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SPOTLIGHT

Lessons from early life: understanding development to expand

stem cells and treat cancers
Fiona M. Bain, James L. C. Che, Maria Jassinskaja and David G. Kent*

ABSTRACT

Haematopoietic stem cell (HSC) self-renewal is a process that is

essential for the development and homeostasis of the blood system.

Self-renewal expansion divisions, which create two daughter HSCs

from a single parent HSC, can be harnessed to create large numbers

of HSCs for a wide range of cell and gene therapies, but the same

process is also a driver of the abnormal expansion of HSCs in

diseases such as cancer. Although HSCs are first produced during

early embryonic development, the key stage and location where they

undergo maximal expansion is in the foetal liver, making this tissue a

rich source of data for deciphering the molecules driving HSC self-

renewal. Another equally interesting stage occurs post-birth, several

weeks after HSCs have migrated to the bone marrow, when HSCs

undergo a developmental switch and adopt a more dormant state.

Characterising these transition points during development is key,

both for understanding the evolution of haematological malignancies

and for developing methods to promote HSC expansion. In this

Spotlight article, we provide an overview of some of the key insights

that studying HSC development have brought to the fields of HSC

expansion and translational medicine, many of which set the stage for

the next big breakthroughs in the field.

KEY WORDS: HSC, Haematopoiesis, Stem cells

Introduction

This is an exciting time for studying haematopoietic stem cells

(HSCs), with new protocols for expanding mouse HSCs in vitro

being translated to human HSCs and the molecular drivers of

haematological malignancies being mapped to an unprecedented

level. This ability to produce large numbers of HSCs has opened the

door to a wide range of experimental assays previously considered

impossible to perform on HSCs owing to the scarcity of this cell

type. Moreover, experiments that have required herculean efforts

and hundreds to thousands of mice can now be performed using

only dozens. As such, the next decade promises to enable

researchers to dissect in detail the molecular mechanisms

governing HSC behaviour at the level of the epigenome,

transcriptome, proteome and signallome (Bode et al., 2021).

Although this progress in expanding HSCs in vitro has been

truly astounding, we sometimes forget to consider that the process

of blood stem cell expansion still happens most efficiently

during development and has been optimised evolutionarily.

Specifically, the expansion of HSCs in the foetal liver – a hotspot

for HSC self-renewal and expansion – and the subsequent switch of

HSCs to a more dormant state in the juvenile bone marrow are

incredibly interesting developmental stages from which to draw

information.

This Spotlight article highlights how our knowledge of

haematopoietic development in vivo underpins our understanding

and utilisation of HSCs in vitro and in a clinical context, in

particular with regard to HSC self-renewal, quiescence and

expansion – processes that can be subverted to drive cancers or

harnessed to provide new opportunities for therapeutic advances.

Development of the haematopoietic system

Developmental haematopoiesis in mice occurs in separate waves,

referred to as primitive and definitive (Dzierzak and Bigas, 2018;

Ottersbach et al., 2010; Ivanovs et al., 2017). Primitive, HSC-

independent haematopoiesis is first observed around embryonic day

(E) 7.5 in mice (E17 in humans) in the yolk sac blood islands. In this

wave, erythro-myeloid progenitors (EMPs) are formed in order to

provide the early embryo with red blood cells and macrophages, the

latter of which persist in adult life as tissue-resident immune cells

(e.g. microglia, Langerhans cells and Kupffer cells) (Dzierzak and

Medvinsky, 1995; Mirshekar-Syahkal et al., 2014). EMPs are now

considered definitive embryonic progenitors, presenting with a

marked difference in immunophenotype and function compared

with primitive haematopoietic progenitor populations (Frame et al.,

2016; McGrath et al., 2015). A second primitive wave produces

some early myeloid and lymphoid cell types, including IL-7RA-

expressing lymphomyeloid primed progenitors (LMPPs) (Böiers

et al., 2013). However, because these primitive cells lack long-term

self-renewal capacity, the primitive wave is considered transient

(Orkin and Zon, 2008). Definitive haematopoiesis begins

subsequently at E10.5 (E21 in human) in the aorta gonad

mesonephros (AGM) region (Ivanovs et al., 2017), generating the

first transplantable, definitive HSCs (Dzierzak, 2002). These rare,

multipotent cells are produced from the haemogenic endothelium

via endothelial-to-haematopoietic transition (EHT), a series of

controlled morphological changes occurring in the vascular wall of

the main embryonic arteries. This process is triggered by the onset

of circulation and has been experimentally shown to be dependent

on Runx1 (Chen et al., 2009; Swiers et al., 2010). The onset of

circulation and the associated production of nitric oxide (NO) from

closely associated vascular endothelial cells have been shown to be

essential regulators of haematopoiesis, with their influence

beginning as early as the initiation of HSC formation in the AGM

(North et al., 2009; Adamo et al., 2009). Exemplifying this, HSCs in

Ncx−/− (also known as Slc8a1) mice, which completely lack a

circulation, are unable to develop past the pro-HSC stage, remaining

functionally impaired with a dysregulated metabolism and an

inability to activate the Runx1 pathway (Azzoni et al., 2021).

Alternative sites of definitive haematopoiesis have also been
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described, including the placenta (Mikkola et al., 2005; Gekas et al.,

2010); however, some controversy around the magnitude of this

contribution remains (Huang et al., 2007).

The extravasation of HSCs into the circulation allows them to

migrate to future haematopoietic sites (Horton et al., 2021).

Following a brief HSC expansion period in the placenta (Gekas

et al., 2005), the foetal liver (FL) becomes the main site of definitive

haematopoiesis by E11 and E12, with the most rapid phase of HSC

expansion occurring at approximately E14.5, until HSCs migrate to

the spleen (Christensen et al., 2004) and the bone marrow (BM) just

before birth. Splenic haematopoiesis remains active until

approximately 2 weeks after birth; from then on, and throughout

adulthood, the BM is the primary site of HSCs and haematopoiesis

(Rowe et al., 2016b) with HSCs largely acting as a dormant

reservoir of non-dividing cells.

The HSC foetal-to-adult switch

One of the key distinguishing properties between FL and adult

HSCs is their cell cycle status: FL HSCs are actively cycling

whereas adults HSCs are mostly quiescent. Therefore, another

important developmental transition is the switch between these two

states (Fig. 1). Specifically, in a process initiated before birth, and

lasting until approximately 3-4 weeks postpartum in mice, a gradual

shift in the cellular and molecular properties of HSC occurs (Bowie

et al., 2007a,b, Copley and Eaves, 2013; Kim et al., 2007; Li et al.,

2020). Multiple foetal-specific characteristics are lost and an adult

HSC phenotype is established. This includes entering a state of

quiescence with reduced rates of translation (Kohli and Passegué,

2014), a shift from oxidative phosphorylation to anaerobic,

glycolytic-based metabolism (Kohli and Passegué, 2014; Manesia

et al., 2015; Yu et al., 2013), a shift in the expression of key HSC

regulators (Bowie et al., 2007a,b, Kim et al., 2007; Copley et al.,

2013; Jassinskaja et al., 2017) and a re-balancing of mature cell

outputs (Signer et al., 2014). This is further accompanied by a

switch from the production of an innate-like lymphoid compartment

(Ikuta et al., 1990; Hardy and Hayakawa, 1991) towards the

production of adaptive T and B cells (Gilfillan et al., 1993) and,

during the final stages of the foetal-to-adult switch at 3-4 weeks,

bone mineralisation significantly increases, perhaps indicative of a

larger organismal transition period (Ferguson et al., 2003).

Interestingly, there is also a metabolic switch that developing

HSCs undergo and this is additionally associated with a decrease in

reactive oxygen species (ROS) levels (Pimkova et al., 2022), and

maintenance of a ROSlow state is essential for adult HSC function

(Ito et al., 2004; Ito et al., 2006). Also of note, as adult HSCs initiate

differentiation, they undergo a further metabolic switch back to

oxidative phosphorylation, which becomes the primary energy

source for downstream progenitors, enabling a larger energy output.

Key differences between foetal and adult HSCs

As a result of the foetal-to-adult switch, several differences between

FL and adult HSCs are evident, especially with regard to their

expansion rates and developmental potential. During development,

FL HSCs undergo massive expansion, increasing in numbers by 10-

30 fold within 4 days (Ema and Nakauchi, 2000). Although there is

evidence of some seeding of HSCs generated from, and/or expanded

in, the placenta (Rhodes et al., 2008; Ottersbach and Dzierzak,

2005), most of the increase in FL HSCs is due to their frequent

execution of symmetrical self-renewal divisions (Bowie et al., 2006;

Morrison et al., 1995). This higher rate of expansion was

foreshadowed by early experiments using FL HSCs, where it was

shown that spleen colony-forming units (CFU-S) were a more

rapidly regenerating stem/progenitor population compared with

adult spleen and bone marrow HSCs (Becker et al., 1965).

FL HSCs also exhibit faster cycling rates compared with adult

HSCs; nearly all FL HSCs are cycling whereas >75% of adult HSCs

are quiescent (Cheshier et al., 1999). Despite this, the cell cycle

transit time of FL HSCs is similar to that of adult HSCs once the

latter have fully exited quiescence (Bowie et al., 2007a,b). The

switch in cycling is an intrinsically regulated process, with the site

change from the FL to the developing BM not inducing HSC

quiescence until 3-4 weeks later (Bowie et al., 2007a,b).

FL HSCs possess a similar developmental potential to adult

HSCs with respect to the types of cells that they can give rise to in

bone marrow transplantation experiments (Bowie et al., 2007a,b),

with the exception of some distinct developmental T-cell lineages

(Ikuta et al., 1990). However, their stepwise progression through

progenitor stages is much less well defined. At the population level,

FL HSCs are more likely to be balanced in their mature cell output in

functional assays (e.g. they contribute equally to myeloid and

lymphoid lineages) compared with adult HSCs, which become

more lymphoid deficient with age (Benz et al., 2012). Relative to

adult HSCs, FL HSCs additionally show an erythroid-over-myeloid

bias in both mice and humans (Rowe et al., 2016a,b, Popescu et al.,

2019). Recent work has also shown a developmental switch in the

megakaryocyte production capacity of HSCs, with foetal HSCs

Foetal liver Adult bone marrow

(>4 weeks)

Quiescence
Self-renewal

Leukaemogenesis

• D and uncontrolled

 self-renewal

• Differentiation block

In vitro HSC culture 

• D Self-renewal

• D Proliferation

Initiation of self-renewal

expansion suppresion Loss of suppression
Self-renewal

3-4 weeks

Fig. 1. Regulation of HSC self-renewal during life. During development, particularly in the foetal liver, HSC self-renewal expansion divisions occur in order

to produce HSCs to sustain lifelong haematopoiesis. Postnatally, at approximately 3-4 weeks of age in mice, this self-renewal expansion is suppressed

(represented by the blue blanket) as HSCs transition to a largely quiescent population. The loss of this suppression of proliferation can result in the aberrant

accumulation of immature HSC-like cells (e.g. in leukaemia), but may also be harnessed to expand HSCs transiently outside the body for clinical utility.
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being considerably less primed towards the megakaryocytic lineage

compared with adult HSCs (Kristiansen et al., 2022). Using the

HSC subtypes described by Dykstra et al. (2007), each cell can be

categorised based on its mature cell production in single-cell

transplantation assays as alpha, beta, gamma or delta. Interestingly,

in line with the 3-4 week switch, ratios of the HSC subtypes present

at this timepoint shift, suggesting a wider change in HSC

functionality (Benz et al., 2012, Copley et al., 2013).

In functional assays, in particular during the early stages

following transplantation, FL HSCs repopulate recipients more

quickly than their adult counterparts and generate more HSCs

through symmetric self-renewal (Bowie et al., 2007a,b, Pawliuk

et al., 1996; Micklem et al., 1972). Around 6 weeks after

transplantation, FL HSCs adopt a more adult-like self-renewal

capacity, resembling the natural transition that occurs between 3 and

4 weeks after birth (Bowie et al., 2007a,b).

Molecular regulation of the foetal-to-adult transition in HSCs

Two cardinal properties of HSCs are valuable to consider from a

molecular standpoint when trying to understand HSC expansion

and cancer development. First, what is the molecular state of an FL

HSC undergoing self-renewal expansion division? This is key to

understanding HSC expansion. Second, how are HSCs programmed

to ‘go to sleep’ during the 3-4-week period, and how then are they

‘awoken’ during cancer development?

Recent work has shown that, although most molecular changes in

developing HSCs are uncoordinated on a single-cell level, nearly all

HSCs show a transient spike in type I interferon (IFN) signalling and

expression of associated genes between E16.5 and postnatal day (P)

0 (Li and Magee, 2021). These findings correspond with previous

work showing that differential expression of type I IFN-associated

transcripts and proteins is one of the key molecular differences

between FL and adult HSCs (McKinney-Freeman et al., 2012; Kim

et al., 2016; Jassinskaja et al., 2017), and other studies identifying

type I IFN signalling as a driver of AGM HSC generation and

maturation (Kim et al., 2016; Li et al., 2014).

Several genes have also been linked directly to the regulation of

FL or adult HSCs. One major complex is the Lin28b-let7-Hmga2

axis, which has been shown to be a key pathway, and master

regulator, of the FL state (Copley et al., 2013; Rowe et al., 2016a,b).

In FL HSCs, Lin28b and Igf2bp3 maintain the foetal HSC

phenotype by forming a complex that stabilises the expression of

key FL HSC genes (including Hmga2 and Arid3a). Importantly,

both Lin28b and Igfb3 are downregulated postnatally and so are

effectively foetal specific. Inducing ectopic expression of Lin28b

and Igf2bp3 is enough to revert adult HSCs to a phenotypically

foetal state, and this is accompanied by an associated increase

in proliferation and erythroid bias. These induced foetal-like

cells are also able to generate foetal-specific IL-7RA-expressing

LMPPs and have an increased capacity to generate innate-like B-cell

subsets (Rowe et al., 2016a,b; Wang et al., 2019; Kristiansen et al.,

2016).

A number of other genes have been identified to be exclusively

important for embryonic HSCs, such as Runx1 (Okuda et al., 1996;

Chen et al., 2009; Wilson et al., 2011; Wilkinson and Gottgens,

2013) and Ezh2 (Mochizuki-Kashio et al., 2011), or vice versa for

adult HSCs, such as Bmi1 (Park et al., 2003), Gfi1 (Wilson et al.,

2010) and Cebpa (Ye et al., 2013). Perhaps the most comprehensive

study of the foetal-to-adult transition revealed Sox17 as a foetal and

neonatal HSC-specific gene, with little to no expression detected in

adult HSCs (Kim et al., 2007). Here, an induced germline deletion

of Sox17 resulted in the lack of any detectable HSCs, whereas

conditional deletion of Sox17 from the haematopoietic cell

compartment using a Tie2-Cre floxed allele of Sox17 (Tie2-

Cre+Sox17fl/GFP) resulted in the loss of foetal and neonatal, but not

adult HSCs (Kim et al., 2007). It is possible, however, that other

Cres may not give the same result. Importantly, the reduction of

Sox17 expression aligns with the 3-4 week developmental switch

and is consequently linked to reduced self-renewal and proliferation,

and the acquisition of the adult HSC phenotype.

Transcription factors such as Sox17 are not the only regulators

that differ across FL and adult HSCs. The cytokine stem cell factor

(SCF; KITL) and its receptor Kit play major roles in regulating HSC

numbers (Metcalf, 2008; McCulloch et al., 1965) and in the

microenvironment-mediated control of HSCs (McCulloch et al.,

1964). Although FL HSCs are strongly dependent on Kit activation,

they require much less SCF than do adult HSCs despite similar

levels of surface Kit expression (Bowie et al., 2007a,b).

Thrombopoietin (TPO) also plays a role in HSC self-renewal

(Audet et al., 2001). Indeed, knockout studies show that TPO-null

mice have decreased numbers of repopulating HSCs (Solar et al.,

1998) and that genetic deletion of Mpl, the TPO receptor, reduces

HSC self-renewal potential (De Graaf and Metcalf, 2011).

Additionally, genetic perturbation of LNK (SH2B3), a negative

regulator of TPO signalling expression of which increases with age,

increases HSC self-renewal (Seita et al., 2007). LNK acts by

negatively regulating JAK2, a receptor tyrosine kinase downstream

of many different cytokines, including TPO, IL6 and IL11 (Gery

et al., 2009). A single LNK-deficient HSC can expand

approximately 3000-fold after transplantation (Ema et al., 2005).

Notably, TPO and Mpl are dispensable for FL HSC survival and

expansion (Qian et al., 2007).

Experimentally, cytokines have many advantages for use in HSC

expansion and have been combined in a wide range of multi-

factorial screening studies. Their ease of use, the reversibility of

their effects by removal, and the lack of permanent DNA

manipulations make cytokines very attractive for stimulating HSC

self-renewal. An early study optimised and assessed the effects of

four key cytokines linked to HSC in vitro expansion (TPO, FLT3

ligand, SCF and IL11), performing an extensive two-level factorial

analysis, testing every possible factor combination at two different

concentrations, respectively (Audet et al., 2002). SCF and IL11

were found to be the most potent stimulators of HSC expansion.

Based on this and a study by Miller and Eaves (1997), it was

concluded that TPO offers no beneficial effect to adult HSC

expansion and this was later extended to FL HSCs (Bowie et al.,

2007a,b). However, a number of other groups have offered a

different perspective, suggesting that TPO is crucial for HSC in vitro

self-renewal (Nakauchi et al., 2001; Kimura et al., 1998; Solar et al.,

1998; Wilkinson et al., 2020; Chou and Lodish, 2010).

Explanations for these differences could include the effects of

differing base medium and various supplements. Regardless, a large

number and variety of cytokine conditions have been optimised

over the years, largely still focused on TPO, SCF and gp130 (IL6ST)

stimulants (e.g. IL6, IL11).

Translating insights from development to the clinic

Differences in the intrinsic gene regulatory networks and extrinsic

cues that regulate FL and adult HSCs ensure that the demands of

each ontological stage are met. For FL HSCs, this involves the rapid

expansion and establishment of the haematopoietic system, whereas

in the adult it is HSC regulation and homeostasis. By harnessing

knowledge of these regulatory pathways and signals, we can work

towards recapitulating the appropriate environment in vitro to
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improve HSC expansion. In addition to allowing large-scale

screens, such as proteomics and metabolomics, to be undertaken

with sufficient cell numbers, improved HSC expansion would

unlock a wide clinical benefit, with implications for BM rescue,

gene therapy and a better understanding of childhood and adult

leukaemias.

Recently, exciting progress has been made in the development of

polyvinyl alcohol (PVA)-based HSC expansion cultures and these

have been revolutionary for the field, allowing up to 899-fold

increases in HSC numbers over a 28-day culture period (Wilkinson

et al., 2019). Although these cultures are reductionist and

intentionally synthetic, in order to avoid batch variability in

reagents such as foetal bovine serum, they are grounded on the

information gained over the last decades on SCF and TPO

concentrations during the FL expansion phase. In PVA cultures

(in contrast to the adult BM, where much higher cytokine doses are

observed), low SCF (10 ng/ml) is combined with high TPO

(100 ng/ml) to achieve the best expansion results (Wilkinson et al.,

2019; Bowie et al., 2007a,b).

Interestingly, studies using this PVA protocol show that

expansion of the phenotypic HSC compartment occurs largely

independently of total cell proliferation in the culture and, as a

result, overall cell number is a poor surrogate for HSC expansion

(Wilkinson et al., 2019; Che et al., 2022). This is in accordance with

previous studies showing that cytokine conditions stimulating rapid

proliferation and higher cell numbers often do not yield the most

functional HSCs (Audet et al., 1998). Prior to the Wilkinson et al.

study, the best expansion attempts with haematopoietic cytokines

only achieved maintenance for a week or two at most (Yamazaki

and Nakauchi, 2014), suggesting that cytokines alone are limited in

their capacity to maintain long-term self-renewal. As a result,

numerous other strategies, such as transgene expression, soluble

factors and supportive co-cultures, were developed in attempt to

expand HSCs ex vivo (Sekulovic et al., 2011; Ohta et al., 2007).

A recent example involving transgenic overexpression of Mir130b

and Mir128a (Mir128-1), which are upregulated in the highly

proliferative leukaemic stem cells underpinning childhood

leukaemias, suggests that HSC expansion might be improved by

forcing HSCs to expand more rapidly than normal (Malouf et al.,

2021). Furthermore, the addition of bile acids, which protect rapidly

expanding FL HSCs against endoplasmic reticulum stress in utero

(Sigurdsson et al., 2016), to cell culture media was recently shown

to improve the ex vivo expansion of adult HSCs (Koide et al., 2022).

Notably, the studies discussed above focus on mouse HSCs, as

efforts to expand human HSCs have not been so successful.

Historically, expansion of human HSCs in vitro has proved

significantly more challenging than that of mouse with only

modest increases in the number of transplantable HSCs being

achieved. Several studies involving cytokines alone achieved a

3-fold increase in HSC number after 10 days using serum-free

media supplemented with various combinations of IL6, IL3, IL11,

FLT3 ligand, granulocyte colony-stimulating factor, and SCF

(Miller and Eaves, 1997; Bhatia et al., 1997). More recently,

groups have succeeded in gaining 3- to 20-fold increases in CD34+

human HSC numbers using PVA-based media after 7 (Wilkinson

et al., 2019) or 14 (Sudo et al., 2021) days. This modest expansion

prompted a number of groups to then explore the addition of small

molecules such as StemRegenin 1 (SR1) (Boitano et al., 2010) and

UM171 (Fares et al., 2014), both of which substantially improve the

in vitro expansion of human HSCs. UM171 elicits its effects via

activation of the ubiquitin ligase cullin 3 (CUL3) and subsequent

polyubiquitylation and degradation of the LSD1-CoREST

epigenetic regulating complex. This ensures the maintenance of

H3K4me2 and H3K27ac marks, which are typically lost rapidly in

human HSCs in in vitro culture (Fares et al., 2014). SR1 antagonises

the aryl hydrocarbon receptor and selectively promotes the

expansion of human CD34+ cells 12- to 17-fold, while also

inhibiting proliferation of the CD34− population (Boitano et al.,

2010). Collectively, however, the limited number of long-term

serially transplantable HSCs and their purity in expansion cultures

remain major obstacles for the field.

Emerging areas: mechanical biology and bioengineering

In order to mimic the supportive properties of the HSC niche,

several studies over the last decades have utilised the co-culture of

HSCs with various feeder cells derived from different sources that

naturally support HSC expansion. These include cells from the

AGM (Morrison and Scadden, 2014), urogenital ridge (Oostendorp

et al., 2002), FL (Buckley et al., 2011) and BM (Zhang and Lodish,

2004). In particular, the AGM-S3, AFT024, UG26-1B6 (UG26)

and EL08-1D2 (EL08) cell lines have been shown to support the

survival and maintenance of adult mouse HSCs for at least 6 weeks

in culture (Moore et al., 1997; Oostendorp et al., 2002). Notably,

Oostendorp et al. demonstrated that the supportive effect of UG26

and EL08 cells does not necessarily require direct cell-to-cell

contact with HSCs, suggesting that secreted factors are sufficient

(Oostendorp et al., 2002; Xu et al., 1998). Several studies have

additionally suggested that mesenchymal stem and progenitor cells

can support HSC activity in co-cultures (Méndez-Ferrer et al., 2010;

De Lima et al., 2012).

With respect to specific components of the HSC BM niche that

regulate the maintenance and differentiation of HSCs, there have

been numerous studies that have interrogated the cell types and

molecular signals at play. Paradoxically, almost every cellular

constituent of the BM has been suggested to play a role in HSC

biology (Morrison and Scadden, 2014; Pinho and Frenette, 2019;

Boulais and Frenette, 2015), with some groups hypothesising that

distinct niches exist for different HSC subpopulations (Pinho et al.,

2018). This latter idea is further complicated by the fact that HSCs

are a heterogeneous population with distinct properties, and no HSC

reporter yet exists with 100% specificity for HSCs or specific HSC

subtypes, making definitive investigations challenging to conduct.

The mechanical properties of the HSC niche also appear to be

crucial during development for both the maintenance and regulation

of established foetal and adult HSC populations, for haematopoietic

commitment and development, and for the initial generation of

HSCs via EHT. Given the important role played by the HSC niche, it

is conceivable that the historic lack of success in HSC ex vivo

expansion is at least in part due to the inability of liquid cultures

or even stromal co-cultures to satisfy the three-dimensional

and mechanical aspects of the HSC niche. Consequently,

bioengineering approaches that allow us to both understand the

biological importance of, and more accurately imitate, the HSC

niche in vitro are highly relevant and hold great potential. This is an

ongoing challenge, facilitated through the engineering of artificial

3D niches with ECM proteins and functionalised hydrogels (Bai

et al., 2019). In order to mimic the niche accurately, matrix stiffness

and ligand type and spatial distribution are important factors that

must be considered. Stiffness of the niche has already been linked to

HSC morphology, mobility and cell adhesion, and ligand type has a

significant impact on the lineage biases of HSCs (Li et al., 2021).

Recently, optical scaffolds made of 3D nanofibers have been

demonstrated to permit the culture of cells on structures that

maintain high porosity for cell migration and nutrient transport and
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that are perhaps more realistic models of HSC growth in vitro.

Nanofibers may be biological (collagen/fibrin/tropoelastin) or

synthetic [polycaprolactone (PCL), polyethylene terephthalate

(PET), polyurethane (PU), ceramics], a hybrid of both, and/or

functionalised with molecules such as CXCL12 to improve HSC

culture (Li et al., 2021). Ceramic electrospun nanofibers are

particularly exciting and relevant to the study of HSCs, having been

shown to mimic a number of bone properties (Esfahani et al., 2017).

The diameter of these nanofibers as well as their density and pore

size influence the behaviour of cells that are cultured upon them.

One example used umbilical cord HSCs, showing that HSCs expand

178- to 194-fold in these 3D cultures compared with 50-fold when

using traditional 2D plates (Chua et al., 2006), and another study

achieved ∼550-fold increases in CD34+ cell numbers (Das et al.,

2009). Moreover, murine embryonic stem cells have been shown to

have increased survival, proliferation and phenotypic HSC-specific

differentiation when cultured in 3D artificial niches (Dehdilani

et al., 2016). Finally, MS-5 stromal cells have been used to produce

extracellular matrices in vitro, which can then act as scaffolds for

culturing CD34+ human cord blood cells (Tiwari et al., 2013) and it

was shown that the acellular scaffolds increase phenotypic HSCs

and CFUs by 80-fold.

Microfluidics can also be used to manipulate and control liquids

in small volumes (of 10−9 to 10−18 litres) using channels that are

tens of microns in diameter. These are proving to be incredibly

useful platforms, especially for mimicking cardiovascular forces,

such as sheer stress, and can also be scaled up for use in bioreactors

(Islam et al., 2017; Whitesides, 2006). The future application of

such microfluidic approaches in the context of HSC expansion

could also provide exciting results.

Future perspectives

We have witnessed an enormous amount of recent activity and

progress in the field of HSC expansion, and, for the first time,

functional murine HSCs can be expanded ex vivo robustly and

durably. There is therefore a huge opportunity to re-imagine

experiments that were previously thought to be impossible owing to

cell number issues. The transcriptomes of actively expanding HSCs

in these cultures have been shown to be highly similar to those of

native FL HSCs (Che et al., 2022), with small differences possibly

explained by the absence of an HSC niche or appropriate metabolic

conditions. Indeed, a key characteristic of the 3-4 week switch is the

metabolic change from aerobic oxidative phosphorylation in foetal

HSCs, to anaerobic glycolysis in adult HSCs (Kohli and Passegué,

2014). This accompanies the change from an actively cycling to a

largely quiescent population and highlights the possibility of

metabolic manipulation in order to recover a more active,

aerobically metabolising, cellular state. This could have

substantial clinical applications, as it is known that leukaemic

stem cells have a greater dependence on aerobic, mitochondrial

respiration than the normal adult HSC population (De Beauchamp

et al., 2022). A blanket inhibition of oxidative phosphorylation

might therefore allow healthy HSCs to survive via adaptation to

glycolysis-mediated metabolism, while killing leukaemic stem

cells.

Larger-scale experiments, potentially in combination with

hydrogels and/or mechanical stresses, are also now possible and

could be used to identify the key pathways that govern HSC

expansion and translate these findings to human HSC biology. Fed-

batch systems, which provide an automated and continuous supply

of fresh media to the cultures, are already being applied with novel

small molecules such as UM171 and SR1 (Fares et al., 2014) to

achieve improved levels of expansion. Combining such promising

avenues will undoubtedly lead to success in future clinical-scale

human HSC expansion.
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