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Abstract

GP 2 is an experimental programming language based on graph transformation rules which aims to

facilitate program analysis and verification. However, implementing graph algorithms efficiently in a

rule-based language is challenging because graph pattern matching is expensive. GP 2 mitigates

this problem by providing rooted rules which, under mild conditions, can be matched in constant

time. In this paper, we present linear-time GP 2 programs for three problems: tree recognition,

binary directed acyclic graph (DAG) recognition, and topological sorting. In each case, we show the

correctness of the program, prove its linear time complexity, and also give empirical evidence for the

linear run time. For DAG recognition and topological sorting, the linear behaviour is achieved by

implementing depth-first search strategies based on an encoding of stacks in graphs.
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1 Introduction

Rule-based graph transformation was established as a research field in the 1970s and has

since then been the subject of countless articles. While many of these contributions have a

theoretical nature (see the monograph [8] for a recent overview), there has also been work on

languages and tools for executing and analysing graph transformation systems.

Languages based on graph transformation rules include AGG [18], GReAT [1], GROOVE

[10], GrGen.Net [13], Henshin [3] and PORGY [9]. This paper focuses on GP 2 [14], an

experimental graph programming language which aims to facilitate formal reasoning on

programs. The language has a simple formal semantics and is computationally complete

in that every computable function on graphs can be programmed [15]. Research on graph

programs has provided, for example, a Hoare-calculus for program verification [16, 17] and a

static analysis for confluence checking [12].

A challenge for the design and implementation of graph transformation languages is to

narrow the performance gap between imperative and rule-based graph programming. The

bottleneck for achieving fast graph transformation is the cost of graph matching. In general,

matching the left-hand graph L of a rule within a host graph G requires time size(G)size(L)

(which is polynomial since L is fixed). As a consequence, linear-time imperative graph

algorithms may be slowed down to polynomial time when they are recast as rule-based graph

programs.
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To mitigate this problem, GP 2 supports rooted graph transformation which was first

proposed by Dörr [7]. The idea is to distinguish certain nodes as roots and to match roots in

rules with roots in host graphs. Then only the neighbourhood of host graph roots needs to

be searched for matches, allowing, under mild conditions, to match rules in constant time.

In [5], fast rules were identified as a class of rooted rules that can be applied in constant

time if host graphs have a bounded node degree and contain a bounded number of roots.

The condition of a bounded number of host graph roots can be satisfied by requiring

unrooted input graphs and using in loops only rules that do not increase the number of roots.

This simply means that no such rule must have more roots in its right-hand side than in its

left-hand side. (A refined condition considers the “root balance” of all rules in a loop body

simultaneously.) The condition that host graphs must have a bounded node degree depends

on the application domain of a program. For example, traffic networks or digital circuits can

be considered as graphs of bounded degree.

The first linear-time graph problem implemented by a GP 2 program with fast rules was

2-colouring. In [6] it is shown that this program colours connected graphs of bounded degree

in linear time. The compiled program even matches the speed of Sedgewick’s textbook C

program [19] on grid graphs of up to 100,000 nodes.

In this paper, we continue to provide evidence that rooted graph programs can rival the

time complexity of graph algorithms (on bounded-degree graphs) in conventional programming

languages. We present three new case studies: recognition of trees, recognition of binary

DAGs, and topological sorting of acyclic graphs. Each of these problems is solvable in linear

time with algorithms in imperative languages. For each problem, we present a GP 2 program

with fast rules, show its correctness, and prove its linear time complexity on graphs of bounded

node degree. We also give empirical evidence for the linear run time by presenting benchmark

results for graphs of up to 100,000 nodes in various graph classes. For DAG recognition

and topological sorting, the linear behaviour is achieved by implementing depth-first search

strategies based on an encoding of stacks in host graphs.

It is worth noting that rooted rules per se are not a blueprint for imitating algorithms

in imperative languages. This is because GP 2 intentionally does not provide access to the

graph data structure of its implementation. As a consequence, for example, currently there

seems to be no way of traversing arbitrary disconnected graphs with GP 2 in linear time.

2 The Graph Programming Language GP 2

This section briefly introduces GP 2, a non-deterministic language based on graph-transfor-

mation rules, first defined in [14]. Up-to-date versions of the syntax and semantics of GP 2

can be found in [4]. The language is implemented by a compiler generating C code [6].

2.1 Graphs, Rules and Programs

GP 2 programs transform input graphs into output graphs, where graphs are directed and

may contain parallel edges and loops. Both nodes and edges are labelled with lists consisting

of integers and character strings. This includes the special case of items labelled with the

empty list which may be considered as “unlabelled”.

The principal programming construct in GP 2 consist of conditional graph transformation

rules labelled with expressions. For example, the rule i0_push in Figure 6 has two formal

parameters of type list, a left-hand graph and a right-hand graph which are specified

graphically, and a textual condition starting with the keyword where.
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The small numbers attached to nodes are identifiers, all other text in the graphs consist

of labels. Parameters are typed but in this paper we only need the most general type list

which represents lists with arbitrary values.

Besides carrying expressions, nodes and edges can be marked red, green or blue. In

addition, nodes can be marked grey and edges can be dashed. For example, rule i0_push in

Figure 6 contains red and blue nodes and a blue edge. Marks are convenient, among other

things, to record visited items during a graph traversal and to encode auxiliary structures in

graphs. The programs in the following sections use marks extensively.

Rules operate on host graphs which are labelled with constant values (lists containing

integers and character strings). Formally, the application of a rule to a host graph is

defined as a two-stage process in which first the rule is instantiated by replacing all variables

with values of the same type, and evaluating all expressions. This yields a standard rule

(without expressions) in the so-called double-pushout approach with relabelling [11]. In the

second stage, the instantiated rule is applied to the host graph by constructing two suitable

pushouts. We refer to [4] for details and only give an equivalent operational description of

rule application.

Applying a rule L ⇒ R to a host graph G works roughly as follows: (1) Replace the

variables in L and R with constant values and evaluate the expressions in L and R, to

obtain an instantiated rule L̂ ⇒ R̂. (2) Choose a subgraph S of G isomorphic to L̂ such

that the dangling condition and the rule’s application condition are satisfied (see below). (3)

Replace S with R̂ as follows: numbered nodes stay in place (possibly relabelled), edges and

unnumbered nodes of L̂ are deleted, and edges and unnumbered nodes of R̂ are inserted.

In this construction, the dangling condition requires that nodes in S corresponding to

unnumbered nodes in L̂ (which should be deleted) must not be incident with edges outside

S. The rule’s application condition is evaluated after variables have been replaced with the

corresponding values of L̂, and node identifiers of L with the corresponding identifiers of S.

For example, the condition indeg(1) = 0 of rule i0_push in Figure 6 requires that node g(1)

has no incoming edges, where g(1) is the node in S corresponding to 1.

A program consists of declarations of conditional rules and procedures, and exactly

one declaration of a main command sequence, which is a distinct procedure named Main.

Procedures must be non-recursive, they can be seen as macros. We describe GP 2’s main

control constructs.

The call of a rule set {r1, . . . , rn} non-deterministically applies one of the rules whose

left-hand graph matches a subgraph of the host graph such that the dangling condition and

the rule’s application condition are satisfied. The call fails if none of the rules is applicable

to the host graph.

The command if C then P else Q is executed on a host graph G by first executing C

on a copy of G. If this results in a graph, P is executed on the original graph G; otherwise,

if C fails, Q is executed on G. The try command has a similar effect, except that P is

executed on the result of C’s execution.

The loop command P ! executes the body P repeatedly until it fails. When this is the

case, P ! terminates with the graph on which the body was entered for the last time. The

break command inside a loop terminates that loop and transfers control to the command

following the loop.

In general, the execution of a program on a host graph may result in different graphs,

fail, or diverge. The operational semantics of GP 2 defines a semantic function which maps

each host graph to the set of all possible outcomes. See, for example, [15].

CALCO 2019
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2.2 Rooted Programs

The bottleneck for efficiently implementing algorithms in a language based on graph trans-

formation rules is the cost of graph matching. In general, to match the left-hand graph L of a

rule within a host graph G requires time polynomial in the size of L [5, 6]. As a consequence,

linear-time graph algorithms in imperative languages may be slowed down to polynomial

time when they are recast as rule-based programs.

To speed up matching, GP 2 supports rooted graph transformation where graphs in rules

and host graphs are equipped with so-called root nodes. Roots in rules must match roots in

the host graph so that matches are restricted to the neighbourhood of the host graph’s roots.

We draw root nodes using double circles. For example, in the rule prune of Figure 2, the

node labelled y in the left-hand side and the single node in the right-hand side are roots.

A conditional rule 〈L ⇒ R, c〉 is fast if (1) each node in L is undirectedly reachable from

some root, (2) neither L nor R contain repeated occurrences of list, string or atom variables,

and (3) the condition c contains neither an edge predicate nor a test e1=e2 or e1!=e2 where

both e1 and e2 contain a list, string or atom variable.

Conditions (2) and (3) will be satisfied by all rules occurring in the following sections; in

particular, we neither use the edge predicate nor the equality tests. For example, the rules

prune and push in Figure 2 are fast rules.

◮ Theorem 1 (Complexity of matching fast rules [5]). Rooted graph matching can be imple-

mented to run in constant time for fast rules, provided there are upper bounds on the maximal

node degree and the number of roots in host graphs.

When analysing the time complexity of rules and programs, we assume that these are

fixed. This is customary in algorithm analysis where programs are fixed and running time is

measured in terms of input size [2, 20]. In our setting, the input size is the size of a host

graph. The implementation of GP 2 does match fast rooted rules in constant time [6].

3 Recognising Trees

A tree is a graph containing a node from which there is a unique directed path to each node

in the graph. It is easy to see that it is possible to generate the collection of all trees by

inductively adding new leaf nodes to the discrete graph of size one. Thus, given an input

graph, if we prune leaf nodes as long as possible and end up with the discrete graph of size

one, then the start graph must have been a tree. Figure 1 is an implementation of this idea

in GP 2.

Main = not_empty; prune!; if Check then fail

Check = {two_nodes, has_loop}

not_empty(a,x,y:list) prune(a,x,y:list)

x ⇒ x

1 1

x y ⇒ x

1 1

a

two_nodes(x,y:list) has_loop(a,x:list)

x y ⇒ x y

1 2 1 2

x ⇒ x

1 1a a

Figure 1 The GP 2 program is-tree-slow.
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◮ Definition 2 (Tree recognition specification). The tree recognition specification is as follows.

Input: An arbitrary labelled graph with every node coloured grey, no root nodes, and no

other marks.

Output: Fail if and only if the input is not a tree.

◮ Theorem 3 (Correctness of is-tree-slow). The program is-tree-slow fulfills the tree

recognition specification.

Proof. Similar to the proof of Theorem 7. ◭

◮ Proposition 4 (Termination of prune!). prune! terminates after at most |VG| steps.

Proof. If G ⇒ H, then |VG| > |VH |. Suppose there were an infinite sequence of derivations

G0 ⇒ G1 ⇒ G2 ⇒ · · ·, then there would be an infinite descending chain of natural numbers

|VG0
| > |VG1

| > |VG2
| > · · ·, which contradicts the well-ordering of N. The last part is

immediate since there are only VG natural numbers less than VG. ◭

◮ Theorem 5 (Complexity of is-tree-slow). Given an input graph of bounded degree,

is-tree-slow will terminate in quadratic time with respect to the number of nodes in the

input graph.

Proof. Clearly not_empty and Check run in linear time. Unfortunately prune is not a fast

rule, and so it takes linear time to find a match. Finding a match for prune takes linear time

and so by Proposition 4, prune! terminates in quadratic time. ◭

Unfortunately, our program does not run in linear time due to our rules not being such

that we have constant time matching. We need to modify the program so that we can always

perform a match in constant time. Figure 2 is a refined implementation, using root nodes.

We will see that this program is not only correct, but always terminates in linear time.

Main = init; Reduce!; if Check then fail

Reduce = {prune, push}

Check = {two_nodes, has_loop}

init(x:list) two_nodes(x,y:list) has_loop(a,x:list)

x ⇒ x

1 1

x y ⇒ x y

1 2 1 2

x ⇒ x

1 1a a

prune(a,x,y:list) push(a,x,y:list)

x y ⇒ x

1 1

a
x y ⇒ x y

1 2 1 2

a a

Figure 2 The GP 2 program is-tree.

◮ Proposition 6 (Correctness of Reduce!). Let G be a rooted input tree and G ⇒∗

Reduce H.

Then, either |VH | = 1 or H is not in normal form.

Proof. By Lemma 17, |VH | ≥ 1. If |VG| = 1, then G is in normal form. Otherwise, either

the root node has no children, or it has at least one grey child. In the first case, prune must

be applicable, and in the second, push. Suppose G ⇒∗

Reduce H. If |VH | = 1, then H is in

normal form by the proof to Lemma 17. Otherwise, by Lemma 16 H is a tree and |VH | > 1.

Now, the root-node in H (Lemma 17) must have a non-empty neighbourhood. If it has

no children, then prune must be applicable. Otherwise, push must be applicable, since by

Corollary 19, there must be a grey node child. So H is not in normal form. ◭

CALCO 2019
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◮ Theorem 7 (Correctness of is-tree). The program is-tree fulfills the tree recognition

specification.

Proof. The init rule will fail if the input graph is empty, otherwise, it will make exactly

one node rooted. The Reduce! step derives the singleton discrete graph if and only if the

input was a tree (Proposition 6 and Lemma 16). Finally, by Lemma 17, Reduce! cannot

derive the empty graph, so it is sufficient for Check to test if there is more than one node, or

a loop edge. ◭

◮ Proposition 8 (Termination of Reduce!). Reduce! terminates after at most 2|VG| steps.

Proof. Let #G be the number of nodes, and �G be the number of grey nodes. If G ⇒prune H,

then #G > #H and �G > �H. If G ⇒push H then #G = #H and �G > �H. Suppose

there were an infinite sequence of derivations G0 ⇒ G1 ⇒ G2 ⇒ · · ·, then there would be an

infinite descending chain of natural numbers #G0 +�G0 > #G1 +�G1 > #G2 +�G2 > · · ·,

which contradicts the well-ordering of N. To see the last part, notice that �G ≤ #G for all

graphs G, so the result is immediate since there are only 2#G natural numbers less than

2#G. ◭

◮ Theorem 9 (Complexity of is-tree). Given an input graph of bounded degree, is-tree

will terminate in linear time with respect to the number of nodes in the input graph.

Proof. Clearly init and Check run in linear time. Since push and prune are fast rules, they

take only constant time (Theorem 1), and then by Proposition 8, Reduce can only be applied

a linear number of times. Thus, Reduce! terminates in linear time too. ◭

(a) Star Graph. (b) Grid Graph.

(c) Binary Tree. (d) Linked List.

Figure 3 Types of Graph.

We have performed empirical benchmarking to verify the complexity of the program,

testing it with Linked Lists, Binary Trees, Grid Graphs, and Star Graphs (Figure 3). Star

Graphs are not of bounded degree, so we saw quadratic time complexity as expected. The

other graphs are of bounded degree, thus we observed linear time complexity (Figure 4).

4 Recognising Binary DAGs

A directed acyclic graph (DAG) is a graph containing no directed cycles. A DAG is binary if

each of its nodes has an outdegree of at most two.
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Figure 4 Measured performance of is-tree.

Main = try SearchIndeg0Nodes then (if nonempty_stack then skip else fail;

ReduceIndeg0Nodes); if anything then fail

nonempty_stack (x:list) anything (x:list)

x ⇒ x

1 1

x ⇒ x

1 1

Figure 5 The GP 2 Program is-bin-dag.

SearchIndeg0Nodes and ReduceIndeg0Nodes are defined in Subsection 4.1. The idea

behind recognising connected binary DAGs is as follows. First, using SearchIndeg0Nodes,

all indegree-0 nodes of the input graph are identified. Then, in ReduceIndeg0Nodes, if any

indegree-0 nodes have been found, one of them is deleted, and all of its children that become

a new indegree-0 node get designated as such. This is repeated until no indegree-0 nodes are

left. Every time an indegree-0 node is checked, the number of its children are checked as

well. If there are any leftover nodes (i.e. nodes that never had indegree-0 in the execution),

then there were no directed cycles, and the input graph is a DAG.

◮ Theorem 10 (Correctness of is-bin-dag). The program is-bin-dag fulfills the following

specification.

Input: A connected graph G with grey unrooted nodes and unmarked edges.

Output: The empty graph if G is a binary DAG, and failure otherwise.

Proof. If G is the empty graph, a DAG, SearchIndeg0Nodes fails by Proposition 11,

anything does not match, and the output is the empty graph. So assume G is non-empty.

If G has no indegree-0 nodes, SearchIndeg0Nodes succeeds by Proposition 11 and does

not mark ny nodes blue. So nonempty_stack will not match, and fail will be invoked. So

assume G has indegree-0 nodes.

Then Propositions 11 and 12 can be applied to deduce the following. SearchIndeg0Nodes

succeeds, nonempty_stack matches, then ReduceIndeg0Nodes gets applied. If G is a binary

DAG, the host graph becomes the empty graph, anything will not match, and the output is

the empty graph. If G is not a binary DAG, there’s failure, or a non-empty graph which

results in failure since anything is matched. ◭

CALCO 2019
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4.1 Correctness of Procedures

The proof of Theorem 10 depends upon the correctness of the procedures SearchIndeg0Nodes

and ReduceIndeg0Nodes. We will now give their definitions and prove their correctness.

SearchIndeg0Nodes, as seen in Figure 6, is an undirected modification of depth first

search (DFS) as implemented by Bak and Plump [5] [4], with a few key differences. Using

DFS ensures that each node is visited. The blue nodes linked with blue edges are a GP 2

implementation of stacks. The top of the stack is the only blue root, making it accessible

in constant time. The rules with bidirectional edges (a GP 2 construct) in Figure 6 are

semantically equivalent to a non-deterministic rule set call of two distinct variations of that

rule with directed edges. The edges in the right and left hand side of these rules have the

same orientation.

SearchIndeg0Nodes = init; (i0_forward!; try i0_push else (try i0_stack);

try i0_back_red else (try i0_back_blue else break))!

init (x:list) i0_forward (a,x,y:list)

x ⇒ x

1 1

x y ⇒ x y

1 2 1 2

a a

i0_push (x,y:list) i0_stack (x:list)

x y ⇒ x y

1 2 1 2

where indeg(1)=0

x ⇒ x

1 1

where indeg(1)=0

i0_back_red (a,x,y:list) i0_back_blue (a,x,y:list)

x y ⇒ x y

1 2 1 2

a a
x y ⇒ x y

1 2 1 2

a a

Figure 6 The SearchIndeg0Nodes procedure.

⇒ ⇒ ⇒ ⇒ ⇒∗

⇓

⇐∗⇐⇐⇐∗⇐

Figure 7 Example execution of SearchIndeg0Nodes.

Between the forward and back steps lies the command sequence try i0_push else (try

i0_stack). Its purpose is to push the node currently visited by the DFS if it has indegree-0.

If the stack is nonexistent, there are no blue nodes, and i0_push fails. So the program tries

to apply i0_stack, turning the node into the initial stack element (if its indegree is 0). After
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the stack has been created, i0_push will always be applicable for indegree-0 nodes.

Since the current node may be marked blue by the stack operations after the previous

command sequence has been executed, the back step needs to account for that. Hence the

program first tries to apply i0_back_red, and if that fails, it tries to apply i0_back_blue,

an alternate version considering a blue current node. In the latter case, the blue node is

rooted since we want to keep accessing the top of the stack in constant time.

◮ Proposition 11 (Correctness of SearchIndeg0Nodes). The procedure SearchIndeg0Nodes

fulfills the following specification.

Input: A connected graph G with grey unrooted nodes and unmarked edges.

Output: If G is the empty graph, then failure. Otherwise, G with all non-indegree-0

nodes marked red, at most one of which is a root; indegree-0 nodes marked blue; and the

blue nodes connected via newly created blue edges, forming a linked list, of which the head

(no incoming blue edges) is a root.

Proof. If G is empty, init cannot match, causing failure. Otherwise, the output conditions

are satisfied by Lemmata 21 and 22. ◭

The absence of a red root in the output is an edge case caused by init being applied to

an indegree-0 node. Because then, either i0_stack or i0_push will be the last rule that is

applied, and the red root becomes a blue root.

The procedure ReduceIndeg0Nodes starts by trying to apply unroot to get rid of any

red roots left over by SearchIndeg0Nodes. Then it enters the loop Reduce!. The blue root

in each iteration shall be called the “top root”. First, the program checks whether the top

root has more than two children, i.e. whether its outdegree is greater than three, since the

blue stack edge needs to be taken into account. If there are too many, the fail statement is

invoked.

nontrivial_stack checks whether the stack has more than one element. If it does not,

add_bottom artificially adds a node to the bottom of the stack, in order for the following

rules to still match.

Next is a non-deterministic choice of rules that cover every case of the number of children

the top root has, and how many of those are indegree-0 nodes. In each case, they pop the

top root, and push the children that would have indegree 0 after the deletion. pop! serves

to pop childless indegree-0 nodes for as long as there are any.

◮ Proposition 12 (Correctness of ReduceIndeg0Nodes). Let G be a connected graph with

red non-indegree-0 nodes containing at most one root, and blue indegree-0 nodes that are

connected with blue edges forming a path graph. The blue node with no incoming blue edges

is a root. If G minus the blue edges is a binary DAG, ReduceIndeg0Nodes yields the empty

graph. Otherwise, it yields a non-empty graph.

Proof sketch. First consider the case of G minus the blue edges being a binary DAG. Assume,

for the sake of a contradiction, that the output of ReduceIndeg0Nodes contains a node v.

By Lemmata 24 and 25, v cannot have been an indegree-0 node when ignoring blue edges at

any point during execution. Furthermore, v must have a parent that never was an indegree-0

node ignoring blue edges, because otherwise it would have been marked blue by one of the

rule set call rules. The same argument can then be applied to the parent’s parent, and so on

indefinitely. Since the input is finite however, two of these ancestors must be equal, meaning

that there is a cycle. This contradicts the input minus the blue edges being a DAG.

Next, assume G is not a DAG. Then it has a directed cycle consisting of consecutive

nodes v1, v2,. . . vn. None of these nodes have indegree 0 ignoring blue edges, so they are

CALCO 2019
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ReduceIndeg0Nodes = try unroot; Reduce!; pop!; try final_pop

Reduce = if too_many_children then fail; if nontrivial_stack then skip

else add_bottom; {two_of_two, one_of_two, none_of_two, one_of_double,

none_of_double, one_of_one, none_of_one }; pop!

unroot (x:list) nontrivial_stack (x,y:list) add_bottom (x:list)

x ⇒ x

1 1

x y ⇒ x y

1 2 1 2

x ⇒ x

1 1

pop (x,y:list) two_of_two (a,b,x,y,z,t:list)

x y ⇒ y

1 1

x t

y z

⇒

t

y z

0

1 2

0

1 2

a b

where indeg(1)=1 and indeg(2)=1

final_pop (x:list)

x ⇒ ∅

one_of_two (a,b,x,y,z,t:list) none_of_two (a,b,x,y,z,t:list)

x t

y z

⇒

t

y z

0

1 2

0

1 2

a b

where indeg(1)>1 and indeg(2)=1

x t

y z

⇒

t

y z

0

1 2

0

1 2

a b

where indeg(1)>1 and indeg(2)>1

one_of_double (a,b,x,y,t:list) none_of_double (a,b,x,y,t:list)

x t

y

⇒

t

y

0

1

0

1

ba

where indeg(1)=2

x t

y

⇒

t

y

0

1

0

1

ba

where indeg(1)>2

one_of_one (a,x,y,t:list) none_of_one (a,x,y,t:list)

x t

y

⇒

t

y

0

1

0

1

a

where indeg(1)=1

x t

y

⇒

t

y

0

1

0

1

a

where indeg(1)>1

too_many_children (x:list)

x ⇒ x

1 1

where outdeg(1)>3

Figure 8 The ReduceIndeg0Nodes procedure.

⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ∅

Figure 9 Example execution of ReduceIndeg0Nodes.
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never matched by the rule set call rules that would mark them blue. Since there are no

rules that delete red nodes (only rules that mark them blue), v1, v2,. . . vn never get deleted.

Thus the output is non-empty. Failure cannot occur since every rule and procedure of

ReduceIndeg0Nodes is either preceded by try or followed by !.

Now assume that G minus the blue edges is a DAG but is not binary. Consider a node v

of G with no incoming unmarked edges, which exists since G minus the blue edges is a DAG.

The aim is to show that, if v has more than two children (excluding blue edges), then the

output is non-empty. By Lemma 24, v gets marked blue at some point of the execution. This

can only happen in the rule set call rules. Assume v has just been marked blue by one of these

rules. We can also assume that v is rooted since, by Lemma 25, every blue node gets deleted

at some point, which can only happen in one of the rule set call rules or in pop. The case of

it happening in pop shall be discarded since that would mean v has no children (disregarding

blue edges). Back in the execution right after execution of one of the rule set call rules, since

pop! cannot fail, the loop Reduce! enters its next iteration. The procedure tries to apply

too_many_children to the blue root. If v has more than two children (disregarding blue

edges), it succeeds, and the fail statement is invoked, terminating the loop Reduce!. Since

v has children, both pop and final_pop do not get applied, for the dangling condition is

not satisfied. So the output contains v and is therefore non-empty. ◭

4.2 Performance

We will show that our binary DAG recognition program always terminates in linear time,

given a connected input graph of bounded degree. We have also included empirical evidence

for this.

◮ Theorem 13 (Complexity of is-bin-dag). Given a connected input graph of bounded

degree, the program is-bin-dag terminates in linear time.

Proof. The Main procedure of is-bin-dag contains no loops. SearchIndeg0Nodes termin-

ates in linear time by Lemma 20.

Now consider ReduceIndeg0Nodes. By Lemma 23, the procedure terminates. All of its

rules are fast, and are hence applied in constant time by Theorem 1 (the input is assumed

to have bounded degree, and form the input specification, the fact that unroot removes a

red root if it is present, and the fact that all the other rules conserve the number of roots,

there are at most two roots in the host graph at any given point of the execution). So it

is enough to show that each of the constantly many rules gets applied a linear number of

times. unroot and final_pop get applied at most once since they are not inside loops. By

the proof of Lemma 23, add_bottom gets applied at most twice, and each rule set call rule as

well as pop at most |VG| + 2 times. too_many_children and nontrivial_stack can only

get reapplied if the rule set call does not fail, which can only happen at most |VG| + 2 times.

Hence ReduceIndeg0Nodes terminates in linear time.

nonempty_stack matches in constant time by Theorem 1 since it is a fast rule. anything

also matches in constant time since any node is a valid match. ◭

In order to support the linear time complexity of is-bin-dag, performance will be

measured on two graph classes, one consisting of binary DAGs, and the other of non-DAGs.

Consider the following class of binary DAGs. For n ≥ 1, the grid chain GC(n) consists of

n grids of size n × n, joint by the nodes of indegree and outdegree 1 in order to form a chain.

This class was chosen for having an unbounded number of indegree-0 nodes, meaning that

the implemented stack is relatively large.
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(a) Grid Chain GC(3). (b) Sun Graph SG(6).

Figure 10 Input Graph Classes.

Now consider the following class of non-DAGs. For n ≥ 3, the sun graph SG(n) consists

of a directed cycle of n nodes, each of which has an an additional neighbour connected by an

incoming edge. The reason for using this class is, in addition to half the nodes having indegree

0, the other half are part of the cycle, and therefore never get deleted by ReduceIndeg0Nodes.

This causes an unbounded amount of nodes to be left over.
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Figure 11 Measured performance of is-bin-dag.

5 Topological Sorting

Given a DAG G, a topological sorting is a total order (an antisymmetric, transitive, and

connex binary relation) < on VG, the set of nodes of G, such that for each edge of source

u and target v, u < v (topological property). Topological sortings cannot exist for graphs

containing directed cycles, since there is no way to define a total order on the nodes of a cycle

such that the topological property is satisfied. Furthermore, every DAG has a topological

sorting.

There are two commonly used linear-time algorithms for finding a topological sorting

[20, 19]. One seeks out indegree-0 nodes, adds them to the total order, deletes them, and

repeats this process until all nodes have been added to the order. The other traditional

algorithm, which is used as the basis for the program top-sort, traverses the graph using

depth first search (DFS). Upon completion of a node in that DFS, that node is added as the

new minimum element of the total order. Note that our DFS will be directed, in the sense

that the direction of the edges needs to be respected in order to get a topological sorting in

the end. However, this is not enough since that would only visit the nodes reachable from

the initially rooted node, which is not necessarily the entire input graph. Hence an operation

is needed that efficiently finds an unvisited node once the directed DFS gets stuck.
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Searching for an unvisited node with a simple rule application will not work because

overall it may need to be applied a linear number of times, with single matches requiring

linear time. Instead, once the program top-sort runs out of unvisited nodes, it uses a second

DFS that ignores edge orientation to find a node that has not been sorted yet, and then

continues the SortNodes DFS on said node. The DFS applications that look for unsorted

nodes attach red loops to visited nodes in order to visit any node only once. In this way, the

amortized cost of all undirected DFS applications will be linear.

5.1 The Program

Main = init; SearchUnsortedNodes

SearchUnsortedNodes = ((try unsorted then SortNodes; search_forward)!;

try search_back else break)!

SortNodes = (sort_forward!; try sort_back_push else (try sort_back_stack

else (try red_push else red_stack; break)))!

init (x:list) unsorted (x:list)

x ⇒ x

1 1

x ⇒ x

1 1

search_forward (a,x,y:list) search_back (a,x,y:list)

x y ⇒ x y

1 2 1 2

where not edge(2,2)

a a
x y ⇒ x y

1 2 1 2

a a

sort_forward (a,x,y:list) red_stack (x:list)

x y ⇒ x y

1 2 1 2

a a x ⇒ x

0 1 0 1

red_push (x,y:list) sort_back_stack (a,x,y:list)

x

y

⇒

x

y

1 1

0 2 0 2

x y

⇒

x y

1 2 1 2

0 0

a a

sort_back_push (a,x,y,z:list)

x y

z

⇒

x y

z

1 2 1 2

0 3 0 3

a a

Figure 12 The GP 2 program top-sort.

We give the GP 2 implementation of topological sorting in Figure 12 and show its

correctness. We have added the restriction that the input graph must be connected since in

the current version of GP 2, there is no known way to implement a DFS that is linear-time

for graphs with an unbounded number of connected components. We have also included an

example execution of the program in Figure 13.
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⇒ ⇒∗ ⇒ ⇒ ⇒∗

⇓

∗⇐∗⇐∗⇐∗⇐⇐

Figure 13 Example execution of top-sort.

The subgraph induced by the blue edges is a path graph, or linked list, containing all the

nodes from the input graph. So the binary relation < on the set of nodes defined by u < v if

there is a path of blue edges from u to v is a total order, which is a necessary property for a

topological sorting. Similarly to the SearchIndeg0Nodes procedure descibed in Subsection

4.1, the blue nodes and edges implement a stack. However, this time the top of the stack is

denoted with a green root pointing towards it with a green edge in order not to interfere

with a DFS in SortNodes.

The program starts by rooting an input node and endowing it with a red loop, as well as

creating an unmarked, unlabelled root that is disconnected from the rest of the graph. This

root will point to the top of the stack, and shall hence be called the “pointer”.

SearchUnsortedNodes is a DFS implementation that seeks out a node that has not been

visited by SortNodes yet. Instead of using a red mark to designate a node as visited, it uses

a red loop. Since the input is assumed to be a DAG, it has no loops. This leaves the use of

marks to the DFS in SortNodes. So in order for the forward step to only match unvisited

neighbours of the root, a predicate to forbid loops is needed. The “any” mark ensures that

colour does not matter. Right before each application of the forward step, unsorted tests

whether the current root has been visited by SortNodes yet, i.e. whether it is grey. At the

same time, said root is initialised for SortNodes by being marked red.

Next, SortNodes is applied. It performs a DFS with directed edges. Similarly to

SearchIndeg0Nodes from Section 4, it pushes the current root onto the stack during its

back step. sort_back_push is applied when the stack has at least one element, otherwise

sort_back_stack creates the stack. The pointer being green represents the stack being

non-empty. The break statement is preceded by try red_push else red_stack, since when

the back step can no longer be applied, the current root is still pushed onto the stack. Again,

two rules are needed to cover the cases of the stack being empty or not. Because of the

repeated application of the back step, the root ends up where it was at the beginning of

SortNodes, meaning that the DFS of SearchUnsortedNodes can resume undisturbed.

◮ Theorem 14 (Correctness of top-sort). The program top-sort fulfills the following

specification.

Input: A connected DAG G with no roots whose nodes are all marked grey, and whose

edges are unmarked.
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Output: G with additional blue edges that define a topological ordering on VG. The nodes

of G are marked blue and each have a red loop. One of these nodes is rooted. Furthermore,

there is an additional unlabelled green root node with an outgoing green edge pointing to a

node with no incoming blue edges.

Proof sketch. None of the rules of try unsorted then SortNodes modify red looped edges

(used by the DFS). Also, after application of SortNodes, the red root remains at the same

place, and the same edges remain dashed. One can check that SearchUnsortedNodes visits

every node of its input graph.

SearchUnsortedNodes applies SortNodes to each of these visited nodes that are marked

grey, say v, and implements a stack on Desc(v) (Definition 27), defining a topological sorting

(Lemma 28). Clearly, the subgraph induced by the union of all these descendant graphs is

just the output graph. So the concatenation of their topological sortings is a topological

sorting of the entire output graph. ◭

The additional constructs in the output graph, apart from the blue edges, are needed for

the execution of the program. One could define a linear-time cleanup procedure to remove

these constructs. The green root and its outgoing edge can be deleted in constant time, since

access to roots is constant. Similarly, the blue rooted node can be unrooted in constant time.

A DFS can be used to remove the red loops or unmark all the nodes in linear time.

5.2 Performance

Finally, we show that, given a valid input graph of bounded degree, our topological sorting

program will always terminate in linear time.

◮ Theorem 15 (Complexity of top-sort). Given a connected DAG of bounded degree with

only grey unrooted nodes whose edges are unmarked as an input, the program top-sort

terminates in linear time.

Proof sketch. First, let us give an upper bound to the number of applications of each rule.

init is applied exactly once. Since init is the only rule having an unmarked root in its

right hand side, and the input has no unmarked roots, red_stack and sort_back_stack

can be matched at most once (in total). unsorted and sort_forward reduce the number

of grey nodes by one. Since all the other rules conserve the number of grey nodes, and the

input graph has |VG| grey nodes, they can be applied at most |VG| times in total. Similarly,

search_forward (and init) reduce the number of nodes with no red looped edge by one. So

they can also only be applied at most |VG| times in total. red_push and sort_back_push

(as well as red_stack and sort_back_stack) are the only rules not to conserve the number

of blue nodes, and reduce the number of non-blue nodes by exactly one. Since the input

graph has no blue nodes, they can be applied at most |VG| times in total. One can check

that search_back is applied an at most linear amount of times, since SortNodes conserves

the number of dashed edges by Lemma 29.

init is the only rule to increase the number of roots, specifically by two. All the other

rules conserve the number of roots. So since the input graph has no roots, there is a constant

number of roots at any point during the execution of top-sort.

The only rules that are not fast are init due to the lack of roots, and search_forward

due to the edge predicate. So by Theorem 1, all the other rules can be matched in constant

time since the input has bounded degree. init is matched in constant time since it matches

any input node. As for search_forward, since the input has bounded degree and the
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rules cannot create an unbounded number of edges incident to a single node, the predicate

edge(2,2) only has to check a constant number of incident edges.

Since each rule is matched a linear number of times in constant time, and the program

terminates by Lemma 26, top-sort terminates in linear time. ◭
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Figure 14 Measured performance of top-sort on grid chains.

In order to support the linear time complexity of top-sort, we make use of the grid

chains from Subsection 4.2. They are DAGs, the type of graph top-sort is meant to be used

on. Furthermore, they have an unbounded number of indegree-0 nodes. Since indegree-0

nodes are unreachable from any other node, and SortNodes can only visit nodes reachable

from the red root it is called on, SortNodes will have to be applied at least once for each

indegree-0 node, i.e. an unbounded number of times. Thus these input graphs can adequately

illustrate the linearity of top-sort. Figure 14 is a plot of the program timings, demonstrating

linear time complexity.

6 Conclusion

The polynomial cost of graph matching is the performance bottleneck for languages based on

standard graph transformation rules. GP 2 mitigates this problem by providing rooted rules

which under mild conditions can be matched in constant time. We presented rooted GP 2

programs for three graph algorithms: tree recognition, connected binary DAG recognition,

and topological sorting. The programs were proved to be correct and to run in linear time

on graphs of bounded node degree. The proofs demonstrate that graph transformation

rules provide a convenient and intuitive abstraction level for formal reasoning on graph

programs. We also gave empirical evidence for the linear run time of the programs, by

presenting benchmark results for graphs of up to 100,000 nodes in various graph classes. For

DAG recognition and topological sorting, the linear behaviour was achieved by implementing

depth-first search strategies based on an encoding of stacks in graphs.

In future work, we intend to investigate for more graph algorithms whether and under

what conditions their time complexity in conventional programming languages can be reached

in GP 2. The more involved the data structures of those algorithms are, the more challenging

will be the implementation task. This is because in GP 2, the internal graph data structure

is (intentionally) hidden from the programmer and hence any data structures used by an

algorithm need to be encoded in host graphs. A simple example for this is the encoding of

stacks as linked lists in the programs for DAG recognition and topological sorting.
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Additional future work is the automated refinement of programs, adding root nodes in

order to improve matching performance. It is highly non-obvious how to do this in general,

or what refinement tactics could be used. It is possible that DFS can provide a framework

for combining procedures in an efficient way.

The three programs in this paper and also the 2-colouring program of [6] need host graphs

of bounded node degree in order to run in linear time. A topic for future work is therefore to

find a mechanism that allows to overcome this restriction. Clearly, such a mechanism will

require to modify GP 2 and its implementation.
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A Appendix: Proofs

This appendix consists of lemmata and proofs omitted from the main sections.

A.1 Tree Recognition Lemmata

By rooted input graph, we mean an arbitrary labelled GP 2 input graph with every node

coloured grey, exactly one root node, and no additional marks. That is, a valid input graph

after init has been applied. By rooted input tree, we mean an rooted input graph that is a

tree. In this appendix, we give the proofs of the lemmata needed to support Proposition

6 and Theorem 7 from Section 3. Note that an equivalent characterisation of a tree is a

non-empty connected graph without undirected cycles such that every node has at most one

incoming edge.

◮ Lemma 16. If G is a tree and G ⇒∗

Reduce H, then H is a tree. If G is not a tree and

G ⇒Reduce! H, then H is not a tree.

Proof. Clearly, the application of push preserves structure. Suppose G is a tree. prune is

applicable if and only the second node is matched against a leaf node, due to the dangling

condition. Upon application, the leaf node and its incoming edge is removed. Clearly the

result graph is still a tree. If G is not a tree and prune is applicable, then we can see the

properties of not being a tree are preserved. That is, if G is not connected, H is certainly

not connected. If G had parallel edges, due to the dangling condition, they must exist in

G \ g(L), so H has parallel edges. Similarly, cycles are preserved. Finally, if G had a node

with incoming degree greater than one, then H must too, since the node in G that is deleted

in H had incoming degree one, and the degree of all other nodes is preserved. So, we have

shown Reduce is structure preserving, and then by induction, so is Reduce!. ◭

◮ Lemma 17. If G is a rooted input graph and G ⇒∗

Reduce H, then H has exactly one root

node. Moreover, there is no derivation sequence that derives the empty graph.
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Proof. In each application of prune or push, the number of root nodes is invariant since

the LHS of each rule must be matched against a root node in the host graph, so the other

non-roots can only be matched against non-roots, and so the result holds by induction. To

see that the empty graph cannot be derived, notice that each derivation reduces #G by at

most one, and no rules are applicable when #G = 1. ◭

◮ Lemma 18. If G is a rooted input graph and G ⇒∗

Reduce H. Then, every blue node in H

either has a blue child or a root-node child.

Proof. As there are no blue nodes, G satisfies this. We now proceed by induction. Suppose

G ⇒∗

Reduce H ⇒Reduce H ′ where H satisfies the condition. If prune is applicable, we

introduce no new blue nodes. Additionally, any blue parents of the node 1 are preserved.

Finally, if push is applied, then the new blue node has a root-node child, and the blue nodes

in H ′ \ h(R) have the same children. So H ′ satisfies the condition. ◭

◮ Corollary 19. Let G be a rooted input tree and G ⇒∗

Reduce H. Then the root-node in H

has no blue children.

Proof. By Lemma 17, H has exactly one root node, and by Lemma 18, all chains of blue

nodes terminate with a root-node. If said root-node were to have a blue child, then we would

have a cycle, which contradicts that H is a tree (Lemma 16). ◭

A.2 Binary DAG Recognition Lemmata

In this appendix, we give the proofs of the lemmata needed to support Propositions 11, 12,

and Theorem 13 from Section 4.

◮ Lemma 20 (Complexity and Partial Correctness of SearchIndeg0Nodes). Given a connected

input graph G with grey unrooted nodes an unmarked edges, SearchIndeg0Nodes terminates,

and the subgraph H induced by the edges that have been dashed during the execution is a

spanning tree. Furthermore, if G has bounded degree, the procedure terminates in linear time.

Proof sketch. Similar to the proofs in those given by Bak and Plump [5] [4]. ◭

◮ Lemma 21. Given a non-empty connected input graph G with grey unrooted nodes an

unmarked edges, at any point of the execution of SearchIndeg0Nodes, there is at most one

red root.

Proof sketch. init introduces a red root, and is only applied once and in the beginning.

The other rules that do not preserve red roots are i0_push, i0_stack and i0_back_blue. If

either i0_push or i0_stack are applied, the red root vanishes. Subsequently, i0_back_red

cannot be applied. If i0_back_blue then gets applied the red root is reintroduced, conserving

the existence of a red root within the iteration of the loop. If i0_back_blue does not get

applied, the break statement is invoked and the procedure terminates. ◭

◮ Lemma 22. Given a non-empty connected input graph G with grey unrooted nodes and

unmarked edges, SearchIndeg0Nodes outputs G where all the indegree-0 nodes (and only

those) are marked blue and connected with blue edges forming a path graph. The blue node

with no incoming blue edge is rooted.

Proof sketch. If G has no indegree-0 nodes, then the lemma is trivially satisfied. So assume

G has at least one.
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By Lemma 20, SearchIndeg0Nodes visits all nodes. Every node in the output graph is

marked red or blue. Blue nodes can only come from indegree-0 nodes matched by i0_push

or i0_back_blue.

Since the right hand side of each rule only contains red and blue nodes, every node is

marked either red or blue. The only rules that introduce a blue mark are i0_push and

i0_back_blue, and they turn a red root into a blue root. These rules only get applied if the

indegree of said red node is 0. Furthermore, the only edges introduced by SearchIndeg0Nodes

are blue edges between two blue nodes (in i0_push), hence the indegree of a red node is

the same as its indegree in the input graph. So only indegree-0 nodes are marked blue.

Furthermore, since SearchIndeg0Nodes visits, i.e. roots every node of the input graph at

some point, all indegree-0 nodes are marked blue, and all non-indegree-0 nodes red.

All rules apart from i0_push and i0_stack preserve the structure of the subgraph

consisting of blue nodes and edges. i0_stack only is applied only if i0_push is not applicable.

But the left hand side of i0_push contains a blue root, which can only be created by itself or

i0_stack. So i0_push cannot be applied until i0_stack is applied. Since G cannot consist

of only indegree-0 nodes (which would mean G is disconnected), i0_push can always be

matched if the red root has indegree 0. If the red root does not have indegree 0, i0_stack

cannot be matched either. So the only way for these two rules to match is for i0_stack to

be matched first and only once, followed by i0_push being matched any number of times.

Thus, a blue root is created, and then, repeatedly, a new blue node gets connected to the

blue root with an outgoing blue edge, while the root moves to the newly added blue node.

This construction results in the blue nodes and edges forming a path graph where the node

with no incoming edges is a root. ◭

◮ Lemma 23 (Termination of ReduceIndeg0Nodes). Let G be a connected graph with red

non-indegree-0 nodes containing at most one root, and blue indegree-0 nodes that are connected

with blue edges forming a path graph. The blue node with no incoming blue edges is a root.

Given a G as an input, ReduceIndeg0Nodes terminates.

Proof sketch. pop can only be applied a finite number of times since it reduces the number

of nodes in the host graph. So pop! terminates. One can check that during the execution

of ReduceIndeg0Nodes, add_bottom gets applied at most twice. The rules in the rule set

call and pop reduce the number of nodes in the host graph by exactly one. So by the claim,

they can be applied at most |VG| + 2 times each. So at some point in the loop, they will

no longer be applicable. Neither will add_bottom since it can only be applied twice. So

Reduce! terminates. ◭

◮ Lemma 24. Given an input graph G as described in Lemma 23, every node that has no

incoming unmarked edges (called quasi-indegree-0 node) in some host graph of the execution

of ReduceIndeg0Nodes gets marked blue.

Proof sketch. Indeed, the input graph has all quasi-indegree-0 nodes marked blue already.

The only rules deleting edges are those from the rule set call (pop and final_pop cannot

delete unmarked edges incident to the node they delete because the dangling condition

needs to be satisfied for them to match). So these are the only rules that can create new

quasi-indegree-0 nodes. If one of said nodes has indegree 0, it gets detected by the condition

of a rule and marked blue. These rules cover each case of how many children their quasi-

indegree-0 parent can have in a binary DAG, namely one, one with two parallel edges, and

two. The case of no children is covered by pop afterwards. They also cover all cases of how

many of these children are quasi-indegree-0. So at each execution step, the newly created

quasi-indegree-0 nodes get marked blue, proving this lemma. ◭
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◮ Lemma 25. Given an input graph G as described in Lemma 23, every node that is marked

blue during execution of ReduceIndeg0Nodes is not present in the output.

Proof sketch. Nodes can only be marked blue if an already existing blue node is matched.

So it is enough to show that, at some point of the execution, there will be no blue nodes.

There are three potential ways to exit the loop Reduce!. The first is through the fail

statement after matching too_many_children. This will never happen since the input minus

the blue edges is binary, and every rule conserves the blue root having exactly one outgoing

blue edge. The second way is for add_bottom to fail. This can only happen when there is

no blue root. The only rule deleting a blue root is final_pop, which is only called after

termination of Reduce!. Since furthermore, the input is assumed to have a blue root, and

every other rule conserves the existence of a blue root, add_bottom is always applicable.

The third and final way to exit the loop is when none of the rules in the rule set call are

applicable. The blue root not having an element below it in the stack cannot be a reason

for that, since in that case, add_bottom would have been applied. So the current blue root

v does not have red neighbours. Since pop! has been applied in the previous iteration of

Reduce!, v was the only blue node in the previous iteration, otherwise it would have been

popped. Hence in the current iteration, add_bottom was applied, and so the only blue nodes

are v and the node created by add_bottom, say w. By Lemma 23, Reduce! terminates, so

this always happens for the given input. As established, v has no children. Neither does w

since it was created by add_bottom and there is no rule with edges incident to red nodes in

its right hand side. Thus pop deletes v, then final_pop deletes w, causing all previously

blue marked nodes to be deleted. ◭

A.3 Topological Sorting Lemmata

In this appendix, we give the proofs of the lemmata needed to support Theorems 14 and 15

from Section 5.

◮ Lemma 26 (Termination of top-sort). Given a connected DAG G with no roots, grey

nodes, and unmarked edges as an input, top-sort terminates.

Proof sketch. sort_forward! terminates since in each iteration, the number of grey nodes

decreases.

For the termination of SortNodes, consider the following lexicographical ordering >.

H1 > H2 if one of the following three statements are satisfied. H1 has more grey nodes than

H2, or they have the same number of grey nodes but H1 has more dashed edges, or they have

the same number of grey nodes and dashed edges but H1 has more red nodes. Let H1 be the

input of an arbitrary iteration of SortNodes, and H2 its output. If sort_forward is applied

any number of times, H1 > H2 since the number of grey nodes are reduced. Otherwise, if

either sort_back_push or sort_back_stack is applied, H1 > H2 since the number of grey

nodes is conserved and the number of dashed edges decreases in both rules. Otherwise, either

red_push or red_stack have to be applied, which conserve the number of grey nodes and

dashed edges, but decreases the number of red nodes. So in any case, H1 > H2. For a given

graph H1 consider how many graphs H2 satisfy H1 > H2. By definition of >, H1 gives a

(finite) upper bound on the number of grey nodes, dashed edges, and red nodes. Hence there

are only finitely many possible H2s. Since sort_forward! terminates, and each iteration of

the loop reduces the host graph with respect to <, SortNodes terminates.

Consider (try unsorted then SortNodes; search_forward)!. If search_forward

cannot be applied, the loop terminates. It is the only rule in this loop that increases the

number of looped edges in the graph. Due to its predicate, it can only add looped edge to a
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node if it does not already have one. Furthermore, no rule decreases the number of looped

edges. So for an arbitrary input graph H for the loop, at most |VH | looped edges can be

added before search_forward fails. Hence the loop terminates.

Finally, consider the loop that SearchUnsortedNodes consists of. Furthermore, consider

the lexicographic ordering > defined by H1 > H2 if H2 has more nodes with looped edges

than H1, or they have the same number of nodes with looped edges but H2 has less dashed

edges than H1. By an argument similar to that made by Bak for termination of DFS [4],

SearchUnsortedNodes terminates. ◭

For the correctness of SortNodes, the following concepts needs to be defined. In a graph

G, a directed path from a node v to a node w is a sequence of distinct nodes v1, v2,. . . , vn

such that v1 = v and vn = w, and for each i where 1 ≤ i ≤ n − 1, there is an edge of source

vi and of target vi+1. A directed path from v to w is called grey-noded if all the nodes it

consists of, except possibly v, are marked grey.

◮ Definition 27 (Descendants). Given a node v in a DAG G, let its descendants DescG(v)

be defined as the subgraph of G induced by the set

{w ∈ VG | there is a directed grey-noded path from v to w} ∪ {v}.

◮ Lemma 28 (Correctness of SortNodes). Assume the input graph of top-sort has no blue

edges. Let G be a connected DAG with a single red root v, where the nodes of DescG(v) are

unrooted. Furthermore, let G have an additional root that is either unmarked and disconnected,

or green and connected to the rest of the graph with an outgoing green edge. Let H be the

output of SortNodes applied on G. Consider the binary relation < on nodes of DescH(v)

defined by u < w if there is a directed path from u to w, such that all of the involved edges

are blue. Then < defines a topological sorting on DescH(v) minus the blue edges.

Proof sketch. Since the input graph of top-sort has no blue edges, any that are present in

the host graph were created by rules. Whenever these rules create blue edges, they mark

the incident nodes blue. No rule removes a blue mark, so the subgraph of the host graph

induced by the blue edges always exclusively consists of blue nodes. Furthermore, every rime

a node gets marked blue, the green root points towards it. And when a new blue edge gets

created, the target node must also have the green root pointing towards it, and the source

node must be a red root. So the procedure only adds a blue edge from a non-blue to the

node that has most recently been marked blue. From this construction, we can infer that

the graph induced by the blue edges is a path graph. Furthermore, no blue looped edges are

introduced. So there can be no path from a node u to a node w and vice versa. Hence if

u < w and w < u, u and w must be equal by definition of ≤, i.e. ≤ is antisymmetric.

From the definition of <, it is clear that transitivity holds due to path concatenation

resulting in paths.

One can show that SortNodes turns every node of DescG(v) into a red root. Furthermore,

all the red roots become blue nodes incident to blue edges. So < is connex.

To show that the topological property holds, consider two nodes u and w of DescH(v),

both of which being distinct from v (v itself will be handled later). So by definition, there

is path of non-blue edges from v to u, and one from v to w. We can assume without loss

of generality that u becomes a red root before w. If there is no edge between u and w, the

topological property imposes no constraint on said pair of nodes. If there is an edge from

u to w, sort_forward gets applied again, dashing said edge and turning w into a red root.

Hence later in the execution, w gets pushed before u, ensuring that the topological property
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is satisfied. If there is an edge from w to u, there can be no non-blue path from u to w since

the input is a DAG. Hence u will be pushed before w, satisfying the topological property

again. As for v, any condition involving it must have it as the source node by definition of

DescH(v). Since v is pushed last, the topological property is satisfied.

◭

◮ Lemma 29. Given an input G as described in Lemma 28, the output of SortNodes has

the same dashed edges, and the red root in the same place as G.

Proof sketch. Let v be the red root of G. During the execution of SortNodes, there is

always a path of dashed edges from v to the current red root, since sort_forward is the only

rule of SortNodes with dashed edges in its right hand side and generates a path graph of

red nodes and dashed edges, and since sort_back_stack and sort_back_push only remove

the latest node from that path graph. The only way for their encompassing loop to end

is for both of these rules not to be applicable. By the previous argument, this means that

there are no dashed edges in said path graph left, and v is the red root when SortNodes

terminates. ◭
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