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Validating the Assumptions of Population
Adjustment: Application of Multilevel
Network Meta-regression to a Network
of Treatments for Plaque Psoriasis

David M. Phillippo , Sofia Dias , A. E. Ades, Mark Belger, Alan Brnabic,

Daniel Saure, Yves Schymura, and Nicky J. Welton

Background. Network meta-analysis (NMA) and indirect comparisons combine aggregate data (AgD) from multiple

studies on treatments of interest but may give biased estimates if study populations differ. Population adjustment

methods such as multilevel network meta-regression (ML-NMR) aim to reduce bias by adjusting for differences in

study populations using individual patient data (IPD) from 1 or more studies under the conditional constancy

assumption. A shared effect modifier assumption may also be necessary for identifiability. This article aims to

demonstrate how the assumptions made by ML-NMR can be assessed in practice to obtain reliable treatment effect

estimates in a target population. Methods. We apply ML-NMR to a network of evidence on treatments for plaque

psoriasis with a mix of IPD and AgD trials reporting ordered categorical outcomes. Relative treatment effects are

estimated for each trial population and for 3 external target populations represented by a registry and 2 cohort stud-

ies. We examine residual heterogeneity and inconsistency and relax the shared effect modifier assumption for each

covariate in turn. Results. Estimated population-average treatment effects were similar across study populations, as

differences in the distributions of effect modifiers were small. Better fit was achieved with ML-NMR than with

NMA, and uncertainty was reduced by explaining within- and between-study variation. We found little evidence that

the conditional constancy or shared effect modifier assumptions were invalid. Conclusions. ML-NMR extends the

NMA framework and addresses issues with previous population adjustment approaches. It coherently synthesizes

evidence from IPD and AgD studies in networks of any size while avoiding aggregation bias and noncollapsibility

bias, allows for key assumptions to be assessed or relaxed, and can produce estimates relevant to a target population

for decision-making.
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Highlights

� Multilevel network meta-regression (ML-NMR) extends the network meta-analysis framework to synthesize

evidence from networks of studies providing individual patient data or aggregate data while adjusting for

differences in effect modifiers between studies (population adjustment). We apply ML-NMR to a network of

treatments for plaque psoriasis with ordered categorical outcomes.
� We demonstrate for the first time how ML-NMR allows key assumptions to be assessed. We check for

violations of conditional constancy of relative effects (such as unobserved effect modifiers) through residual

heterogeneity and inconsistency and the shared effect modifier assumption by relaxing this for each covariate

in turn.
� Crucially for decision making, population-adjusted treatment effects can be produced in any relevant target

population. We produce population-average estimates for 3 external target populations, represented by the

PsoBest registry and the PROSPECT and Chiricozzi 2019 cohort studies.
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Introduction

Health care decision making requires reliable estimates

of relative treatment effects based, ideally, on high-

quality randomized controlled trials (RCTs) comparing

the treatments of interest, in a relevant target population.

However, head-to-head RCTs between all relevant treat-

ments are seldom available. Instead, comparisons are

conducted using standard indirect comparison or net-

work meta-analysis (NMA) methods using published

aggregate data (AgD) from each study.1–4 These methods

assume that any variables that interact with treatment

(effect modifiers) are balanced between study popula-

tions and that the study populations are representative of

the target population of interest, which may not always

be the case. Recently, population adjustment methods

have been proposed that allow this assumption to be

relaxed by adjusting for differences in effect modifiers

using available individual patient data (IPD) from 1 or

more studies.5–14

We use the motivating example of a network of 6 active

treatments plus placebo for moderate-to-severe plaque

psoriasis from a previous systematic review,15 shown in

Figure 1. IPD on outcomes and baseline covariates are

available from 4 studies, and AgD consisting of summary

outcomes and baseline covariate summaries are available

for the remaining 5 studies (Table A.1). Outcomes of inter-

est include success/failure to achieve at least 75%, 90%, or

100% improvement on the Psoriasis Area and Severity

Index (PASI) scale at 12 weeks compared to baseline,

denoted PASI 75, PASI 90, and PASI 100, respectively.

Matching-adjusted indirect comparison (MAIC)8,10

and simulated treatment comparison (STC)9,10 use

reweighting or regression adjustment, respectively, to

adjust the results of an IPD study to the population of an

AgD study and estimate a population-adjusted indirect

comparison. However, these methods were designed

for 2-study indirect comparisons (1 IPD and 1 AgD).

Although extensions to indirect comparisons with more

than 1 IPD or AgD study have been proposed,16 these

methods do not generalize easily to larger networks of

studies and treatments that are frequently encountered in

practice.17 Warren et al.15 previously analyzed this net-

work (Figure 1) using multiple MAIC analyses (following

Belger et al.16), comparing ixekizumab every 2 weeks

against secukinumab 300 mg via either etanercept or pla-

cebo and ustekinumab against secukinumab 300 mg via

etanercept. However, these separate MAIC analyses are

not coherent, in the same way that performing multiple

pairwise meta-analysis does not ensure coherent estimates

unlike those produced from a NMA.18 Furthermore,

these multiple analyses are not independent, as they reuse
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the same data, and none of them use all available data

(Table A.1). Crucially, unless further assumptions are

made, MAIC and STC are limited to producing estimates

for the population of the AgD study, which may not

match the target population for a decision.11,12 The AgD

studies included in each of these analyses also differ,

meaning that each analysis produces results for different

target populations and thus are not directly compatible.

In the wider meta-analysis literature, several authors

have considered combining both the IPD and AgD in

network meta-regression models to support the estima-

tion of effect modifier interactions and increase statistical

power and precision.5–7 However, these methods simply

‘‘plug in’’ mean covariate values for the aggregate studies,

which results in aggregation bias in nonlinear models.19

Approaches that avoid this bias have been developed20

but are applicable only when all covariates are binary.

Multilevel network meta-regression (ML-NMR) has

recently been proposed to address many of the limita-

tions of previous approaches.13,14 ML-NMR works by

defining an individual-level regression model, which is

fitted directly to the individuals in the IPD studies, and

incorporates summary outcomes from the AgD studies

by integrating this individual-level model over the

covariate distribution in each AgD study. As a result,

ML-NMR appropriately synthesizes networks of IPD

and AgD studies of any size, adjusting for differences in

effect modifiers while avoiding aggregation bias and

noncollapsibility bias. Crucially for decision making,

ML-NMR can produce estimates of quantities of interest

in any chosen target population, such as population-

average treatment effects or absolute event probabilities

in the decision target population. Furthermore, given

sufficient data, ML-NMR may allow key assumptions to

be assessed or relaxed.13 ML-NMR is an extension of

the standard NMA framework, reducing to standard

AgD NMA when no covariates are adjusted for and to

full-IPD network meta-regression (the ‘‘gold standard’’

approach) when IPD are available from every study.13

The key assumption made by all population adjust-

ment methods in connected networks is that there are no

unobserved effect modifiers, so that the relative effects

are constant given the effect modifiers adjusted for—the

conditional constancy of relative effects assumption.11,12

In sufficiently large networks, this assumption may be

assessed by checking for residual heterogeneity and

inconsistency.4,13,21 ML-NMR has previously been

applied to a subset of the plaque psoriasis network

Figure 1 Network of studies comparing treatments for moderate-to-severe plaque psoriasis. PBO, placebo; IXE, ixekizumab;

SEC, secukinumab; ETN, etanercept; UST, ustekinumab. IXE and SEC were each investigated with 2 different dosing regimens.

Phillippo et al. 3



consisting of only 4 studies, considering only the PASI

75 outcome.13 However, no tests for heterogeneity or

inconsistency were conducted. Furthermore, a shared

effect modifier assumption11 between ixekizumab and

secukinumab (meaning that the effect modifier interac-

tion parameters were assumed common for these treat-

ments) was required to identify the model. Lastly, while

higher PASI outcomes are more clinically meaningful,

low numbers of observed events for PASI 90 and PASI

100 pose difficulties for estimation in stand-alone analy-

ses of each PASI outcome.

In this article, we demonstrate how the assumptions

made by ML-NMR can be assessed in practice to obtain

reliable treatment effect estimates in a target population.

We jointly analyze the 3 PASI outcomes in an ordered

categorical model, allowing information to be shared

between outcomes and aiding estimation for the higher

PASI outcomes. We show how to assess key assumptions

using ML-NMR, including the conditional constancy of

relative effects and shared effect modifier assumptions,

which are untestable assumptions when using methods such

as MAIC and STC. We produce estimates of population-

average treatment effects and response probabilities for tar-

get populations represented by each of the studies in the

network and for 3 external target populations.

Example: Plaque Psoriasis

A previous systematic review found 9 studies comparing

ixekizumab every 2 weeks or every 4 weeks, secukinu-

mab at 150 mg dose or 300 mg dose, ustekinumab at a

weight-based dose, and etanercept, along with placebo.15

These studies form the network in Figure 1 (summarized

in Table A.1). IPD consisting of individual outcomes

and baseline covariates were available from 4 studies,

and AgD consisting of summary outcomes and baseline

covariate summaries were extracted from published

study reports on the remaining 5 studies (Table A.1).

Table A2 summarizes the baseline covariate distributions

in each of the 9 studies. We jointly analyze the PASI 75,

PASI 90, and PASI 100 outcomes at 12 weeks. We con-

sider adjustments for duration of psoriasis, previous sys-

temic treatment, body surface area covered, weight, and

psoriatic arthritis, which were considered potential effect

modifiers based on expert clinical opinion in previous

analyses.13,22 In a decision-making context such as health

technology assessment, we typically require principled

selection of effect modifiers prior to analysis, either

through expert opinion, systematic review, or quantita-

tive analyses of external evidence.11 Trials are typically

underpowered to detect treatment-covariate interactions,

and so selection based on post hoc criteria such as model

fit, estimated effect size, or uncertainty may result in bias

due to overinterpretation of chance findings or omission

of true effect modifiers. Sensitivity analyses may be per-

formed, for example, to compare the best-fitting model

to the prespecified analysis model.

To be relevant for decision making, estimates must be

produced for a decision target population. Typically, the

decision target population is not best represented by

any of the RCTs in the network; instead, such a target

population may be chosen based on expert clinical

knowledge or may be represented by a suitable registry

or cohort study.11 To illustrate, we produce population-

adjusted estimates for 3 external target populations

(Table A.3).23–26

Methods

Phillippo et al.13 introduced the general ML-NMR

model, which we extend here for ordered categorical out-

comes following the approach taken for AgD NMA.4,27

ML-NMR for Ordered Categorical Outcomes

At the individual level, we have ordered categorical out-

comes: \75% reduction in PASI score, � 75% and

\90% reduction, � 90% and \100% reduction, and

100% reduction. These data are modeled using an

ordered categorical likelihood, with the linear predictor

for individual i in study j receiving treatment k given by

hjk(xijk)=mj + x
T
ijk(b1 +b2, k)+ gk , ð1Þ

which includes study-specific intercepts mj, individual-

level covariates xijk with main effects b1 and treatment-

covariate interactions b2, k (corresponding to prognostic

and effect modifying terms, respectively), and individual-

level treatment effects gk (full details are given in Appen-

dix A.1.1). Consistency is assumed for both the

individual-level treatment effects and the interactions.13

We use the probit link function here for comparability

with previous analyses, but the logit would be another

suitable choice.

At the aggregate level, outcomes are vectors of sum-

mary outcome counts in each category. These summary

data are given an ordered multinomial likelihood, with

average event probabilities in each category obtained by

integrating the individual-level model over the covariate

joint distribution in each arm of each AgD study. We cal-

culate these integrals numerically using quasi–Monte

Carlo integration13 with 1000 integration points. To per-

form this integration, we require the covariate joint
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distributions in each of the AgD studies; however, these

are often not directly available: typically, only marginal

covariate information (e.g., means and standard devia-

tions for continuous covariates, proportions for discrete

covariates) is available from the AgD studies. We discuss

how the covariate joint distributions can be reconstructed

under some additional assumptions in the following

section.

ML-NMR is typically implemented within a Bayesian

framework. In this analysis, we place vague N(0, 102)

prior distributions on each of the model parameters,

except for the latent ordered cutpoints, which are given

improper uniform prior distributions U(� ‘, +‘).

Using Published Marginal Covariate Information

To derive the aggregate-level model for ML-NMR

through integration, the covariate joint distribution in

each study is required. However, this is typically not

available; instead, we have published marginal summary

statistics for each covariate. We therefore reconstruct the

full joint distribution in each AgD study by making

assumptions regarding the forms of the marginal distri-

butions and the correlation structure.13 Simulation stud-

ies have shown that these assumptions, even when

incorrect, may have very little impact on the results in

practice.28

In the plaque psoriasis analysis, marginal distribu-

tions for each covariate in the AgD studies are chosen to

match the reported summary statistics, based on theore-

tical properties and the observed distributions in the IPD

studies: weight and duration are given a Gamma distri-

bution to account for skewness, and body surface area

as a percentage is given a scaled logit-Normal distribu-

tion. Previous systemic treatment and psoriatic arthritis

are binary covariates. The correlation matrix for the cov-

ariates in the AgD studies is set to equal the weighted

average of the correlation matrices in the IPD studies.

Checking Model Assumptions

The key assumption made by all population adjustment

methods in connected networks is that there are no unob-

served effect modifiers, so that the relative effects are

constant given the effect modifiers adjusted for—the con-

ditional constancy of relative effects assumption.11,12

This assumption implies that there is no remaining het-

erogeneity or inconsistency after adjusting for the given

effect modifiers. In pairwise indirect comparisons, this is

an untestable assumption; however, in larger networks, it

is possible to assess this assumption by checking for

residual heterogeneity and inconsistency,13 with tech-

niques from standard AgD NMA.4,21

Assessing residual heterogeneity. We assess residual het-

erogeneity using a random effects (RE) ML-NMR

model, in which the linear predictor hjk(x) in equation

(1) is replaced by

hjk(x)=mj + x
T(b1 +b2, k)+ djk ð2aÞ

djk ;N(gk , t
2) ð2bÞ

cor(dja, djb)= 0:5 ð2cÞ

where dj1 = 0. The study-specific relative effects djk
within each study are multivariate Normal, with 0.5 cor-

relations between non-treatment 1 arms under the

assumption of common heterogeneity variance t2.2 Two-

arm studies against treatment 1 have a single univariate

Normal RE on the non-treatment 1 arm. We place a

weakly informative half-Normal prior distribution

half-N(0, 2:5
2) on the heterogeneity standard deviation

t, which means that there is 95% prior probability that t

lies between 0 and 5; t= 5 corresponds to 95% of true

probit differences varying by 610 between each study.

Evidence of residual heterogeneity is assessed by com-

paring model fit under the fixed (FE) and RE models

using the deviance information criterion (DIC)29 and

examining the posterior distribution of t.

Assessing residual inconsistency. We assess residual

inconsistency using an unrelated mean effects (UME)

ML-NMR model,13,21 where the linear predictor hjk(x)

in equation (1) is replaced by

hjk(x)=m
(tj1)
j + x

T(b1 +b2, k)+ gtj1k
, ð3Þ

where tj1 is the treatment in arm 1 of study j and we set

gkk = 0 for all k. We place independent vague N(0, 102)

prior distributions on each of the gab parameters, which

now represent independent and unrelated treatment con-

trasts (instead of imposing the consistency equations).

Under the UME model, the study baselines m
(tj1)
j are now

with respect to the treatments tj1 in arm 1 of each study,

rather than the network reference treatment 1. An RE

UME model can also be fitted, replacing gtj1k
with djtj1k in

equation (3), which has a multivariate Normal structure

analogous to that in equation (2).13 Evidence of residual

inconsistency is assessed by comparing the overall model

fit under the consistency model and the UME inconsis-

tency model using the DIC and by comparing the

Phillippo et al. 5



residual deviance contributions from each data point

under either model. If RE models are fitted, the heteroge-

neity standard deviation t should also be compared,

because a reduction in estimated heterogeneity under the

inconsistency model can indicate the presence of inconsis-

tency.21 As Donegan et al.30 described, inconsistency can

also be present in the effect modifier interactions b2, k ,

which may be assessed through a similar approach to the

UME model by placing independent prior distributions

on the interactions on each contrast b2, ab. However,

there are insufficient data to assess inconsistency in the

interaction terms in this network.

Assessing the shared effect modifier assumption. Estima-

tion of the effect modifier interaction terms is data inten-

sive, requiring IPD or sufficiently many AgD studies

with different covariate distributions on each treat-

ment.13 In the plaque psoriasis network, we have only 5

AgD studies that include secukinumab arms, which is

not sufficient to simultaneously estimate independent

interactions for every effect-modifying covariate.

Instead, we make the shared effect modifier assump-

tion11,12 for ixekizumab and secukinumab, both of which

act as interleukin-17 blockers, meaning that these treat-

ments share interaction terms and data requirements are

shared across the class of treatments. That is, we set

b2, k =b2, IL�17 for each treatment k in this class. We

assess this assumption directly, one covariate at a time,

by splitting the common class interaction parameter for

the covariate in question into independent treatment-

specific interactions, while maintaining the common class

interaction for the other covariates. Mathematically, for

one covariate l�, in turn we let b2, k;l� be independent for

each treatment k, whereas the remaining covariates l

retain the common class coefficients b2, k;l =b2, IL�17;l for

each treatment k. We then compare the posterior distri-

butions of the interaction estimates from the indepen-

dent interaction model to the corresponding common

interaction estimate from the model making the shared

effect modifier assumption and compare the overall

model fit using the DIC. If residual heterogeneity or

inconsistency are detected, then these may be assessed

again for the independent interaction models to deter-

mine whether an invalid shared effect modifier assump-

tion was contributing to heterogeneity or inconsistency.

Producing Population-Average Estimates

for Populations of Interest

Population-average estimates of quantities of interest to

decision making, such as average treatment effects and

average event probabilities, can be produced by aver-

aging estimates of individual-level quantities over the

covariate joint distribution in the target population (see

details in Appendix A.1.2).13 For decision making based

on cost-effectiveness models, the typical inputs are the

population-average event probabilities for a cohort-

based model (e.g., a decision tree or Markov model) or

individual event probabilities in the population for an

individual-based model (e.g., a discrete event simula-

tion). The target population need not be one of the stud-

ies in the network; indeed, it is more likely that it is best

represented by a registry or cohort study.11

We produce estimates of population-adjusted average

treatment effects in the 3 external target populations rep-

resented by the PsoBest registry23,24 and the PROS-

PECT25 and Chiricozzi 201926 cohort studies. Following

the process described in Appendix A.1.2, we require only

the covariate summaries reported in Table A.3. Chiri-

cozzi 2019 is the most different to the RCT populations,

in patient age, body weight, disease severity, duration,

and body surface area involvement, but there is still sub-

stantial overlap with the RCTs in the network, so extra-

polation is limited. In the absence of available data on

covariate correlations in the external target populations,

we use the weighted average correlation matrix com-

puted from the IPD studies.

We also produce population-adjusted average event

probabilities in the external target populations. In addi-

tion to the covariate summaries, this requires informa-

tion on the response rates on one treatment (active or

placebo) in the target population, to inform the baseline

risk. PASI 75 response counts on secukinumab 300 mg at

12 weeks are available from PROSPECT and Chiricozzi

2019, from which we construct Beta distributions for the

average PASI 75 event probability on secukinumab 300

mg in each target population, Beta(1156, 1509–1165) and

Beta(243, 330–243) respectively, that serve as a reference

against which the remaining population-average event

probabilities on each treatment in each of these external

target populations are produced (following Appendices

A.1.2 and A.1.3). No information on event rates was

available from PsoBest.

Statistical Software

All analyses were carried out in R version 4.0.2,31 using

the package multinma.32 Models are estimated in a Baye-

sian framework using Stan.33

We fit the ML-NMR models described above, and for

comparison, we also fit standard AgD NMAmodels with

no covariate adjustment. For all models, we assess con-

vergence using the potential scale reduction factor bR for

6 Medical Decision Making 00(0)



each parameter ensuring that bR\1:01,34 and we check

that there are no divergent transitions.35 Analysis code

and data (including simulated IPD) are available in the

online supplementary material, and a tutorial-style walk-

through of the analysis is available as a vignette in the

multinma R package.32

Results

ML-NMR Model

Figure 2 and Table A.4 show the estimated population-

average treatment effects for each treatment compared

with placebo in each study population. Since the probit

link function was used, these can be interpreted as stan-

dardized mean differences on the PASI scale. There is lit-

tle variation in the population-average treatment effects

between populations; this is due to the differences in

effect modifier distributions between study populations

(shown in Table A.2) being small when combined with

the estimated strength of the interactions (Table 1).

The estimated proportion of individuals in each study

population achieving each PASI outcome are shown in

Figure 3 and listed in Tables A.5 to A.7.

We carried out sensitivity analyses, removing covari-

ates from the model (backward selection). The best-

fitting model based on the DIC was a model omitting

body surface area (DIC 8810.1, residual deviance

8777.1). The estimated population-average treatment

effects and event probabilities under this model were

very similar to the prespecified analysis model.

Assessing Residual Heterogeneity and Inconsistency

Checking for residual heterogeneity using a RE ML-

NMR model, the estimated heterogeneity standard

deviation is 0.09 (0.01, 0.23), which is small compared

with the relative treatment effects. Model fit statistics

under each model are presented in Table 2. The DIC for

the RE ML-NMR model is very similar to the FE ML-

NMR model (8815.0 and 8814.9, respectively), and we

would choose the more parsimonious FE model based

on the DIC alone. Checking for residual inconsistency

using a UME ML-NMR model (with FE), this has a

DIC of 8817.2, which is also very similar to the FE ML-

NMR model assuming consistency. Plotting the residual

deviance contributions from the consistency and incon-

sistency models (Figure A.1) does not suggest that any

points fit better under either model. We conclude that

there is no evidence for substantial residual heterogeneity

or inconsistency after population adjustment: we have

detected no failures in the assumptions for the FE ML-

NMR model.

Results from fitting the standard AgD NMA models

(Appendix A.4) show little evidence for between-study

Table 1 Estimated Interactions for Each Treatment Class and Potential Effect Modifier, and Estimated Individual-Level

Treatment Effects for an Individual at the Reference/Centering Values of the Covariates (18.2-y Disease Duration, 29.8% Body

Surface Area, 89.3 kg Weight, No Previous Systemic Treatment or Psoriatic Arthritis), Using the ML-NMR modela

Treatment Class

TNF-a Blocker IL-17 Blocker IL-12/23 Blocker

Effect modifier interaction
Duration of psoriasis, per 10 y 0.17 (0.02, 0.32) 0.17 (0.02, 0.30) 0.12 (20.08, 0.33)
Previous systemic use 0.11 (20.27, 0.48) 0.13 (20.21, 0.46) 20.01 (20.69, 0.67)
Body surface area, per 10% 0.04 (20.06, 0.15) 0.01 (20.09, 0.11) 0.05 (20.09, 0.20)
Weight, per 10 kg 20.09 (20.17, 20.02) 20.05 (20.12, 0.02) 20.04 (20.14, 0.07)
Psoriatic arthritis 0.01 (20.42, 0.49) 0.28 (20.12, 0.71) 0.32 (20.33, 1.02)

Reference individual treatment effect
Etanercept 1.61 (1.35, 1.87)
Ixekizumab every 2 wk 2.80 (2.55, 3.06)
Ixekizumab every 4 wk 2.63 (2.38, 2.90)
Secukinumab 150 mg 2.17 (1.91, 2.43)
Secukinumab 300 mg 2.58 (2.33, 2.84)
Ustekinumab 2.21 (1.66, 2.76)

IL, interleukin; ML-NMR, multilevel network meta-regression; TNF, tumor necrosis factor.
aThe shared effect modifier assumption was made for ixekizumab and secukinumab, which are both IL-17 blockers, and so these treatments

share interaction terms. Etanercept and ustekinumab were treated as belonging to separate treatment classes (TNF-a blocker and IL-12/23

blocker, respectively) and given independent interaction terms. All estimates are standardized mean differences versus placebo, with 95% credible

intervals.
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heterogeneity or inconsistency, yet despite this, the ML-

NMR model still has a much lower DIC (Table 2). The

ML-NMR model allows us to explain both between- and

within-study variation, resulting in better fit and reduced

uncertainty in contrast estimates across the study popu-

lations (Table A.4).

Assessing the Shared Effect Modifier Assumption

We assess the shared effect modifier assumption, one

covariate at a time, by splitting the common interaction

parameter for the covariate in question. Figure A.3

compares the posterior distributions of the independent

interactions under each of the split models with the

Figure 2 Estimated population-average treatment effects (standardized mean differences) for each treatment versus placebo in

the populations represented by each study in the network.

Table 2 Model Fit Statistics for Each ML-NMR and NMA Model Considered (FE, RE, and UME)a

ML-NMR NMA

FE RE UME FE RE UME

Residual deviance 8778.3 8773.2 8779.4 8931.4 8925.0 8932.3
pD 36.3 41.8 37.8 16.8 22.4 17.7
DIC 8814.9 8815.0 8817.2 8948.2 8947.5 8950.1
t — 0.09 (0.01, 0.23) — — 0.09 (0.01, 0.24) —

ML-NMR, multilevel network meta-regression; NMA, network meta-analysis; FE, fixed effects; RE, random effects; UME, unrelated mean

effects.
apD is a measure of the effective number of parameters. Residual deviance on 12,384 data points. Estimates and 95% credible intervals for the

heterogeneity standard deviation t are also presented for the RE models.
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Figure 3 Estimated percentage of individuals achieving each Psoriasis Area and Severity Index (PASI) endpoint on each

treatment, in the populations represented by each study in the network. For interpretability, these are given as inclusive

probabilities (e.g., the probability of achieving 75% reduction or greater in PASI score). The observed event proportions are

calculated from the event counts and sample sizes in each arm.
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corresponding common interaction from the model mak-

ing the shared effect modifier assumption for all covari-

ates. In general, the independent interaction estimates

are very similar to the common interaction estimates.

The only exception is for weight, for which there is some

suggestion that this covariate may interact differently

with the secukinumab treatment regimens as compared

with the ixekizumab regimens. However, the credible

intervals for the secukinumab interactions are wide and

overlap those for the ixekizumab regimens and the com-

mon interaction. In general, all of the independent inter-

action estimates are much more uncertain for the

secukinumab regimens than for the ixekizumab regi-

mens, as the secukinumab parameters are based solely

on AgD, and the ixekizumab data largely drive the inter-

action estimates in the common interaction model. The

DIC values (Table A.10) are higher for each of the inde-

pendent interaction models than for the common inter-

action model, except for the independent weight

interaction model, for which the DIC values are nearly

identical. Overall, there is some weak evidence that the

shared effect modifier assumption (for the class of

interleukin-17 blockers) may be invalid for weight; we

consider this further in the discussion. Results from the

ML-NMR model with independent weight interactions

are given in Appendix A.5 and are very similar to those

for the model making the shared effect modifier assump-

tion for all covariates.

Producing Population-Average Estimates for

External Target Populations of Interest

Estimated population-adjusted average treatment

effects in the 3 external target populations are shown in

Figure 4 and Table A.8. These are similar between the

external target populations and the RCTs in the network,

again because the differences in effect modifier distribu-

tions (Tables A.2 and A.3) are small when combined with

the estimated strength of the interactions (Table 1). How-

ever, the estimated population-average probabilities of

achieving each PASI outcome in the external target

populations (Figure 5; Table A.9) are lower than in the

RCTs in the network, since the observed proportions

achieving PASI 75 on secukinumab 300 mg are lower in

the external target populations.

Discussion

In this article, we have demonstrated an application of

ML-NMR to synthesize PASI 75, 90, and 100 ordered

categorical outcomes while adjusting for variables con-

sidered to be potential effect modifiers, from a network

containing a mixture of IPD and AgD studies. The ML-

NMR analysis presented here also addresses several

issues with previous MAIC analyses of this network.15

In particular, ML-NMR makes full use of all available

data in one coherent analysis that appropriately quan-

tifies uncertainty (data are not reused), and estimated

average treatment effects and average response prob-

abilities for each PASI outcome can be produced in

any of the included study populations or in an external

target population, whichever is most relevant for deci-

sion making. Moreover, this analysis produces more

precise estimates than the previous MAIC analyses,

and the 95% credible interval for the ixekizumab every

2 weeks versus the secukinumab 300 mg relative effect

(the focal comparison of the MAIC analyses) lies fur-

ther from the null.

Figure 4 Estimated population-average treatment effects (standardized mean differences) for each treatment versus placebo in

each external target population.
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The synthesis of the 3 PASI outcomes does require

additional assumptions. These are not central to the

ML-NMR analyses presented here and are described

elsewhere.4

All population-adjustment methods, including ML-

NMR, assume that all effect modifiers have been suita-

bly adjusted for so that the conditional constancy of

relative effects assumption holds.11 For pairwise indirect

comparisons, including MAIC and STC, this is an

untestable assumption. However, in larger networks,

failures of conditional constancy of relative effects may

manifest as residual heterogeneity or inconsistency,

which can be assessed using standard techniques from

AgD NMA. In this analysis, we used an RE model and a

UME model to check for residual heterogeneity and

inconsistency, respectively, and concluded that there was

no evidence of residual heterogeneity or inconsistency.

However, just as in standard AgD NMA, these tech-

niques may have low power, and the detection of any

unobserved effect modifiers relies on these being distrib-

uted differently at the aggregate level between studies.

Moreover, these methods are fundamentally ‘‘in-sample’’

checks for heterogeneity and inconsistency—there may

well be other omitted or unobserved effect modifiers that

differ between the studies in the network and an external

target population. In a decision-making context, this

possibility should be considered when appraising the

representativeness of the studies to the decision target

population. Although we assessed inconsistency using

the UME model, other inconsistency models such as

node-splitting13,21 or design-by-treatment interactions36

may also be implemented within the ML-NMR frame-

work. Currently, the multinma R package implements

both UME and node-splitting models for assessing

inconsistency.32

In this analysis, we relied on the shared effect modifier

assumption within the class of interleukin-17 blockers to

support the estimation of effect modifier interaction

terms. We assessed this assumption, one covariate at a

time, by fitting independent interactions for the covariate

in question. Exchangeable interactions within each treat-

ment class could also be considered13; however, this was

not possible given the data available. Relaxing the shared

effect modifier assumption for multiple covariates at

once is also a possibility, if sufficient data are available.

However, for the purposes of checking this assumption,

relaxing one covariate at a time should be sufficient to

highlight any violations. There was some weak evidence

that the shared effect modifier assumption might not be

valid for weight, as there were some differences between

the independent interaction estimates and the common

interaction estimate. However, there was high uncer-

tainty in the independent interaction estimates for the

secukinumab regimens, as these were estimated entirely

Figure 5 Estimated percentage of individuals achieving each Psoriasis Area and Severity Index (PASI) endpoint on each

treatment, in each external target population with information on response rates. For interpretability, these are given as inclusive

probabilities (e.g., the probability of achieving 75% reduction or greater in PASI score).
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from the 5 AgD studies, and model fit was unchanged. It

is likely that this approach to assessing the shared effect

modifier assumption has low power, particularly when

data are lacking. There is also the possibility that these

are chance findings due to fitting multiple models. Never-

theless, the analyses that we propose allow the validity

and impact of this assumption to be investigated, even

with these caveats, which was not previously possible. In

general, differences in estimated interactions may be due

to genuinely different interaction effects invalidating the

shared effect modifier assumption or due to an imbalance

in unobserved effect modifiers across the studies that are

correlated with weight. The latter leads to study-level

confounding introducing bias into the interaction esti-

mates (‘‘ecological’’ bias)37 and is the reason why meta-

analytic studies of effect modification typically split inter-

action estimates into between-study interaction terms

(which are susceptible to study-level confounding) and

within-study interaction terms (which are then expected

to be unbiased).38,39 However, for the purposes of popu-

lation adjustment, we do not fit a split interaction model,

since we must assume that there are no unobserved effect

modifiers in order to produce population-adjusted esti-

mates for a target population of interest. Nevertheless, it

is possible to fit ML-NMR models where the interaction

terms are split in this manner (given sufficient data), and

this is an interesting avenue for further research.

When it is used, the shared effect modifier assumption

is likely in many cases to be the most challenging to

assess, since it is typically used to identify the model

when data are insufficient. However, even in cases in

which the shared effect modifier assumption is untest-

able, ML-NMR still retains other notable benefits over

MAIC and STC.13,28 In particular, unlike MAIC, ML-

NMR does not require full overlap between populations

for stable estimation and remains unbiased under the

usual extrapolation assumptions. Unlike STC, ML-

NMR appropriately handles noncollapsible effect mea-

sures and does not combine incompatible (marginal and

conditional) estimates. Moreover, the assumptions

required by ML-NMR are still weaker than those for a

standard NMA and indirect comparison, even when they

are untestable. In an indirect comparison where the

shared effect modifier assumption does not hold, the esti-

mates from ML-NMR will be unbiased and applicable

only within the AgD study population, as is the case with

MAIC and STC. Small networks with multiple treatment

classes and limited IPD are problematic for all current

population adjustment methods, as there is likely to be

insufficient information to combine the estimates in a

coherent manner. In this analysis, even with a relatively

small network (9 studies), we had sufficient data to relax

and assess the key assumptions, checking for residual

heterogeneity and inconsistency and assessing the shared

effect modifier assumption.

When fitting network meta-regression models, as well

as assuming consistency of the relative treatment effects,

there is a similar assumption of consistency on the effect

modifier interactions. Donegan et al.30 describe methods

for assessing potential inconsistency in the effect modifier

interactions, analogous to the node-splitting approach21

for assessing inconsistency in treatment effects (described

for ML-NMR models by Phillippo14). However, this net-

work has only 1 potential loop where inconsistency could

be present (via ustekinumab) since all other comparisons

are made in multiarm trials, and within this loop, the

data are insufficient to relax consistency and estimate

unrelated interactions.

For the purposes of decision making when effect mod-

ification is present, it is crucial that population-adjusted

estimates are produced that are specific to the decision

target population, whichever population-adjustment

method is used.11 Ideally, the decision target population

is represented by a suitable registry or cohort study11; we

have produced estimates relevant to the populations rep-

resented by registries and a cohort study. Each of these

external target populations lay within the range of cov-

ariate values in the RCTs; when this is not the case, the

validity of extrapolation should be considered. General

guidance on when and how to use population-adjustment

methods in a health technology assessment context is

available.11

When decisions are based on cost-effectiveness, the

relevant inputs to the economic model are (for a binary

or categorical outcome) typically estimated event prob-

abilities on each treatment in the target population. This

requires information on the event probability on one

treatment in the target population, in addition to the

covariate distribution. If this information is not avail-

able, expert opinion or event probabilities from a similar

population may be used.

When noncollapsible effect measures are used, for

example, odds ratios, hazard ratios, or the probit scale

used here, ML-NMR typically targets a different

population-average treatment effect estimand to MAIC

(and indeed to standard AgD NMA based on event

counts). The population-average treatment effects typi-

cally produced by ML-NMR target a population-

average conditional estimand, the same as that targeted

by an RCT in the target population using an analysis

adjusting for baseline prognostic factors. On the other

hand, MAIC (and NMA of event counts) targets a

(population-average) marginal estimand, the same as

that targeted by an RCT in the target population using

12 Medical Decision Making 00(0)



an analysis without adjustment for baseline prognostic

factors (or better from an adjusted analysis that has been

marginalized over the covariates40). ML-NMR can also

produce estimates of these marginal treatment effects, as

we describe in Appendix A.1.2. Importantly, the mar-

ginal and conditional estimands have different inter-

pretations when the effect measure is noncollapsible

and correspond to different decision questions. The

population-average conditional treatment effect is the

average effect between randomly selected treated and

untreated individuals with the same covariates averaged

over the distribution of covariates in the population,41

and it answers the decision question, ‘‘Which treatment

has the greatest effect, on average, in this population?’’

The marginal population-average treatment effect is the

average effect between randomly selected treated and

untreated individuals in the population, regardless of

their covariates41 and answers the decision question,

‘‘Which treatment minimizes (or maximizes) the average

event probability in this population?’’ In the absence of

effect modification, these decision questions are aligned

and always result in the same ranking of treatments, but

this is not necessarily the case when effect modification is

present, because then different treatments may be more

effective for different individuals or subgroups within the

population. Moreover, the population-average condi-

tional treatment effects depend only on the distribution

of effect-modifying covariates, whereas the marginal

treatment effects depend on the distributions of baseline

risk, prognostic and effect-modifying covariates, and

PASI cutpoint. It is widely understood that when there is

patient heterogeneity (including effect modification),

health economic analyses need to appropriately handle

this by averaging net benefit over the population,42 for

example, by discrete event simulation.43,44 ML-NMR

can produce estimates of both the conditional and mar-

ginal estimands and necessary quantities for decision

models such as average event probabilities or subgroup/

individual event probabilities (see Appendix A.1.2).

ML-NMR extends the standard NMA framework to

incorporate IPD and AgD studies in networks of any

size, adjusting for differences in effect modifiers between

studies. It reduces to the gold standard IPD network

meta-regression when IPD are available from every study

and reduces to standard AgD NMA when no covariates

are adjusted for.13 Moreover, we have demonstrated how

techniques from the NMA literature can be used to

assess the underlying assumptions of ML-NMR models.

ML-NMR also addresses issues with previous methods

such as MAIC, STC, and ‘‘plug-in’’ meta-regression,

since it synthesizes networks of any size while avoiding

aggregation bias and noncollapsibility bias and can

produce estimates of quantities of interest in any chosen

target population. The R package multinma facilitates

the application of ML-NMR models, making these

methods available to a wider range of users.32
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