
This is a repository copy of Partial Loading of Repository-Based Models through Static
Analysis.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/193465/

Version: Accepted Version

Proceedings Paper:
Jahanbin, Sorour, Kolovos, Dimitris orcid.org/0000-0002-1724-6563, Gerasimou, Simos
orcid.org/0000-0002-2706-5272 et al. (1 more author) (2022) Partial Loading of
Repository-Based Models through Static Analysis. In: Proceedings of the 15th ACM
SIGPLAN International Conference on Software Language Engineering (SLE 2022).
Proceedings of the 15th ACM SIGPLAN International Conference on Software Language
Engineering (SLE 2022), 06-07 Nov 2022 ACM , NZL , 266–278.

https://doi.org/10.1145/3567512.3567535

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Partial Loading of Repository-Based Models
through Static Analysis

Sorour Jahanbin
sorour.jahanbin@york.ac.uk

University of York
York, United Kingdom

Dimitris Kolovos
dimitris.kolovos@york.ac.uk

University of York
York, United Kingdom

Simos Gerasimou
simos.gerasimou@york.ac.uk

University of York
York, United Kingdom

Gerson Sunyé
gerson.sunye@ls2n.fr

University of Nantes
Nantes, France

Abstract

As the size of software and system models grows, scalability
issues in the current generation of model management lan-
guages (e.g. transformation, validation) and their supporting
tooling become more prominent. To address this challenge,
execution engines of model management programs need
to become more efficient in their use of system resources.
This paper presents an approach for partial loading of large
models that reside in graph-database-backed model repos-
itories. This approach leverages sophisticated static analy-
sis of model management programs and auto-generation of
graph (Cypher) queries to load only relevant model elements
instead of naively loading the entire models into memory.
Our experimental evaluation shows that our approach en-
ables model management programs to process larger models,
faster, and with a reduced memory footprint compared to
the state of the art.

CCS Concepts: · Software and its engineering→Model-

driven software engineering.

Keywords: partial loading,memorymanagement, repository-
based model, cypher language, model-driven engineering

ACM Reference Format:

Sorour Jahanbin, Dimitris Kolovos, Simos Gerasimou, and Gerson

Sunyé. 2022. Partial Loading of Repository-Based Models through

Static Analysis. In Proceedings of the 15th ACM SIGPLAN Inter-

national Conference on Software Language Engineering (SLE ’22),

December 06ś07, 2022, Auckland, New Zealand. ACM, New York,

NY, USA, 13 pages. https://doi.org/10.1145/3567512.3567535

SLE ’22, December 06ś07, 2022, Auckland, New Zealand

© 2022 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal

use. Not for redistribution. The definitive Version of Record was published

in Proceedings of the 15th ACM SIGPLAN International Conference on Soft-

ware Language Engineering (SLE ’22), December 06ś07, 2022, Auckland, New

Zealand, https://doi.org/10.1145/3567512.3567535.

1 Introduction

In MDE, models are manipulated using model management
programs that carry out different tasks such as model trans-
formation, model merging, model validation, etc. As models
grow in size, MDE tools face scalability problems. One of
them is the ability of execution engines of model manage-
ment languages to scale up for models of growing size in
terms of execution time and memory usage [8].

The primary reason for this scalability issue lies in the way
that most contemporary technologies interact with models.
For example, when a model management program needs to
load and process (e. g. transform, validate) a model, if the
model is a file-based model (e. g. XMI), then all the required
information from it needs to be read upfront, before the
execution of the program. If the model is stored in a data-
base (e. g. Neo4j), then we can issue multiple queries to the
database, to fetch model elements of interest (and their prop-
erties) progressively, as they are needed for the execution of
the program.

To summarise, the interaction of model management pro-
gram execution engines with large models (file-based or
repository-based) can be too “short-sightedž in the absence
of static-analysis-based model loading and caching mecha-
nisms. This can result in increased model loading times and
unnecessary memory consumption. This paper introduces
an approach that can help execution engines of model man-
agement programs handle larger models more efficiently.
In our approach, by using in-advance knowledge about the
program provided by static analysis, execution engines are
able to identify and load only parts of model that are likely
to be accessed by the program.
The main contributions of this work are:

• An algorithm for extracting the effective metamodel
of model management programs, which are executed
against models in graph-based model repositories.
• An algorithm for translating a program’s effective
metamodel into a set of efficient graph queries that
only return elements, relationships and properties that
the program is likely to exercise at run-time.

SLE ’22, December 06ś07, 2022, Auckland, New Zealand Sorour Jahanbin, Dimitris Kolovos, Simos Gerasimou, and Gerson Sunyé

• A prototype implementation of these algorithms us-
ing the Eclipse Epsilon family of model management
languages and the Neo4J graph database.

The remainder of the paper is structured as follows. In
Section 2, a motivating example is provided that explains
the challenges of interest in more detail. In Section 3, the
proposed approach is discussed and the limitations of our
approach are mentioned. Related work is reviewed in Sec-
tion 4. Section 5 reports on the result of the evaluation of
our approach compared to the state of the art, and finally,
Section 6 concludes the paper and outlines directions for
future work.

2 Motivating Example

As a motivating example, consider a model that conforms
to a contrived Project Scheduling Language (PSL), the UML
class diagram of which is shown in Figure 1. According to
the PSL metamodel, each Project has a title and a description,
and it consists of Tasks and Persons. Tasks can be completed
through automated means (AutomaticTasks) or manually
(ManualTasks). All Tasks have a title but only ManualTasks
have a duration, and a start time. Also, each ManualTask
specifies the Effort that different Persons in the project will
contribute to it (as a percentage of their time).

tasks [*]
Project

 title: String

 description: String

Effort

 percentage: Int

Task

 title: String

Person

 name: String

people [*]

efforts [*]person

AutomaticTask

ManualTask

 start: Int

 duration: Int

Figure 1. PSL Metamodel

Consider a model that conforms to the PSL language (see
Figure 1), and on which we would like to print the number
of people who contribute to each ManualTask. This program
could be written in a language such as the Epsilon Object
Language (EOL)1 [7] as shown in Listing 1.

Listing 1. EOL program to print number of people who
contribute to each task

1 for(task:ManualTask in ManualTask.all()){

2 task.title.print();

3 task.efforts.person.asSet().size().println ();

4 }

Epsilon2 is a platform that provides task-specific languages
for common model management activities such as model
transformation, code generation, merging, validation, and
refactoring. The core language of the platform is the Ep-
silon Object Language (EOL), which is a model-oriented

1https://www.eclipse.org/epsilon/doc/eol/
2https://www.eclipse.org/epsilon/

programming language, that provides common facilities for
developing task-specific model management languages.

In Epsilon’s architecture, there is an Epsilon Connectivity
Layer (EMC)3) which enables Epsilon programs to interact
with models in different modelling technologies in a uniform
manner by defining the drivers (e. g., EMF, CDO, NeoEMF).
In Listing 1, line 1 defines the task variable and it goes

through all instances of ManualTask. In lines 2-3, the title of
each task and the number of people who contribute to each
task are printed.
The program shown in Listing 1 only accesses the title

attribute and efforts reference of ManualTask, the person
reference of Effort and no other properties of the PSL meta-
model. To run this program against a repository-based model
(e. g. stored in a database-backed repository such as CDO or
NeoEMF), the EOL engine uses the respective driver to fetch
all instances of model element types and properties of model
elements on demand. Therefore, without using in-advance
static analysis of the EOL program, there is no way to tell
before executing the program which features of the required
model elements should be retrieved from the repository. In
this situation, there are two alternatives at runtime: either
greedily fetch all properties and attributes of model elements
retrieved from the database or lazily fetch attributes and ref-
erences on demand. The former strategy favours execution
time over memory consumption, while the second strategy
requires less memory, but potentially multiple round-trips
to the repository, which can be detrimental to performance.

Considering Listing 1 that uses the title attribute and efforts
reference of ManualTask, the person reference of Effort and
no other attributes or references, the two strategies are sub-
optimal:

• Greedy: When all instances ofManualTask are fetched
in line 1, all their attributes and references would be
fetched too (including ManualTask.duration). As Man-
ualTask.duration is not accessed by the EOL program,
fetching its value from the repository and maintaining
it in memory is wasteful.
• Lazy: Using this approach, in line 1, only skeletons of
ManualTask elements would be initially fetched from
the database. Then in line 3, for each ManualTask, the
program would need to go back to the database and
fetch the value of its efforts reference. So, multiple
round-trips to the repository to fetch the value of the
attribute or references of each model element are re-
quired. These trips are time-consuming.

3 Proposed Approach

The overall goal of this work is to reduce the loading time and
memory footprint of repository-based models consumed by
model management programs through static analysis of said
programs. In our approach, a static analyser can determine

3https://www.eclipse.org/epsilon/doc/emc/

Partial Loading of Repo-Based Models through Static Analysis SLE ’22, December 06ś07, 2022, Auckland, New Zealand

which features or all instances of which specific types (e. g.,
ManualTask) are likely4 to be accessed by the program in
advance.

This information can be used to fetch a subset of the model
that is likely to be accessed by the program from the database
in one go just before the program is executed (e. g., populate
the efforts reference of each ManualTask in one go, but leave
out the start attribute which is not required). Our expecta-
tion is that this approach will be more efficient in terms of
memory and time compared to the greedy and lazy strategies
described above.

In terms of concrete technologies, we use Neo4J as a graph-
based model repository5 and model management programs
written in languages of the Epsilon platformÐbut the ap-
proach is also applicable to other similar technologies (e. g.,
OrientDB6 and OCL [2], ATL [6] or Acceleo7). A high-level
overview of our approach is presented in Figure 2. The main
components of this approach are represented in grey colour
and they are labeled with numbers 1 to 3.

3.1 Static Analysis

In the first step of our approach (see Figure 2), a model
management program and the metamodels of the models
it consumes are provided as the input to a static analyser.
The static analyser computes the abstract syntax tree of the
program. Then, resolution algorithms, including variable res-
olution and type resolution, are applied to derive an abstract
syntax graph [12]. Using the abstract syntax graph, the static
analyser can extract relevant information (i.e., types and
properties accessed by the program).

The output of the static analyser is an effective metamodel
for every model accessed by the program. The effective meta-
model is a subset of the model’s original metamodel, which
consists only of types and properties that are likely to be
accessed by the program [12] (see Section 3.2).

While static analysis supports multiple models (and there-
fore produces multiple effective metamodels), in the remain-
der of the paper, we will only consider programs with one
model (and therefore one effective metamodel). To illustrate
how every step of the approach works, we use the motivating
example from Section 2.

In the first step of our approach, the static analyser sets the
resolved types of expressions to types from the respective
metamodels or to primitive types (e. g., String, Integer). For
example, in line 1 of Listing 1, the resolved type of task
variable is equal to ManualTask. In line 2, the property call
is supposed to print the title of each task. The title is an
attribute of task and the resolved type is String. Then, line 3

4In some cases, the execution engine needs to load unnecessary model

properties as well because of a lack of information before the execution (see

Section 3.2.1).
5https://neo4j.com
6https://orientdb.org/
7https://www.eclipse.org/acceleo/

accesses task.efforts.person and task.efforts is a property call
where the target of this call is a model element (ManualTask)
and the feature which is called is efforts. In this case, efforts
is a reference of ManualTask of Effort type. Table 1 shows
the resolved types of expressions which are extracted from
Listing 1 by the static analyser.

3.2 Effective Metamodel Computation

The second step of the approach is the extraction of the effec-
tive metamodel of the model consumed by the program from
its abstract syntax graph. The concept of effective metamodel
was introduced by Wei et al. [13]. The effective metamodel is
constructed using Algorithm 1 (described later in the paper)
that uses the resolved types of expressions, and contains
only types which are necessary for executing the program
from which it is extracted. In our prototype implementation,
effective metamodels are only computed for EMF-based mod-
els, but in principle, this approach can be applied to other
metamodelling technologies too.

As shown in Figure 3, an effective metamodel consists of
an EffectiveMetamodel class with name and nsuri attributes.
The EffectiveMetamodel class is connected to an EClass that
has EStructuralFeatures. The EffectiveMetamodel class is con-
nected to an EClass by allOfKind, allOfType and types refer-
ences.
The allOfKind and allOfType references specify the in-

stances of types that the execution engine should load. The
difference between these two references is that allOfKind
is used when all instances of a class (including subclasses)
should be loaded. In contrast, allOfType reference means the
execution engine should consider only the elements that are
direct instances of the class (without considering any of its
subclasses). The types reference is used for specifying class
instances of which should be loaded only when they appear
in the references of model elements of interest.

For every class used in the program (such as ManualTask
and Effort), an EClass is added in the respective effective
metamodel. The EClass contains collections of structural
features that reflect the attributes and references of the type
accessed by the program.

The process which extracts this effective metamodel from
an EOL program is described in Algorithms 1 and 2. This
algorithm is easily extendable for other Epsilon languages
but considering the motivating example, we will discuss the
version that works with EOL program in this section.

In Algorithms 1 and 2, the Abstract Syntax Graph, which
is extracted by the static analyser, is visited. Algorithm 1 is
interested in calls of all() and allInstances() operations and
property calls (such as ManualTask.efforts) as they are the
only way to navigate to model elements in Epsilon programs.
In lines 7-11, the all() and allInstances() operation calls are
handled by Algorithm 1 to add the respective EClasses to the
effective metamodel. If the target of the operation call is a
model element type, then it will be added to an allOfKind

SLE ’22, December 06ś07, 2022, Auckland, New Zealand Sorour Jahanbin, Dimitris Kolovos, Simos Gerasimou, and Gerson Sunyé

Execution

Engine

Large repository-based

model

Memory

Abstract Syntax

Graph

Original metamodel

Output
Execute the program

Effective Metamodel

Conforms

to

Epsilon program

Static

Analyser
Effective Metamodel

Computation

0

Load the necessary informarmation

into memory

1

2

Query

Generation

3

Figure 2. The proposed approach

Table 1. Resolved Types Calculated by the Static Analyser

Line number in Listing 1 Expression Resolved Type

1 task Model Element (ManualTask)

1 ManualTask.allInstances() Operation call expression (Sequence<ManualTask>)

2 task.title Property call expression (String)

2 task Model Element (ManualTask)

3 task.efforts.person.size() Operation call expression (Integer)

3 task.efforts.person Property call expression (Sequence<Person>)

3 task.efforts Property call expression (Sequence<Effort>)

3 task Model Element (ManualTask)

EffectiveMetamodel

 name: String

 nsuri: String

EClass

 name: String

EStructuralFeature

 name: String

allOfKind [*]

allOfType [*]

eStructuralFeatures [*]types [*]

features [*]

Figure 3. The structure of effective metamodel (adapted
from [13])

reference of the effectivemetamodel (line 11) and, if it already
exists in the effectivemetamodel under the allOfType or types
references, the EClass is moved to the allOfKind reference.
In lines 15-28, Algorithm 1 handles property calls to fur-

ther populate the effective metamodel. In Algorithm 2, if
the accessed property is all (it is an alias for allInstances()),
then the target element type will be treated identically to

the allOfKind operation call (lines 2-3). When the target of
property call is a model element, if an attribute of the model
element is accessed, it is added to the effective metamodel
as an EAttribute (lines 8-9), or if it is a reference, then it is
added as an EReference (lines 10-11).

Figure 4 illustrates the effective metamodel extracted from
the EOL program in our motivating example (Listing 1). In
Figure 4, the attributes of the EffectiveMetamodel class are
filled by the original metamodel, which are the name and the
nsuri of the metamodel. For running the EOL program, all
instances of ManualTask must be loaded. The ManualTask
class is added to EffectiveMetamodel under the allOfKind
reference according to lines 7-11 of Algorithm 1. The title
attribute of task is added to the EffectiveMetamodel according
to lines 8-9 of Algorithm 2. The efforts reference of Manual-
Task is also required (line 3 of Listing 1), hence, it is added
to ManualTask as an EReference according to lines 10-11 in
Algorithm 2. The resolved type of efforts reference is equal

Partial Loading of Repo-Based Models through Static Analysis SLE ’22, December 06ś07, 2022, Auckland, New Zealand

:EffectiveMetamodel

 name: PSL

 nsuri: psl

:EClass

 name: ManualTask

:EClass

 name: Effort

:EClass

 name: Person

:EReference

 name: efforts

:EReference

 name: person
features

eS
tru

ct
ur

al
Fe

at
ur

es
allOfKind

types

eStructuralFeatures

types

:EAttribute

 name: title

Figure 4. Effective metamodel of the EOL program shown
in Listing 1

to Effort (see Table 1), so according to lines 12-13 in Algo-
rithm 2, the Effort EClass is added to effective metamodel
using the types reference and the Person EClass is added to
the effective metamodel using the types reference.

3.2.1 Accommodating Untyped Variables and Expres-

sions. Algorithm 1 visits the abstract syntax graph to con-
sider all statements and expressions in the code. Thus, con-
structing the effective metamodel relies on the ability of the
static analyser to precisely resolve their types. If in a prop-
erty call expression the resolved type of the left hand side is
unknown (łAnyž in terms of the Epsilon type-system), then
the name of the property is added to an unresolvedProper-
ties set. After the effective metamodel has been extracted,
the unresolvedProperties set is used to augment the effective
metamodel with additional FeatureAccess elements for all the
types of the effective metamodel that have features matching
properties in the set. For example, in Listing 2, the title of
the first Project of the input model is printed. All instances
of Project with title attribute and all instances of Task are
required for running this part of program.

Listing 2. EOL Example Code

1 var p = Project.all().first();

2 var t = Task.all().first();

3 p.title.println ("Title: ");

In the first line of Listing 2, the first item of all instances
of Project in the model is assigned to p variable. As the type
of p is undefined, the resolved type of p is considered as Any.
Hence, the condition in line 22 of Algorithm 1 is not satisfied,
and the title attribute of Project is not added to the effective
metamodel in the first iteration.

Algorithm 1 handles this situation by considering possible
(instead of precise) types for variables and expressions.While
this is the case for this minimal example, in the general case,
the type of variables assigned in more than one places in a
program cannot be resolved reliably.
In lines 1-2 of Listing 2, according to lines 9-16 of Algo-

rithm 1, Project and Task EClasses are added to the effective
metamodel. Then, the title attribute is accessed by the pro-
gram but as the resolved type of p is Any, it adds the title

attribute to all EClasses that are already in the effective meta-
model. Hence, according to lines 8-9 in Algorithm 2, title will
be added to the effective metamodel for the Project and Task
EClasses and the execution engine will load the title of all
instances of Project and the title of all instances of Task into
memory.

:EffectiveMetamodel

 name: PSL

 nsuri: psl

:EClass

 name: Project

:EAttribute

 name: title

:EClass

 name: Task

features

eStructuralFeatures

allOfKind

allOfKind

eStructuralFeatures

Figure 5. Extracted effective metamodel for Listing 2

As shown in Figure 5, the effective metamodel includes
an attribute which is not necessary for running the program
(title of Task), but because of lack of information before the
execution and to be on the safe side, the execution engine
loads more information from the repository. Loading more
information and running the program is preferable to loading
less information than required at runtime. As during the
execution of the Epsilon program, more EClasses may be
added to the effective metamodel, in line 2 of Algorithm 1,
there is a loop which calculates the effective metamodel
until the point that no further changes are made to it. As
the time consumption of extracting the effective metamodel
is negligible, repeating the algorithm will not have a great
impact on the efficiency of our approach.

3.3 Query Generation

3.3.1 Mapping EMF Models to Graph Databases. In
this work we are concerned with the efficient management of
models that reside in graph-basedmodel repositories as these
have been shown to outperform model repositories backed
by relational/document databases [1, 4]. A state-of-the-art
graph-based model repository is NeoEMF, which enables the
persistence of EMF-based model in Neo4J graph databases
(among others). Our first attempt was to implement our
efficient model loading approach on top of NeoEMF, however
the framework cannot support partial model element loading
without a significant amount of refactoring. Therefore, we
chose to implement a custom mapping of EMF models to
Neo4J databases, which we discuss in this section. Figure 6
shows a model which conforms to the PSL metamodel in
Figure 1. The project named as “ACMEž consists of three
tasks: “Designž is a ManualTask which has to be completed
by Bob (40 % effort) and Alice (60 % effort); “Implementationž
is also aManualTask equally split among Alice and Bob (50 %
each) and “Meeting organisationž, which is an Automated
Task.
In order to map EMF-based models such as this one to

a Neo4J graph, we use the mapping strategy illustrated in

SLE ’22, December 06ś07, 2022, Auckland, New Zealand Sorour Jahanbin, Dimitris Kolovos, Simos Gerasimou, and Gerson Sunyé

Algorithm 1 EOL Effective Metamodel Extraction Algorithm (1 of 2)

1: procedure computeEffectiveMetamodel

2: while No further changes are made to the effective metamodel do
3: let EM = New effective metamodel;
4: for all operation call expression do

5: if IsModelElement(operation.target) then
6: let EC = target.type;
7: if operation.name.equals(all or allOfKind or allInstances) then
8: if allOfType.contains(EC) or types.contains(EC) then
9: move EC under EM’s allOfKind reference;
10: else

11: allOfKind.add(EC);

12: else if operation.name.equals(allOfType then
13: if not allOfKind.contains(EC) and not allOfType.contains(EC) then
14: allOfType.add(EC);

15: for all property call expression do

16: if IsModelElement(propertyCall.target) then
17: let EC = target.type
18: handlePropertyCallExpression(propertyCallExpression,EC)
19: else if IsCollection(propertyCall.target) then
20: if IsModelElement(collection.content) then
21: let EC = collection.content.type
22: handlePropertyCallExpression(PropertyCallExpression,EC)
23: else if IsAny(collection.content) then
24: for all EClasses in EM do

25: handlePropertyCallExpression(PropertyCallExpression,EClass)

26: else if IsAny(propertyCall.target) then
27: for all EClasses in EM do

28: handlePropertyCallExpression(PropertyCallExpression,EClass)

Algorithm 2 EOL Effective Metamodel Extraction Algorithm (2 of 2)

1: procedure handlePropertyCallExpression(𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝐶𝑎𝑙𝑙𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛, 𝐸𝐶𝑙𝑎𝑠𝑠)
2: if the property.name.equals(all) then
3: Go to line 7 Algorithem 1
4: else

5: let EC = EClass
6: if not allOfKind.contains(EC) and not allOfType.contains(EC) then
7: types.add(EC);

8: if IsAttribute(property) then
9: EC.attributes.add(property)
10: else if IsReference(property) then
11: EC.references.add(property)
12: let EType = reference.type
13: types.add(EType)

Figure 7. Using this strategy, every model element is mapped
to a Node in the graph and the properties of the node are set
to the values of the attributes of the element. For example in
Figure 7, ACME is an instance of Project in the model which
has a title attribute; hence a corresponding node is created in
the graph and the title property of the node is set to ACME.

For Design, which is an instance of ManualTask, its duration
and start attributes are copied to the respective node.
In Neo4j graphs, nodes can have labels. In our approach,

the label of each node is set to the type of the respective
model element and its super types. Thus, in Figure 7, the
label of ACME is set to Project and the labels of Design are set

Partial Loading of Repo-Based Models through Static Analysis SLE ’22, December 06ś07, 2022, Auckland, New Zealand

:Project

 title = ACME

: ManualTask

 title = Design

 start = 1

 duration = 3

:ManualTask

 title = Implementation

 start = 7

 duration = 6

:AutomatedTask

 title = Meeting organisation

:Effort

 percentage = 60

:Effort

 percentage = 50

:Effort

 percentage = 50

:Person

 name = Alice

:Person

 name = Bob

:Effort

 percentage = 40

Figure 6. PSL model of the ACME project

to Task andManualTask. As the labels of nodes are unordered,
to understand which label corresponds to the exact type of
the node, we can load all labels of each node and by using
the structure of the metamodel, find the exact type of node.
However, it is more efficient to connect each node to another
node that has the name of its type, using an instanceOf edge
to capture the type of the node. In Figure 7, there is an
Edge in the graph which connects the created node to the
Project node to capture the type of the node and an edge
which connects the Design node toManualTask. Algorithm 3
describes the mapping process in detail.

3.3.2 Model Loading. In the third step of our approach,
we wish to generate queries in Neo4J’s Cypher query lan-
guage, that will fetch (1) only the part of the model that
conforms to the effective metamodel extracted in step 1 and
(2) do this as efficiently as possible (after statically analysing
the program and identifying the part of the model it is likely
to access at runtime in the form of an effective metamodel).

Cypher8 is a language for queryingNeo4j databases. Hence,
by generating Cypher queries based on the effective meta-
model, EOL’s execution engine will be able to load the re-
quired parts of the model for running the program.
The Cypher expressions that are used for loading infor-

mation in our approach are listed in Table 2 (var stands
for variable). The first column of Table 2 lists the Cypher
expressions, the second column is the pattern that each ex-
pression follows and the third column is the functionality of
the expression.

Using these three expressions, the queries of Listing 3 are
generated based on the effective metamodel in Figure 4.
Considering the effective metamodel in Figure 4, all in-

stances ofManualTask are required for running the program
(EOL code in Listing 1). Hence, all nodes with the Manual-
Task label should be loaded. The MATCH keyword matches
all nodes with the specified label in the graph. The generated
query in line 1 of Listing 3 loads all ManualTask nodes.

8https://neo4j.com/developer/cypher/

Algorithm 3 EMF Model to Graph Conversion Algorithm

1: let visitedElements = keep the EMFmodel elements with
corresponding nodes

2: let source = Node, target = Node, newNode = Node
3: for all model elements of EMF model do
4: letME = model element
5: if visitedElements.contains(a node corresponding

to ME) then
6: 𝑠𝑜𝑢𝑟𝑐𝑒 ←node
7: else newNode = CreateNode(ME)
8: setNodeProperties(newNode,ME.attributes)
9: newNode.labels.add(ME.type.name)

10: for all supertypes of ME.type do
11: newNode.labels.add(supertype.name)
12: visitedElements.add(newNode)
13: 𝑠𝑜𝑢𝑟𝑐𝑒 ←newNode
14: for allME.references do
15: if visitedEl.contains(reference.value) then
16: 𝑡𝑎𝑟𝑔𝑒𝑡 ←visitedElements.get(reference.value)
17: else newNode = CreateNode(reference.value)
18: setNodeProper-

ties(newNode,reference.value.attributes)
19: visitedElements.add(newNode.labels)
20: 𝑡𝑎𝑟𝑔𝑒𝑡 ←newNode
21: Edge e = CreateEdge(source, target)
22: e.name = reference.name

Listing 3. Generated Cypher Queries According to Effective
Metamodel in Figure 4

1 MATCH (task:ManualTask)

2 RETURN ID(task), task.title

3 OPTIONAL MATCH (task:ManualTask)-[taskins:

instanceOf]->(taskType)

4 RETURN taskType.name

5 OPTIONAL MATCH (task:ManualTask)-[effortRefTask:

effort]->(effort:Effort),(effort)-[effortins

:instanceOf]->(effortType)

6 RETURN ID(effort), effortType.name

7 OPTIONAL MATCH (effort:Effort)-[personRefEffort:

person]->(person:Person),(person)-[personins

:instanceOf]->(personType)

8 RETURN ID(person), personType.name

After matching all ManualTask nodes, the id of each task
has to be loaded in order to distinguish between different
ManualTask instances. Line 2, shows the Return query to
fetch the id and the title attribute ofManualTask nodes from
the database.

Beyond the ID, the exact type of ManualTask instances is
also needed, which is specified by the łinstanceOfž edge. In
the case of references, the MATCH and OPTIONAL MATCH
expressions are used to match the edges of the source node
and return the respective target nodes. Using MATCH is a

SLE ’22, December 06ś07, 2022, Auckland, New Zealand Sorour Jahanbin, Dimitris Kolovos, Simos Gerasimou, and Gerson Sunyé

:Project

 title = ACME

: ManualTask

 start = 1

 title = Design

 duration = 3

:Person

 name = Bob

:Effort

 percentage = 40

 Node ID = 1
 Labels: Project

Properties:
title: ACME

task task

effort

person

instanceOf

instanceOf

instanceOf

instanceOf

effort

person

 Node ID = 3
 Labels: Effort
Properties:

 percentage: 40

 Node ID = 4
 Labels: Person

Properties:
 name: Bob

 Node ID = 5
Properties:

name: Project

 Node ID = 7
Properties:

 name: Effort

 Node ID = 8
 Properties:

 name: Person

Map

Map

Map

Map

Node ID = 2
 Labels: Task,
ManualTask
Properties :

 title: Design, start: 1,
duration: 3

 Node ID = 6
Properties:

 name: ManualTask

Figure 7. Mapping the model of Figure 6 into a Neo4J graph

Table 2. Cypher Expressions

Cypher expression Pattern Functionality

MATCH (var: label of node) loading all nodes with the same label

OPTIONAL MATCH (var:source node)- [var:edge]-> (var:target node) return the target node of matched edge

RETURN node.property return the specific property(ies) of the matched nodes

strict condition, and if there are no matches in the database,
the query will fail to run and it does not return any result.
With OPTIONAL MATCH on the other hand, if there is no
match, the query will be run and “nullž will be returned as a
value of the edge which is not matched. Hence, OPTIONAL
MATCH is a better fit for matching the references of each
node. The query for requesting the type ofManualTask nodes,
is shown in line 3 and the name property of taskType is
returned using the RETURN expression in line 4.

One reference ofManualTask instances is required accord-
ing to the effective metamodel. The efforts reference is an
edge between ManualTask and Effort nodes and the query
in line 5 matches this reference. In lines 6-7, the instanceOf
reference is matched to find the type of the Effort node. Ac-
cording to the effective metamodel, attributes of Effort are
not required, so only the ids and types of Effort nodes are
returned in line 6.

The person reference and the instanceOf reference of Effort
are matched in line 7 and the query that returns the id and
type of Person is shown in line 8.

3.3.3 Query Optimisation. The goal of our approach is
to reduce the number of database hits and load as much
information as possible in each access to the database to

minimise the overall execution time. The Neo4j documenta-
tion9 offers some recommendations to reduce the execution
time of Cypher queries. We have applied some of them to
optimise the automated query generation in our approach.

• Using Labels: Nodes are labeled by the type and super
types of their corresponding model element. These
labels are then used by generated queries to efficiently
match nodes of different types.
• Avoid Cartesian Products: If two different node
labels without any relationships between them are
matched in a Cypher query, it is considered as a dis-
connected pattern. Generating a query for disconnected
patterns will build Cartesian products between two
node types, which would not be efficient as it will re-
turn a number of records which are not necessary for
executing the program. For example, considering the
PSL metamodel (Figure 1), there is no relationship be-
tween nodes with AutomatedTask and Person labels.
So, in Listing 4, Neo4j matches each AutomatedTask
node with all Person nodes. Suppose that the number
of nodes with AutomatedTask label is equal to m and
the number of nodes with Person label is equal to n.
The number of returned records from database will be

9https://neo4j.com/blog/tuning-cypher-queries/

Partial Loading of Repo-Based Models through Static Analysis SLE ’22, December 06ś07, 2022, Auckland, New Zealand

equal to n*m. However, if Listing 4 is separated into
two MATCH clauses, then the number of records will
be (n+m), which is more efficient.

Listing 4. Query Generating Cartesian Products

1 MATCH (autoTask:AutomatedTask), (p: Person)

2 RETURN autoTask.title , p.name

Thus, we consider a trade-off between generating fewer
queries and avoiding Cartesian products. In our ap-
proach, MATCH clauses are generated for allOfKind
types in the effective metamodel. This is efficient as
in each MATCH clause, the label of each node will
be matched and then all required properties and ref-
erences of a node in the effective metamodel will be
returned. Considering the generated queries in List-
ing 3, there are three MATCH clauses that are related
so they can be combined in one query for efficiency.
The combined query is shown in Listing 5.

Listing 5. Optimised queries of Listing 3

1 MATCH (task:ManualTask)

2 OPTIONAL MATCH (task)-[taskins:instanceOf

]->(taskType),(task)-[effortRefTask:

effort]->(effort:Effort) ,(effort)-[

effortins:instanceOf]->(effortType),(

effort)-[personRefEffort:person]->(

person:Person), (person) -[personins:

instanceOf]->(personType)

3 RETURN ID(task), task.title , taskType.name ,

ID(effort), effortType.name ,ID(person)

, personType.name

• Reduce Cardinality: Since nodes are labelled by the
type of their respective model element and its super
types, the results of some queries can overlap. For ex-
ample, in Listing 6 all nodes with Task andManualTask
label are matched and the titles of matched nodes are
returned. Considering the part of the graph in Figure 8,
the nodes returned in line 2 are “Designž, “Implemen-
tationž and “Meeting organisationž nodes since they
are labeled as Task. The titles of the nodes that are
returned in line 4, are “Designž and “Implementationž
nodes which are ManualTask-labeled nodes. The “De-
sign" and “Implementationž nodes are returned twice
(in lines 2 and 4). This redundancy is because of query-
ing two classes (Task and ManualTask) that have an
inheritance relationship. Therefore, it is more efficient
to execute only the first query in lines 1-2, which cov-
ers all nodes that are loaded by both MATCH clauses.

Listing 6. Queries with Overlap

1 MATCH (task:Task)

2 RETURN task.title

3 MATCH (manualTask:ManualTask)

4 RETURN manualTask.title

 Node ID = 1
 Labels: Project

 Properties:
 title: ACME

task
Node ID = 2

 Labels: Task,
ManualTask
Properties :

 title: Design, start: 1,
duration: 3

Node ID = 3
 Labels: Task,
ManualTask
Properties :

 title: Implementation,
 start: 7,

duration: 6

Node ID = 4
 Labels: Task,
AutomaticlTask

Properties :
 title: Meeting
organisation

task

task

Figure 8. A part of graph model

Algorithm 4 generates Cypher queries automatically based
on the effective metamodel.

Algorithm 4 Cypher Queries Generation (1 of 2)

1: let EM = calculated effective metamodel
2: for all EClass in EM.allOfKind do

3: let matchString = "";
4: let visitedClasses = Set of EClasses
5: let optionalMatch = Set<String>
6: let return = Set<String>
7: 𝑚𝑎𝑡𝑐ℎ𝑆𝑡𝑟𝑖𝑛𝑔←EClass.name
8: return.add(EClass.id)
9: return.add(EClass.getReference(instanceOf).name)
10: Call HANDLEFEATURES (EClass)
11: let query =“ž
12: 𝑞𝑢𝑒𝑟𝑦 ← ł𝑀𝐴𝑇𝐶𝐻”+ query
13: for all item in match array do

14: 𝑞𝑢𝑒𝑟𝑦 ←item + ","

15: 𝑞𝑢𝑒𝑟𝑦 ← ł𝑂𝑃𝑇𝐼𝑂𝑁𝐴𝐿𝑀𝐴𝑇𝐶𝐻”+ query
16: for all item in optionalMatch array do

17: 𝑞𝑢𝑒𝑟𝑦 ←item + ","

18: 𝑞𝑢𝑒𝑟𝑦 ← ł𝑅𝐸𝑇𝑈𝑅𝑁 ”+ query
19: for all item in return array do

20: 𝑞𝑢𝑒𝑟𝑦 ←query + item + ","

There are three collections to record MATCH clauses,
OPTIONAL MATCH clauses and RETURN clauses in Al-
gorithm 4. In lines 1-9 these three collections are filled and
in lines 10-19, the query is generated by combining these
clauses together using the appropriate Cypher expressions.
One query for each EClass is generated where all instances
of that class are required by the program.
In line 2, the classes which are under the allOfKind ref-

erence in the effective metamodel are considered by Algo-
rithm 4. In line 7 the variable definition for the EClass is
added to matchString and the ID of the matched node is
added to the return collection (lines 7-8). In line 9, the HAN-
DLEFEATURES procedure is called to handle the features of
the EClass. In Algorithm 5, which shows the HANDLEFEA-
TURES procedure, each attribute of the EClass is added to
return collection (in lines 4-5). To follow the references of

SLE ’22, December 06ś07, 2022, Auckland, New Zealand Sorour Jahanbin, Dimitris Kolovos, Simos Gerasimou, and Gerson Sunyé

Algorithm 5 Cypher queries generation (2 of 2)

1: procedure handleFeatures(𝐸𝐶𝑙𝑎𝑠𝑠)
2: visitedClasses.add(EClass)
3: for all features in 𝐸𝐶𝑙𝑎𝑠𝑠.𝑒𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 do

4: if IsAttribute(feature) then
5: return.add(feature)
6: else if IsReference(feature) then
7: let type = reference.type
8: return.add(reference.target.id)
9: 𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙𝑀𝑎𝑡𝑐ℎ𝑆𝑡𝑟𝑖𝑛𝑔 ← (𝐸𝐶𝑙𝑎𝑠𝑠.𝑛𝑎𝑚𝑒) −

[𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒.𝑛𝑎𝑚𝑒] → (𝑡𝑦𝑝𝑒)

10: if not visitedClasses.contains(EClass) and not
allOfKind.contains(EClass) then

11: handleFeatures(type)

nodes in the graph, an OPTIONALMATCH pattern is needed.
So, in lines 6-9, an OPTIONAL MATCH pattern is created
and added to the optionalMatch collection. The OPTIONAL
MATCH pattern matches edges that have the same name
as the reference of the EClass and it connects the matched
node to the target nodes (it is kept in the type variable).

As discussed in Section 3.3.3, it is more efficient to generate
one query and load all relevant information in one go. So,
in lines 10-11 the HANDLEFEATURES method is called on
type to follow the features of the target node. Thus, the
Algorithm 5 uses this recursive method to load a sub-graph
which consists of the nodes and their properties and edges.

This recursive call returns when a cycle is found or when
there are no further references to follow. In line 2 of Algo-
rithm 5, the visitedClasses is a collection to keep track of
visited classes. So if a type is visited once, it will not be vis-
ited again according to the if condition in line 10 to avoid
infinite loops.
After handling all features in Algorithm 5, the query is

generated for the EClass and then the process is repeated for
the next EClass under the effective metamodel’s allOfKind
reference. The result returned from the database after exe-
cuting the generated query is shown in Table 3.

3.3.4 Program Execution. After retrieving information
from the database, this information is used by the execution
engine to run the EOL program. In this approach, we use the
EMF driver of Epsilon to run the EOL program to avoid im-
plementing a new driver with almost the same functionality.
Therefore, in the last step of our approach, in the execution
engine, the results of queries are wrapped as an EMF input
and the program is run by the Epsilon EMF driver.

3.4 Limitations

There are two noteworthy limitations in our proposed ap-
proach. First, our approach is limited to read-only input
models of model management programs. Changing models

(updating, deleting or adding model element) is not sup-
ported in our approach. Also, our prototype implementation
does not attempt dead code elimination, which means that
the extracted effective metamodel can contain types and
features that may never be accessed at runtime.

4 Related Work

To achieve partial loading, some of the related work proposes
database-backed persistence technologies. The most mature
ones are Morsa [9], CDO [11] and Neo4EMF [1].
Morsa is a persistence solution for storing and access-

ing large models based on on-demand strategies, which is
supported by the NoSQL database. Morsa uses MongoDB,
a document-oriented database, as its persistence backend,
and supports partial loading of large models using a load
on-demand mechanism. More specifically, it uses The single
load on-demand which can be considered as a lazy loading
and partial load on demand which follows the greedy loading
mechanism.
The Connected Data Object (CDO) is a model repository

for EMF models. Metamodels and models can be stored in
all kinds of database backends, including major relational
databases and NoSQL databases.

Scalability in CDO is achieved by object loading based on
on-demand strategies and caching the objects in the applica-
tion. Hence, it does not keep the objects which are no longer
referenced by the application, and they are collected from
memory automatically.

Neo4EMF is a persistence layer for EMF models. It is built
on top of the graph-based database Neo4j, as graph-based
databases are able to manage large-scale data in highly dis-
tributed environments. Neo4EMF is similar to Morsa in sev-
eral aspects (notably in on-demand loading), but it aims at
exploiting the optimised navigation performance offered by
graph databases. Neo4EMF is a more preferred alternative
to XMI and CDO; due to high-performance access and on-
demand loading, its raw performance does not surpass a
more mature solution like CDO [4].

SmartSAX is another prototype which was introduced by
Wei et al. [13]. It supports partial loading of XMI model files.
SmartSAX currently does not support loading models that
are persisted in multiple XMI files. Also, it does not support
garbage collection to unload parts of a model from memory
when they are no longer needed.

In [3], Daniel et al. propose PrefetchML, a domain-specific
language that describes prefetching and caching rules over
models. PrefetchML is a suitable solution to improve query
execution time on top of scalable model persistence frame-
works. The rules to describe the event conditions to activate
prefetching, the objects to prefetch, and the customisation
of the cache policy are defined by designers in PrefetchML.
PrefetchML can take advantage of our work to use the static
analyser to define the rules instead of depending on the
designers.

Partial Loading of Repo-Based Models through Static Analysis SLE ’22, December 06ś07, 2022, Auckland, New Zealand

Table 3. Result for the Execution of Generated Query in Listing 5

ID(task) task.title taskType.name ID(effort) effortType.name ID(person) personType.name

2 "Design" "ManualTask" 10 "Effort" 9 "Person"

2 "Design" "ManualTask" 12 "Effort" 7 "Person"

6 "Implementation" "ManualTask" 13 "Effort" 7 "Person"

6 "Implementation" "ManualTask" 14 "Effort" 9 "Person"

The idea of using static analysis to equip execution en-
gines and improve the performance of model management
programs is discussed in our preliminary work [5]. However,
in this work, we present only an abstract overview of the
idea. There is no evaluation and no results are presented to
show the efficiency of the approach.

Although recent research has made advancements in this
area, existing solutions have apparent shortcomings in ac-
cessing and processing large models.
To the best of our knowledge, none of the model repos-

itories we are aware of, perform query analysis to enable
efficient partial model loading. Repositories such as Morsa,
CDO provide remote access to large models and store them
in a document-based or graph-based database, but as dis-
cussed in Section 1, in the absence of static analysis, greedy
and lazy strategies are not efficient. Using the greedy ap-
proach, all properties and references of the model element
are loaded which is not efficient in terms of memory con-
sumption, while in the lazy approach, multiple trips to the
database render the approach very time-consuming.
We should note here that we initially investigated im-

plementing our approach on top of the CDO and NeoEMF
repositories. However, CDO is designed and implemented in
a way that provides facilities to access model element prop-
erties greedily (requesting all properties) and lazily (asking
for one property in each access to the database). Similarly,
NeoEMF only supports lazy loading. Therefore, none sup-
ports requesting specific properties from the database based
on the footprint (effective metamodel) of the program which
is the base of our approach. We hope that our demonstra-
tion of the efficiency benefits of partial model loading (see
Section 5), can motivate the developers of repositories such
as NeoEMF and CDO to add support for such a feature in
the future.

5 Evaluation

In this section, we report on the results of experiments that
measure the performance of our approach against that of
NeoEMF. We have chosen NeoEMF because it outperforms
other repositories [4]. NeoEMF follows the lazy loading strat-
egy.
We evaluated our approach on a system using Java VM

14.0.1 with Intel(R) Core(TM) i7, 16 GB memory and CPU @
2.80GHz running Mac OS X Catalina.

For our experiments, we have used the models proposed
in the GraBaTs 2009 contest [10]. The models conform to
an Ecore-based metamodel of the Java programming lan-
guage and have been reverse-engineered from open-source
Java projects. There are five XMI models, from Set0 to Set4,
each one larger than its predecessor (from a 8.8MB XMI file
with 70 447 model elements representing 14 Java classes to
a 646MB file with 4 961 779 model elements representing
5984 Java classes). We produced Neo4j graphs from the Gra-
bats XMI files and saved them in the Neo4j (version 4.4.3)
embedded databases.

We have also implemented a query in the Epsilon Object
Language (EOL) inspired by one of the Grabats test cases10.
This query finds all classes that declare public static methods
whose return type is the containing class itself (i. e. like the
getInstance method of the Singleton pattern).

For our experiments, we ran the EOL program against Set0-
Set4 graphs in the database using our approach and NeoEMF
and measured the execution time and memory consumption.
The results are shown in Table 4. The results were computed
after 5 warm-up iterations and represent the average over 10
executions of the program. For instance, for Set1, it takes 8.3 s
and 118MB of memory to run the Grabats query using our
approach while for NeoEMF, the average time is equal to 9.5 s
and the memory consumption is 656.2MB which is about
5.5 times higher than our approach. The most significant
difference in memory usage is in Set3, where the memory
footprint of our approach is 93 % lower than NeoEMF.

The charts illustrated in Figures 9 and 10 show the linear
behaviour of our approach and NeoEMF. In Figure 9, in the
Set0 model, as the model is not very large, the overhead of
effective metamodel extraction and loading data from data-
base in our approach is not compensated at runtime and the
execution time is better for NeoEMF. As the size of the model
grows, the slope of the diagram is greater in NeoEMF com-
pared to our approach, which means our approach is more
efficient in terms of execution time. The highest percentage
of time saving is 74 % for Set2.

In Figure 10, both approaches have a linear behaviour, and
our approach consumed less memory compared to NeoEMF.

10http://https://web.imt-atlantique.fr/x-info/atlanmod/index.php?title=

GraBaTs_2009_Case_Study

SLE ’22, December 06ś07, 2022, Auckland, New Zealand Sorour Jahanbin, Dimitris Kolovos, Simos Gerasimou, and Gerson Sunyé

Table 4. Experiment Results

Model Our Approach NeoEMF

Execution Time (s) Execution Memory (MB) Execution Time (s) Execution Memory (MB)

Set0 (70 447 model elements) 8.1 108 5.7 319

Set1 (198 466 model elements) 8.3 118 9.5 656.2

Set2 (2 082 841 model elements) 12.2 210 61.5 2537.5

Set3 (4 852 855 model elements) 37.3 232.8 114.6 3718

Set4 (4 961 779 model elements) 41.5 318.1 126.4 2987.2

From Set0 to Set4, as the size of model increased, the memory
consumption grew in two approaches.

On average, using our approach, memory consumption is
lower by 84 % and execution time is lower by 37 % compared
to NeoEMF.

0

20

40

60

80

100

120

140

Set 0 Set 1 Set 2 Set 3 Set 4

E
x
e

cu
ti

o
n

 t
im

e
 (

s)

Our approach NeoEMF

Figure 9. Execution time comparison of our approach and
NeoEMF

1

2000

Set 0 Set 1 Set 2 Set 3 Set 4

M
e

m
o

ry
 (

M
B

)

Our approach NeoEMF

Figure 10. Memory comparison of our approach and
NeoEMF (logarithmic scale)

Regarding correctness, we validated all models by exe-
cuting each program with two approaches (our approach
and NeoEMF) and verify that the output produced by all
execution pairs should be equivalent (e. g., in the number of
people for each task in EOL and NeoEMF).

5.1 Threats to Validity

We limit construct validity threats by considering big models
from thewidely used GraBaTs 2009 contest [10] that conform

to the Grabats metamodel. The results reported in this paper
consider these test cases.

We limit internal validity threats by reporting results after
executing 5 warm-up iterations of the program, thus reduc-
ing the potential impact in memory and execution time of
starting and initialising the JVM.
We reduce external validity threats by building our ap-

proach atop mature and robust MDE technologies, including
the Epsilon suite of model management programs and the
Neo4j graph database. As discussed in Section 3, extend-
ing our approach to support other technologies is relatively
straightforward with modest effort. However, more experi-
ments are required to establish the applicability and scalabil-
ity of our approach in domains and metamodels/models with
characteristics different than those used in our experimental
evaluation.

6 Conclusion

We introduced an approach for partial loading of repository-
based models based on information extracted through static
analysis of model management programs. We evaluated our
approach against large models from the Grabats test suite.
The results demonstrate that program-aware partial loading
can significantly reduce the time andmemory required to run
model management programs against repository-based mod-
els when only a subset of the model’s elements is accessed
by the program, without otherwise affecting the behaviour
or the output of the program.
As future work, we plan to investigate how the results

of static analysis can also improve memory footprint when
the execution engine unloads obsolete parts of the model in
memory (i. e., parts that have already been processed and
are guaranteed not to be accessed again) instead of keeping
them for the duration of the execution of the program. In
this way, resources will be freed, thus enabling management
programs to accommodate even larger models.

Acknowledgments

This research is supported by the Lowcomote Training Net-
work, which has received funding from the EuropeanUnion’s
Horizon 2020 Research and Innovation Program under the
Marie Skłodowska-Curie grant agreement no 813884.

Partial Loading of Repo-Based Models through Static Analysis SLE ’22, December 06ś07, 2022, Auckland, New Zealand

References
[1] Amine Benelallam, Abel Gómez, Gerson Sunyé, Massimo Tisi, and

David Launay. 2014. Neo4EMF, a scalable persistence layer for EMF

models. In European Conference on Modelling Foundations and Applica-

tions (Lecture Notes in Computer Science, Vol. 8569). Springer, 230ś241.

[2] Jordi Cabot and Martin Gogolla. 2012. Object Constraint Language

(OCL): A Definitive Guide. Springer Berlin Heidelberg, Berlin, Heidel-

berg, 58ś90. https://doi.org/10.1007/978-3-642-30982-3_3

[3] Gwendal Daniel, Gerson Sunyé, and Jordi Cabot. 2016. Prefetchml: a

framework for prefetching and caching models. In Proceedings of the

ACM/IEEE 19th International Conference on Model Driven Engineering

Languages and Systems. 318ś328.

[4] Gwendal Daniel, Gerson Sunyé, Amine Benelallam, Massimo Tisi,

Yoann Vernageau, Abel Gómez, and Jordi Cabot. 2017. NeoEMF: A

multi-database model persistence framework for very large models.

Science of Computer Programming 149 (2017), 9ś14.

[5] Sorour Jahanbin, Dimitris Kolovos, and Simos Gerasimou. 2020. Intelli-

gent run-time partitioning of low-code system models. In Proceedings

of the 23rd ACM/IEEE International Conference on Model Driven Engi-

neering Languages and Systems: Companion Proceedings. 1ś5.

[6] Frédéric Jouault and Ivan Kurtev. 2005. Transformingmodels with ATL.

In International Conference on Model Driven Engineering Languages

and Systems. Springer, 128ś138.

[7] Dimitrios S Kolovos, Richard F Paige, and Fiona AC Polack. 2006. The

epsilon object language (EOL). In European conference on model driven

architecture-foundations and applications. Springer, 128ś142.

[8] Dimitrios S. Kolovos, Louis M. Rose, Nicholas Matragkas, Richard F.

Paige, Esther Guerra, Jesús Sánchez Cuadrado, Juan De Lara, István

Ráth, Dániel Varró, Massimo Tisi, and Jordi Cabot. 2013. A Research

Roadmap towards Achieving Scalability in Model Driven Engineering.

In Proceedings of the Workshop on Scalability in Model Driven Engineer-

ing (BigMDE ’13). Association for Computing Machinery, 1ś10.

[9] Javier Espinazo Pagán, Jesúss Sánchez Cuadrado, and Jesús García

Molina. 2011. Morsa: A scalable approach for persisting and accessing

large models. In International Conference on Model Driven Engineering

Languages and Systems (Lecture Notes in Computer Science, Vol. 6981).

Springer, 77ś92.

[10] Jean-Sébastien Sottet, Frédéric Jouault, et al. 2009. Program compre-

hension. In 5th International Workshop on Graph-Based Tools (GraBaTs

2009). Citeseer, Zurich (Switzerland).

[11] Eike Stepper. 2016. CDO. Retrieved June 5, 2020 from https://wiki.

eclipse.org/CDO

[12] Ran Wei and D.S. Kolovos. 2014. Automated analysis, validation and

suboptimal code detection in model management programs. In CEUR

Workshop Proceedings, Vol. 1206. 48ś57.

[13] Ran Wei, Dimitrios S. Kolovos, Antonio Garcia-Dominguez, Konstanti-

nos Barmpis, and Richard F. Paige. 2016. Partial Loading of XMIModels.

In Proceedings of the ACM/IEEE 19th International Conference on Model

Driven Engineering Languages and Systems (MODELS ’16). Association

for Computing Machinery, 329ś339.

	Abstract
	1 Introduction
	2 Motivating Example
	3 Proposed Approach
	3.1 Static Analysis
	3.2 Effective Metamodel Computation
	3.3 Query Generation
	3.4 Limitations

	4 Related Work
	5 Evaluation
	5.1 Threats to Validity

	6 Conclusion
	Acknowledgments
	References

