ in Lemma 5.17.
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Lemma 5.18. Let a € V and x = x10---0oxz, € X*. Write

No(z)={li, 0, 1<l <<l <nh

Then
[2] = [2'][zi, 0+ 0wy, ]
where x' is the word obtained from xq o ---ox, by deleting the letters x;,,--- ,xy, .
Further, if z is a word obtained from x by replacing xi,,--- ,x1, by letters z;,,--- , 21, €

M., respectively, we have
[2] = [2][z1, 0 - 0 21, ]-

Proof. We are done with the case where s(x,,) = a, by Lemma 5.17. Suppose now that
s(xn) # a, and 80 I # n. Let p = 21 0---ox;, . Applications of Lemma 5.6 that are now
standard yield N, (p) = {l1,---,l.}. By Lemma 5.17, [p] = [p’ o ;, o - - - 0 x;, ] where p’
is the word obtained from p by deleting letters z;,,- -, z;,. We now have

[#] = [powj 410 -oxy]=[p om0 -0z, 02y, 110 0@y

To show the required result, we now consider the a-good word x;, o --- o z,. We now
claim that it is a-amenable. Clearly, we are done with the cases where either n =1, + 1
or n > [, +1 and there exists no [, < j < n such that s(z;) = a. Suppose therefore that
there exists I, < j < n such that s(z;) = a. As j ¢ Nq(x), we have that z;0---0x, is
not a-good, and so x;_o---ox, is a-amenable. Let ¢ be a reduced form of z; 110---0x),.
Since z;, o - -+ o &, is a-amenable and s(x,) # «, we have that § # « and (o, 8) € E for
all 8 € s(q) by Corollary 5.15. Therefore,

[2] =[P om0 om, 0m, 110 0xy] = [p' oz 00w, 0q] = [plogom 000y,
Since [p’ o q] = [2'], we have
[2] = [2'][@1, 0+ 0, ].

Suppose now that z is a word obtained from x by replacing z;,, -, 2, by letters
2y, 21, from M, respectively. Clearly, z = 2’ o x;, 41 0 -+ 0z, where 2’ is the word
obtained from p by replacing x;,,---,2i1, by 21, --,2, € M,. We have shown that
Nuo(p) ={l1,--- 1} and so from Lemma 5.17 we have [2'] = [p' 0 2, 0 -+ 0 2;,]. Then

[Z] = [Z/O‘CCZT+1O'~~O{EH} = [p/ozll o...ozlroq]

=[pogqoz, 0oz )=z, 0---02,] O
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The reader should note that we are not claiming that the maps ¢, and ¢, in
Lemma 5.19 are morphisms.

Lemma 5.19. Let o € V. Then the maps
Gq: X" —GP and py : X* — 9GP
defined by
Xpo =[x, 0--0xy, ] and £ = [Tmy © -+ 0 Tym,]

where x = x10---0x,, with

No(z)={l, -}, 1<h <<, <n
and

{my, - ,me} ={1,--+ ;n\Na(x), 1 <my <--- <my <,

induce maps

G0 9GP — 9GP and ), GP — GP

defined by

[13]80, =xdq and [x]tp, = xTqy.
Further, [z] = (zvq)(xda).

Proof. To show that ¢, and 1, are well defined we need to show that Rf C ker ¢, and
R! C kert),. Let L be the binary relation on X* defined by

L={(yoaozyoboz):y,z€ X" (a,b) € R}.

Since R! is the transitive closure of L, and ker ¢, and ker ¢, are, of course, equivalence

relations, it suffices to show that L C ker ¢, and L C kert,. This can be seen in a

routine manner by using Corollary 5.7 and considering (a,b) € R;4, R, and R, in turn.
It follows from Lemma 5.18 that [z] = (z¢4)(2¢s). O

Proposition 5.20. Let z = z1 0+ 0 2z, € X* such that s(z) is a complete subgraph such
that s(z;) # s(zi) for any 1 < j < k < n. Suppose that zp R* z;, in My, for 1 <k <n
and put 2’ = 2} o---0zl. Then [z] R* [¢/] in § 2.
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Proof. Let . = x10-- 02y, y = y10- -0y, € X* be such that [z][z] = [y][z]. We proceed
by induction on n to show [z][z'] = [y][z]. Clearly, the result is true when n = |z| = 0,
i.e. z =€ = 2z'. Suppose now that n > 0 and the result is true for all such z with |z|] < n.
Let s(z1) = a. Then s(z) # o and («, s(z)) € E for all 1 < k < n, so that certainly z
is a-good. Suppose that
NCE(‘T © Z) = {Tla te ,’I"l} and Na(yOZ) = {dla te adt}
where
rp<---<rrand dy < - <d;.
Since z = zj0-- -0z, is a complete block and s(z1) = a, we have that z; is the last letter
in x o z with support a and z is clearly a-good, so that r; = m + 1 by Definition 5.16.
Similarly, d; = h + 1. By Lemma 5.18,
[wo2z] = [x/OZQO"'OZn][mm 0-+-0my_, 021
and
[yozl=[y 0220 0z]lya, o 0ya,_, © 1]
By replacing the first letter z; of z by z] in « o z, we have
[wosho-oz)= [t/ 0z0 0 zlan 0 0w, 0]
by Lemma 5.18. Similarly,
[yozioozm]=[yoz0 - 0z]lys o oya_, ozl

On the other hand, by applying the maps ¢, and 1, to each side of [z 0 2] = [y o 2],
we have

[#' 0230 0zn] = [y 0zp0--0z], and [z, 0+ 0@y, 021] = [ya, 0+ 0 Ya,_, © 2.

Using Remark 2.4, the latter gives @, -+ ®r,_,21 = Ya, -+ Ya,_,21. As z1 R*z] in M,,
we have

/ !
Lry o Ty 121 = Ydy " Yde 121
so that [z, o+ omy_, 021 = [yay 0 0 Ya,_, © 21]. Therefore,

[wozfo ozl =[yozo oz
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and so
[x02)][z00 -0z, =[yozi][zz o002
Our inductive assumption now gives

[2][zozp0 oz ] = [wozllzpo oz =[yoz]lzpo- 0z

=[yllz1 0250 0z,].
The result follows by induction. O

Proposition 5.21. Let u € X* and let [u] = [a][v] where a,v € X* are such that all
letters contained in a are left invertible, and v = vy o --- o vy, is a left Foata normal
form with blocks v, 1 < k < n, such that vy contains no left invertible letters. Let
v1 = 2z10---02zs € X*. Suppose that for each 1 < j < s an idempotent z;r € My, is
chosen such that z;r R* zj in M.y, and put v =z o---0zF. Let [a] be a left inverse

of a] in 9. Then
[u] R* [a][v)][a]
and [a][vi"][a’] is idempotent.

Proof. Under the conditions of the hypothesis, it follows from (1) of Proposition 4.5 that
[v] R* [v1] and then from Proposition 5.20 that [v1] R* [v)]. Since [a/][a] = [¢], we have
[a'] R [e] and so certainly [a’] R* [e]. Then

[u] = [al[v] R* [a][vy"] R [a][v{][a’],
using the fact that R* is a left congruence. Further, [a][v]][a’] is idempotent by
Lemma 5.2. O

The main result of our paper now follows.

Theorem 5.22. The graph product 42 = 42(I', M) of left abundant monoids M =
{M, : a € V'} with respect to T is left abundant.

Proof. Let [u] € 4. By Lemma 4.2 we are guaranteed a decomposition of u as in
Proposition 5.21. The result now follows from the assumption that each vertex monoid
is left abundant. O

Of course, the left-right dual of Theorem 5.22 holds, and hence one may also deduce
that the graph product of abundant monoids is abundant. A consequence is worth stating
separately.
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Corollary 5.23. The graph product 42 = 4 P2(T';, M) of regular monoids M = {M,, :
a € V} with respect to I' is abundant.

6. Graph products of left Fountain monoids are left Fountain

We now discuss the left Fountainicity of the graph product % = 4 Z(T', M) of left
Fountain monoids M = {M,, : « € V'} with respect to I.

Our strategy is as follows. We know from Lemma 4.2 that any element of ¥ &2 has
reduced form aox where the letters of a are all left invertible, z = x0- - -ox,, is a left Foata
normal form with blocks x;, 1 < i < n, such that z; contains no left invertible letters.
From Proposition 4.5 we then have [a 0 2] R* [a o #1] and so certainly [a o ] R [a 0 21].
We take an idempotent of 4% in standard form u and examine the reduction processes
for the word u o a o z1 in the case [u o a o x1] = [a o 21]. This eventually enables us to
show that [uoaoxi] =[aox] if and only if [uoaoZ;] = [a o T;| where T; is obtained
from x; by replacing each letter by an idempotent in the same R-class in the relevant

vertex monoid. Hence [a o 21] R [a 0 Z1] but then with [a'] being a left inverse for [a] we
arrive at [a o 21] R [a o T; o a’]. The latter element is clearly idempotent.

To proceed, we rely on the analysis of a-good suffices of words provided in Section 5.
In addition, we need some further analysis of the way in which the product of two reduced
words reduces in 4.

It is worth remarking that if every vertex monoid has the property that left invertible
elements are also right invertible, then our arguments would need to be less delicate.
Since, in that case, [uoaox] = [aox1] if and only if [@' cuocaox1] = [z1], and the fact
that s(x1) is complete then makes the subsequent analysis somewhat easier.

Lemma 3.10 shows the different ways in which multiplying a reduced word by p € X\ I
leads to a reduced word. In some cases, we need to delete a letter of I, that is, use Step
(id) of Definition 3.1; in other cases, we need only Steps (v) and (e). This leads to the
following notion.

Definition 6.1. Let xt = z10---0x,, y =910+ 0 Yy, € X* be reduced words. We say
that x oy is S-reducible if in reducing x oy to a reduced form we only use Steps (v) and

(e) in Definition 3.1.

We use the term ‘S-reducible’ since using Steps (v) and (e) would be allowed in the
corresponding notion of a semigroup graph product: see Section 7.

Lemma 6.2. Let t =x10-- 02y, Yy =y10---0Yy € X* be reduced words. Suppose that
x oy is S-reducible. Then x oy shuffles to

pro---opyoy

and has reduced form
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qro---oqoy

where for all 1 < j < n, qj = xj; = pj or pj = x; 0y, and q; = x;y,, for some distinct
indices r; € {1,---,m}, and y' € X* is the word obtained from y by deleting the letters
Yr, -

Proof. We use induction on the length n of z. Clearly, the result is true for n = 1 by
Lemma 3.10. Suppose that n > 1 and the result is true for all reduced words z of length
strictly less than n. Let ' = x50 --ox,. Clearly, 2’ oy is also S-reducible, and so 2’ oy
shuffles to

up =pyo---op,oy
and has a reduced form
Uy =qzo---0ogquoy

where for all 2 < j <n, q; = x; = pj or p; = z; oy, and q; = x;y,, for some distinct
indices r; € {1,...,m}, and ¢’ is the word obtained from y by deleting the letters y, .
Now consider the words

wy = X1 0 up and wg = X1 °© Usg.

If ws is reduced then we are done, with p; = ¢1 = x1. Suppose therefore that ws is not
reduced. Since s(g;) = s(z;) for all 2 < j < n, the word 1 0 g2 0 --- 0 g, is reduced
by Remark 3.5. So, there must exist some letter y; in 3y’ with s(xz1) = s(y;) that can be
shuffled to the front of both u; and us. Clearly ¢ is distinct from any existing r;; we put
ry =t. As x oy is S-reducible, x1y,, is not an identity. Therefore, w shuffles to

piopgo---opyoy’
and, from Lemma 3.10, has reduced form
quogqeo---oguoy”

where p1 = 21 oy, and ¢ = z1y,, and y” is the word obtained by deleting y,, from
/
y. O

Corollary 6.3. Let « € V and let x,y € X* be reduced words such that x is not a-good
but x oy is a-good. Then x oy is not S-reducible.

Proof. Let z,y be as given. If x oy is S-reducible, then s(x) is a subset of the support
of the reduced form of x oy, by Lemma 6.2. Since = is not a-good, neither is z oy, a
contradiction. 0O
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In what follows, we use u = bo e o b’ to denote a standard form of an idempotent
[u] € 9P, as described in Definition 5.1. We use a oz to denote a word in X* satisfying
the following conditions:

(a) a=ajo---oa is a reduced word such that all letters in a are left invertible;

(b) x =1 0---oxy such that s(z) is complete and s(x;) # s(x;) forall 1 < j <t < k;

(c) there exists no j with 1 < j <1 such that (s(a;),s(a;)) € Eforall j+1 <t <[and
s(aj) € s(x).

The reader by now might think we should assume a o x is reduced and no letter in
x is left invertible. However, we need this rather looser set up. The reason for this will
become apparent later, when we apply Lemma 6.8 iteratively in Corollary 6.9.

Lemma 6.4. Let a o x be defined as above. Then

(i) foranyy=y10-- oy € X* such that s(y;) = s(x;) for all1 < j <k, aoy is of
the same form as a o x;
(ii) aoa’ is a reduced form of a o x, where &' is the word obtained from x by deleting
all letters in x which are identities;
(iii) for each o € s(x), No(aox) contains the unique letter x; in x such that s(x;) = a.

Proof. (i) and (ii) are clear.

(iii) Let @ € s(x) and let j be the unique index guaranteed by (b) such that s(z;) = a.
Since s(x) is complete, z; € Ny(a o ). Suppose (with some abuse of notation) that
ap € Ny(aox). Then s(ap) = e and apo---oa;ox is a-good, hence so is its reduced form
apo---oqox’. Let h <t <1 be the largest such that s(a;) = . Then (s(a;), s(a,)) € E
for all t +1 < r <, contradicting (c). Thus, Ny(aoz) = {z;}. O

In Corollary 6.6, and Lemmas 6.7 and 6.8 let a oz and u = bo e o b’ be defined as
above such that [u][aoz] = [aox], and let w =uoaox.

Lemma 6.5. Suppose that u is a-good. For any j € {1,--- ,n} we have b;- € Ny (u) if and
only if b; € Nqo(u).

Proof. Using Lemma 5.6, Corollary 5.7 and Lemma 5.5, the following are equivalent

b; € Na(u)

b o obj is a-good

bjo---0b; is a-good

by o---0b;is a-good

bjy10---0by,oeob is a-good

bjobjri0---0b,oeol is a-good
bj € No(u). O
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We can now make progress in the case where s(z1) = « and a o z is a-good.

Corollary 6.6. Suppose that s(x1) = a and a o x is a-good. Then for any j € {1,--- ,n}
we have b; € No(w) if and only if bj € Na(w).

Proof. Since a oz is a-good, so is u o a oz and hence from Lemma 5.6 so is u. Moreover
(with substantial abuse of notation), z € N, (u) if and only if z € N, (w), for any letter
z of u. The result follows from Lemma 6.5. O

Without the assumption that a o x is a-good, our analysis of the elements of N, (w)
becomes more delicate. We remark that in what follows, we could replace the suffix aox
of w by any word v and the same argument would apply to u o v as it does to w.

Lemma 6.7. Let a € V. If b & No(w) for all 1 < j < n, then b; ¢ Nu(w) for all
l<j<n

Proof. If a ¢ s(b) there is nothing to show. Otherwise, let h be greatest such that
s(bj,) = a, so that

’l):b;Lob;lilo-nob/loaom
is not a-good. Suppose that there exists some b; € N, (w), so that
ZijO-”Obnoeob:lo-nob/loaogj

is a-good. Notice that 5 < h.

Suppose for contradiction that b’ o a oz is not a-good. Then neither is eod’ caoz. To
see this, let y = g1 0- - -0y, be a reduced form of b’ oa oz, so that y is not a-good. Notice
that a product pg of two elements p, ¢ in the same vertex monoid with at least one of
p,q being a non-identity idempotent cannot be the identity, so that using Lemma 3.10
iteratively we see that e oy is S-reducible. It follows from Lemma 6.2 that e oy reduces
to

qo---ogmoy

where for all 1 <t < m, ¢; = e; or ¢4 = e;y,, for some distinct indices r;, and y’ is the
word obtained from y by deleting the letters y,,. Clearly, s(y) C s(q1 0 -0 ¢n 0 y'),
implying that g o --- 0 g, 0%’ is not a-good, and hence neither is e o ¥’ 0 @ o z.

By assumption,
z/:bjo-nobnoqlon-oqmoy/
is a-good. We next claim that it is a reduced form. Since s(q;) = s(e;) for 1 <t < m
and bjo---oby0ej0---0ey is a reduced form, we deduce that bjo---ob,0q10---0gm,
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is also reduced by Remark 3.5. Further, it is impossible to shuffle some b; (j <t < n)
in 2’ and glue it to some letter in 3, as this would imply that in the reduced form
bjo---obyoeob, o ob we may shuffle b, and glue it to b}, contradicting the fact
boeob' is reduced. Thus 2’ is indeed reduced. Since g; 0 - -0g,, 0y’ is not a-good, neither
is 2/, contradicting the fact that [z] = [2/] and b; € Ny (w).

We have shown that b’ o @ o x must be a-good. Since v is not a-good, there exists
B # « in the support of the reduced form of v such that («, 8) ¢ E. On the other hand,
b oaox and hence b, o---0 b;LH ov are a-good, Corollary 3.11 forces there to be some
[ with h < I <n such that s(b)) = . Since s(b;) = s(b;) and h > j, and 2’ is a reduced
form, we have that z is not a-good, which again contradicts our initial assumption that
bj € N, (w) O

We can now show that, given [u o a o x] = [a o x], we can replace a letter of x by any
corresponding element in the same R-class in the relevant vertex monoid. Note that it
may be we replace a letter not in I by a letter in I. It is for this reason that our set-up
for a oz is so delicate.

Lemma 6.8. Let s(z1) = a and let & =z} owg0---oxy, where x) € M, is chosen so that
x1 Ry in M,. Then

[ul[acz] = [aoz]
implies that
[ul[a o] = [aoz].
Proof. If a o x is a-good, then by Corollary 6.6 and Lemma 6.4 (iii)
No(w) = {be,, -+ by, en, by -+ by 21} or No(w) = {be,, -+ by, b) -+ by @1}

forsome 0 < r <nandl <t < - <t, <nand 1l < h < m. Whether or not
a o x is a-good, in the case where b; ¢ Ny(uoaox) for all 1 < j < n, we have that
bj ¢ No(uoaox)forall 1 <j<mn,byLemma 6.7, so that Ny (u 0 a o z) equals either
{en,z1} or {x1} for some 1 < h < m.

In either of these two special cases, let f be the idempotent by, ~~thethT by, or
b, -+ - by, by, ---b ; note that we could have f = e. Then by Lemma 5.18,

llaoa] = [ullaowr o oxy] = [W[f o], or [aa] if f = c,

where w’ is the word obtained from w by deleting all letters in N, (w). By replacing the
first letter 21 of x by 2} in woa oz, we have

[Wllaomyoxso- - om] = [w][f oal], or ],
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again by Lemma 5.18.

On the other hand, by applying the maps ¢, and ¥, to [u][a o z] and [a o z], we have
[W] = [(aox)] and [f o x1] = [z1] (if f # €) where (a o z)" is the word obtained from
a o z by deleting the first letter x; of . The latter gives fx; = x1 in M, (if f # €). If
f € M, is idempotent, then given z; R x} in M, we have fz} = 2. Therefore

ullaozi ozzo-oay] = [(aoa)]z}] = [aoa) ompo - oz
so that
[ulla o Z] = [a o Z].

We now proceed by induction on the length of u. If |u| = 1, then u = e; for some non-
identity idempotent e; from a vertex monoid. Clearly b; ¢ N,(w) for all j € {1,...,n}
so that if [u][a o 2] = [a o z], then [u][a o ] = [a o Z], by the above.

Suppose now that 1 < |u| and the result is true for all idempotents having length
less than w, when written in standard form. By the above we only need to consider the
case where a o x is not a-good and there exists some b; € Ny(uoaox). We pick j to
be smallest such index. Then b}71 o---obj oaoxis a-good. Since z is a-good we have
b;;l o---0bjoa is a-good and since aox is not a-good we also have that a is not a-good.
We see from Corollary 6.3 that b%_; o---0bj oa is not S-reducible. There must therefore
be a smallest ¢ such that b, o --- o b} oa is S-reducible, but b;,, o b; o ---0bj oa is not.
By Lemma 6.2, we know b} o --- o b} o a shuffles to some

Pto"'oploa/
and reduces to a reduced form
go---oqod

where for all 1 <7 <t we have ¢, = bj. = p; or p; = b}. 0 a,, and ¢, = b.a,;, for some
distinct indices 7; € {1,...,1}, and @’ is the word obtained from a by deleting the letters
Qr; .

Now consider the reduced form of

bii10q 0---0gioa or, equivalently, b, op,o---oproa.

Since s(q,) = s(b,.) = s(p,) for all 1 < r <t and b}, o b, o---ob is a reduced form,
we have that b}, 0 g 0---0qp is a reduced form. As b;,; ob;0---0by oa and hence
biyp0q0---0q oa is not S-reducible, there must be a letter a,,., in a’ such that
s(biyq1) = s(ar,,), biy1ar,, is an identity and such that we must be able to shuffle a,, , ,
to the front of ¢, o --- 0 ¢y o a’. Note that we can therefore also shuffle a,,,, to the front
of pyo---0opjoa’ and hence to the front of a, and b;; to the right of p; o ---op; and
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hence to the right of b; o - -- o b}. We can therefore assume that ¢t +1 =1 = r44; so that
bia is an identity.
We now have
[uoaoz]|=1[byo---ob,o0eob,o0---obyoay---oa ox|=][ao]
so that multiplying by [b}] on the left we have

[bzo---obnoeob;lo-nobé][ag-noalox]:[QQO---oalox]. (4)

We note that as--- o0 a; o x is a word of the correct form for us to apply our inductive
assumption, which gives us that

[bpo---obyoeob o -oblllaz - oa 0f] =lasgo--o0a; o7 (5)
Now multiplying Equation (5) by [b1] on the left and re-instating b} o a; we obtain
[uoaoZ]=[bioazo---0a 07
But multiplying Equation (4) by [b1] on the left and re-instating b} o a; we also obtain
[uocaoz] =[aox]=[byoago---oa oxl.

Let 2’ be the word obtained from x by deleting letters which are identities. Then

[ucaoa’|=aocx']=[bjoazo---0a, 0]
Since a o 2’ is a reduced form by Lemma 6.4 (ii) and |by cago---0a; 0 2’| = |a o 2’|, we
deduce that by oag o ---0a; oz’ is a reduced form, so that [a] = [by o ag o --- 0 a] by

Lemma 3.14. Therefore,
[uocaoZ]=[acz]. O

Corollary 6.9. Suppose that for each 1 < j < k we have m; € M(y,) such that x; 7%33; in
My(y,y. Let £ =a) oxho---oxy. Then

[aoz]R[ao .
Proof. Suppose that

[u][a o x] = [ao x].

By Lemma 6.8, we have
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[UHCLOJE/10$2Q...Q(I;]€]:[aoxllonO...oxk].

Clearly, we may shuffle 2] to the back of 2} o 23 0 - - 0 2} and note that, by Lemma 6.4
(i), aoxg 0 -+ 0z 0 2 is of the correct form to apply Lemma 6.8. By repeating this

process, and reshuffling, we obtain [u][a o Z] = [a o Z].
Since a o T is of the same form as a o z, we may show that [u][a o Z] = [a o Z] implies
[u][aocx] = [aox] by exactly the same arguments as above. Therefore, [aoz] R [aoZ]. O

We can now prove our second main result.

Theorem 6.10. The graph product 4P = 4P (T, M) of left Fountain monoids M =
{M,, : a« € V'} with respect to T is a left Fountain monoid.

Proof. Let [w] € 2. From Proposition 4.5 we may write [w] = [a][v], where all letters
contained in a are left invertible, aov is a reduced form, and v = vy 0- - -ov,, is a left Foata
normal form with blocks v;, 1 <4 < m, such that v; contains no left invertible letters; we
prefer to use v here since for convenience in this section we have been using x to denote
a single block. Suppose that v1 = 21 0---oxp = x and for each j € {1,...,k} choose an
idempotent :E;r € Mz, such that z; R x;r in M) Let vf = xf o---0 xg = z. Let
[a'] be a left inverse for [a]. Using the fact that R and R* are left congruences contained
in ﬁ, Proposition 4.5 and Corollary 6.9 give us that

[a][v] R [a][en] R [a][vi'] R [a][vf][a],

the final step following from the fact [a'], being right invertible, is R-related to the
identity of ¥ 2. We have earlier seen that [a][v]"][a’] is an idempotent, so that ¢ 2 is
indeed a left Fountain monoid. O

Of course, the left-right dual of Theorem 6.10 holds, and hence one may also deduce
that the graph product of Fountain monoids is Fountain.

7. Applications and open questions

The aim of this section is to explore some applications of Theorems 5.22 and 6.10.
Further, we will discuss some open problems related to this work.

We make the following observation before re-obtaining one of the main results of [24].
If M is a right cancellative monoid with identity 1 and b € M is a left inverse of a € M,
then la = al = a(ba) = (ab)a, giving 1 = ab, so that b is also a right inverse of a, and
hence an inverse.

Corollary 7.1. [2/, Theorem 1.5] The graph product ¢ = 4P (', M) of right cancella-
tive monoids M = {M, : o € V'} with respect to T' is right cancellative.
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Proof. In Proposition 5.21 we take zf as the identity of the vertex monoid M,(,,) for
each 1 < j < s. By Lemma 4.1, bearing in mind [a] is a reduced form, we have that [a/]
as a product of left inverses (hence two-sided inverses) of the letters in a. Then

[u] R* [a][vy] (']

I
=
=
B
I
&

and it follows from the comment after Remark 2.7 that ¢4 &7 is right cancellative. O

Of course, the corresponding result is true for graph products of left cancellative, and
cancellative, monoids.

We now turn our attention to graph products of semigroups [1]. This is an essentially
different construction to that for monoids, since semigroups are algebras with a different
signature from that for monoids. The combinatorics of graph products of semigroups
are significantly easier to handle than graph products of monoids; they behave in a way
more akin to graph monoids, where the only unit in any vertex monoid is the identity.

As in the case for monoids, graph products of semigroups are given by a presentation.
The difference here is that a presentation denotes a quotient of a free semigroup X on
a set X, where XT = X*\ {¢} is the set of non-empty words on X under juxtaposition.
Still with T' = T'(V, E), let S = {So : & € V} be a set of semigroups, called vertex
semigroups, such that Sg NS, =0 forall #~ e V.

Definition 7.2. The graph product ¢ .7 = 4 P.#(T,S) of S with respect to I is defined
by the presentation

GRS = (X | R

where X = S, and R® = R, U R,, with R, and R, as in Definition 2.1.

acV

As before, identifying a relation in R® with a pair in X x X+, we have
G427 =Xt )(R*)*

where (R*)! is the congruence on X T generated by R*.

Note that, in Definition 7.2, even if S, and S are monoids for some «, 5 € V, we do
not identify their identities in 4 42.%. We denote the (R®)*-class of ¥y 0---0x, € X+
in9PS by |r10---0x,|. As we remarked in Section 1, graph products of semigroups
do not possess the complexities existing for monoid (or, indeed, group) graph products.
Essentially, this is because (with obvious notation), for words z,y € X we have s(z) C
s(w) for any word w such that |w]| = |ay| or |yx]. Moreover, if z is of minimal length
in its (R®)*-class, then |z| < |w]|. Details will appear in [1]. However, the following result
will enable us to use results for graph products of monoids to deduce corresponding
results for semigroups.
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Proposition 7.3. Let ¥ 2.7 be the graph product of semigroups S = {S, : a € V'} with
respect to ' =T'(V, E). For each a € V' let M, be the semigroup S, with an identity 1,
adjoined whether or not S, is a monoid and put M = {M, : o € V'}.

Let 9 be the graph product of monoids M with respect to I'. Then the map

0: 9P — 9GP |x10...0,| = [T10...0Ty)
is a (semigroup) embedding.

Proof. For clarity here we take ¥ = |J

morphism

Sy and X = |J M,. Let a semigroup

veV veV

k: YT 9w

be defined by its action on generators as yx = [y] for all y € Y. We have (with slight
abuse of notation) R®* C R, and it follows that x induces the semigroup morphism 6 as
given.

We now show that 6 is one-one. Let 422.%" be the monoid obtained from ¥.2.7 by
adjoining an identity 1. We define a monoid morphism

£ X — 9P

by its action on generators as

mfz{m reyY

1 x =1, for some a € V.

We claim that R C ker €.
Let u,v € M, for some o € V. If u,v € S, then

(uov)§ = (ug)(v€) = u]v] = [uov] = [w] = (uv)¢.
Ifu=1, and v € S, then
(uov)§ = (uf)(v€) = 1|v] = [v] = v€ = (uv)¢
and dually if u € S, and v =1,. If u = v = 1, then
(uov)é = (ug)(v€) = 11 = 1 = (w)§.
Now consider u € M, v € Mg with (a,8) € E. If u =1, and v = 1, then

(uov)€ = (1, 0 15)¢ = (L&) (L58) = 11 = (156)(1a8) = (15 0 L)€ = (vou)é.
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Ifu=1, and v € S5, then
(uov)§ =1[v] = [v]1 = (vou)§
and dually if u € S, and v = 15. If u € S, and v € Sg, then
(wov)§ = [u]|v] = [uov| = [vou] = |v]|u] = [vouls.

Finally, for « € V', we have 1,£ =1 = €£.
We have shown that R C ker . It follows that R C ker £ and hence

9P 9GP [w] — we

is a well defined morphism. Further, for any |w| € ¥ 2.7, we have

so that #€ = 1¢ 2., and hence 6 is an embedding. O
The result below will appear in [1].

Corollary 7.4. The graph product 4 2.7 of left abundant semigroups S = {S : @« € V'}
with respect to T" is left abundant.

Proof. Let Y = |J,cy Sa and X = {J,cy Mo, where M, = S, U{1,} as in Proposi-
tion 7.3. Since each S, is left abundant, it is easy to check that the same is true of each
My, and, moreover, if u,v € S, then ©uR* v in S, if and only if u R* v in M,,.

It follows from Proposition 7.3 that ¥ £2.% is isomorphic to a subsemigroup .4 of
9P, where

N ={[x10-oxy]ix; €Y, 1<i<n}
and
0GRS — N w10 -0omp] > [T10 - 0my)

is an isomorphism.

Let z =x10---0z, € YT and let v =v;0---0v,, € X* be a left Foata normal
form of x with blocks v;, 1 < i < m. Since the only left or right invertible element of any
vertex monoid M, is 1., we have that v € Y and v contains no left invertible letters.
Choosing v;” € Y as in Proposition 5.21 and noticing that a = € in that result, we have
that [z] = [v] R* [v]] in 44 and hence in 4. It follows that |z| R* v | in ¥ 2. O

The proof of the following result is similar to that of Corollary 7.4.
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Corollary 7.5. The graph product 4 2.7 of left Fountain semigroups S = {Sy : a« € V'}
is a left Fountain semigroup.

Of course, the right (two-sided) versions of Corollaries 7.4 and 7.5 also hold.

We remarked in Section 2 that free products and restricted direct products of monoids
can be regarded as special cases of graph products of monoids. We therefore have the
following result.

Corollary 7.6. The free product F P and the restricted direct product ®qcv My, of left
abundant monoids (resp. left Fountain monoids) M = {M, : a € V'} are left abundant
(resp. left Fountain,).

Remark 7.7. The corresponding statement to that of Corollary 7.6 is true for semigroups
and in the right/two-sided case for both monoids and semigroups.

We finish this paper by posing the following open problems. Let M be a monoid. We
have commented that the relations R and R* are left congruences on M but, in general,
this need not be true of R. Since R being a left congruence is an important property in
many structural results for left Fountain monoids and semigroups we first pose:

Question 7.8. Let ¥ & = 4 Z(T', M) be a graph product of monoids M = {M, : a € V}
with respect to I', where R is a left congruence on each M,. Is R a left congruence on

G P

The above could first be asked in the corresponding case for semigroups, and starting
with the vertex semigroup being left Fountain.

A monoid is inverse if it is regular and its idempotents commute. Inverse monoids
form a variety not of monoids but of unary monoids, that is, monoids equipped with
an additional unary operation. In this case the unary operation is given by a +— a™!,
where a! is the unique element such that ¢ = aa~'a and ¢! = a *aa~'. The notion
of a graph product of inverse monoids (see [10,14], at least for the case where the vertex
monoids are free) is analogous to that for monoids and semigroups, and is obtained as a
quotient of a free inverse monoid, by relations given as for R; from its very construction,
it is inverse. A monoid is left adequate if it is left abundant and its idempotents commute.
These are the first non-regular analogues of inverse monoids, and form quasivarieties of
unary monoids. Here the unary operation is a — a™ where a™ is the unique idempotent
in the R*-class of a. We therefore ask the following question, which can be interpreted

in more than one way. Of course, one could also begin with the semigroup case.
Question 7.9. Is the graph product of left adequate monoids left adequate?

Finally, we would hope that using left Foata normal forms and other reduction tech-
niques developed in this article we could both find new approaches to old results (such as
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calculating centralizers in graph products of groups [3]) and extend these to the monoid
case. For example, we pose:

Question 7.10. Determine centralisers in graph products of monoids.
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