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Abstract—We investigate the performance of Gaussian-
modulated coherent-state QKD protocols in the presence of
canonical attacks, which are collective Gaussian attacks resulting
in Gaussian channels described by one of the possible canonical
forms. We present asymptotic key rates and then we extend the
results to the finite-size regime using a recently-developed toolbox
for composable security.

Index Terms—Continuous variables, quantum key distribution,
Gaussian modulation, finite-size effects, composable security

I. INTRODUCTION

A quantum key distribution (QKD) protocol describes the

communication steps performed by two remote authenticated

parties to establish a shared key even though the link be-

tween them is potentially compromised [1]. The information-

theoretic security of such a protocol is granted by the laws

of nature (quantum mechanics) [2], [3]. The first protocols

designed were based on discrete variable (DV) systems, while

more recently proposed protocols use continuous variables

(CV), i.e., the position and momentum quadratures of the

bosonic modes of the electromagnetic field [4], [5]. In par-

ticular, CV-QKD protocols using Gaussian modulation of

coherent states for the encoding of information [6]–[8] can

be easily implemented using the current telecommunication

infrastructure and may achieve high rates close to the PLOB

bound for repeaterless quantum communications in a lossy

channel [9]. More specifically, these protocols can be consid-

ered as coming from a single scheme with different aspects [5]:

reverse reconciliation (RR) or direct reconciliation (DR), with

homodyne or heterodyne decoding measurement.

Their security analysis was first studied for asymptotic key

rates under the assumption of collective Gaussian attacks [10],

[11], completely characterized by Ref. [12]. Later, security was

extended to the finite size regime [13]–[15] and to a general

composable framework [16], [17], including free-space [17]

and satellite-based scenarios [18]. Proof-of-principle and in-

field experiments have been recently demonstrated in long

ground-based fiber connections [19]–[21]. As pointed out

in Ref. [12], single-mode Gaussian channels and the cor-

responding collective Gaussian attacks can be classified in
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different canonical forms. One of these forms is represented

by the thermal-loss (attenuation) channel and the associated

collective entangling-cloner attack, typically assumed in CV-

QKD security proofs.

Here we present the asymptotic secret key rates of the

Gaussian-modulated coherent-state protocols with respect to

the other canonical forms. Besides the attenuation channel,

these include the amplifying channel, the additive classical-

noise channel and other more exotic Gaussian channels [5],

[12]. Then, using the toolbox of Ref. [17] for composable

security under general channel conditions, we extend the

analysis of the amplifying and classical-noise channels to

include finite-size effects and composable security.

After a short description of the canonical forms in Sec. II,

in Sec. III we describe the security analysis in the asymptotic

regime in the presence of a generic canonical form for the

cases of for homodyne or heterodyne protocol in RR/DR. In

Sec. IV, we present the results of the previous analysis speci-

fied for each canonical form by assuming ideal reconciliation

efficiency and large modulation. In Sec. V, we perform the

parameter estimation (PE) following Refs. [14], [15] and in

Sec. VI we compute the composable key rates using Ref. [17].

II. CANONICAL FORMS

Recall that a Gaussian channel G(T,N,d) acting on a

single mode, for T,N 2×2 real matrices and d an R
2 vector,

is a completely positive trace-preserving map that maintains

the Gaussian statistics of the input state. It can be mapped to

its canonical form C, which is a Gaussian channel with d = 0
and Tc, Nc diagonal, by G = UA ◦ C ◦UB, where UA and UB

are Gaussian unitaries. One can reduce the description of Tc,

Nc to three symplectic invariants: the generalized transmission

τ = detT, for −∞ < τ < ∞, the rank r = (rk(T)rk(N))/2
for r = 0, 1, 2 and the temperature n̄, connected to detN.

According to the first two parameters, the canonical forms

can be grouped into different classes: The class A1 for τ = 0,

r = 0, which replaces the input states with thermal states

(completely depolarizing channel). The classes A2 and B1

for τ = 0, r = 1 and τ = 1, r = 1 transforming the

quadratures asymetrically. B2 is the additive classical-noise

channel for τ = 1 and r = 2 and it collapses to the

identity channel for n̄ = 0. Class C is connected to channels



with transmissivity, i.e., 0 < τ 6= 1 and r = 2, with the

subcases τ < 1 (attenuation channel) and τ > 1 (amplifying

channel). Finally, the class D, where its output can be seen as

complementary to the amplifying channel and is connected to

negative transmissivities.

Via the Stinespring dilation, one can represent the canoni-

cal form C(τ, r, n̄) with a unitary symplectic transformation

L(τ, r) mixing the input state and a two-mode squeezed-

vacuum (TMSV) state with variance ω = 2n̄ + 1, which

describes the environment. In more detail, apart from the class

B2, we have that L(τ, r) = M(τ, r) ⊕ I where M(τ, r) is a

symplectic form interacting only with the input state and one

mode from the TMSV state, with the other mode being subject

to the identity I. For the class B2, we adopt a description using

the attenuation channel as we will see later.

The unitary dilation of the canonical form represents the

Gaussian interaction performed by the eavesdropper that con-

trols the TMSV state of the environment [12]. After interaction

with the input mode, the environmental output is stored in a

quantum memory, that will be subject to a joint and optimal

measurement (collective attack).

III. ASPECTS OF THE PROTOCOL SCHEME

Alice picks randomly 2N samples {xi} from the variable

x distributed according to the normal distribution

p(x) = (
√

2πVA)
−1 exp

[
−x2/(2VA)

]
(1)

with zero mean and variance VA. Then she modulates mode A
carrying coherent states |α〉 according to these samples with

α = (qA + ipA)/2 = (x2j−1 + ix2j)/2, (2)

where qA and pA are the encoding on the quadratures and j =
1, . . . , N . In the asymptotic regime (N ≫ 1), the covariance

matrix (CM) of Alice’s ensemble state is given by VA = µI
with I = diag{1, 1} and µ = VA + 1. Mode A is traveling

through a quantum channel modeled by one of the canonical

forms [5], [12]. In particular, Eve’s system is described by

two modes E and e in a TMSV state with variance ω and

covariance matrix

VEe =

(
ωI

√
ω2 − 1Z√

ω2 − 1Z ωI

)
, (3)

where Z = diag{1,−1}. Mode E is mixed with A via a

canonical form whose dilation is represented by a symplectic

matrix M (e.g., this is a beam-splitter transformation in the

case of an attenuation channel). One output mode B goes to

Bob, while the other E′ goes to Eve. Eve’s idler mode e and

mode E′ are kept in a quantum memory for a later optimal

measurement. Then the CM for modes B, E′, and e is given

by

VBE′e = (MT ⊕ I) (VA ⊕VEe) (M⊕ I), (4)

which can be expressed as follows

VBE′e =




VB CBE′ CBe

CBE′ VE′ CE′e

CBe CE′e Ve


 . (5)

From the previous CM, we can derive the CM of Eve’s

average state by tracing out mode B and Bob’s CM by tracing

out E′e respectively. Therefore, we obtain

VE′e =

(
VE′ CE′e

CE′e Ve

)
, VB = diag{V q

B(VA), V
p
B(VA)}

(6)

where VE′ = diag{V q
E′(VA), V

p
E′(VA)} is a function of VA.

In general, the canonical forms may treat the quadratures q
and p asymmetrically resulting in different variances V q

B and

V p
B or V q

E and V p
E respectively. Note that for the class C and

the classical-noise channel the treatment is symmetric so we

have V q
B = V p

B = VB and V q
E′ = V p

E′ = VE′ .

In the homodyne protocol, Bob measures either the q-

quadrature or p-quadrature of the arriving mode with outcome

qB or pB respectively. He informs Alice about the choice

of quadrature and then she keeps only the relevant encoding

qA or pA respectively (shifting the outcomes). In contrast, in

the heterodyne protocol, Bob measures both quadratures and

Alice’s encoding is described by the pair qA, pA and Bob’s

outcome by qB, pB .

For the homodyne protocol in DR, we derive Eve’s

conditional CM VE′e|qA (respectively VE′e|pA
) on Alice’s

encoding qA (or pA) given by (6) up to the replace-

ment of VE′ with diag{V q
E′(0), V

p
E′(VA)} (respectively with

diag{V q
E′(VA), V

p
E′(0)}); for the heterodyne protocol, the

conditional CM VE′e|qA,pA
is given by replacing VE′ by

diag{V q
E′(0), V

p
E′(0)} in the same equation.

Let us now compute Eve’s conditional CM on Bob’s mea-

surement outcome lB , with l equal to either q or p for a

different quadrature, in RR. For the homodyne protocol, we

obtain [5]

VE′e|lB = VE′e −C
T

BE′e (ΠlVBΠl)
−1

CBE′e, (7)

where CBE′e =

(
CBE′

CBe

)
, Πq = diag{1, 0}, Πp =

diag{0, 1}, and (.)−1 corresponds here to the calculation of

the pseudo-inverse. If Bob’s measurement is a heterodyne

measurement then the conditional CM is given by [5]

VE′e|qB ,pB
= VE′e −C

T

BE′e (VB + I)
−1

CBE′e. (8)

Let us assume now a very large number of exchanged

signals (N ≫ 1). Then the mutual information between

the encoding qA or pA and the outcome qB or pB for the

homodyne protocol is given by

I(µ, τ, ω) =
1

2

(
1

2
log2

V q
B

V q
B|qA

+
1

2
log2

V p
B

V p
B|pA

)
, (9)

for V l
B|lA

= V l
B(0), where we have assumed that half of the

times Bob’s outcome is qB and otherwise pB . On the other

hand, the mutual information between the encoding qA, pA
and the outcome qB, pB for the heterodyne protocol is given

by

I(µ, τ, ω) =
1

2

(
log2

V q
B + 1

V q
B|qA

+ 1
+ log2

V p
B + 1

V p
B|pA

+ 1

)
. (10)



Eve’s Holevo information is calculated by the symplectic

spectrum νE′e of the CM VE′e and the spectra, νE′e|qA ,

νE′e|pA
and νE′e|qA,pA

or νE′e|qB , νE′e|pB
and νE′e|qB ,pB

,

associated with the conditional CMs in DR or RR respectively.

More specifically, for the homodyne protocol, we have that

χ(µ, τ, ω) =
∑

i=1,2

h ([νE′e]i)

− 1

2


∑

i=1,2

h
(
[νE′e|qγ ]i

)
+
∑

i=1,2

h
(
[νE′e|pγ

]i
)

 ,

(11)

while for the heterodyne protocol

χ(µ, τ, ω) =
∑

i=1,2

h ([νE′e]i)−
∑

i=1,2

h
(
[νE′e|qγ ,pγ

]i
)
,

where

h(x) =
x+ 1

2
log2

x+ 1

2
− x− 1

2
log2

x− 1

2
, (12)

with γ being either A or B for the protocol in DR or RR

respectively, Then the asymptotic secret key rate is obtained

by [1]

R(µ, τ, ω) = ζI(µ, τ, ω)− χ(µ, τ, ω), (13)

where ζ is the reconciliation efficiency parameter.

IV. ASYMPTOTIC KEY RATES

Here we calculate the asymptotic secret key rate for each of

the canonical forms assuming an ideal reconciliation efficiency

ζ = 1 and the large modulation limit µ → ∞. In fact, we

present results in detail for the practical cases of attenuation,

amplifying, and classical-noise channel. Class B1 is always

secure (see Appendix for more details) while classes D and A2

do not provide a secret key rate, i.e., for any set of parameters

describing the corresponding canonical form the parties cannot

extract a secret key. The whole class of such channels have the

property of anti-degradability [5]: In terms of cryptography,

the eavesdropper (Eve) can obtain the receiver’s (Bob’s) state

by applying a CPT map on the state of the environment

forbidding the secret key extraction. However, for classes

with members that may hold this property or not, e.g., the

attenuation channel for τ < 1/2 against the cases with

τ ≥ 1/2, the RR can provide a remedy.

A. C class

The symplectic matrix associated with the dilation of the C

class is

MAtt(0 < τ < 1) =

( √
τI

√
1− τI

−
√
1− τI

√
τI

)
(14)

and

MAmp(τ > 1) =

( √
τI

√
τ − 1Z√

τ − 1Z
√
τI

)
(15)

for the attenuation and amplifying channel respectively. Fol-

lowing the steps in Sec. III, one easily obtains the secret key
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Fig. 1. The asymptotic security thresholds of the C class for transmisivities
τ > 0 (τ 6= 1) with respect to the excess noise ξ, where the reconciliation has
been considered ideal and µ → ∞. We plot the homodyne protocol in DR
(black solid line) and in RR (black dashed line) and the heterodyne protocol
in DR (gray solid line) and in RR (gray dashed line). The instances with high
excess noise (above the threshold lines) give no secret key rate.

rates for the homodyne (hom) and heterodyne (het) protocols

in DR (◮) and RR (◭). We have

R◮

hom(τ, ω) =
1

2
log2

τ (τω + |1− τ |)
|1− τ |(τ + |1− τ |ω)

− h(ω) + h

(√
ω(τ + |1− τ |ω)
|1− τ |+ τω

)
, (16)

R◭

hom(τ, ω) =
1

2
log2

ω

|1− τ |(τ + (|1− τ |)ω) − h(ω), (17)

R◮

het(τ, ω) = log2
2τ

e|1− τ | (τ + |1− τ |ω + 1)

− h(ω) + h (τ + |1− τ |ω) , (18)

R◭

het(τ, ω) = log2
2τ

e|1− τ |(τ + |1− τ |ω + 1)

− h(ω) + h

(
1 + |1− τ |ω

τ

)
. (19)

In Fig. 1, we plot the security threshold for each of the cases

above with respect to transmissivity and excess noise ξ =
|1−τ |(ω−1)

τ . Then, in Fig. 2, for ω := 1 (no thermal noise),

ζ = 1, and τ := 10
−L
10 where L is the attenuation in dB, we

plot (16), (18), (17) and (19). In Fig. 3, we plot the same cases

for τ := 10
L
10 with L being the gain in dB.

B. Classical-noise channel

To simulate a Gaussian channel with additive classical-

noise, we adopt the symplectic matrix of a beam splitter

MAtt(0 < τ < 1) =

( √
τI

√
1− τI

−
√
1− τI

√
τI

)
(20)
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Fig. 2. Secret key rate versus attenuation in dB for an attenuation channel.
With thin lines, we plot the asymptotic rate for the homodyne protocol in DR
(black solid) and in RR (black dashed) and for the heterodyne protocol in DR
(gray solid) and in RR (gray dashed) for ξ = 0, ζ = 1, and µ → ∞. For the
composable secret key rates (corresponding thick lines), we have assumed
channel excess noise ξ = 0.01 and conservative values for the parameters
ζ = 0.9, pEC = 0.8, and N = 10

6. We have optimized over the ratio r
and the modulation VA with ǫPE ≈ 10

−10 , ǫs = ǫh = 10
−20 , and d = 2

5.
The plots of the asymptotic key rate evaluate the security of the protocol and
the associated performance taking into account only theoretical aspects, e.g.
the kind of attack, focusing more on the quantum communication part of the
protocol. On the contrary, the finite-size analysis in a composable framework
takes also into account the classical post-processing parts of the protocol
providing with a performance close to a practical implementation usually
expected to be worse than the ideal case as it is supported by the plots in
thick lines compared with the corresponding cases in thin lines. We observe
here that the heterodyne protocols behave better in closer distances (higher
signal to noise ratio) compared with the homodyne protocols since they can
take into advantage the double encoding into the same signal. Despite this
fact, the homodyne protocols have achievable rates in longer distances. In
fact, they behave better against the excess noise in long distances and, in
particular the RR protocol, against the parameter estimation effects connected
to the excess noise and transmissivity.

and take the joint limits for τ → 1 and ω → ∞ so that

(1 − τ)ω = θ, for some constant variance θ of the additive

noise. The corresponding secret key rates are given by

R◮

hom(θ) = log2

(
2

e
√
θ(θ + 1)

)
+ h(

√
1 + θ), (21)

R◭

hom(θ) = log2

(
2

e
√
θ(θ + 1)

)
, (22)

R◮

het(θ) = R◭

het(θ) = log2

(
4

e2θ(θ + 2)

)
+ h(θ + 1), (23)

We plot (21), (22) and (23) in Fig. 4.

V. PARAMETER ESTIMATION

A. Attenuation channel

Let us assume a protocol with homodyne detection. Here

Bob’s measurement outcome is described by the generic

variable

y =
√
τx+ z (24)
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Fig. 3. Asymptotic key rates in the presence of an amplifying channel. With
thin lines, we plot the asymptotic rate for the homodyne protocol in DR (black
solid) and in RR (black dashed) and for the heterodyne protocol in DR (gray
solid) and in RR (gray dashed) for ξ = 0, ζ = 1 and µ → ∞. For the
composable secret key rates (corresponding thick lines), we have assumed
channel excess noise ξ = 0.01 and conservative values for the parameters
ζ = 0.9, pEC = 0.8, and N = 10

6. We have optimized over the ratio r
and the modulation VA with ǫPE ≈ 10

−10 , ǫs = ǫh = 10
−20 , and d = 2

5.
Here we observe that the RR and DR protocols have the opposite behaviour
compared with the attenuation channel case, i.e., we have smaller achievable
rate distances for the RR protocols instead for the DR protocols. Comparing
also the composable rates of the RR protocols, it seems that in the regime
of N = 10

6 , the homodyne protocol cannot surpass the performance of the
heterodyne protocol due to the fact that the gain variance plays an important
role in the amplifying channel: the coefficient in front of the gain variance
in (32) is double of its counterpart in (33).

where y describes either the outcome connected with the

quadrature q or p. Accordingly, the variable x describes Alice’s

encoding while

z =
√
τxs +

√
1− τxo + xΞ, (25)

is a variable representing the noise detected by Bob. The

variables xs and xo have equal variance Vs = Vo = 1
describing the quantum shot noise, and the variable xΞ with

variance Ξ := τξ describes the excess noise of the channel

ξ = (1−τ)(ω−1)
τ . Therefore we obtain the noise variance

σ2
z = Ξ + 1. (26)

Based on the previous analysis and assuming m signals

for PE, we derive the variances of the maximum likelihood

estimators (MLEs) τ̂ and Ξ̂ of the transmissivity and excess

noise according to Ref. [15]. Therefore, the worst case scenario

values for the channel parameters are given by

τm = τ − wστ , Ξm = Ξ + wσΞ, (27)

with w =
√
2erf−1(1 − ǫPE), as the extremal values of the

intervals defined by the estimator variances

σ2
τ =

4τ2

m

(
2 +

σ2
z

τVA

)
, σ2

Ξ = 2
σ4
z

m
, (28)

where erf(.) is the error function and ǫPE is the associated

error probability.
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Fig. 4. Secret key rate for a classical-noise channel against the classical
thermal noise θ. With thin lines, we plot the asymptotic rate for the homodyne
protocol in DR (black solid) and in RR (black dashed) and for the heterodyne
protocol in DR (gray solid) and in RR (gray dashed) for ξ = 0, ζ = 1

and µ → ∞. Note that the lines for the heterodyne protocol in DR and RR
coincide. For the composable secret key rates (corresponding thick lines), we
have assumed channel excess noise ξ = 0.01 and conservative values for the
parameters ζ = 0.9, pEC = 0.8, and N = 10

6. We have optimized over
the ratio r and the modulation VA with ǫPE ≈ 10

−10 , ǫs = ǫh = 10
−20 ,

and d = 2
5. Here we observe that the most robust protocol against classical

thermal noise is the homodyne protocol in DR while the other cases have
similar performance.

In the heterodyne protocol, Bob mixes the incoming mode

B with a vacuum mode in a balanced beam splitter. Then

he applies two conjugate homodyne detections to the beam-

splitter outputs. Due to the presence of the extra vacuum

mode, the outputs have an increased noise variance by 1
shot noise units compared with the protocol using homodyne

measurement. In addition, there is an estimator for τ and

Ξ from each one of the quadratures. These are optimally

combined and give the variances

σ2
τ =

2τ2

m

(
2 +

σ2
z + 1

τVA

)
and σ2

Ξ =
(σ2

z + 1)2

m
. (29)

Finally, the key rate in Eq. (13) is expressed via the parameter

Ξ as R̃(µ, τ,Ξ) = R(µ, τ, ω) and by setting the worst case

scenario values one obtains the secret key rate after PE

Rm = R̃(µ, τm,Ξm). (30)

B. Amplifying channel

Here, Bob detects noise described by the variable

z =
√
τxs ±

√
τ − 1xo + xΞ with σ2

z = 2τ + Ξ− 1 (31)

where Ξ := τξ, ξ = (τ−1)(ω−1)
τ resulting in estimator

variances

σ2
τ =

4τ2

m

(
2 + σ2

z/(τVA)
)
, σ2

Ξ = 2
σ4
z

m
+ 4σ2

τ (32)

for the homodyne protocol and

σ2
τ =

2τ2

m

(
2 + (σ2

z + 1)/(τVA)
)
, σ2

Ξ =
(σ2

z + 1)2

m
+ 2σ2

τ

(33)

for the heterodyne protocol. Finally, one calculates the corre-

sponding secret key rate Rm after PE as in (30).

C. Classical-noise channel

For the classical-noise channel we adopt the same analysis

as in Sec. V-A in addition to the assumption of

Ξ = τξ = (1− τ)ω − (1 − τ) with lim
τ→1

Ξ = θ. (34)

This leads to the following relations for the noise variance

σ2
z = θ + 1, (35)

Therefore we obtain the worst case estimator

Ξm =Ξ + wσΞ with σ2
Ξ = 2

σ4
z

m
(36)

for the homodyne protocol and σ2
Ξ =

(σ2

z+1)2

m for the hetero-

dyne protocol. Then one obtains the corresponding secret key

rate Rm after PE as in (30).

VI. COMPOSABLE KEY RATES

According to Ref. [17], the composable key rate takes the

form

R ≥ r
[
Rm − n−1/2∆AEP + n−1Θ

]
, (37)

where

Θ :=
{
log2[p

(
1− ǫ2s /3

)
] + 2 log2

√
2ǫh

}
, r =

npEC

N
(38)

and

∆AEP := 4 log2

(
2
√
d+ 1

)√
log(18/(p2ǫ4s )), (39)

is the correction term for using the von Neumann entropy in

the calculation of a finite-size rate and is dependent on the

number of bins d used during the discretization step of the

variables. The frame error rate 1−pEC is the number of blocks

with initial size N that passed through the error correction

(EC) step while n = N −m is the portion of signals devoted

to secret key creation. With ǫs, ǫh, ǫPE, and ǫcor we denote

the smoothing parameter, the privacy amplification (hashing)

parameter, the channel estimation parameter, and the EC

parameter. Note that pEC is a function of ǫEC but their relation

can only be evident in a specific practical implementation of

the protocol. Each ǫ parameter quantifies a distance from an

ideal implementation of each step of the protocol. An overall

security parameter can then be calculated by composing these

parameters into a sum ǫ = ǫS + ǫcor + ǫh + 2pECǫPE.

In Figs. 2, 3, and 4, we present results regarding the secret

key rate in the composable framework for the attenuation,

amplifying, and additive classical thermal noise channel, re-

spectively. We assume conservative values for the parameters

N = 106, β = 0.9, and pEC = 0.8 due to limitations that may

occur in the data post-processing procedure [22]. However,

still, the protocols provide the parties with positive rates at

metropolitan distances, e.g., ≈ 10 km [see Fig. 2 (black

thick dashed line)]. The security parameters have been set to

ǫPE ≈ 10−10 and ǫs = ǫh = 10−20. In addition, we chose

d = 25 and we optimized over r and VA.



VII. CONCLUSION

In this work we expanded the security of CV-QKD to all

canonical forms. We studied first the asymptotic security, then

we focused on the finite-size and composable security. We first

provided a compact description of the asymptotic secret-key

rates of practical channels like the attenuation, amplification,

and the classical-noise channels. Then our analysis discussed

in more detail the impact of parameter estimation and that

of other finite-size effects on the secret-key rates achievable

over these channels. We also computed the secret-key rate

for more exotic Gaussian channels finding that we either

obtain an always positive key rate (for B1 assuming large

Gaussian modulation) or no asymptotic secret key rate (for

the forms D and A2). This analysis can be expanded, in

future works, to protocols that use squeezed and/or thermal

states, protocols with discrete alphabets, or CV measurement

device independent schemes, in each case by assuming links

described by the previous channel classes.
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APPENDIX

The asymptotic secret key rates for the canonical form B1

associated with the symplectic transformation

MB1
=

(
I

I+Z

2
I−Z

2 −I

)
(40)

are given by

R◮

hom(µ) =
1

2
log2

√
2µ

e
+

1

2
h(
√
2), (41)

R◭

hom(µ) =
1

2
log2

√
2µ

e
, (42)

R◮

het(µ) = R◭

het(µ) = log2

√
2µ

e
√
3
+ h(

√
2). (43)
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