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Two parties sharing entangled quantum systems can generate correlations that cannot be pro-
duced using only shared classical resources. These nonlocal correlations are a fundamental feature
of quantum theory but also have practical applications. For instance, they can be used for device-

independent (DI) random number generation, whose security is certiőed independently of the oper-
ations performed inside the devices. The amount of certiőable randomness that can be generated
from some given non-local correlations is a key quantity of interest. Here we derive tight analytic
bounds on the maximum certiőable randomness as a function of the nonlocality as expressed using
the Clauser-Horne-Shimony-Holt (CHSH) value. We show that for every CHSH value greater than
the local value (2) and up to 3

√
3/2 ≈ 2.598 there exist quantum correlations with that CHSH

value that certify a maximal two bits of global randomness. Beyond this CHSH value the maximum
certiőable randomness drops. We give a second family of Bell inequalities for CHSH values above
3
√
3/2, and show that they certify the maximum possible randomness for the given CHSH value.

Our work hence provides an achievable upper bound on the amount of randomness that can be
certiőed for any CHSH value. We illustrate the robustness of our results, and how they could be
used to improve randomness generation rates in practice, using a Werner state noise model.

I. INTRODUCTION

Nonlocality is the phenomenon where measurements
of certain quantum systems, by isolated observers, gen-
erate correlations inaccessible to any local systems that
behave classically [1, 2]. Nonlocal correlations can be
used to make statements about the underlying quantum
system without characterizing the devices used [3–7], and
constitute a resource for information processing [8]. In
particular, they give rise to the possibility of DI informa-
tion processing which allows, for instance, the intrinsic
randomness of nonlocal correlations to be exploited for
randomness expansion [9–13], amplification [14], and key
distribution protocols [15–20].

Given some experimental conditions in a particular
input-output scenario, what is the optimal way to gener-
ate randomness device-independently? Since the values
of extremal Bell inequalities quantify the distance of the
observed correlations from the local boundary, one might
expect these to be optimal for randomness. However, the
relationship between nonlocality and maximum random-
ness is nontrivial [21], and it has been shown that non-
extremal Bell inequalities can certify more randomness
in some cases [22].

A substantial literature has developed investigating the
maximum achievable randomness in different DI scenar-
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ios. In particular, the existence of Bell tests that can
certify maximum global randomness was shown in [23]
by adding extra measurements. Constructions achiev-
ing maximal randomness in the bipartite scenario for
non-projective measurements were given in [24] and for
greater than two projective measurements per party
in [25–28]. In [22] a construction that tends towards
the maximum 2 random bits is presented, based on the
violation of tilted-CHSH inequalities [22, 29]. This pro-
vides a key example where non-extremal Bell inequali-
ties certify more randomness (maximum violation of the
CHSH inequality, the only extremal Bell inequality in the
2-input, 2-output scenario up to symmetry, can certify
5/2− log2(1+

√
2)/

√
2 ≈ 1.601 bits of global randomness

by comparison — see, e.g., [30]). Based on [22] one might
expect that achieving 2 bits of randomness requires the
CHSH violation (or entanglement) of the strategy to tend
to 0. If this were the case, there would be a problem
with the robustness of the construction, and the result
suggests a trade-off between certifiable randomness and
distance from the local set. Ref. [22] left open whether
two bits of randomness is actually attainable using a sin-
gle statistic in the 2-input 2-output scenario, and how
non-local a strategy achieving this can be.

Our work gives conclusive answers to these questions.
We consider the maximum amount of DI randomness
that can be certified from the set of quantum correla-
tions achieving a particular CHSH value. In other words,
we investigate how much randomness is achievable when
the generating system is required to exhibit a particular
amount of nonlocality. To do so, we introduce two fami-
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lies of Bell expressions that self-test families of two qubit
strategies. Our first family (see Proposition 1) certifies
exactly 2 random bits for all CHSH values in the interval
(2, 3

√
3/2], showing 2 random bits are achievable with-

out tending towards the local set [22], requiring extra
measurements [25, 27, 28] or constraining the full distri-
bution [31]. Our second family (see Proposition 2) cov-

ers the range of values [3
√
3/2, 2

√
2], coinciding with the

CHSH inequality for 2
√
2, and the certifiable randomness

achieved is a smooth, monotonically decreasing function
of the value. We show in Proposition 3 that this is the
true maximum randomness achievable for this range of
CHSH values, illustrating how one only needs to sacrifice
randomness when approaching the maximum quantum
value of CHSH. Finally, we analyse the robustness of our
construction under a Werner state noise model [32], and
compare it to that of the tilted CHSH inequalities. We
find both constructions to be robust, and at any given
noise level there exists an optimal statistic for practical
DI randomness generation that can outperform CHSH.

II. DI SCENARIO

We consider the bipartite 2-input 2-output Bell sce-
nario. Let two isolated devices each receive an in-
put x, y ∈ {0, 1}, from which they produce an output
a, b ∈ {0, 1}, stored in the classical registers A and B.
The devices are characterised by the joint conditional
probability distribution p(ab|xy), which, due to the iso-
lation of the devices, must be no-signalling.

We refer to a quantum strategy when the devices share
a bipartite density operator ρQAQB

on the Hilbert space
HQA

⊗ HQB
, and measure observables Ax = M0|x −

M1|x, By = N0|y −N1|y, where {Ma|x}a, {Nb|y}b are pro-
jective measurements on the associated Hilbert space
(projective measurements can be assumed without loss of
generality according to Naimark’s dilation theorem [33]).
We also include the possibility of an adversary Eve, who
wishes to guess the outputs. In the DI scenario, Eve
may have supplied the devices used by the user (Al-
ice) and may hold a purifying system E with associ-
ated Hilbert space HE such that the post-measurement
system AB and E are correlated. We describe this
using a tripartite density operator, ρQAQBE such that
ρQAQB

= TrE [ρQAQBE ]. Following measurement with
inputs X = x and Y = y, we obtain the classical-

quantum state ρABE =
∑

ab |ab⟩⟨ab|AB ⊗ ρ(a,b,x,y)E , where

ρ
(a,b,x,y)
E = TrQAQB

[ρQAQBE(Ma|x ⊗ Nb|y ⊗ IE)] is pro-
portional to Eve’s state conditioned on the joint mea-
surement outcomes, and the distribution is recovered via

p(ab|xy) = Tr[ρ
(a,b,x,y)
E ].

III. NONLOCALITY AND SELF-TESTS

To quantify the distance of an observed distribu-
tion p(ab|xy) from the local boundary in this sce-
nario, we consider the CHSH expression ICHSH =
⟨A0B0⟩ + ⟨A0B1⟩ + ⟨A1B0⟩ − ⟨A1B1⟩, where ⟨AxBy⟩ =
∑

ab(−1)a+b p(ab|xy) = ⟨Ψ|Ax⊗By⊗I|Ψ⟩ when p(ab|xy)
admits a quantum representation with purified state and
observables

(

|Ψ⟩QAQBE , Ax, By

)

. The local bound is
given by ICHSH ≤ 2, and the maximum quantum value is
2
√
2 [34]. Any distribution that violates the local bound

is said to be nonlocal.

It is known that the CHSH inequality self-tests the
maximally entangled state (|00⟩+ |11⟩)/

√
2 and the mea-

surements that achieve its maximum quantum viola-
tion [7, 29, 35, 36] in the sense that there is only one state

and set of measurements that can achieve ICHSH = 2
√
2

up to local isometries. One can also define a robust self
test, in which close to maximum violation certifies a state
and measurements close to the optimal ones up to local
isometries.

IV. ENTROPY BOUNDS

The quantity of interest for calculating the DI global
randomness is the conditional von Neumann entropy
when the devices receive inputs X = Y = 0, H(AB|X =
0, Y = 0, E), evaluated for the post-measurement state
ρABE . This is the relevant quantity for spot-checking
DI random number generation [30]. For DI randomness
expansion we require lower bounds on this quantity that
hold for all states and measurements compatible with the
observed distribution Pobs, or some linear functions fi of
Pobs, e.g., the CHSH value. This gives the asymptotic
rate of randomness generation r, in bits per round:

r = inf
ρQAQBE ,

{Ma|x}a,{Nb|y}b

compatible with fi(Pobs)

H(AB|X = 0, Y = 0, E)ρABE
. (1)

The asymptotic rate can also be used as a basis for rates
with finite statistics using tools such as the entropy ac-
cumulation theorem [37–39].

In the noiseless scenario, we prove a self-testing state-
ment that certifies a state and measurements that gen-
erate two bits of randomness. In this case, f(Pobs) is a
self-testing Bell expression, and there is only one state
and set of measurements that can achieve the maximal
quantum value (up to symmetries), from which the con-
ditional entropy can be evaluated. For the noisy case, we
use the recently developed numerical technique from [31]
to compute lower bounds on Eq. (1) using semidefinite
programming.
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V. MAIN RESULTS

Our first main result is the family of Bell expressions
that works for CHSH values in the range (2, 3

√
3/2].

Proposition 1. Let 0 < δ ≤ π/6, and define the family
of Bell expressions parameterized by δ, labelled Iδ:

⟨A0B0⟩+
1

sin δ
(⟨A0B1⟩+⟨A1B0⟩)−

1

cos 2δ
⟨A1B1⟩. (2)

Then we have the following:

(i) The local bound is given by ILδ = −1+ 2
sin δ

+ 1
cos 2δ .

(ii) The quantum bound is given by IQδ = 2 cos3 δ
cos 2δ sin δ

.

(iii) Up to local isometries there is a unique strategy that

achieves Iδ = IQδ :

ρQAQB
= |ψ⟩⟨ψ| where |ψ⟩ = 1√

2
(|00⟩+ |11⟩),

A0 = σZ , B0 = σX ,

A1 = − sin δ σZ + cos δ σX ,

B1 = cos δ σZ − sin δ σX . (3)

By the previous discussion of the noiseless case, Propo-
sition 1 shows that there exists a family of two-qubit
strategies that can achieve exactly two bits of global DI
randomness in the bipartite, 2-input 2-output case; this
follows from self-testing measurements A0, B0 together
with the maximally entangled state |ψ⟩. We now explore
some implications of this. The strategy in Eq. (3) has a
CHSH value ICHSH = 2 cos δ (sin δ + 1) and by sweeping

0 < δ ≤ π/6 the interval of values (2, 3
√
3/2] is achieved.

Hence for every CHSH value in this interval, there exists
a two-qubit strategy achieving this value, that can certify
exactly 2 bits of randomness. In fact 3

√
3/2 ≈ 2.598 is

the largest CHSH value for which exactly two bits of ran-
domness can be achieved, corresponding to the δ = π/6
strategy in Eq. (3) (see the Supplemental Material [40]).
This strategy can be derived by fixing p(ab|00) = 1/4,
and optimising the the remaining measurement angles
for the maximum CHSH value. This improves upon the
results in [22] (cf. the introduction): rather than needing
low CHSH violation to get close to maximal randomness,
maximum randomness is achieved well into the nonlocal
region.

Next we derive the maximum randomness for strate-
gies achieving a CHSH value in the interval [3

√
3/2, 2

√
2].

Up to local isometries, the only strategy that can achieve
ICHSH = 2

√
2 is given by the maximally entangled state

with measurements A0 = σZ , B0 = (σZ + σX)/
√
2,

A1 = σX , and B1 = (σZ − σX)/
√
2, since the CHSH in-

equality self-tests this state and measurements [29]. This
strategy gives roughly 1.601 bits of randomness. There
must therefore be a transition between ICHSH = 3

√
3/2

and ICHSH = 2
√
2, where in order to achieve a larger

CHSH value, randomness must be sacrificed. This tran-
sition is given by the following proposition.

Proposition 2. Let 0 ≤ γ ≤ π/12, and define the family
of Bell expressions parameterized by γ, labelled Jγ :

⟨A0B0⟩ + c(γ)
(

⟨A0B1⟩ + ⟨A1B0⟩ − ⟨A1B1⟩
)

, (4)

where c(γ) = 4 cos2
(

γ + π
6

)

− 1. Then we have the fol-
lowing:

(i) The local bound is given by JL
γ = 12 cos2

(

γ + π
6

)

−
4.

(ii) The quantum bound is given by JQ
γ =

8 cos3
(

γ + π
6

)

.

(iii) Up to local isometries there is a unique strategy that
achieves Jγ = JQ

γ :

ρQAQB
= |ψ⟩⟨ψ| where |ψ⟩ = 1√

2
(|00⟩+ |11⟩),

A0 = σZ , B0 = sin 3γ σZ + cos 3γ σX ,

A1 = cos

(

2π

3
− 2γ

)

σZ + sin

(

2π

3
− 2γ

)

σX ,

B1 = cos
(π

6
+ γ
)

σZ − sin
(π

6
+ γ
)

σX . (5)

When γ = 0, this corresponds to the expression in
Eq. (2) for δ = π/6, and when γ = π/12 we recover the
CHSH expression. The CHSH value for this family is
given by ICHSH = sin 3γ + 3 cos(γ + π/6), and monoton-

ically decreases in the interval [3
√
3/2, 2

√
2]. The ran-

domness certified by these self-tests is maximum for each
CHSH value, summarized in our final proposition.

Proposition 3. The maximum randomness for strate-
gies achieving a CHSH value in the range s ∈ (2, 3

√
3/2]

is 2 bits, and is generated by the family of strategies in
Eq. (3). For the range s ∈ [3

√
3/2, 2

√
2], the maximum

is given by

1 +Hbin

[1

2
+
s

2
− 3√

2
cos
(1

3
arccos

[

− s

2
√
2

])]

, (6)

where Hbin[·] is the binary entropy, and is generated by
the family of strategies in Eq. (5).

Propositions 1–3 are proven in the Appendices. In
Fig. 1, we illustrate our results and compare them to
a reliable lower bound on the minimum amount of ran-
domness guaranteed by the same CHSH value [31]. These
two curves represent tight upper and lower bounds on the
amount of DI randomness that can be certified by strate-
gies achieving a particular CHSH value.

In Fig. 2 we explore the robustness of our construc-
tions. We consider a Werner state noise model [32], i.e.,
ρQAQB

= (1− p)|ψ⟩⟨ψ|+ p IAB/4, where p ∈ [0, 1] is the
weight of the uniform noise. For simplicity, we assume
noiseless measurements. We use this state and measure-
ments to simulate statistics from which reliable DI lower
bounds can be generated using the techniques of [31]. At
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FIG. 1. The relationship between maximum randomness and
CHSH value in the noiseless bipartite 2-input 2-output sce-
nario. Plotted is the maximum achievable randomness for
all quantum strategies that achieve a particular CHSH value
(blue), and a reliable lower bound certiőed by the same CHSH
value (orange) using analysis from [31]. For the interval of
values (2, 3

√
3/2] two bits of randomness are certiőed by the

family of strategies in Eq. (3), and for the region [3
√
3/2, 2

√
2]

the maximum is certiőed by the family of strategies in Eq. (5).
Note that it is not the case that a CHSH value guarantees
rates given by the blue curve; the blue curve gives a tight
upper bound on achievable rates in a noiseless scenario.

each noise level, the randomness is optimized over the
choice of self-test from Eq. (4). This is compared to the
tilted CHSH expressions [22, 29], where the tilting pa-
rameter is similarly optimized.

FIG. 2. Noise comparison for Bell expressions that certify
maximum randomness in the bipartite 2-input 2-output sce-
nario. Our constructions (blue) are compared to the tilted
Bell inequalities from [22], using both the numerical tech-
nique from [31] (orange), and the min-entropy [22] (green).
All these curves have been generated by optimizing the Bell
expression (within the relevant families) at each value of the
noise, and the new analysis shows improved rates of random-
ness generation over the CHSH statistic (red).

VI. DISCUSSION

Our tight upper bound on the achievable DI random-
ness conditioned on the CHSH value shows that only
when one approaches Tsirelson’s bound does one need
to sacrifice randomness for nonlocality. This comes from
the fact that the optimal measurements needed to achieve
ICHSH = 2

√
2 have correlated outcomes, whereas corre-

lations that satisfy ICHSH ≤ 3
√
3/2 can have uniform

measurement outcomes. When there is zero noise, such
a distribution can be used to generate 2 bits of random-
ness (using the γ = 0 strategy in Eq. (5)). As noise is
added, using the family of Bell inequalities that self-test a
distribution with a CHSH value greater than 3

√
3/2 (ob-

tained by increasing γ), we can continue to certify more
randomness than would be possible using CHSH inequal-
ity at that noise level. Taking the optimal value of γ at
each level of noise we find that the Bell expressions tend
to the CHSH statistic as the noise approaches the bound-
ary where no randomness can be certified. In this sense,
CHSH is the most robust statistic, which is natural since
it defines a facet of the local polytope and so becomes
the only Bell inequality that can be violated with high
enough noise. We also remark that the robustness of the
tilted CHSH inequalities presented here is higher than
that of [22] (cf. the orange vs green curves in Fig. 2).
This is a result of using improved numerical techniques
to bound the conditional von Neumann entropy directly
rather than the min-entropy that is used in [22].

Based on an experimental estimate of the noise, a Bell
inequality from one of our families could be chosen that
maximises the certifiable randomness (along the lines of
Fig. 2). Knowledge of the full distribution could also
boost the noise performance or be used to search for im-
proved protocols in the presence of noise. However, the
use of more parameters would lead to a penalty when fi-
nite size effects are accounted for. We leave the question
of how our construction performs in other noise models,
such as detector efficiency, to future work, and pose an
open question as to if our construction is truly optimal
in the noisy regime.

One other potential application of our constructions
is to blind randomness expansion [41–43], where Alice
tries to certify local randomness from one device without
trusting the other. Since their outputs are uncorrelated
following a self-test from Proposition 1, such a statistic
could be used to generate the optimal 1 bit of local ran-
domness in the blind setting.

Finally, it would be interesting to further investigate
analogous results in multi-partite scenarios [44, 45] or
those with more inputs or outputs [46]. Indeed, [45]
showed maximal randomness for the outputs of two par-
ties based on a three party Mermin-Ardehali-Belinskii-
Klyshko inequality [47], and with advancements in com-
putational efficiency from new numerical techniques [31,
48] alongside self-testing results [49, 50], multi-partite DI-
RG has many avenues to explore.
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Appendix A: Proof of Propositions 1 and 2

The goal of this section is to prove Propositions 1 and 2, which are restated below:

Proposition 1 (Iδ-family of self-tests). Let 0 < δ ≤ π/6, and define the family of Bell expressions parameterized by
δ,

Iδ = ⟨A0B0⟩+
1

sin δ

(

⟨A0B1⟩+ ⟨A1B0⟩
)

− 1

cos 2δ
⟨A1B1⟩. (A1)

Then we have the following:

(i) The local bound is given by ILδ = −1 + 2
sin δ

+ 1
cos 2δ .

(ii) The quantum bound is given by IQδ = 2 cos3 δ
cos 2δ sin δ

.

(iii) Up to local isometries there is a unique strategy that achieves Iδ = IQδ :

ρQAQB
= |ψ⟩⟨ψ| where |ψ⟩ = 1√

2
(|00⟩+ |11⟩),

A0 = σZ , B0 = σX ,

A1 = − sin δ σZ + cos δ σX ,

B1 = cos δ σZ − sin δ σX . (A2)
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Proposition 2 (Jγ-family of self-tests). Let 0 ≤ γ ≤ π/12, and define the family of Bell expressions parameterized
by γ,

Jγ = ⟨A0B0⟩+
(

4 cos2
(

γ +
π

6

)

− 1
)(

⟨A0B1⟩+ ⟨A1B0⟩ − ⟨A1B1⟩
)

. (A3)

Then we have the following:

(i) The local bound is given by JL
γ = 12 cos2

(

γ + π
6

)

− 4.

(ii) The quantum bound is given by JQ
γ = 8 cos3

(

γ + π
6

)

.

(iii) Up to local isometries there is a unique strategy that achieves Jγ = JQ
γ :

ρQAQB
= |ψ⟩⟨ψ| where |ψ⟩ = 1√

2
(|00⟩+ |11⟩),

A0 = σZ , B0 = sin 3γ σZ + cos 3γ σX ,

A1 = cos
(2π

3
− 2γ

)

σZ + sin
(2π

3
− 2γ

)

σX ,

B1 = cos
(π

6
+ γ
)

σZ − sin
(π

6
+ γ
)

σX . (A4)

We follow the same method for both cases. For part (i), the local bound can be found by setting the observables
Ax, By to ±1, corresponding to an extremal or deterministic strategy. Since these are the vertices of the local polytope,
one such combination will be the optimal local strategy.

For the quantum bound in part (ii), a sum-of-squares (SOS) decomposition is found for the Bell expression offset
by its claimed maximum quantum value, exploiting the symmetry of the Bell expression under relabelling of A and
B [29]. The existence of an SOS decomposition proves the maximum quantum value claimed, and is detailed in
Appendices A 1 and A 2.

For the self-test in part (iii) we use the resulting SOS decomposition in combination with Jordan’s lemma [51].
This simplifies the analysis to qubits, and we derive a system of non-linear equations satisfied by any state and
measurements that achieve the maximum quantum value. The resulting system is then analytically solved, and
we show the only state and measurements for which these equations are satisfied is given by the target strategy
(Eqs. (A2) and (A4)) up to local unitaries. This process is detailed in Appendices A 3 to A5, and completes the proof
of Propositions 1 and 2. We remark that our self-tests define hyperplanes tangential to the corresponding strategy on
the boundary of the quantum set [52].

For completeness, in Appendix A6, we show from Jordan’s lemma that the private randomness of any strategy that
saturates the quantum bounds in Propositions 1 and 2 is equal to that of the target strategy.

1. Self-testing and sum-of-squares decompositions

We consider only the exact self-testing statement in this work, and leave proof of the robust statement for future
work. We begin by defining self-testing.

Definition 1 (Self-test). Let the observables Ax, By and pure state |ψ⟩QAQB
be the target two-qubit strategy, and

let S be a Bell operator. The inequality ⟨S⟩ ≤ IQ self-tests the target state and measurements if for all physical

quantum strategies (ρ̃Q̃AQ̃B
, Ãx, B̃y) that satisfy ⟨S̃⟩ = IQ, there exists a local isometry V : HQ̃A

⊗ HQ̃B
⊗ HE →

HQA
⊗ HQB

⊗ HJunk, V = VA ⊗ VB ⊗ IE , and ancillary state |ξ⟩Junk such that, for the purification |Ψ⟩Q̃AQ̃BE of
ρ̃Q̃AQ̃B

,

V
[

(Ãx ⊗ B̃y ⊗ IE)|Ψ⟩Q̃AQ̃BE

]

= (Ax ⊗By)|ψ⟩QAQB
⊗ |ξ⟩Junk. (A5)

Throughout this appendix, we refer to the physical state and measurements we are trying to self-test as the “reference”,
denoted with a tilde. The strategies in Eqs. (A2) and (A4) are then the “target” state and measurements; which target
strategy we refer to will be clear from the context.
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For a Bell operator S that defines the quantum Bell inequality ⟨S⟩ ≤ IQ, the operator S̄ := IQ
I − S, satisfies

⟨ϕ|S̄|ϕ⟩ ≥ 0 for all quantum states |ϕ⟩, i.e., S̄ ⪰ 0. If there exists a set of operators Pi that are polynomials of Ax, By

and satisfy

S̄ =
∑

i

P †
i Pi, (A6)

then we have found a sum-of-squares (SOS) decomposition of the operator S̄: positivity of S̄ follows directly from the
fact that K†K ⪰ 0 for any operator K.

SOS decompositions can be used to enforce algebraic constraints on any state and measurements that satisfy
⟨S⟩ = IQ, since this implies

⟨S̄⟩ =
∑

i

⟨ψ|P †
i Pi|ψ⟩ = 0 . (A7)

This can only hold if Pi|ψ⟩ = 0 for all i. Relations of this form are used to prove the self-testing statement in
Definition 1.

2. SOS decomposition for the inequalities in Propositions 1 and 2

Finding an SOS decomposition can be recast as a semidefinite program (SDP) [29]. We start by considering a
vector R = [R0, ..., Rk, ...]

T whose components are linear combinations of A0, A1, B0 and B1. We consider the case
where each polynomial Pi is linear, writing Pi =

∑

k q
k
i Rk for some coefficients {qki }k. Then

S̄ =
∑

i

P †
i Pi

=
∑

kj

R†
k

(

∑

i

(

qki
)∗
qji

)

Rj

=
∑

kj

R†
kMkjRj = R†MR , (A8)

where M is the Gram matrix of the set of vectors {qk}. Since M is a Gram matrix, it is positive semidefinite by
construction. We can hence use semidefinite programming to find an M ⪰ 0 that satisfies Eq. (A8), and then find
the polynomials Pi via the matrix square root:

S̄ = R†MR =
(√

MR

)†(√
MR

)

. (A9)

Since each entry of the vector
√
MR takes the form [

√
MR]i =

∑

k[
√
M ]ikRk, we find that Pi = [

√
MR]i provides

the set of polynomials that satisfies Eq. (A8).

For the Bell operator S̄δ = IQ
δ I− Iδ, where

Iδ = A0B0 +
1

sin δ

(

A0B1 + A1B0

)

− 1

cos 2δ
A1B1, (A10)

the SOS decomposition is given by the following lemma.

Lemma 1 (Iδ-family SOS decomposition). Let R = [R0, R1, R2, R3]
T, where

R0 =
1√
2
(B1 −A1), (A11)

R1 =
1√
2
(B0 −A0), (A12)

R2 =
1√
2
(B1 +A1), (A13)

R3 =
1√
2
(B0 +A0). (A14)
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For every δ ∈ (0, π/6], the Bell expressions S̄δ can be written as a SOS decomposition S̄δ = R†MδR where

Mδ =







(α− 1/2)ζ β 0 0
β α+ 1/2 0 0
0 0 (α+ 1/2)ζ −β
0 0 −β α− 1/2






, (A15)

for α = 1/(2 tan δ), β = 1/(2 sin δ) and ζ = 1/ cos 2δ.

The maximum quantum value of Iδ is IQδ = 2 cos3 δ
cos 2δ sin δ

.

Proof. The claim S̄δ = R†MδR can be verified by direct calculation. Since S̄δ ⪰ 0 we have ⟨Iδ⟩ ≤ IQδ , but the
quantum strategy given in (A2) shows that this bound is achievable.

Four polynomials Pi(δ) emerge from this decomposition:

P0(δ) = k+
[

R0 + (sin δ + cos δ)R1

]

, (A16)

P1(δ) = (sin δ + cos δ)P0(δ), (A17)

P2(δ) = k−
[

R2 + (sin δ − cos δ)R3

]

, (A18)

P3(δ) = (sin δ − cos δ)P2(δ), (A19)

where

k± =
1

√

2 sin δ (cos δ ± sin δ)(2± sin(2δ))
. (A20)

Similarly, the shifted Bell operator for the Jγ family is given by S̄′
γ = JQ

γ I− Jγ , where

Jγ = A0B0 + (4 cos2(γ + π/6)− 1)
(

A0B1 +A1B0 −A1B1

)

, (A21)

and we have the following SOS decomposition:

Lemma 2 (Jγ-family SOS decomposition). Let R be as defined in Lemma 1. For every γ ∈ [0, π/12], the Bell
expressions S̄′

γ can be written as a SOS decomposition S̄′
γ = R†M ′

γR where

M ′
γ =







1/2 + µ(4µ2 − 2µ− 1) 2µ2 − 1/2 0 0
2µ2 − 1/2 µ+ 1/2 0 0

0 0 −1/2 + µ(4µ2 + 2µ− 1) 1/2− 2µ2

0 0 1/2− 2µ2 µ− 1/2






, (A22)

where µ = cos(γ + π/6).
The maximum quantum value of Jγ is JQ

γ = 8µ3.

This can be proven in exactly the same way as Lemma 1 and gives rise to the polynomials

P ′
0(γ) = c+

[

(2µ− 1)R0 +R1

]

, (A23)

P ′
1(γ) =

P ′
0(γ)

2µ− 1
, (A24)

P ′
2(γ) = c−

[

(2µ+ 1)R2 −R3

]

, (A25)

P ′
3(γ) = − P ′

2(γ)

2µ+ 1
, (A26)

where

c± =
4µ2 − 1

2
√

4µ3 ∓ 2µ2 ± 1
. (A27)

Lemmas 1 and 2 establish the quantum bounds in Propositions 1 and 2, and give us the tools needed to prove the
self-testing claims, following a reduction to qubits detailed in the next section.
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3. Applying Jordan’s lemma

We can use the polynomials derived above for both families of inequalities to impose algebraic constraints on the
state and measurements that satisfy ⟨S̄⟩ = 0. We employ Jordan’s lemma [51], a unique simplification that can be
made in the 2-input 2-output scenario [18, 30]. The lemma states that for two observables A0 and A1 on a Hilbert
space H, each with eigenvalues ±1, there exists a basis transformation such that both are simultaneously block
diagonal with block size no greater than two. The Hilbert space decomposes into this block diagonal structure, and,
by dilating where necessary, we can take each block to be a qubit system. There then exists a block diagonal density
operator that reproduces the statistics of the original system. This can be summarised as follows.

Lemma 3 (Jordan’s lemma). Let A0 and A1 be two binary observables on a Hilbert space HA. Then there exists a
basis in which A0 and A1 are block diagonal with block dimensions at most 2. Moreover, for every state and set of
measurements on HQ̃A

⊗ HQ̃B
that generates a post-measurement state ρABE, there exists another state and set of

measurements, given by a convex combinations of two-qubit systems, that generates the same post-measurement state.

For self-testing literature that also utilises Jordan’s lemma, see e.g. [36, 53, 54].
It is known that a full reduction to a convex combination of two-qubit strategies with measurements in the XZ-

plane is sufficient for evaluating the global entropy [18, 30]. By employing Jordan’s lemma to systems Q̃A and Q̃B ,
the resulting parameterization of a single two-qubit strategy is given by 7 parameters: 3 for the state, which can be
taken to be diagonal in the Bell basis, and 4 for the measurements, one defining each angle in the XZ-plane. Let

|Φ0⟩ =
1√
2
(|00⟩+ |11⟩),

|Φ1⟩ =
1√
2
(|00⟩ − |11⟩),

|Φ2⟩ =
1√
2
(|01⟩+ |10⟩),

|Φ3⟩ =
1√
2
(|01⟩ − |10⟩). (A28)

The two-qubit state is given by

ρ =

3
∑

α=0

λα|Φα⟩⟨Φα|, (A29)

where λα ≥ 0 and
∑

α λα = 1. The measurements are given by

Ax = cos ax σZ + sin ax σX ,

By = cos by σZ + sin by σX , (A30)

where −π < ax, by ≤ π, x, y ∈ {0, 1}. See [18, 30] for details of this reduction.
Our methodology will be to show that the only two-qubit strategy that satisfies the relations imposed by the SOS

polynomials is the target strategy up to local unitaries, hence the extraction map can be written in terms of unitaries
that rotate each Jordan block to the target.

4. Proof of the self-testing claim for the Iδ-family

We now prove the self-testing claim in Proposition 1, i.e., that the family of inequalities in Eq. (A1) self-tests the
state and measurements in Eq. (A2).

Theorem 1 (Self-testing the Iδ-family). The family of Bell expressions in Eq. (A1) provides a self-test for the two-
qubit state and family of measurements in Eq. (A2) according to Definition 1. [Equivalently, up to local isometries,

the only state and measurements that satisfy Iδ = IQδ are those of Eq. (A2).]

Proof. The previous section implies that it is sufficient to consider two qubit states that are diagonal in the Bell basis
as in (A29) and measurements of the form (A30). Consider the expectation value of the operator S̄δ for a two qubit
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state ρ and measurements Ax, By that saturate the inequality in Eq. (A1):

⟨S̄δ⟩ =
∑

i

⟨P †
i (δ)Pi(δ)⟩

=
∑

i

Tr[ρP †
i (δ)Pi(δ)]

=
∑

i

∑

α

λα∥Pi(δ)|Φα⟩∥2 = 0. (A31)

Since λα ≥ 0, ∥Pi(δ)|Φα⟩∥2 ≥ 0, we have

λα∥Pi(δ)|Φα⟩∥2 = 0 ∀i ∀α. (A32)

Without loss of generality, suppose λ0 ̸= 0 (if λ0 = 0, then for some α′ with λα′ ̸= 0, there is a local unitary U such
that U ⊗ I|Φα′⟩ = |Φ0⟩, so cases where λ0 = 0 are equivalent to the case λ0 ̸= 0 up to local unitaries). Note that
(U ⊗UT)|Φ0⟩ = |Φ0⟩ for all single qubit unitaries U , where UT is the transpose of U in the {|0⟩, |1⟩} basis. It follows
that we can take a0 = 0, i.e., A0 = σZ .

By (A32), we have that Pi(δ)|Φ0⟩ = 0 for i = 0, 2 (the cases i = 1, 3 are identical by linear dependence). Using the
form of the measurements (cf. (A30)), we arrive at the system of nonlinear equations

(sin δ + cos δ) sin b0 + (sin b1 − sin a1) = 0, (A33)

(sin δ − cos δ) sin b0 + (sin b1 + sin a1) = 0, (A34)

(sin δ + cos δ) (cos b0 − 1) + (cos b1 − cos a1) = 0, (A35)

(sin δ − cos δ) (cos b0 + 1) + (cos b1 + cos a1) = 0. (A36)

Subtracting Eq. (A34) from Eq. (A33), and Eq. (A36) from Eq. (A35) gives

sin a1 = sin b0 cos δ, (A37)

cos a1 = cos b0 cos δ − sin δ . (A38)

Then using sin2 a1 + cos2 a1 = 1 we recover

1 = sin2 b0 cos
2 δ + (cos b0 cos δ − sin δ)

2

= 1− sin 2δ cos b0, (A39)

and hence we have cos b0 = 0. Since −π < b0 ≤ π we have b0 = ±π/2, i.e., B0 = ±σX . Noting that σZ ⊗ σZ has
no effect on |Ψ0⟩ and that σZσXσZ = −σX , we can take b0 = π/2, i.e., B0 = σX without loss of generality. Then,
sin b0 = 1.

Using these in (A33)–(A36) we find sin b1 = − sin δ and cos b1 = cos δ, hence b1 = −δ. Similarly, sin a1 = cos δ and
cos a1 = − sin δ so we have A1 = − sin δ σZ + cos δ σX and B1 = cos δ σZ − sin δ σX , recovering the observables in
Eq. (A2). We have therefore proved the self-testing of the measurements.

For the state, consider ∥Pi(δ)|Φα⟩∥2 for i = 0, 2 and α = 1, 2, 3. By direct calculation, using the observables we
found above, we find all of these to be cos2 δ. Hence, by (A32), we must have λ1 = λ2 = λ3 = 0 and thus λ0 = 1.

Finally we derive the extraction map from Definition 1. According to Jordan’s lemma, both Hilbert spaces decom-
poses block-diagonally with 2× 2 blocks. This is equivalent to identifying HQ̃A

= HFA
⊗HQA

where FA is a system

that flags the 2×2 Jordan block, and QA is a qubit system (similarly for HQ̃B
). With purifying system E, the purified

state hence takes the form

|Ψ⟩Q̃AQ̃BE =
∑

ij

√
pij |ij⟩FAFB

⊗ |φij⟩QAQB
⊗ |ij⟩E , (A40)

where ρQ̃AQ̃B
= TrE

[

|Ψ⟩⟨Ψ|Q̃AQ̃BE

]

=
∑

ij pij |ij⟩⟨ij|FAFB
⊗ |φij⟩⟨φij |QAQB

is the state shared by the devices. Simi-

larly, the measurements admit the decomposition

Ãx ⊗ B̃y =
∑

ij

|ij⟩⟨ij|FAFB
⊗Ai

x ⊗Bj
y. (A41)

Above we established that, up to local unitaries, the only two qubit strategy that can achieve ⟨S̃δ⟩ = IQ
δ is the target

in Eq. (A2). Therefore, for every measurement pair Ai
x⊗Bj

y and state |φij⟩ there exist local unitaries U i
A : HQA

→ HQA
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and U j
B : HQB

→ HQB
such that U i

AA
i
x(U

i
A)

† = Ax, U
j
BB

j
y(U

j
B)

† = By, and (U i
A ⊗ U j

B)|φij⟩ = |Φ0⟩. Thus, if we
define the unitary

V =
∑

ij

|ij⟩⟨ij|FAFB
⊗ U i

A ⊗ U j
B ⊗ IE , (A42)

then we have the extraction

V (Ãx ⊗ B̃y ⊗ IE)V
†V |Ψ⟩Q̃AQ̃BE = (Ax ⊗By)|Φ0⟩QAQB

⊗
(

∑

ij

√
pij |ij⟩FAFB

⊗ |ij⟩E
)

. (A43)

This is of the form in Definition 1, and completes the self-testing proof.

5. Proof of the self-testing claim for the Jγ-family

We follow an identical methodology to the previous section to prove the self-testing claim in Proposition 2.

Theorem 2 (Self-testing the Jγ-family). The family of Bell expressions in Eq. (A3) provides a self-test for the family
of two qubit states and measurements in Eq. (A4) according to Definition 1. [Equivalently, up to local isometries, the
only state and measurements that satisfy Jγ = JQ

γ are those of Eq. (A4).]

Proof. As in the proof of Theorem 1 we can use local unitaries to ensure that λ0 ̸= 0 and a0 = 0. P ′
0(γ)|Φ0⟩ = 0 and

P ′
2(γ)|Φ0⟩ = 0 then give

(2µ− 1) (sin b1 − sin a1) + sin b0 = 0, (A44)

(2µ+ 1) (sin b1 + sin a1)− sin b0 = 0, (A45)

(2µ− 1) (cos b1 − cos a1) + cos b0 − 1 = 0, (A46)

(2µ+ 1) (cos b1 + cos a1)− cos b0 − 1 = 0, (A47)

where µ = cos(γ + π/6). Eliminating sin b0 from the first two and cos b0 from the second two gives

sin a1 = −2µ sin b1 (A48)

cos a1 = 1− 2µ cos b1 . (A49)

Using sin2 a1 + cos2 a1 = 1 then gives cos b1 = µ = cos(γ + π/6) and sin b1 = ± sin(γ + π/6), corresponding to
B1 = cos(γ+π/6)σZ ± sin(γ+π/6)σX . We can take the case with the minus sign without loss of generality by using
the local unitary σZ if needed.

Eqs. (A48) and (A49) then give sin a1 = sin(2(γ + π/6)) and cos a1 = − cos(2(γ + π/6)).
Then (A45) gives

sin b0 = −
(

4 sin3(γ + π/6)− 3 sin(γ + π/6)
)

= sin(3(γ + π/6)) ,

and (A47) gives

cos b0 = − cos(3(γ + π/6)) .

We hence have

A0 = σZ

A1 = − cos(2(γ + π/6))σZ + sin(2(γ + π/6))σX

B0 = − cos(3(γ + π/6))σZ + sin(3(γ + π/6))σX

B1 = cos(γ + π/6)σZ − sin(γ + π/6)σX ,

which is equivalent to the measurement strategy in Eq. (A4).
The remainder of the argument is identical to that in the proof of Theorem 1.
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6. Evaluating the conditional entropy

By Jordan’s lemma, there is no loss in generality if we assume the devices behave according to a convex combination
of two-qubit strategies. As proved in the previous sections, the only two-qubit strategy that can saturate Eq. (A1)
is that in Eq. (A2) (likewise the only two-qubit strategy that can saturate Eq. (A3) is that in Eq. (A4)), up to local
unitaries. Therefore, according to Definition 1, there exists an isometry V from the reference system to the target
two-qubit system. For completeness, we now show that the conditional entropy H(AB|X = 0, Y = 0, E) when the
devices maximally saturate one of the self-testing inequalities is equal to entropy of the target strategy unconditioned
on Eve. We show this for the Iδ-family, and the proof for the Jγ-family is identical.

Theorem 3 (Entropy of self-tested strategies). For any physical system achieving Iδ = IQδ , its conditional entropy
H(AB|X = 0, Y = 0, E)ρABE

evaluated for the post-measurement state ρABE is given by the entropy of the target
strategy unconditioned on E, i.e.,

H(AB|X = 0, Y = 0, E)ρABE
= H(AB|X = 0, Y = 0)ρAB

= H({p(ab|00)}), (A50)

where p(ab|00) is the distribution of the target two qubit strategy.

Proof. The proof comes directly from the fact that the observation Iδ = IQδ implies the post measurement state is
uncorrelated with E, and the density operator ρE can be factored out as a tensor product, i.e. ρABE = ρAB ⊗ ρE .
The post measurement state for measurements X = Y = 0 is proportional to

ρABE =
∑

ab

|a⟩⟨a|A ⊗ |b⟩⟨b|B ⊗ TrQ̃AQ̃B

[

(M̃a|0 ⊗ Ñb|0 ⊗ IE)|Ψ⟩⟨Ψ|Q̃AQ̃BE

]

, (A51)

where M̃a|x, Ñb|y are projectors for the observables Ãx = M̃0|x − M̃1|x, B̃y = Ñ0|y − Ñ1|y. From Theorem 1, the

observation Iδ = IQδ implies the existence of the local isometry V satisfying

V
[

(Ãx ⊗ B̃y ⊗ IE)|Ψ⟩Q̃AQ̃BE

]

= (Ax ⊗By)|ψ⟩QAQB
⊗ |ξ⟩Junk, (A52)

in accordance with Definition 1. Since the isometery acts as identity on E, we can decompose the junk system as
HJunk = HJ ⊗HE . Using the fact that V †V = I, we have the following series of equalities for the partial trace term:

TrQ̃AQ̃B

[

(M̃a|0 ⊗ Ñb|0 ⊗ IE)|Ψ⟩⟨Ψ|Q̃AQ̃BE

]

= TrQ̃AQ̃B

[

V †V (M̃a|0 ⊗ Ñb|0 ⊗ IE)V
†V |Ψ⟩⟨Ψ|V †V

]

= TrQ̃AQ̃B

[

V †
(

(Ma|0 ⊗Nb|0)|ψ⟩⟨ψ| ⊗ |ξ⟩⟨ξ|
)

V
]

= TrQAQBJ

[

(Ma|0 ⊗Nb|0)|ψ⟩⟨ψ| ⊗ |ξ⟩⟨ξ|
]

= p(ab|00)TrJ
[

|ξ⟩⟨ξ|
]

, (A53)

where p(ab|xy) = ⟨ψ|Ma|x ⊗ Nb|y|ψ⟩ is the distribution generated by the target strategy. Consequently, the post-
measurement state takes the form

ρABE =

(

∑

ab

p(ab|00)|a⟩⟨a| ⊗ |b⟩⟨b|
)

⊗ ρE , (A54)

where ρE = TrJ
[

|ξ⟩⟨ξ|JE
]

, and we find

r = inf
ρQAQBE ,

{Ma|x}a,{Nb|y}b

Iδ=I
Q

δ

H(AB|X = 0, Y = 0, E)ρABE
= H(AB|X = 0, Y = 0)ρAB

= H({p(ab|00)}) . (A55)

This concludes the proof.

As a corollary of Theorem 3, r = 2 when the Iδ inequalities are used, since p(ab|00) = pδ(ab|00) = 1/4 for the

self-tested strategies in Eq. (A2). When the Jγ-family of self-tests are used, r = 1 + Hbin

[

1
2 (1 + sin 3γ)

]

, where

Hbin(p) = −p log2 p− (1− p) log2(1− p) is the binary entropy.
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Appendix B: Proof of Proposition 3

In the main text, we made the following proposition regarding the Iδ and Jγ-family of self-tests described in the
previous section:

Proposition 3 (Maximum randomness versus CHSH value). The maximum randomness for strategies achieving a

CHSH value in the range s ∈ (2, 3
√
3/2] is 2 bits, and is generated by the family of strategies in Eq. (A2). For the

range s ∈ [3
√
3/2, 2

√
2], the maximum is given by

1 +Hbin

[1

2
+
s

2
− 3√

2
cos
(1

3
arccos

[

− s

2
√
2

])]

, (B1)

where Hbin[·] is the binary entropy, and is generated by the family of strategies in Eq. (A4).

This statement is trivial for CHSH scores in the range (2, 3
√
3/2] since each member of the Iδ-family generates r = 2,

the global maximum for this scenario. Moreover, the curve provided by the Jγ-family will always be a lower bound on
the true maximum, since these are achievable randomness rates certified by the self-tests detailed in Appendix A 5.
In this section we will prove that the Jγ-family give the maximum global randomness achievable by any strategy with
the corresponding CHSH value.

Let Q denote the set of quantum distributions, and C(P ) denote the CHSH value of a distribution P . Moreover,
let H(AB|X = 0, Y = 0, E)P be the conditional von Neumann entropy of the outputs A,B for inputs X = 0, Y = 0
given observed distribution P , minimized over all quantum strategies that could give rise to P , i.e.,

H(AB|X = 0, Y = 0, E)P := inf
ρQAQBE ,

{Ma|x}a,{Nb|y}b

compatible with P

H(AB|X = 0, Y = 0, E)ρABE
. (B2)

Similarly, let H(AB|X = 0, Y = 0)P be the Shannon entropy of the distribution on A,B for inputs X = 0, Y = 0.

Then the curve R : [3
√
3/2, 2

√
2] → [0, 2], s 7→ R(s) we want to find is defined by the optimization

R(s) = max
P

H(AB|X = 0, Y = 0, E)P

s.t. C(P ) = s,

P ∈ Q. (B3)

Our proof of Proposition 3 proceeds by defining a sequence of upper bounds on Graph[R(s)] = {(s, r) | r = R(s)},
before establishing that the final upper bound is achieved by our Jγ-family of self-tests.

Our first bound follows from strong subadditivity of the von Neumann entropy (that the entropy H(AB|X = 0, Y =
0, E) cannot decrease if E is discarded) and is R(s) ≤ R̄(s), where

R̄(s) = max
P

H(AB|X = 0, Y = 0)P

s.t. C(P ) = s, (B4)

P ∈ Q.

First we prove the following two lemmas:

Lemma 4 (Monotonicity of R̄(s)). The function R̄(s) is strictly decreasing on its domain.

Proof. First note that R̄(3
√
3/2) > R̄(s) ∀s ∈ (3

√
3/2, 2

√
2]. This is because the largest CHSH value achievable when

p(ab|00) = 1/4 is 3
√
3/2, (see Corollary 11). Because it is an entropy, the objective function H(AB|X = 0, Y = 0)P

is concave in P , therefore the optimization (B4) defining R̄(s) is convex. It follows that R̄(s) is concave in s. To see

1 Monotonicity of R̄(s) is not needed to establish Corollary 1.
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this, let λ ∈ [0, 1] and s1, s2 ∈ (3
√
3/2, 2

√
2], then

R̄[λs1 + (1− λ)s2] = max
P

H(AB|X = 0, Y = 0)P

s.t. C(P ) = λs1 + (1− λ)s2,

P ∈ Q,
≥ max

P1,P2

H(AB|X = 0, Y = 0)λP1+(1−λ)P2

s.t. C(P1) = s1, C(P2) = s2,

P1, P2 ∈ Q,
≥ max

P1,P2

λH(AB|X = 0, Y = 0)P1
+ (1− λ)H(AB|X = 0, Y = 0)P2

s.t. C(P1) = s1, C(P2) = s2,

P1, P2 ∈ Q,
= λR̄(s1) + (1− λ)R̄(s2), (B5)

where we used the concavity of the Shannon entropy to obtain the inequality. Since R̄(s) is initially decreasing, and
is a concave function, it must be monotonically decreasing.

Lemma 5 (Inverse function of R̄(s)). Suppose r = R̄(s). The function R̄(s) has the following inverse, denoted R̄−1,
that satisfies s = R̄−1(r), given by

R̄−1(r) = max C(P )
s.t. H(AB|X = 0, Y = 0)P = r,

P ∈ Q. (B6)

Proof. We prove Lemma 5 by showing R̄−1(R̄(s)) = s, and R̄(R̄−1(r)) = r, and using Lemma 4. First consider
R̄−1(R̄(s)) = s,

R̄−1(R̄(s)) = max C(P )
s.t. H(AB|X = 0, Y = 0)P = R̄(s),

P ∈ Q. (B7)

The constraint H(AB|X = 0, Y = 0)P = R̄(s) implies the achievable CHSH values for the distribution P must
lie to the left of s, i.e., C(P ) ≤ s, since the curve R̄(s) is decreasing (cf. Lemma (4)). We therefore have that
R̄−1(R̄(s)) = max{P∈Q s.t. C(P )≤s} C(P ) = s. For the other direction R̄(R̄−1(r)), the same reasoning holds. The

constraint C(P ) = R̄−1(r) implies that H(AB|X = 0, Y = 0)P ≤ r since any distribution that achieves a CHSH value
of R̄−1(r) can generate no more than r bits of randomness. Hence R̄(R̄−1(r)) = r. This completes the proof.

From the above lemma, we can solve for upper bounds on the points (s,R(s)) ∈ Graph[R(s)] using the inverse
function, i.e., (s, R̄(s)) = (R̄−1(r), r) where R̄(s) = r. What remains is to compute R̄−1(r) (or at least an upper
bound, which will correspond to an upper bound on R(s) due to the monotonicity argument). To do so we use the
following two lemmas to formulate the constraints H(AB|X = 0, Y = 0)P = r as linear functions of the distribution
P , defining a new upper bound:

Lemma 6. Let E be the local channel that flips both output bits with probability 1/2, i.e., E : {p(ab|xy)} →
{

1
2p(ab|xy) + 1

2p(āb̄|xy)
}

where ā (b̄) is the bit-wise complement of a (b), i.e., ā = a ⊕ 1. The entropy after ap-

plying E is non-decreasing. Further, the CHSH value is invariant under E.

Proof. The first claim comes from the data processing inequality, that states that the entropy is non-decreasing under
post-processing, i.e., H(AB|X = 0, Y = 0)P ≤ H(AB|X = 0, Y = 0)E(P ). The second claim comes from the fact that
the correlators ⟨AxBy⟩ are invariant under E .

Notice that when Alice applies the post-processing map E to her devices, the probabilities are symmetrized, i.e.,
p(aa|00) = ϵ, p(aā|00) = 1/2 − ϵ, 0 ≤ ϵ ≤ 1/2. In this case, we find H(AB|X = 0, Y = 0)E(P ) = 1 +Hbin(2ϵ). As a
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consequence of Lemma 6, we can define the following upper bound on R̄(s):

R̄(s) ≤ ¯̄R(s) = max H(AB|X = 0, Y = 0)E(P )

s.t. C(E(P )) = s,

P ∈ Q
= max H(AB|X = 0, Y = 0)P

s.t. C(P ) = s,

p(00|00) = p(11|00),
p(01|00) = p(10|00),
P ∈ Q, (B8)

where the second equality comes from the fact that optimizing the entropy over E(P ), P ∈ Q is equal to optimizing
the entropy over symmetrized distributions in Q (following the convexity of Q), and C(E(P )) = C(P ). We can then
define an inverse using Lemma 5, just as was done for R̄(s); we remark that Lemma 5 applies here, since Lemmas 4
and 5 will hold when Q is replaced by any convex subset of Q, e.g., the set of symmetrized quantum distributions.
This inverse is given by

¯̄R−1(r) = max C(P )
s.t. H(AB|X = 0, Y = 0)P = r,

p(00|00) = p(11|00),
p(01|00) = p(10|00),
P ∈ Q. (B9)

Lemma 7. The optimization in Eq. (B9) has the following upper bound:

¯̄R−1(r) ≤ max C(P )
s.t. ⟨A0B0⟩ = 4ϵr − 1,

P ∈ Q, (B10)

where ϵr satisfies r = 1 +Hbin(2ϵr).

Proof. Firstly, consider symmetrized distributions, i.e., p(aa|00) = ϵ, p(aā|00) = 1/2 − ϵ, H(AB|X = 0, Y = 0)P =
1 +Hbin(2ϵ). One can notice that for ϵ ∈ [1/4, 1/2] there is a one to one mapping between H(AB|X = 0, Y = 0)P
and ϵ. Moreover, the range of ϵ we are interested in is given by ϵ ∈ [1/4, (2 +

√
2)/8], since ϵ = 1/4 corresponds to

the δ = π/6 strategy (r = 2), and ϵ = (2 +
√
2)/8 corresponds to the optimal CHSH strategy (r ≈ 1.6). Hence for

every choice of r, there exists a unique ϵr that satisfies r = H(AB|X = 0, Y = 0)P = 1 +Hbin(2ϵr) for r ∈ [2, 1.6...].
We can therefore write the constraint r = H(AB|X = 0, Y = 0)P in terms of linear functions of P :

¯̄R−1(r) = max C(P )
s.t. p(00|00) = ϵr,

p(01|00) = p(10|00) = 1

2
− ϵr,

P ∈ Q, (B11)

where ϵr satisfies r = 1 + Hbin(2ϵr). We can now relax this by considering the two party correlators, ⟨AxBy⟩; we
replace the stronger constraints on the probabilities p(ab|00) with a single weaker constraint on the X = 0, Y = 0
correlator, and arrive at the desired upper bound.

In the next two lemmas, we rewrite the upper bound in Eq. (B10) using an SOS decomposition. Let C = A0B0 +
A0B1 +A1B0 −A1B1 be the CHSH operator, and consider the following optimization:

R̃−1(r) = min
t,z,S

t

s.t. tI− C = S + z
(

A0B0 − (4ϵr − 1)I
)

, (B12)
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where S is an SOS decomposition for the operator expression tI − z
(

A0B0 − (4ϵr − 1)I
)

− C. One can notice that

for any feasible point (t, z, S), and any distribution P that satisfies ⟨A0B0⟩ = 4ϵr − 1, we get an upper bound on the

CHSH value, t ≥ ⟨C⟩ = C(P ). Hence R̃−1(r) gives an upper bound on the CHSH value across all distributions that
satisfy ⟨A0B0⟩ = 4ϵr − 1, i.e., an upper bound on Eq. (B10). An SOS decomposition is given in the following lemma:

Lemma 8. Let R be as defined in (1). The operator expression tI − z
(

A0B0 − (4ϵr − 1)I
)

− C admits the SOS

decomposition

M =







m2 − 1/2 1/2 0 0
1/2 m1 + (z + 1)/2 0 0
0 0 m2 + 1/2 −1/2
0 0 −1/2 m1 − (z + 1)/2






, (B13)

for any m1,m2 satisfying 2(m1 +m2) = t+ z(4ϵr − 1).

This was derived using the symmetry arguments as was done for self-testing, and one can verify for any m1,m2

that satisfy the equality condition R†MR = tI− z
(

A0B0 − (4ϵr − 1)I
)

− C.

Lemma 9. The upper bound in Eq. (B12) is equivalent to the the following optimization problem:

R̃−1(r) = max
µ

√

(2− 4ϵr)2 + (2− 4ϵr)µ+
√

(4ϵr)2 − 4ϵrµ+ µ

4ϵr − 2 ≤ µ ≤ 4ϵr. (B14)

Moreover, the optimal value is given by

R̃−1(r) = 6 cos(2θ)− 4 cos3(2θ), (B15)

for the optimal argument

µ∗ = 4 cos(2θ) sin2(2θ), (B16)

where θ = 1
6 arccos(1− 4ϵr).

Proof. By inserting the SOS decomposition from Lemma 8, we can rewrite the optimization in the following way:

R̃−1(r) = min
t,z,m1,m2

t

s.t.

[

m2 − 1/2 1/2
1/2 m1 + (z + 1)/2

]

⪰ 0,

[

m2 + 1/2 −1/2
−1/2 m1 − (z + 1)/2

]

⪰ 0,

2(m1 +m2) = t+ z(4ϵr − 1)

= min
X1,X2

(2− 4ϵr)Tr[X1] + 4ϵrTr[X2]

s.t. Tr[X1|0⟩⟨1|] = 1/2,

Tr[X2|0⟩⟨1|] = −1/2,

Tr[X1|0⟩⟨0|]− Tr[X2|0⟩⟨0|] = −1,

X1 ⪰ 0, X2 ⪰ 0, (B17)

where {|i⟩} is the standard computational basis. We remark that the particular form of the SOS decomposition

used is not unique, and strictly speaking we therefore find and upper bound on R̃−1(s) when inserting this into the

constraint. For ease of notation we redefine R̃−1(s) above and acknowledge this is an upper bound on Eq. (B12).
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This SDP has the following dual:

max
λ,ν,µ

λ+ ν + µ

s.t.

[

2− 4ϵr −λ
−λ 2− 4ϵr + µ

]

⪰ 0,

[

4ϵr −ν
−ν 4ϵ− µ

]

⪰ 0,

= max
λ,ν,µ

λ+ ν + µ

4ϵr − 2 ≤ µ ≤ 4ϵr,

λ2 ≤ (4ϵr − 2)2 − (4ϵr − 2)µ,

ν2 ≤ 4ϵr(4ϵr − µ),

= max
µ

√

(4ϵr − 2)2 − (4ϵr − 2)µ+
√

(4ϵr)2 − 4ϵrµ+ µ

4ϵr − 2 ≤ µ ≤ 4ϵr, (B18)

where the last equality comes from the fact that the objective is maximized when λ and ν saturate their respective
upper bounds. The first claim then follows from strong duality. To see this, consider the primal problem in Eq. (B17);
the point (t, z,m1,m2) = (4, 0, 1, 1) satisfies 2(m1 +m2) = t+ z(4ϵr − 1), and the eigenvalues of the two matrices are

given by 1± 1/
√
2 > 0. This point is strictly feasible, i.e., Slater’s condition holds.

For the second claim, consider the final optimization (B18) over µ. For algebraic convenience, let us use the
shifted variable m = µ − 4ϵr + 1, with −1 ≤ m ≤ 1. Let f(m) be the objective function in terms of m, i.e.,

f(m) = m+ 4ϵr − 1 +
√

2(1 +m)(1− 2ϵr) + 2
√

ϵr(1−m). Then f ′(m) = 0 gives

1− ϵr
√

ϵr(1−m)
=

1− 2ϵr
√

2(1 +m)(1− 2ϵr
.

After some rearrangement we obtain

(m+ 4ϵr − 1)(4m3 − 3m+ 4ϵr − 1)

1−m2
= 0.

The solutions are hence m = 1 − 4ϵr or m needs to be a solution of the cubic 4m3 − 3m + 4ϵr − 1 = 0. Using the
formula for the roots of a cubic we find the roots to be

mk = cos

(

1

3
arccos(1− 4ϵr)−

2πk

3

)

where k = 0, 1, 2.

Considering the four stationary points and the two endpoints of the range of m we find that the maximum occurs for
m = m∗ = cos

(

1
3 arccos(1− 4ϵr)

)

, which corresponds to µ = µ∗ = m∗ + 4ϵr − 1. If we define θ = 1
6 arccos(1− 4ϵr) so

that m∗ = cos(2θ), 1− 4ϵr = cos(6θ) and 2ϵr = sin2(3θ), we find µ∗ = cos(2θ)− cos(6θ). The maximum value of the
objective function is

f(m∗) = cos(2θ)− cos(6θ) +
√

2 cos2(3θ)(1 + cos(2θ))) +

√

2 sin2(3θ)(1− cos(2θ))

= cos(2θ)− cos(6θ) + 2 cos(θ) cos(3θ) + 2 sin(θ) sin(3θ)

= 3 cos(2θ)− cos(6θ) = 6 cos(2θ)− 4 cos3(2θ) ,

where we have used that for ϵr ∈ [1/4, 1/2], θ ∈ [π/12, π/6] so that cos(θ), sin(θ), cos(3θ) and sin(3θ) are all
positive.

Corollary 1. The maximum CHSH score achievable by any quantum strategy with p(ab|00) = 1/4 for all a and b is

3
√
3/2.

Proof. When ϵr = 1/4, R̃−1(r) = 3
√
3/2, i.e., 3

√
3/2 is an upper bound on the maximum achievable CHSH value

when p(ab|00) = 1/4. We know this upper bound is achievable for the δ = π/6 self-test in Eq. (A1), hence this must
be the true maximum.
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Our final theorem shows the optimality of the constructions.

Theorem 4 (Maximal global randomness versus CHSH value). The maximum global randomness, R(s), for quantum
strategies that achieve a particular CHSH value s is given by

R(s) =

{

2, s ∈ (2, 3
√
3/2]

1 +Hbin

[

1
2 + s

2 − 3√
2
cos
(

1
3 arccos

[

− s

2
√
2

])]

, s ∈ [3
√
3/2, 2

√
2],

(B19)

where Hbin(p) = −p log2 p − (1 − p) log2(1 − p) is the binary entropy. Moreover, the inequalities in Eq. (A1) and
Eq. (A3) self-test the quantum state and measurements that achieve this maximum.

Proof. The case of R(s) = 2 for s ∈ (2, 3
√
3/2] is trivially an upper bound on the maximum, and is shown to be

achievable by the self-tests in Eq. (A1). For the case s ∈ [3
√
3/2, 2

√
2], we use the sequence of upper bounds and

inverse functions defined in this section. Consider the points (s, r) ∈ Graph[R(s)]. We have the following:

(s, r) = (s,R(s))

≤ (s, R̄(s))

≤ (s, ¯̄R(s))

= ( ¯̄R−1(r), r)

≤ (R̃−1(r), r), (B20)

where ≤ denotes component-wise inequality. Hence we can find an upper bound on Graph[R(s)] using Lemma 9, i.e.

s ≤ R̃−1(r) = 6 cos 2θ − 4 cos3 2θ, θ =
1

6
arccos[1− 4ϵr], r = 1 +Hbin(2ϵr). (B21)

We define this upper bound on Graph[R(s)] as

Graph[R̃−1(r)] =
{

(s, r) | s = R̃−1(r)
}

. (B22)

We now show it is achievable. From the self-tests in Eq. (A3), we find a tight lower bound on the conditional von
Neumann entropy parameterized by γ ∈ [0, π/12],

r(γ) = inf
ρQAQBE ,

{Ma|x}a,{Nb|y}b

Compatible with: ⟨Sγ⟩=IQ
γ

H(AB|X = 0, Y = 0, E)ρABE

= H(AB|X = 0, Y = 0)Pγ

= 1 +Hbin

[1

2
(1 + sin 3γ)

]

, (B23)

where Pγ is the distribution generated by Eq. (A4). We find the associated CHSH value is given by

s(γ) = C(Pγ) = sin 3γ + 3 cos
(

γ +
π

6

)

. (B24)

Since this is achievable, we have derived a parametric lower bound on Graph[R(s)] = {(s, r) | r = R(s)}:

GraphΓ =
{

(s(γ), r(γ)) | γ ∈ [0, π/12]
}

. (B25)

Analysing the X = 0, Y = 0 block of Pγ , we find ϵr = 1
4 (1 + sin 3γ). Inverting this, we find γ = 1

3 arcsin[4ϵr − 1], and

inserting into Eq. (B24), we express s in terms of ϵr, and hence r. Calling this function R−1
Γ (r):

R−1
Γ (r) ≡ s(γ) = 4ϵr − 1 + 3 cos

(1

3
arcsin[4ϵr − 1] +

π

6

)

= − cos 6θ + 3 cos 2θ = 6 cos 2θ − 4 cos3 2θ, (B26)

where we used the identities arcsin(x) = − arcsin(−x) and arcsin(x) = π/2− arccos(x). This implies

GraphΓ = Graph[R−1
Γ (r)] =

{

(s, r) | s = R−1
Γ (r)

}

. (B27)
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One can immediately see that R−1
Γ (r) = R̃−1(r), from which it follows Graph[R̃−1(r)] = Graph[R−1

Γ (r)], i.e., the

upper and lower bounds coincide, and Graph[R(s)] = Graph[R̃−1(r)] = Graph[R−1
Γ (r)]. This shows that the family

of inequalities in Eq. (A3) self-test the maximum.

From this, we can derive an explicit expression for R(s), s ∈ [3
√
3/2, 2

√
2]. We begin by changing variables

θ̂ = 2θ = 1
3 arccos[1− 4ϵr]. We wish to express s in terms of θ̂, and hence ϵr, which amounts to solving the cubic

4 cos3 θ̂ − 6 cos θ̂ + s = 0. (B28)

Employing another change of variables, cos θ̂ =
√
2 cosϕ:

4 cos3 ϕ− 3 cosϕ = cos 3ϕ = − s

2
√
2
, (B29)

which has solutions

ϕk =
1

3
arccos

[

− s

2
√
2

]

+
2πk

3
, k = 0, 1, 2. (B30)

Notice for θ ∈ [π/12, π/8], we require
√
2 cosϕ ∈ [

√
3/2, 1/

√
2], which for s ∈ [3

√
3/2, 2

√
2] is only satisfied when

k = 0. We therefore find that cos θ̂ =
√
2 cos

(

1
3 arccos

[

− s

2
√
2

])

. We can now solve for ϵr, setting ϕ ≡ ϕ0:

ϵr =
1

4
(1− cos 3θ̂)

=
1

4
(1− 4 cos3 θ̂ + 3 cos θ̂)

=
1

4

(

1−
√
2(1− 4 cos3 ϕ+ 3 cosϕ− 4 cos3 ϕ)

)

=
1

4

(

1−
√
2 + 2

√
2 sin2

(3ϕ

2

)

− 4
√
2 cos3 ϕ

)

=
1

4

(

1 + s− 3
√
2 cos

[1

3
arccos

(

− s

2
√
2

)])

, (B31)

where for the second equality we used the identity cos 3θ = 4 cos3 θ− 3 cos θ, for third we used 1− 4 cos3 θ+ 3 cos θ =

2 sin2
(

3θ
2

)

, sin2 θ = 1
2 (1 − cos 2θ), and for the final we used the triple angle formula again. The claim then follows

using the fact that R(s) = 1 +Hbin(2ϵr).
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