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Reliable Contrastive Learning for Semi-supervised
Change Detection in Remote Sensing Images

Jia-Xin Wang, Teng Li*, Si-Bao Chen*, Jin Tang, Bin Luo and Richard C. Wilson

Abstract—With the development of deep learning in remote
sensing image change detection, the dependence of change
detection models on labeled data has become an important
problem. To make better use of the comparatively resource-saving
unlabeled data, the change detection method based on semi-
supervised learning is worth further study. This paper proposes a
reliable contrastive learning method for semi-supervised remote
sensing image change detection. First, according to the task
characteristics of change detection, we design the contrastive
loss based on the changed areas to enhance the model’s feature
extraction ability for changed objects. Then, to improve the
quality of pseudo labels in semi-supervised learning, we use the
uncertainty of unlabeled data to select reliable pseudo labels
for model training. Combining these methods, semi-supervised
change detection models can make full use of unlabeled data.
Extensive experiments on three widely used change detection
datasets demonstrate the effectiveness of the proposed method.
The results show that our semi-supervised approach has better
performance than related methods. The code is available at
https://github.com/V CISwang/RC-Change-Detection.

Index Terms—Contrastive learning, change detection, semi-
supervised learning, remote sensing, semantic segmentation.

I. INTRODUCTION

ITH the development of remote sensing technology, a

large number of remote sensing images can be obtained
more conveniently, which contains rich ground information.
In the research of remote sensing (RS) image processing,
change detection (CD) methods play an important role in
addressing the issue of identifying change information in
bitemporal co-registered images. The detection of changes in
remote sensing at different times has important applications in
assessing natural disasters [1], analyzing building changes [2]
and urban expansion [3].

Traditional change detection methods can be divided into
two categories: pixel-based CD methods [4] and feature-based
CD methods [5] [6]. Pixel-based methods mainly detect pixel
changes through difference calculation or ratio calculation of
pixels of different images, such as change vector analysis
(CVA) [4]. These methods are simple and fast, but it is
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difficult to distinguish changed areas from irrelevant objects.
The feature-based method extracts the feature data of the
object, and then compares the features of images at different
times to obtain the change information of the region. Deng et
al. [5] used principal component analysis (PCA) to extract the
features of the target, and then compared the images to obtain
the changed areas. Multivariate alteration detection (MAD)
[6] and slow feature analysis (SFA) [7] also analyzed image
changes based on feature transformation. For the unsupervised
change detection, Cui et al. [8] used stochastic subspace
ensemble learning to detect the changed areas, and they mainly
used clustering algorithms to analyze the object features. These
conventional methods usually get relatively crude predictions
due to the limitations of the algorithm.

In past decades, deep convolutional natural networks (C-
NNis) have been successfully applied in RS images, and change
detection methods [9] [10] based on deep learning models
also have achieved better performance. These methods are
divided into single-stream networks [11] [12] and double-
steam networks [13] [14] [15]. In single-stream networks,
image-pairs are usually directly merged and input into the
network, and then the encode network and decode network
extract features to obtain the prediction of the changed areas.
Alcantarilla et al. [11] used deconvolutional network for
change detection, this method provides coarsely registered
image pairs to a deep deconvolution network and predicts
the changed areas. Peng et al. [12] combined low-dimensional
features and high-dimensional features extracted from remote
sensing images, and then use the attention module to enhance
the feature identification ability, to achieve more accurate
predictions of the changed areas. These single-stream methods
are usually simple and efficient and can use the neural network
to extra image features to achieve end-to-end change detection.
On the other hand, more methods try to use the double-
stream networks for the change detection on RS images. These
networks usually extract features from images at different
times in the feature extraction stage, and then merge features in
the decode network to predict the change areas. These double-
stream methods [16] [17] [13] are usually composed of two
feature extraction networks with shared weights. They extract
features from the images before and after the change, and
then the changed regions obtained by the prediction network
after feature fusion. Fang er al. [14] used two encoders to
extract features of bi-temporal images, and then feed them
into the UNet++ to generate the mask of change detection.
These siamese networks [15] [17] usually have more accu-
rate prediction due to the feature fusion modules. However,
accurate detection results based on neural network models
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usually depend on a large number of labeled data. Due to
the complex scenes of RS images, the annotation of change
detection images requires the manual judgment of the changes
in different areas and then obtain labels, which will consume
a lot of resources.

To alleviate the dependence of deep learning model on
labeled data, researchers have proposed some methods. Earlier,
researchers focused on semi-supervised approaches to image
classification tasks. Semi-supervised methods usually require
small labeled data sets, and then combine a larger number
of unlabeled data in the model training process to obtain
models with significantly improved performance. Virtual ad-
versarial training (VAT) [18] and mean teacher [19] used the
consistency regularization to achieve meaningful performance.
These methods demonstrate the potential of semi-supervised
learning to solve the model’s dependence on data. Recently,
based on the consistency regularization and pseudo labels,
some methods [20] [21] [22] introduced strong and weak
perturbation to improve the constraint ability of consistency
on the model. Recent semi-supervised segmentation methods
[23] mainly improved training methods based on the consis-
tency regularization and pseudo labels, and also explore the
perturbation methods. CutMix [24] proved that random region
mixing is an effective perturbation method. CPS [25] proposed
a training method that dual networks generate pseudo labels
to guide unlabeled images.

For change detection, some methods obtain CD models
using unsupervised algorithms instead of using labeled data.
These methods make use of the contrastive loss [26] and
similarity calculation [4], but these methods easily detected
more unchanged regions. Then, some researchers try to use
weak labels to replace pixel-level labels, such as image-level
labels [27] and bounding boxes. These methods effectively
improve the detection model performance, but also require ad-
ditional manual annotation of the data. Some semi-supervised
methods apply generative adversarial networks (GANs) [28]
to solve the model’s dependence on annotated data. They
use generative networks to obtain simulated distribution data
and discriminators to distinguish between different images.
Although these methods improve the robustness of the models,
they do not make full use of unlabeled data. Another semi-
supervised CD method [29] introduced consistency regular-
ization to unlabeled data. They add strong perturbation to
unlabeled data or their features, and then use consistency loss
to keep different prediction results consistent. However, the
method based on the consistency regularization usually sets the
threshold for the prediction probability of each pixel to obtain
the pseudo label, which only contains parts of the original
RS image, thus affecting the feature integrity of the changed
objects.

This paper proposes a semi-supervised change detection
method based on the reliable pseudo label and contrastive
learning, which we call reliable contrastive learning for change
detection (RCCD). First, to make the object features of the
pseudo label more complete, we use the consistency of pre-
diction of the model at different stages to the unlabeled image
to select reliable image from the unlabeled data set. Pseudo
labels are obtained from the best pre-trained model. Then,

in order to improve the feature identification ability of the
change detection model for the changed areas and unchanging
areas, we select positive and negative samples for different
regions. Different from the general contrastive learning [30]
[31], the proposed semi-supervised contrastive loss is a pixel-
level contrastive learning instead of image-level contrastive
learning. Image-level contrastive learning is mainly to choose
positive and negative sample pairs in different images. The
method in this paper uses the characteristics of partial regional
changes to design pixel-level positive and negative samples
for contrastive learning, so as to improve the recognition
ability of the model for pixel-level features. In general, the
pseudo label based on reliable sample selection makes full
use of the unlabeled RS images to improve the model, and the
contrastive learning based on the changed areas also improves
the detection ability of the semi-supervised model. These
methods effectively improve the performance of the semi-
supervised change detection model.

In summary, the main contributions of this work are as
follows:

e We propose a semi-supervised change detection method
based on reliable contrastive learning, which can obtain
satisfactory performance by combining few labeled im-
ages and extra unlabeled samples.

o We select reliable samples according to the prediction
uncertainty of unlabeled images in different stages of
the model, and then obtain corresponding reliable pseudo
labels for the training process.

o We propose the contrastive loss based on the changed
areas, and it effectively improves the model detection
ability for the changing objects.

o Experiments show that the proposed method can improve
the model performance of small-scale datasets by using
large-scale unlabeled data. Besides, our approach has
more efficient training time and less parameters.

The rest of this paper is organized as follows. Section
Il analyzes related change detection works in detail. The
proposed semi-supervised change detection method is de-
scribed in Section III. The results of the experiments and the
discussion are shown in Section IV and Section V. Finally,
Section VI draws the conclusions of this paper.

II. RELATED WORK

In this section, we discuss related semi-supervised methods
about the data dependence of change detection models.

Some earlier change detection methods used classifiers
to identify the change areas in the image-pairs, The semi-
supervised research on these change detection method is
mainly used cluster ensemble model to optimize the pseudo
labels. Roy et al. [32] used a multiple classifier system in semi-
supervised method, then they used iterative learning to label
the unlabeled images. The final detection result is determined
by multiple classifiers. This semi-supervised method mainly
uses the co-training method of different models to improve the
utilization of unlabeled images. For the unsupervised change
detection, Shao et al. [33] first selected areas with a high
probability of change by selecting thresholding the difference
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image histogram. The pseudo labels are jointly exploited with
the intensity levels and spatial information, then they proposed
a robust semi-supervised fuzzy C-means clustering algorithm.
This method is similar to most semi-supervised methods in
that probability threshold is used to obtain relatively reliable
pseudo labels. The method proposed in this paper is to use
the uncertainty of image to multiple models to select reliable
data.

Some recent semi-supervised change detection methods
utilize pre-training of models to obtain more latent information
from unlabeled images. Li et al. [34] proposed a deep nons-
mooth nonnegative matrix factorization network for synthetic
aperture radar image change detection. This method mainly
includes two stages: pretraining stage and fine-tuning stage. In
the fine tuning stage, the decomposed matrices layer by layer
and the latter aims to reduce the total reconstruction error.
To solve the problem of insufficient labels, Tu et al. [35] used
low-resolution labels to generate high-resolution change maps,
and then fused the prediction results of the two training epochs
to obtain the refined change prediction.

In the research of semi-supervised algorithm on remote
sensing images, Wang et al. [36] explored the applicability of
algorithms based on consistency for semantic segmentation on
RS images. RanPaste [37] combined the image mixing method
and proposes a more effective random paste perturbation for
semi-supervised segmentation. These methods usually use the
threshold value to select pixels with a high probability of
prediction and then generate pseudo labels. However, the edge
information of objects in these pseudo labels is easy to lost.
The reliable pseudo labels proposed in this paper effectively
avoids this problem.

In the change detection of remote sensing images, Susmita
et al. [38] used the membership values of its K nearest neigh-
bors to generate soft class labels. They proposed a heuristic
method to select some patterns from the unlabeled ones for
training. In addition, some early semi-supervised approaches
use metric learning to exploit unlabeled data. Yuan et al. [39]
proved that metric learning can extract change information
from hyperspectral features, and use semi-supervised Lapla-
cian regularization metric learning to solve sample problems.
With the wide application of GAN in image processing tasks,
researchers have begun to pay more attention to the use of
generative networks to alleviate the data dependence problem
in change detection. GDCN [40] used GAN to generate fake
data using random noise for change detection model training.
Although this method reduces the model’s dependence on
labeled data, it does not make use of unlabeled data. To
leverage the unlabeled RS image, Peng et al. [41] proposed the
SemiCD that uses GAN to make the model better distinguish
ground truths from pseudo labels. This method improves the
quality of pseudo labels generated by the model and finally
improves the model performance. Recently, Wele et al. [29]
introduced different types of perturbations into the network
middle layer of change detection based on the consistency
regularization, and then train the consistency loss of different
prediction outputs after adding the perturbation. The revisiting
consistency regularization (RCR) used complex disturbances
to improve the robustness of the detection model and feature

extraction capability, but ignores the characteristics of change
detection on remote sensing images.

In this paper, we first improve the generation method of
pseudo labels. Reliable samples are selected by calculating the
prediction uncertainty of unlabeled data in different epochs
of pre-trained models. Then, since the input of the change
detection model contains bi-temporal images, we design a
contrastive learning method based on the changed areas.
Different from the general contrastive learning methods, this
reliable contrastive learning proposed in this paper is based
on definite positive and negative sample pixels. Because of
the improvement of pseudo-label generation method and the
addition of the contrastive loss, the proposed semi-supervised
change detection method effectively improves the model per-
formance by using unlabeled remote sensing images. The
detailed modules will be illustrated in the following sections.

III. PROPOSED APPROACH

Our goal is to improve the accuracy of the semi-supervised
change detection model by combining a large number of
unlabeled images with a few labeled annotated images. For
general semi-supervised approaches, the quality of the pseudo
label is crucial. The proposed method in this paper selects
a more reliable subset of all unlabeled data based on the
uncertainty of model prediction on unlabeled images. This
method improves the quality of the pseudo label and improves
the detection model performance.

Different from the general image processing methods which
only focus on the feature recognition of the object, the
characteristic of change detection is to identify the difference
of the object between the image-pairs. So, based on the char-
acteristics of change detection on remote sensing images, we
design the contrastive learning loss in semi-supervised change
detection. We input the changed images and the unchanged
images into the model respectively, then calculate the loss of
the predicted results. The pixels corresponding to the changed
areas are selected as negative samples, and the other pixels are
selected as positive samples. Through contrastive learning for
change detection, the model strengthens the ability to identify
the changed areas, and finally improves the detection accuracy.

The main framework of the proposed approach is shown in
Fig. 1. We will introduce the application method of different
modules in the following subsections.

A. Overall of Proposed Reliable Contrastive Learning for
Semi-supervised CD

In semi-supervised change detection tasks, a labeled dataset
D! = {(z%), 2%, y")}M, with few samples. Where x4 is the
pre-change image, z g is the post-change image, and y is the
corresponding label. Meanwhile, we usually have a remote
sensing image data set D = {(u’y,u%)}}¥, that has not
been annotated. Where u4 and up are a pair of bi-temporal
remote sensing images, and in most cases N > M.

The proposed method is to improve the performance of
the detection model by extracting the latent information from
unlabeled data set D“. As shown in Fig. 1, our method
is divided into two stages. In the first stage, labeled data
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Labeled Dataset

Supervised Training

Model TI ~ Model T2

Image-pairs

[ ]
e o -
!:> Encode || Decode ... Loy Ly :> PP b |:>
P ¢ ¢ ® [ ] .
[ J
Labels fx)

Model T3 ~

Calculate Uncertainty
Unreliable Set

Unlabeled Dataset .

Reliable Set

(a) Selecting Reliable Set :

Semi-Supervised Training

Supervised Loss

Predict Mix Reliable Set Pre-Training Model
<: Decode || Encode <:I g )
Contrastive Loss a5 i_ "
A : 1
Ground Truth Prediction y' fx) - a
Labeled Set

(b) Training Semi-supervised Model

Fig. 1. Overview of the proposed reliable contrastive learning method. (a) Selecting reliable set. The uncertainty of unlabeled images is calculated by pre-
training models in different epochs. Then, unlabeled data sets are divided into reliable set and unreliable set by their uncertainty. (b) Training semi-supervised
model. We use the contrastive loss for unlabeled data to improve the performance of change detection model.

D! is used to fine tune the pre-trained model, while models
of different epochs are saved for uncertainty calculation. By
sorting the uncertainty of unlabeled data, we divided different
samples into the reliable data set and the unreliable data set.

Then, we use the pre-training model to obtain pseudo
labels for reliable data sets and then mix these data with
labeled samples. The detection network is reinitialized and
then trained with this mixed data. In the semi-supervised
training, we predicted the changed pixels and unchanged pixels
respectively, and then calculated the contrastive loss. Finally,
we obtain the semi-supervised change detection model. This
method achieves better performance due to the improvement
of pseudo label quality and better recognition ability of the
changed areas.

B. Using Uncertainty to Obtain Reliable Set

An important module of the proposed semi-supervised
method is to use uncertainty to select a reliable subset of
unlabeled samples. As shown in Fig. 1-(a), in the pre-training
stage, we use labeled data set D' as the training set to train
change detection model f(z). In the proposed semi-supervised
method, f(x) uses the same architecture as the recent semi-
supervised method [29], including the encode and decode. The
encode uses a pre-trained ResNet50, image-pairs x4 and zp
are input the encode to get corresponding features. The decode
is composed of the upsampling modules, and finally obtains
the predicted change probability map 3.

yi = f(zly, z). (1)

For the predictions with labeled data, we utilize the Cross
Entropy (CE) loss [42] as the supervised loss to train the
detection model. The loss L, is calculated as follows:

1 i
Ly =37 2 CEW.y), )
ieDl

where 3y is the label of training data (2%, z%). In order to
compute the uncertainty of the unlabeled data D™, we save
three checkpoints of the model in different training epochs,
which are model 71, T2 and 7'3. Then we utilize these
models to predict the unlabeled data set D™ respectively,
and obtain predictions f(ua,up,d,T;) of the changed areas.
After argmax calculation of the prediction probability, the
pseudo label y;j predicted by different models on these data is
obtained. j is the training epoch when training the supervised
model.

y;j = argmax f(u%,u%,&,Tj). je{1,2,3} 3)

Since the supervised model accuracy is gradually improved
in the training stage, some studies [43] have found that image-
pairs that are relatively easy to identify produce accurate
predictions earlier. In the experimental discussion section of
this paper, we also visually compare the accuracy changes of
reliable samples and unreliable samples in different training
stages. The experimental results show that this theory can also
be used in change detection. By mean Intersection over Union
(meanloU) calculation of the prediction results of unlabeled
image-pairs at different epochs, we obtain the uncertainties
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Fig. 2. Contrastive learning loss calculation of a pair of remote sensing
images. The area in the red box is the changed objects that we need to detect.

uc; of different image-pairs.

K-1
1 i
uc; = N VEEDM JE:l meanIoU(ypj,ypK)» )

where y;) x 1s the best prediction by pre-trained model T}, at
epoch K, y,; is predictions by other models at other epochs.
In the proposed method, K is set as 3. Then, we sort the
uncertainty of all unlabeled data. In the experimental part of
this paper, we analyze the effect of different proportions of
reliable data on the change detection model. The results show
that the semi-supervised model has the best performance when
half of the unlabeled data is selected as reliable data. These
image-pairs with lower uncertainty as reliable subset, and the
data with higher uncertainty as unreliable subset.

Du = {(uly, uls, y;)}f\[:/f, Reliable set

pul (5)
DY = {(ui,ui'7y;) i]\;N/Z' Unreliable set

After dividing these unlabeled data, we use the model T}
with the highest accuracy in the pre-training stage to obtain
the pseudo labels y; corresponding to the reliable data D!,
For unreliable data D, we make unchanged labels y, by
copying one of the images, so that their corresponding real
labels y; are the label with all unchanged areas.

C. Contrastive Learning for Change Detection

The change detection on remote sensing images is mainly
to detect the changed areas in a image-pairs by the model,
which is also the difference between them. We believe that
the contrastive learning can enhance the model’s ability to
identify the changed areas, and improve the model’s accuracy.

However, the general contrastive learning method is to
select positive and negative samples in the training set to
calculate the contrastive loss. In the semi-supervised change
detection, we pay more attention to the target change informa-
tion of the same geographic location in remote sensing image-
pairs. Therefore, we design a contrastive learning loss based on
positive and negative pixels according to these characteristics
of change detection.

As shown in Fig. 1-(b), for labeled data and reliabAle subse},
we use the model to generate their predictions g and y;
respectively. Meanwhile, when calculating the loss, the ground
truth y* is used for the labeled data, and the pseudo label 3/,
generated in the previous stage is used for the unlabeled data.
For these RS images, we still use the Cross Entropy loss L
training the semi-supervised model.

yi = flaly, 2, 0), yi = f(uly,ul,0). 6)

L= Y CBL) + - 3 CBGLY). ()
ieD! ieDul

It is worth noting that based on the change detection
on remote sensing images, the proposed contrastive learning
method is shown in Fig. 2. We first input a image-pairs
(ua,up) into the detection model 7); with the best accuracy,
which are images of the same scene. In addition, we use the
contrastive loss for both labeled data and unlabeled data in
semi-supervised experiments.

Then, to construct positive and negative sample pixels, we
add two random strong perturbations 1 and 7’ to one of the
image-pairs to generate a perturbed pair of unchanging images,
and input them into the network. In the semi-supervised exper-
iments, we use colorjitter, grayscale, blur, and Cutout [44] with
random values filled to apply the strong data augmentations 7
and 7/'.

As shown in Fig 2, the original image-pair (u4,up) has
change areas, denoted as M,,. In addition, since we added
two random perturbations to image A, the new image-pair
(ua + n,ua + 1) does not have any change areas. By
comparing the two image-pairs of RS imges, it can be seen
that these image-pairs should have opposite predictions in the
changed areas M,.,. For the region outside the change area
M.q, it denoted as unchanged areas M,,. For the original
image-pair (u4,up), the semi-supervised model obtains their
change probability map y.. For another unchanged image-
pair (ug +n,ua + '), the predicted change probability map
is yy. In the M,,, two image-pairs should have consistent
predictions about whether the area is changed or not. In the
proposed contrastive loss L. calculation, pixels with consistent
predictions in region M, are taken as positive samples, and
pixels with opposite predictions in region M., are taken as
negative samples.

For the positive pixels in M,,,, their corresponding areas
are not the changed areas that need to be recognized in bi-
temporal images, so we calculate the loss L, of these positive
pixels:

L,=MSEYc, Yu, Muya)- (8)

To make the predictions of two image-pairs more similar,
we use the mean square error (MSE) loss to train the semi-
supervised model. In the changed areas, since the two groups
of images should have opposite predictions, we divided the
predicted probabilities of two image-pairs into the change
probabilities 2,y and the unchanged probabilities y_, .
When calculating the loss of negative samples, in order to
maintain a steady decline in the negative loss, we make
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Algorithm 1 Reliable Contrastive Learning.
Input: Labeled training set D' = {(z%, %, y*)}M,, Unla-
beled training set D* = {(u’y,uz)} N,
Output: Semi-supervised change detection model f(6)
1: Train model f(#) on D' with L, and L.
2: Save model T'1, T2 and T'3 on different training epochs
3: Compute the uncertainty for unlabeled set D", and gen-
erate pseudo labels y,
4: Select reliable samples to compose D%, and D% = D"
\ D% as unreliable samples
5: Train semi-supervised model f(#) on (D' U D)
6: for t =1 : maxlter do
7 Select labeled image x4,xp, label y and unlabeled
image u 4, up, pseudo label y,
8:  Add strong perturbation 7 to reliable unlabeled RS
images — {(ua,up) , (ua+mn,ua+n')}
9:  Set unreliable data {(ua,up)} — {(ua,ua),yp} or
{(quuB)vyp}
10:  Train semi-supervised model with L, on all samples
11: if {UA,UB} S D}fl then

12: Generate predictions y. and predictions y, for
{(ua,up) , (ua+mn,ua+n')}

13: Train model with the contrastive loss L.;

14:  else

15: Generate predictions f(ua,ua) and f(up,up)

16: Use the label y,, for supervised training of unreliable
samples

17 end if

18:  Use L and L.; to optimize the semi-supervised model
19: end for
20: return Change detection model f(6)

two predictions closer to each other in opposite prediction
probability, so the model more accurately identify the changed
areas. The negative loss L,, is calculated as follows:

Ln = MSE(Z/& y}HMca) + MSE(yia ygv Mca)- (9)

Combined with the loss of positive and negative samples,
the contrastive loss L.; is calculated as follows:

Let = Ly + Ly, (10)

In addition, since the changed area M., can be obtained by
labels or pseudo labels, the proposed contrastive loss can
be used in both labeled data and unlabeled data. We also
add this loss in the pre-training stage of the model, and the
experimental results show that it can significantly improve the
model performance.

In order to better express the proposed semi-supervised
method, Algorithm 1 shows the pseudocode of the reliable
contrastive learning method. In the pre-training process, the
model uses cross entropy loss Ls and contrastive loss L.,
to train the change detection model on labeled image-pairs
D!. Meanwhile, we saved several models 7; in different
epochs. Then the reliable unlabeled image-pairs are selected
by comparing the uncertainty of model’s predictions. Finally,
after screening the reliability of unlabeled data, the L,;; of the

proposed reliable contrastive learning method on the change
detection model is:

Lall = Ls + )\Lct; (11)

where )\ is the weight set by the semi-supervised loss, which
is usually set as 1 in our experiments.

By improving the quality of pseudo labels and the model’s
ability to identify the changed areas, the proposed method
significantly improves the accuracy of the detection model by
utilizing a large number of unlabeled images when there are
only few labeled images. We also verify the validity of the
proposed method on different datasets, and the experimental
results and discussions are described in the following sections.

IV. EXPERIMENTS
A. Experimental Setup

Datasets. To verify the proposed semi-supervised method,
we use three remote sensing image change detection datasets:
SZTAKI airchange dataset [45], WuHan University (WHU)
dataset [46] and LEarning, VIsion and Remote sensing
(LEVIR)-CD dataset [2].

SZTAKI dataset contains 13 pairs of 952 x 640 aerial images
with a spatial resolution of 1.5m. The objectives of the change
mainly include: new build-up regions, building operations,
planting, fresh plough-land and ground before building over.
However, it should be noted that the label of this dataset only
contains the changed areas, without corresponding semantic
information. In the semi-supervised experiment, we crop each
of the original images overlapping into 12 images of 256 x 256.
Finally, we dropped some unchanged image-pairs, 122 remote
sensing image-pairs were obtained. Then we have 98/12/12
image-pairs for training/validation/test, respectively.

WHU dataset mainly covers the area reconstructed after the
earthquake. The bi-temporal images in this dataset consist of
aerial images taken in 2012 and 2016, respectively. The change
object to be detected is the buildings with large-scale changes.
The original data is a remote sensing image with a large
resolution, so researchers generally cut it into smaller patches
for training. In our experiments, we first cut the original
image into 256 x 256 images and found that there were many
unchanged images, so we removed the unchanged data from
this dataset. Finally, the WHU dataset has 1512/189/189 pairs
of RS images for training/validation/test, respectively.

LEVIR-CD consists of 637 high-resolution remote sensing
image patch pairs with a size of 1024 x 1024 pixels. These data
mainly record the building changes in the same area, including
warehouses, houses, buildings and so on. Following recent
change detection methods [47] [29], we also cropped the
original images into 256 x 256 non-overlapping patches. After
processing the original data, we finally obtain 7120/1024/2048
pairs of RS images for training/validation/test, respectively.

As can be seen from Tabel I, semi-supervised change
detection experiments use three different types of remote
sensing image data sets. SZTAKI has a small amount of data,
and this dataset is used to verify the performance of the
method in this paper when large datasets are not available.
It should also be noted that the data set contains more
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TABLE I
COMPARISON OF THREE CHANGE DETECTION DATASETS.

Datasets Image-pairs Image size Train / Val / Test Resolution Changes
SZTAKI [45] 13 952 x 640 98 /12712 1.5 m/pixel | building, planting, plough-land...
WHU [46] 1 15354 x 32507 1512/ 189 / 189 0.2 m/pixel building
LEVIR-CD [2] 637 1024 x 1024 7120 / 1024 / 2048 0.5 m/pixel building
Select Reliable Set TABLE II
ToU (%) COMPARISON RESULTS (I0U, %) ON SZTAKI TEST SETS WITH
o DIFFERENT PERCENTAGES OF LABELED DATA.
| 2932 1914 Methods | 10% | 20% | 40% | 100%
% 77V\7&43
27479 . Sup. only [47] 9.85 28.11 30.43 39.78
T s 7304 Ours. pre 12.37 | 29.56 | 3272 | 41.25
o | Ours 12.68 | 32.57 34.38 -
65 1080Ti GPU.
= oo o oo Parameter Settings. In the proposed method, some images
WHU LEVIR

Fig. 3. Model performance comparison when different proportions of unla-
beled data are selected as reliable data.

different changed objects, which is also conductive to verifying
the applicability of the proposed semi-supervised method. In
contrast, WHU dataset and LEVIR dataset have more remote
sensing data available and can be fairly compared with other
semi-supervised methods.

Implementation details. In the experiments of semi-
supervised change detection, we usually focus on the influence
of semi-supervised algorithms on model performance, so we
use a widely-used change detection model to compare differ-
ent semi-supervised methods. Besides, to compare different
methods fairly, we maintain the same hyperparameters for all
experiments. We set batch size to 8 for both supervised and
semi-supervised models. In the semi-supervised experiments,
each batch has 4 labeled samples and 4 unlabeled samples
respectively. The basic learning rate Ir of model training is
0.001, and the poly scheduling is used to decay the learning
rate. The model all trained 80 epochs on WHU and LEVIR-CD
datasets. For labeled images, we use weak data augmentations:
random flipping, random crop, random re-scale and Gaussian
blur. In order to improve the constraint ability of the con-
sistency regularization on the model, we applied strong data
augmentations for the unlabeled image, including color jitter,
Cutout [44] and grayscale.

When comparing semi-supervised methods, 5%, 10%, 20%
and 40% labeled data were randomly selected for model
training, and others were used as unlabeled data to training
the semi-supervised model. We use Intersection Over Union
(IoU) as the main evaluation criterion when comparing the
semi-supervised models, and the experimental results mainly
compare the IoU of change class. In addition, we also ap-
plied the overall pixel accuracy (OA) to compare the model
performance. Our method is applied on PyTorch, and the
semi-supervised model is trained on an NVIDIA Quadro RTX

in the unlabeled dataset should be selected as a reliable subset,
so we ranked their uncertainties. To analyze the influence of
different proportions of reliable data on the semi-supervised
model, we conducted comparative experiments on two dataset-
s, and the results are shown in Fig 3. We selected different
proportions of reliable data in the order of uncertainty from
small to large to train the semi-supervised model. It can be
seen from the results that when the proportion of reliable data
is 50% or 75%, the model has better performance. In order
to reduce the time-consuming of the method, we chose 50%
of the unlabeled images as the reliable set in the experiments.
At the same time, it can be seen that when we do not select
reliable data, 100% of images are used as reliable images and
added to training, and the accuracy of the model will decrease
significantly.

B. Comparison with State-of-the-Art Methods

SZTAKI. On the SZTAKI dataset, we selected different
proportions of labeled images to verify the proposed semi-
supervised method. Due to the dataset contains only 98 image-
pairs for training, the accuracy of the model fluctuates too
much in the case of too little training data, which is not con-
ductive to the comparison of method differences. Therefore,
we choose 10%, 20% and 40% labeled data for training.

The results of the experiment are shown in TABLE II.
When only 10% of the training data has labels, the IoU of
detection model is only 9.85. The performance of change
detection was significantly improved by using the pre-training
process with the contrastive loss. However, when the semi-
supervised model is further trained by the reliable pseudo-
label method, the performance of the model is improved very
little. After checking the quality of the pseudo labels, we
found that when the number of labeled images was small,
the predictions obtained by the model were very rough, so the
pseudo labels’ improvement on the semi-supervised method
was also very limited. This problem can also be verified
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TABLE III
COMPARISON RESULTS ON WHU TEST SETS WITH DIFFERENT PERCENTAGES OF LABELED DATA. THE TABLE LISTS THE MODEL PERFORMANCE AFTER
DIFFERENT STAGES OF THE PROPOSED SEMI-SUPERVISED METHOD.

Method 5% 10% 20% 40%
IoU(%) OA(%) 1IoU(%) OA(%) IoU(%) OA(%) IoU(%) OA(%)
Sup. only [47] 65.73 92.08 72.93 93.92 77.38 95.06 81.95 96.19
RCR [29] 76.65 95.2 79.10 95.70 83.87 96.68 84.66 96.84
Ours. pre 70.05 93.60 71.37 95.07 78.6 95.27 83.63 96.61
Ours 79.32 95.67 82.98 96.48 84.16 96.73 85.28 96.98
TABLE IV

COMPARISON RESULTS ON LEVIR-CD TEST SETS WITH DIFFERENT PERCENTAGES OF LABELED DATA. THE PROPOSED METHOD COMPARES MODEL
ACCURACY OF DIFFERENT SSL METHODS IN CHANGE DETECTION.

Method 5% 10% 20% 40%
IoU(%) OA(%) IoU(%) OA(%) IoU(%) OA(%) IoU(%) OA(%)
Sup. only [47] 61.0 97.60 66.8 98.13 72.3 98.44 74.9 98.60
AdvNet [48] 66.1 98.08 72.3 98.45 74.6 98.58 75.0 98.60
s4GAN [49] 64.0 97.89 67.0 98.11 73.4 98.51 75.4 98.62
SemiCDNet [41] 67.6 98.17 71.5 98.42 74.3 98.58 75.5 98.63
RCR [29] 72.5 98.47 75.5 98.63 76.2 98.68 77.2 98.72
Ours ‘ 74.79 98.78 76.7 98.83 77.01 98.87 77.10 98.89

by comparing experimental results with a high proportion of
labeled data.

Our approach improve model performance by the con-
trastive loss when all data is labeled. At the same time, the
training data did not need pseudo labels, so there was no
corresponding results in the table. It also worth noting that
the change targets of this dataset are not only buildings, but
also other types of targets such as planting. The experimental
results also prove that the proposed method can perform
well when the ground changes are more complex. Therefore,
from the overall results, the proposed semi-supervised change
detection method can still have good performance on small
datasets.

WHU. On the WHU dataset, when directly using these
images to train the model, we found that the accuracy of
model varies greatly, and the differences between different
methods can not be well compared. Therefore, we screened
some images in the dataset, removed the samples without any
changes, and then compared the proposed methods in this
subset. The experimental results are shown in TABLE IIL
We first train the supervised model using different numbers
of labeled images as baseline. To compare with other semi-
supervised change detection methods, we use the RCR to train
semi-supervised models on different proportions of labeled
data. This approach is also the state-of-the-art method with
open source code, then we can train models on the WHU
dataset. It can be seen from the table that when the number of
labeled data decreases from 40% to 5%, the accuracy of the
supervised model decreases by 16 percentages. These results
demonstrate the dependence of the change detection model

on labeled data. When using the proposed semi-supervised
method, the accuracy of the pre-training model is improved
compared with the supervised model. We believe that is mainly
because we used the contrastive learning in the first stage.
After combining the reliable samples, the semi-supervised
model achieve 79.32 IoU when there are only 5% labeled
images.

In Table 1, when only 5% and 10% labeled data were used,
our method improve the IoU about 3 percents compared to
other methods. However, it worth noting that the accuracy of
semi-supervised methods has increased about 10 percents than
the supervised model. Since different semi-supervised meth-
ods have been greatly improved compared with supervised
models, our method actually has a significant performance
improvement compared with other semi-supervised methods.
In general, compared with other semi-supervised methods, our
method obtains the best performance on both IoU and OA of
the model.

LEVIR-CD. To better compare the differences between
our method and different semi-supervised methods, our ex-
periments on LEVIR-CD used the same setup as the RCR
[29] method, and we repeated their experiments to obtain the
semi-supervised models. In addition, we compared the results
of AdvNet [48] and s4GAN [49], which are semi-supervised
segmentation methods. In the TABLE IV, SemiCDNet [41]
is the related semi-supervised change detection method. In
the experiment, we still select different proportions of labeled
images for semi-supervised change detection models. The
results comparison of different methods is shown in TABLE
IVv.
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Fig. 4. Comparative examples of the proposed RCL on WHU dataset. Each line is an example. The first two columns are image pairs of CD and the third
column is the ground truth. The right three columns are comparison of related methods (Sup [47] and RCR [29]) and our RCL method.

It can be seen from the table that the results of the semi-
supervised method based on change detection are obviously
better than other semi-supervised segmentation methods. This
proves that semi-supervised learning has different characteris-
tics in change detection, and semi-supervised change detection
is worthy of further exploration. Compared with the latest
semi-supervised change detection methods, the proposed semi-
supervised method has better performance in different exper-
iments, and the IoU increases by about 2 percentages when
the labeled data is 5%. In addition, our method is slightly
lower than RCR when the number of labeled data is at 40%.
We believe that it is due to the differences between different
semi-supervised methods decreasing as more labeled data is
available. Meanwhile, semi-supervised methods usually focus
on model performance when the number of labeled data is
much less than the amount of unlabeled data.

Visualization. To compare the performance of different
semi-supervised models in change detection, we also visualize
the predictions on WHU and LEVIR-CD. As shown in Fig.
4, we conducted semi-supervised experiments with different
proportions of labeled data on WHU. The results show that
semi-supervised methods can obviously get more accurate
predictions compared with the supervised training. Compared
with the results of RCR, our model predictions have less error
detection and can detect the changed areas more accurately.
In addition, on the LEVIR dataset, we select a pair of images
to compare the model predictions. The model prediction after
training with different number of labeled images by different
methods is shown in Fig. 5. As can be seen from the figure,

the number of labeled images will significantly affect the
performance of the model in the semi-supervised method,
and the proposed method also has more accurate predictions
in some edge areas. Based on the results of these datasets,
we believe that the reliable contrastive learning effectively
improve the recognition ability of the model to the changed
areas.

V. DISCUSSION

In this section, we discuss and analyze the innovations
proposed in this paper, and demonstrate their influence in
semi-supervised experiments. First, we analyzed the selection
of reliable data, and then demonstrated the import role of
contrastive loss through ablation experiments. Then, a series of
semi-supervised experiments combining small-scale and large-
scale data sets proves the generality of the proposed method.
Finally, the differences in the time complexity between the
proposed method and other methods are compared.

A. Effectiveness of the Reliable Data

Comparison of the image uncertainty. In the method
section, we propose that more reliable images usually obtain
accurate prediction earlier in the training process, and we
also conducted visual comparison experiments to verify this
method. We saved the model checkpoints obtained at different
epochs on the WHU dataset. Then we randomly selected
a reliable sample and and unreliable sample to obtain the
predictions on these models respectively. The comparison of
the prediction results of these unlabeled images is shown in the
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Image A

e
&

Sup

RCR

Ours

Fig. 5. Comparative examples on LEVIR-CD dataset. From left to right, the first column is the bi-temporal samples and ground truth, and the other columns
are different model predictions trained with different proportions of labeled data.

ey

Epochs 40 Epochs 60

Label

Epochs 20

Fig. 6. Visual comparison of image uncertainty. (a) Reliable sample. (b)
Unreliable sample.

Fig 6. As can be seen from the figure, the labels of reliable
sample selected after calculating the uncertainty are usually
easier to identify, and the early model can predict the accurate
change area. Besides, the unreliable sample label is more
complex change objects, and the model predictions in different
epochs are quite different. These results also prove that we can
select more reliable data as reliable subset by calculating the
model uncertainty in different training epochs. In conclusion,
our method can further improve the performance of semi-
supervised models by selecting unlabeled images.
Comparison of pseudo label. More reliable data are select-
ed in order to use their pseudo labels to train semi-supervised
models and improve model performance. Therefore, we divide
the unlabeled data into reliable set and unreliable set, and
then generate pseudo labels for them respectively. So, we
use the ground truths to calculate the accuracy of pseudo
labels. In the experiment, we used models at different epochs
in the pre-training to compare their predictions. The results
of the comparison are shown in the Fig 7. As can be seen
from the figure, in different training epochs, the accuracy

IoU (%) Reliability Comparison
100
90

79.48
80 75.41

78.8
70
60
54.64
51.03 53.44
50
40
30
20
10
0

20 Epochs 40 Epochs 60 Epochs

® Unreliabel Set ® Reliable Set

Fig. 7. Accuracy of pseudo labels generated by reliable set and unreliable
set on WHU dataset.

of the reliable samples selected by the proposed method is
significantly higher than the unreliable samples. This indicates
that the proposed method selects samples with more accurate
pseudo labels from unlabeled samples. In the training of
the semi-supervised model, the information contained in the
pseudo labels of these samples effectively improve the semi-
supervised model performance.

By comparing the reliable data and the unreliable data in
model training, the results show that the proposed pseudo label
generation method can make full use of the unlabeled remote
sensing image data combined with the change detection model.
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TABLE VI
MODEL ACCURACY (CIoU, %) OF THE PROPOSED APPROACH WHEN COMBINING DIFFERENT DATASETS.

Methods Labeled data / Unlabeled data

10%

20% 40% 100%

SZTAKI / -
SZTAKI / SZTAKI
SZTAKI (98) / WHU (7120)

Sup. only [47]
Ours. semi
Ours + ext (WHU)

9.85
12.68 (+2.83)
16.66 (+6.81)

28.11
32.57 (+4.46)
34.42 (+6.31)

30.43
34.38 (+3.95)
38.75 (+8.32)

39.78
41.25 (+1.47)
44.54 (+4.76)

TABLE V
EFFECTIVENESS OF DIFFERENT METHODS. EXPERIMENTS ARE
CONDUCTED TO TRAIN SEMI-SUPERVISED CD MODEL USING 5%
LABELED DATA ON WHU DATASET. THE RESULTS ARE COMPARED WITH
THE IOU OF THE CHANGED AREAS.

Methods | Sup Aug CT_Loss Reliable Unreliable | cloU(%)
(a) v 65.73
(b) v v v 70.05
(© v v 77.33
(d) v v v 78.24
(e) v v v v 79.03
) v v v v v 79.32

B. Effectiveness of the Contrastive Loss

One of the contribution in the proposed semi-supervised
change detection method is the contrastive loss of pairwise im-
ages. To demonstrate the effect of the proposed contrastive loss
on the semi-supervised change detection model, we conducted
a series of ablation experiments. The effects of contrastive
loss on the model were compared in the experiments. The
experiments compare the contributions of different techniques
to semi-supervised methods, and the results are shown in
TABLE V.

We first use 5% labeled data to train a supervised model
on the original network as the baseline, and the experimental
results are shown in (a) of TABLE III. In experiment (b),
we still only used 5% labeled images, and then added the
unchanged sample pairs and the contrastive loss. The results
showed that the model IoU increased by 4.32 percentage
points. We believe that when the number of labeled data
is small, adding unlabeled samples effectively improves the
generalization ability of the model, and the contrastive loss
also further strengthens the feature extraction ability of the
change detection model.

Besides, we selected reliable unlabeled images for training
the semi-supervised model without the contrastive loss, and the
results are shown in method (c). This proves the importance of
reliable pseudo labels for semi-supervised models. After using
the proposed method step by step, the model accuracy can be
improved continuously. Finally, for the unreliable samples that
are not selected, we create corresponding unchanged samples
and add them to the training.

The comparison between experiments (e) and (f) also shows
that this method makes full use of these data. It can be proved
from experiments (b) and (e) in the table that the proposed
contrastive loss can not only significantly improve the model’s
ability to identify the changed area in the pre-training process,

but also effectively improve the model’s performance when the
semi-supervised experiment is conducted with reliable data.
Combined with these experiments, we find that the proposed
different techniques achieve different degrees of performance
improvement in the semi-supervised change detection.

C. Model Generalizability and Time Complexity

Model Generalizability. It is very important for the semi-
supervised change detection method to improve the model
performance by combining different types of datasets. For
general scenarios, small-scale labeled datasets are usually
available, and a large number of different types of unlabeled
remote sensing image data are also relatively easy to obtain.
Therefore, whether the remote sensing image data sets of
different modes can be used to improve the semi-supervised
model performance is a problem worth studying. To verify the
generality of the proposed method, we designed a set of semi-
supervised experiments combining STAKI dataset and WHU
dataset.

The experimental results are shown in TABLE VI. First,
we use supervised models as the baseline, which only use
partially labeled images as the training set. Then, similar to
general semi-supervised experiments, we used partial labeled
STAKI images and the remaining unlabeled STAKI images
to train the semi-supervised change detection model. It can
be seen from the table that when the semi-supervised model
is trained with labeled images of different proportions, the
model performance can be significantly improved by the
unlabeled images. It should be noted that when all image-
pairs are labeled, our semi-supervised approach also improves
performance due to the contrastive loss.

In order to verify that the proposed semi-supervised method
uses unlabeled large-scale datasets to improve the model of
small datasets, we use part of the image-pairs in SZTAKI
dataset as labeled data and 7120 image-pairs in WHU dataset
as unlabeled data to train the semi-supervised model. The
experimental results in TABLE VI show that the addition of
WHU data can significantly improve the model performance
when only 10%, 20% and 40% SZTAKI data are used. Since
the pre-training model is more accurate when there has 40%
labeled data, the pseudo-labels generated by WHU data can
also be used more effectively. Finally, when all SZTAKI
images are used as labeled images and 7120 pairs of WHU
images are used as unlabeled images, the semi-supervised
method can also increase the detection model IoU by 4.76
percentage points. These results prove that the proposed semi-
supervised change detection method effectively use large-
scale unlabeled remote sensing images to improve the change
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TABLE VII
TIME COMPLEXITY ANALYSIS OF DIFFERENT SEMI-SUPERVISED
METHODS.

Methods Params  Train times | cloU(%) OA(%)
Sup [47] | 46.85 M 0.5h 65.73 92.08
RCR [29] | 50.69 M 7.1 h 76.65 95.20
Ours. pre | 46.85 M 1.0h 70.05 93.60

Ours 46.85 M 6.0 h 79.32 95.67

detection model performance, which also has very important
research significance.

Time Complexity. Although the proposed reliable con-
trastive learning has significantly improved the performance
of the semi-supervised change detection model, we also need
to further analyze the model parameter variation and time
complexity. In order to directly compare the effects of different
semi-supervised methods on the model, we used the same
change detection network to train the model on the WHU
dataset. All experiments were carried out on a 1080Ti GPU,
and different models were trained the same epochs. The
comparison of experimental results is shown in TABLE VIIL.
As can be seen from the table, the supervised model has the
least number of parameters and the fastest training time, but
the model accuracy is also the lowest.

Combined with the proposed contrastive loss, the perfor-
mance of our pre-trained model is significantly improved,
and the training time is also slightly increased due to the
contrastive loss and the addition of positive and negative
samples. When comparing our semi-supervised model with
related semi-supervised methods, it can be seen from the table
that our method does not add additional model parameters, but
is more efficient in training time and the model performance
is improved more obviously. These results prove that the
proposed semi-supervised method in this paper has a more
efficient training process and the performance of the final
model is also better than other related methods.

VI. CONCLUSION

Remote sensing image change detection methods usually
need a large number of labeled images for model training,
but the labeling of bi-temporal remote sensing images usually
consumes huge resources. In order to make full use of unla-
beled remote sensing image data, this paper proposes a reliable
contrastive learning method for semi-supervised change de-
tection. The contrastive loss combines the task characteristics
of change detection, and the positive and negative pixels are
designed according to the labels or pseudo labels. This loss
effectively improves the feature identification ability of the
model. In addition, selecting reliable data from unlabeled
data to generate pseudo-labels, and then adding them to the
training of the semi-supervised model can further improve the
performance of the detection model. Extensive experimental
results demonstrate the effectiveness of the proposed method.

In the future, we will try to combine different training stages
to complete semi-supervised model training more efficiently

through real-time reliability calculation and pseudo-label gen-
eration. In addition, in the selection of unlabeled data, we will
further explore the applicability of different types of remote
sensing images.
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