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Abstract

The affine Gaudin model, associated with an untwisted affine Kac–Moody algebra,
is known to arise from a certain gauge fixing of 4-dimensional mixed topological–
holomorphic Chern–Simons theory in the Hamiltonian framework. We show that the
finite Gaudin model, associated with a finite-dimensional semisimple Lie algebra, or
more generally the tamely ramified Hitchin system on an arbitrary Riemann surface,
can likewise be obtained from a similar gauge fixing of 3-dimensional mixed BF theory
in the Hamiltonian framework.

Keywords Gauge theory · 3d BF theory · Integrable systems · Gaudin model ·

Hitchin system · Dirac constraints formalism
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1 Introduction

The Heisenberg spin chain can be obtained from 4-dimensional mixed topological–
holomorphic Chern–Simons theory on R

2 × C by introducing certain line defects
along the topological plane R

2 for each site of the spin chain [12, 13, 15, 16]. This
elegant description of the Heisenberg spin chain is ultimately possible because the
integrable structure of the latter is underpinned by the quantum Yang–Baxter equation
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R12(z1, z2)R13(z1, z3)R23(z2, z3)

= R23(z2, z3)R13(z1, z3)R12(z1, z2)

z2 z3z1

=

z2 z3z1

which is neatly encoded in the fact that the 4-dimensional Chern–Simons theory is
topological in the R

2 direction. By contrast, the integrability of the (classical and quan-
tum) Gaudin model [38, 39], or more generally the Hitchin system [43], is underpinned
by the classical Yang–Baxter equation

[r12(z1, z2), r13(z1, z3)] = [r23(z2, z3), r12(z1, z2)] − [r32(z3, z2), r13(z1, z3)],

(1)
whose topological origin is less clear.

On the other hand, affine Gaudin models, whose integrability is also underpinned
by the classical Yang–Baxter equation (1), see [64], can be obtained [65] from the
same 4-dimensional mixed topological–holomorphic Chern–Simons theory [17] on
R

2 × CP1, this time by introducing surface defects along R
2 placed at the marked

points zi ∈ C of the affine Gaudin model. A natural question is therefore whether the
ordinary Gaudin model, associated with a finite-dimensional semisimple Lie algebra
g rather than an affine Kac–Moody algebra, can also be described in a similar way.

The purpose of this paper is to show that the tamely ramified Hitchin system on a
Riemann surface C , in which the Higgs field has simple poles at certain marked points
on C , can be described using a collection of various line defects in 3-dimensional
mixed (topological–holomorphic) BF theory on R × C . In particular, the Gaudin
model is obtained as the special case when C = CP1. More precisely, we perform a
Hamiltonian analysis of the 3d mixed BF theory, whose fields are a partial connection
1-form A and a (1, 0)-form B, with suitably chosen line defects. Using the condition
Az̄ = 0 to fix the gauge invariance, we find that the dynamics on the reduced phase
space coincides with that of the tamely ramified Hitchin system. In particular, the
(1, 0)-form B becomes meromorphic and gets identified with the Higgs field. This is
completely analogous to the relationship found in [65] between 4d mixed topological–
holomorphic Chern–Simons theory on � × CP1, with the cylinder � = R × S1 , and
the affine Gaudin model. In other words, our analysis shows that 3d mixed BF theory
is to the Gaudin model what 4d Chern–Simons theory is to the affine Gaudin model.

The plan of the paper is as follows.
In Sect. 2, we recall the definition of 3-dimensional mixed topological–holomorphic

BF theory on R×C for some Riemann surface C , depending on a g-valued (1, 0)-form
B and a g-valued connection 1-form A. In Sect. 2.3, we introduce two types of line
defects, which we refer to as type A and B, respectively. Type A defects ensure that
in the gauge Az̄ = 0 the field B is meromorphic on-shell, with poles at the location of
the defects. This field then gets identified with the Lax matrix L of the Gaudin model,
or the Higgs field � of the tamely ramified Hitchin system. Adding the type B defect
ensures that (the negative of) the time component of the connection 1-form A gets
correctly identified with the matrix M in the Lax equation ∂t L = [M, L]. We also
derive the 1d action for the Gaudin model along the lines of [11, 20].
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In Sect. 3, we perform a Hamiltonian analysis of 3-dimensional mixed topological–
holomorphic BF theory with the two types of defects introduced in Sect. 2.3. There is
a first class constraint μ̂ generating the gauge symmetry of the theory. In the absence
of type A defects, μ̂ coincides with the moment map μ = ∂̄A� of the Hitchin system,
after identifying the Higgs field � with the (1, 0)-form B of the 3-dimensional mixed
topological–holomorphic BF theory. Upon imposing the condition Az̄ = 0 to fix the
gauge symmetry generated by μ̂, the component Bz of the (1, 0)-form B becomes
meromorphic with poles at the location zi of the type A line defects and is shown to
satisfy the Lax algebra with respect to the Dirac bracket. Moreover, the Hamiltonian
on the reduced phase space coincides with that of the Hitchin system.

We end the paper with a brief discussion of possible future directions in Sect. 4.

2 3dmixed BF theory on R × C

Let G be a semisimple Lie group over C, with Lie algebra g and fix a non-degenerate
invariant symmetric bilinear form 〈·, ·〉 : g×g → C on g. Let C be a Riemann surface.

We shall consider the 3-dimensional classical mixed topological–holomorphic BF
theory on R × C , or 3d mixed BF theory for short—see e.g. [40, 41, 54] where the
theory is discussed using the BV formalism. The field content of this theory consists
of a g-valued (1, 0)-form B on R × C , where the bigrading (p, q) corresponds to
the one induced by the complex structure on C , together with a g-valued connection
1-form A on R × C . We denote the curvature of the latter as F(A) = dA + 1

2 [A, A].
The action of 3d mixed BF theory is then given by

S3d[A, B] =
1

2π i

∫

R×C

〈B, F(A)〉. (2)

2.1 Gauge invariance

The 3d mixed BF action (2) is trivially invariant under gauge transformations of the
form A → A +χ for any g-valued (1, 0)-form χ on R× C . Indeed, χ drops out from
the action since B is a (1, 0)-form. We can fix this invariance by requiring that A has
no (1, 0)-component so that it locally takes the form A = Az̄dz̄ + At dt for some local
coordinate t on R and a local holomorphic coordinate z on C . From now on, we will
always take A to be a partial connection of this form.

More interestingly, the action (2) is invariant under the action of any G-valued
function g on R×C acting by gauge transformations on the connection 1-form A and
by conjugation on the field B, namely

A �−→ g A := −∂̄gg−1 − dRgg−1 + g Ag−1, (3a)

B �−→ gBg−1, (3b)

where ∂̄ is the Dolbeault differential on C , i.e. the (0, 1)-component of the de Rham
differential dC = ∂ + ∂̄ on C , and dR denotes the de Rham differential on R. Indeed,
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under such a transformation the curvature 2-form F(A) transforms by conjugation
F(g A) = gF(A)g−1 and so the invariance of the action follows from the adjoint
G-invariance of the bilinear form 〈·, ·〉.

2.2 Equations of motion

To derive the equations of motion, we consider the variations B → B + ǫ and A →

A + η by an arbitrary (1, 0)-form ǫ and 1-form η on R × C . Varying the action, we
find

δS3d[A, B] := S3d[A + η, B + ǫ] − S3d[A, B]

=
1

2π i

∫

R×C

(
〈ǫ, F(A)〉 + 〈B, dη + 1

2 [A, η] + 1
2 [η, A]〉 + O(η2)

)

=
1

2π i

∫

R×C

(
〈ǫ, F(A)〉 + 〈B, dη + [A, η]〉 + O(η2)

)

=
1

2π i

∫

R×C

(
〈ǫ, F(A)〉 + 〈dB + [B, A], η〉 + O(η2)

)
,

where in the third equality we have used the fact that A and η are both g-valued 1-
forms, so that [η, A] = [A, η]. In the last equality, we used Stokes’s theorem, noting
that 〈B, dη〉 = 〈dB, η〉 − d〈B, η〉, and the adjoint invariance of the bilinear form.

The equation of motion for B is therefore F(A) = 0, or explicitly

∂̄ A + dR A + 1
2 [A, A] = 0, (4a)

while the equation of motion for A reads

∂̄ B + dR B + [B, A] = 0. (4b)

Letting z be a local holomorphic coordinate on C and t a global coordinate on R, and
writing the two fields in components as B = Bzdz and A = Az̄dz̄ + At dt , we can
write the equations of motion (4) more explicitly in components as

∂z̄ At − ∂t Az̄ = [At , Az̄], (5a)

∂z̄ Bz = [Bz, Az̄], (5b)

∂t Bz = [−At , Bz]. (5c)

The first key observation to make here is that the equation of motion (5c) is very
reminiscent of the Lax equation

∂t L = [M, L]. (6)

However, to make this superficial resemblance more precise we would need Bz and
−At to both be holomorphic (or more generally meromorphic) in order to identify
them with the Lax pair L and M of an integrable system.
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The second observation, based on the other two equations of motion (5a) and (5b),
is that this can be achieved by working in the gauge where Az̄ = 0. Indeed, in this
gauge the two equations (5a) and (5b) reduce to ∂z̄ At = 0 and ∂z̄ Bz = 0, respectively,
which express the fact that At and Bz are both holomorphic on C .

2.3 Introducing line defects

In the Lax equation (6) of an integrable system, however, L and M are more generally
g-valued meromorphic functions with poles at certain marked points. This is, in fact,
necessary if C has genus zero, i.e. when C = CP1. Moreover, as it stands there is
no relation between Bz and −At in (5c), while in (6) the matrix M is typically built
out of the Lax matrix L . We can fix both of these issues by introducing two different
types of line defects in the action (2). We will refer to these as type A and type B line
defects, since these will depend on the fields A and B, respectively.

2.3.1 Type A line defects

A particularly important class of integrable systems is given by the Gaudin model
[38, 39], whose Lax pair is formed of two g-valued meromorphic functions L and M

on CP1 with L having poles at certain marked points zi ∈ C for i = 1, . . . , N . In
order to view Bz and −At as such a Lax pair, but working on a more general Riemann
surface C , we would like them to be meromorphic instead of holomorphic, with Bz

having poles at certain marked points zi ∈ C . To this end, we pick and fix elements
ui ∈ g and introduce G-valued fields hi on R for i = 1, . . . , N . Following [17], see
also [11], we add to the action (2) the following sum of line defects

SA−def
[
A, {hi }

N
i=1

]
= −

N∑

i=1

∫

R×{zi }

〈
ui , h−1

i (dR + ι∗zi
A)hi

〉
(7)

where ιzi
: R × {zi } →֒ R × C is the embedding of the line defect at zi into the total

space. In particular, the pullback ι∗zi
A is just the evaluation of the component At dt at

the point zi ∈ C so that we can rewrite the defect action (7) more explicitly as

SA−def
[
A, {hi }

N
i=1

]
= −

N∑

i=1

∫

R

〈
ui , h−1

i

(
∂t + At (zi )

)
hi

〉
dt .

In order to maintain the gauge invariance of the action (2) after adding (7) to it, we
should require that the latter is itself gauge invariant. This can easily be achieved by
supplementing the gauge transformations (3) of the fields A and B by the transforma-
tion

hi �−→ ghi (8)

for the G-valued fields hi , i = 1, . . . , N .
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Consider now the extended action

S̃
[
A, B, {hi }

N
i=1

]
:= S3d[A, B] + SA−def

[
A, {hi }

N
i=1

]
. (9)

Since the defect action (7) does not depend on B, the equations of motion (4a) for B are
unchanged. On the other hand, the equation of motion (5b) for A in a local holomorphic
coordinate z on an open neighbourhood U of the point zi is now replaced by

∂z̄ Bz = [Bz, Az̄] − 2π i ûiδzzi
, (10)

where we introduced ûi := hi ui h
−1
i for each i = 1, . . . , N and δzzi

denotes the Dirac
δ-distribution at the marked point zi with the property that

∫

U

f (z)δzzi
dz ∧ dz̄ = f (zi ) (11)

for any function f : U → C on the neighbourhood U ⊂ C of zi equipped with the
local holomorphic coordinate z.

In the gauge Az̄ = 0, the modified equation of motion (10) reads

∂z̄ Bz = −2π i ûiδzzi
. (12)

Using the fact that ∂z̄(z − zi )
−1 = −2π iδzzi

we may rewrite this equation as

∂z̄

(
Bz −

ûi

z − zi

)
= 0

which tells us that Bz has a simple pole at zi with residue ûi there, i.e.

B =
ûi

z − zi

dz + O(1) (13)

where O(1) denotes terms which are holomorphic at the point zi .
When C = CP1, corresponding to the Gaudin model, if we fix a global coordinate

z on C ⊂ CP1 and require B to have a simple pole also at infinity, then we can
explicitly write B as the g-valued meromorphic (1, 0)-form

B =

N∑

i=1

ûi

z − zi

dz. (14)

By varying the action (9) with respect to hi → eǫi hi for some g-valued function ǫi

on R, we find N further equations of motion

∂t ûi = [−At (zi ), ûi ] (15)
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for i = 1, . . . , N . But given the meromorphic behaviour (13) of the (1, 0)-form B at
each of the marked points zi , these are merely consequences of the equation of motion
(5c) given by taking the residue at each zi , assuming that At is regular at zi , as will
be the case in Sect. 2.3.2.

2.3.2 Type B line defects

The type A line defects introduced in Sect. 2.3.1 ensured that Bz is no longer holomor-
phic in the gauge Az̄ = 0 but rather meromorphic with poles at certain marked points
zi ∈ C . The type B line defects will have a similar effect on the field At . However,
since −At is meant to play the role of M in the Lax pair (6), we want it to be built out
of Bz , which plays the role of the Lax matrix L .

Let P : g → C be a G-invariant polynomial on g and fix a point w ∈ C distinct
from the marked points zi ∈ C for i = 1, . . . , N at which the type A line defects are
inserted in Sect. 2.3.1. We consider the following line defect

SB−def [B] = −

∫

R×{w}

P(Bz)dt = −

∫

R

P
(
Bz(w)

)
dt (16)

where z is a local holomorphic coordinate around the point w ∈ C and, writing
B = Bzdz in this coordinate, Bz(w) denotes the evaluation of Bz at the point w.

The G-invariance of the polynomial P ensures that the action (16) is gauge invariant.
Therefore, adding it to the gauge invariant action (9) obtained so far, we obtain the
full gauge invariant action

S
[
A, B, {hi }

N
i=1

]
:= S3d[A, B] + SA−def

[
A, {hi }

N
i=1

]
+ SB−def [B]. (17)

Since the defect term (16) only depends on B, it will not modify the equations
of motion for A. Only the equation of motion for B, namely (5a) which has so far
remained unchanged, will be modified. To derive it, we note that the variation of
the defect action (16), under the variation B → B + ǫ considered in Sect. 2.2 with
ǫ = ǫzdz in the local holomorphic coordinate z, reads

δSB−def [B] := SB−def [B + ǫ] − SB−def [B]

= −

∫

R

(
P

(
Bz(w) + ǫz(w)

)
− P

(
Bz(w)

))
dt

= −

∫

R

(〈
P ′(Bz(w)), ǫz(w)

〉
+ O

(
ǫz(w)2))dt

where in the third line we introduced the element P ′(Bz(w)) ∈ g such that the linear
map 〈P ′(Bz(w)), ·〉 : g → C is the derivative of P : g → C at Bz(w) and kept only
the terms linear in ǫz(w). It follows that (5a) is now replaced by

∂z̄ At − ∂t Az̄ = [At , Az̄] + 2π i P ′
(
Bz(w)

)
δzw. (18)
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In the gauge Az̄ = 0, this simplifies to

∂z̄ At = 2π i P ′
(
Bz(w)

)
δzw (19)

or in other words,

∂z̄

(
At +

P ′
(
Bz(w)

)

z − w

)
= 0.

In the case C = CP1, this tells us that the expression in brackets is a constant.
Taking this constant to be zero, we therefore obtain

− At (z) =
P ′

(
Bz(w)

)

z − w
, (20)

which coincides with the usual expression for M = −At in terms of L = Bz , see, for
instance, [3, (3.33)] in the case when g = glr and the polynomial P : glr → C is given
by X �→ tr(Xn) for some n ∈ Z≥1. Indeed, in this case we have P ′(X) = nXn−1 for
any X ∈ glr so that (20) becomes

− At (z) = n
Bz(w)n−1

z − w
. (21)

In connection with the Hamiltonian analysis to be performed in Sect. 3, where the
classical r -matrix r12(z, w) =

C12

w−z
will be introduced in (45), note that we can

rewrite (21) in the more recognisable form

−At (z) = −n tr2
(
r12(z, w)Bz(w)n−1

2

)
.

Substituting the expression (20) for At into the equation of motion (5c), we obtain
the desired Lax equation

∂t Bz(z) =

[
P ′

(
Bz(w)

)

z − w
, Bz(z)

]
, (22)

where we have explicitly written the dependence of Bz on the spectral parameters. We
thus expect from the general theory of integrable systems, see, for instance, Proposition
[3, p. 47], that the time coordinate t along the topological direction of the 3-dimensional
space R × C is identified, through the introduction of the type B defect (16), with the
time induced by the Hamiltonian

H P
w := P(Bz(w)). (23)

To confirm this, we will move to the Hamiltonian formalism in Sect. 3.
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2.4 Unifying 1-dimensional action

We have now shown that the gauge fixed equations of motion for 3d mixed BF theory
in the presence of type A and B defects correspond exactly to the Lax equation (22)
of the Gaudin model with Lax matrix L(z) = Bz(z) given by (14), where the residues
ûi = hi ui h

−1
i are coadjoint orbits through the fixed elements ui ∈ g and parametrised

by the dynamical G-valued variables hi ∈ G.
At this stage, it is therefore natural to proceed along the lines of [20], where a

unifying 2d action for integrable field theories of affine Gaudin type was derived from
the 4d Chern–Simons action of [17]. In a similar spirit, in the present context we would
like to obtain a 1d action for the Gaudin model with Lax matrix (14) starting from
the 3d mixed BF theory with both type A and type B defects. In fact, the procedure
followed in [11] is closer in spirit to the present case since we do not have to deal with
the presence of a meromorphic 1-form ω having zeroes, as in the 4d Chern–Simons
action considered in [20].

Following [11, §2.6], we will therefore substitute the solutions to the equations of
motion (10) and (18) (but crucially not (5c)) in the gauge Az̄ = 0, namely (14) and
(20), respectively, into the full action (17). We will do this for the three pieces in the
action separately. For the bulk action (2) we find

S3d[A, B] =
1

2π i

∫

R×C

〈Bz, ∂z̄ At − ∂t Az̄ − [At , Az̄]〉dz ∧ dz̄ ∧ dt

=
1

2π i

∫

R×C

〈Bz, ∂z̄ At 〉dz ∧ dz̄ ∧ dt

=

∫

R

〈
L(w), P ′

(
L(w)

)〉
dt

where in the second equality we used the gauge Az̄ = 0. In the last equality, we used
the fact that Bz is identified with the Lax matrix L together with the identity (19) and
then performed the integral over C using the presence of the δ-function.

For the type A defect action (7), we have

SA−def
[
A, {hi }

N
i=1

]
= −

N∑

i=1

∫

R

〈ui , h−1
i ∂t hi 〉dt −

N∑

i=1

∫

R

〈̂ui , At (zi )〉dt

= −

N∑

i=1

∫

R

〈ui , h−1
i ∂t hi 〉dt −

N∑

i=1

∫

R

〈
ûi ,

P ′(L(w))

w − zi

〉
dt

= −

N∑

i=1

∫

R

〈ui , h−1
i ∂t hi 〉dt −

∫

R

〈
L(w), P ′

(
L(w)

)〉
dt,

where in the second equality we used (20) evaluated at z = zi and in the last line
we recognised the sum over i in the second term as the expression for the Lax matrix
L(w) = Bz(w) in (14). Note that the second term on the right-hand side exactly
cancels the expression found above for the bulk action S3d[A, B].
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Finally, the type B defect action (16) is simply SB−def [B] = −
∫

R
H P

w dt using the
expression (23) for the Hamiltonian alluded to in Sect. 2.3.2 and to be confirmed in
Sect. 3. Putting all the above together, we deduce that the full action (17) reduces to
the simple form

S1d
[
{hi }

N
i=1

]
= −

N∑

i=1

∫

R

〈ui , h−1
i ∂t hi 〉dt −

∫

R

H P
w dt, (24)

where we have suppressed the dependence on the fields A and B since these have now
been expressed in terms of the dynamical variables hi ∈ G and the fixed elements
ui ∈ g for i = 1, . . . , N . We recognise (24) as the first-order action

S
[
{hi }

N
i=1

]
=

N∑

i=1

∫

R

〈X i , h−1
i ∂t hi 〉dt −

∫

R

H P
w dt,

associated with the Hamiltonian H P
w in (23) but where the conjugate momentum

X i ∈ g of hi ∈ G has been fixed to the constant element X i = −ui . This is consistent
with the Hamiltonian analysis to be performed in the next section. Namely, we find in
Sect. 3.1.2 that there is a primary constraint X i + ui ≈ 0 on the conjugate momentum
X i ∈ g of the dynamical variable hi ∈ G.

We can check directly that the equations of motion of the 1d action (24) are given
by (15), with At as in (20), by varying it with respect to hi → eǫi hi for some arbitrary
g-valued variable ǫi . Under this variation, the Lax matrix L(w) transforms to

N∑

i=1

eǫi ûi e
−ǫi

w − zi

= L(w) +

N∑

i=1

[ǫi , ûi ]

w − zi

+ O(ǫ2
i ).

Hence, using the explicit expression H = P(L(w)) for the Hamiltonian, the variation
in the action is given by

δS1d := S1d[{e
ǫi hi }

N
i=1] − S1d[{hi }

N
i=1]

= −

N∑

i=1

∫

R

〈
ui , h−1

i e−ǫi ∂t (e
ǫi hi ) − h−1

i ∂t hi

〉
dt

−

∫

R

(
P

(
L(w) +

N∑

i=1

[ǫi , ûi ]

w − zi

)
− P

(
L(w)

))
dt

= −

N∑

i=1

∫

R

(
〈̂ui , ∂tǫi 〉 +

〈
P ′

(
L(w)

)
,
[ǫi , ûi ]

w − zi

〉
+ O(ǫ2

i )

)
dt

=

N∑

i=1

∫

R

(〈
∂t ûi −

[
P ′(L(w))

zi − w
, ûi

]
, ǫi

〉
+ O(ǫ2

i )

)
dt,
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where in the last equality we have used Stokes’s theorem and the adjoint invariance
of the bilinear form. The N equations of motion for the hi are therefore

∂t ûi =

[
P ′(L(w))

zi − w
, ûi

]
,

and using (20), we do indeed recover the equations of motion (15) found previously
from adding in type A defects in Sect. 2.3.1.

3 Hamiltonian analysis

Throughout this section, we shall work in some local coordinate z on some open subset
of C . Our starting point is the Lagrangian density of the action (17) written in terms
of the components of the g-valued bulk fields A = Az̄dz̄ + At dt and B = Bzdz and
in terms of the G-valued defect variables hi for i = 1, . . . , N which we introduced at
the type A defects in Sect. 2.3.1, namely

L
(

A, B, {hi }
N
i=1

)
=

1

2π i

〈
Bz, ∂z̄ At − ∂t Az̄ + [Az̄, At ]

〉

−

N∑

i=1

〈
ui , h−1

i (∂t + At )hi

〉
δzzi

− P(Bz(w))δzw. (25)

3.1 Conjugatemomenta and primary constraints

To move to the Hamiltonian formalism we first determine the conjugate momenta of
the bulk fields Az̄ , At and Bz and the defect variables hi . We shall find various primary
constraints, some of which will be second class. We shall impose the latter strongly
at this stage by introducing a corresponding Dirac bracket. To alleviate the notation,
all Dirac brackets computed in this section will ultimately be renamed simply as {·, ·}

before moving on to Sect. 3.2 where we work out the secondary constraints.
We begin in Sect. 3.1.1 by considering the conjugate momenta of the bulk fields

Az̄ , At and Bz , as the conjugate momenta to the G-valued defect variables hi will need
to be handled with more care, as discussed in Sect. 3.1.2.

3.1.1 Bulk canonical fields

The conjugate momenta to the g-valued bulk fields Az̄ , At and Bz are the g-valued
fields given, respectively, by

t =
∂L

∂(∂t At )
= 0, z̄ =

∂L

∂(∂t Az̄)
= −

1

2π i
Bz, Pz =

∂L

∂(∂t Bz)
= 0,
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which satisfy the canonical Poisson bracket relations

{t1(z), At2(z′)} = C12δzz′,

{z̄1(z), Az̄2(z′)} = C12δzz′,

{Pz1(z), Bz2(z′)} = C12δzz′ .

Here and in what follows we use the standard tensor notation. In particular, if we fix
dual bases {I a} and {Ia} of g with respect to the non-degenerate invariant symmetric
bilinear form 〈·, ·〉 : g × g → C introduced in Sect. 2, then C12 = I a ⊗ Ia is the split
Casimir. Also for g-valued fields F and G, which can be written in components as
F = Fa I a and G = Ga I a , we have {F1(z), G2(z′)} := {Fa(z), Gb(z

′)}I a ⊗ I b. The
Dirac δ-distribution δzz′ was defined in (11).

We have three primary constraints associated with the bulk fields, namely

t ≈ 0, Cz := Bz + 2π iz̄ ≈ 0, Pz ≈ 0. (26)

Throughout this paper, we use the conventional notation ‘≈’ to denote equality on the
constraint surface [42]. The first constraint in (26) is clearly first class and the latter
two are second class with Poisson bracket

{Pz1(z), Cz2(z′)} = C12δzz′ .

We set these both strongly to zero immediately, by which we mean restricting to the
submanifold of phase space specified by Pz = 0 and Cz = 0 and replacing the Poisson
bracket with the corresponding Dirac bracket [42]. With respect to the latter we still
have the same relations between the remaining fields, i.e.

{t1(z), At2(z′)} = C12δzz′, (27a)

{z̄1(z), Az̄2(z′)} = C12δzz′, (27b)

and hence, by an abuse of notation, we will continue to denote this Diract bracket as
{·, ·}.

3.1.2 Defect canonical variables

We have yet to find the conjugate momenta to the G-valued variables hi , i = 1, . . . , N

introduced at the type A defects. This can be done by working in local coordinates
φα on the group G where α ranges from 1 to dim G, the dimension of G. We refer
the reader, for instance, to [44, §3.1.2] for details. Each variable hi ∈ G can then be
described locally in terms of the dim G variables φα

i := φα(hi ).
The relevant part of the Lagrangian in finding the conjugate momenta is

−〈ui , h−1
i ∂t hi 〉 = −〈ui , ∂tφ

α
i h−1

i ∂αhi 〉,
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which in the second expression we have rewritten in terms of the local coordinates
φα

i , where ∂α denotes the partial derivative with respect to the coordinate φα . The
corresponding conjugate momenta are therefore given by

πi,α =
∂L

∂(∂tφ
α
i )

= −〈ui , h−1
i ∂αhi 〉, (28)

and these have the usual canonical Poisson bracket relations

{φα
i , φ

β

j } = 0, {πi,α, π j,β} = 0, {πi,α, φ
β

j } = δβ
α δi j .

To return to a coordinate free description of the phase space, we define a matrix
La

α for some fixed basis {Ia} of g such that

h−1
i ∂αhi = La

α Ia . (29)

This La
α is invertable and we denote the inverse as Lα

a following the conventions
of [44, §3.1.2]. We can then introduce a coordinate-free g-valued variable X i which
encodes the conjugate momentum πi,α as

X i := Lα
aπi,α I a, (30)

where {I a} is the basis of g dual to {Ia} with respect to the bilinear form 〈·, ·〉. We
therefore have a coordinate free description of the phase space, parameterised by a pair
of fields (X i , hi ) at each defect valued in T G ≃ g × G, with the canonical Poisson
brackets in local coordinates being equivalent to, see, for instance, [44],

{hi1, h j2} = 0, (31a)

{X i1, h j2} = hi2C12δi j , (31b)

{X i1, X j2} = −[C12, X i2]δi j . (31c)

for each i, j = 1, . . . , N .
Using the definition of the matrix La

α in (29), we have

Lα
a〈ui , h−1

i ∂αhi 〉I a = 〈ui , Lα
a Lb

α Ib〉I a = 〈ui , Ia〉I a = ui .

It then follows from the expression (28) for πi,α above, derived from the Lagrangian,
and the definition (30) of X i that we have a primary constraint of the form

Ci := X i + ui ≈ 0 (32)

for each defect i = 1, . . . , N . These N primary constraints are not entirely first or
second class. Indeed, their Poisson brackets

{Ci1, C j2} = {X i1, X j2} = −[C12, Ci2 − ui2]δi j ≈ [C12, ui2]δi j , (33)
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are non-vanishing on the constraint surface (32) and are not generally invertible.
Let {vi

p}
di

p=1 be a basis of the centraliser gui := ker(adui
) of the element ui ∈ g,

with di := dim gui for each i = 1, . . . , N . The first class part of each Ci is given by
the set of constraints C

p
i := 〈vi

p, Ci 〉 for p = 1, . . . , di . These satisfy the relations

{C
p
i , C j } ≈

〈
vi

p1
, [C12, ui2]

〉
1
δi j = [vi

p, ui ]δi j = 0, (34)

for every i, j = 1, . . . , N and p = 1, . . . , di , where the last equality uses the fact that
vi

p ∈ gui . In particular, we have {C
p
i , C

q
j } ≈ 0 for any q = 1, . . . , d j so that the set of

constraints C
p
i for p = 1, . . . , di , i = 1, . . . , N are indeed first class. It also follows

from (31b) that the first class constraints C
p

i generate right multiplication of the hi by

elements eǫvi
p of the centraliser Gui of ui in G –note that under such transformations

the g-valued variables ûi are invariant.
Let us extend the basis {vi

p}
di

p=1 of the centraliser gui to a basis {vi
p}

di

p=1 ∪ {̃vi
r }

ci

r=1

of g where ci := dim g − di . We claim that the remaining constraints C̃r
i := 〈̃vi

r , Ci 〉

for r = 1, . . . , ci contained in Ci are second class. We need to show that the matrix
{C̃r

i , C̃s
i } for r , s = 1, . . . , ci is invertible on the constraint surface Ci ≈ 0. If this

were not the case then we would have
∑ci

s=1{C̃
r
i , C̃s

i }as ≈ 0 for some as ∈ C with
s = 1, . . . , ci . On the other hand, we also know from (34) that

∑ci

s=1{C
p

i , C̃s
i }as ≈ 0

for all p = 1, . . . , di . Combining these statements we have

0≈

ci∑

s=1

{Ci , C̃
s
i }as =

ci∑

s=1

{
Ci , 〈̃v

i
s, Ci 〉

}
as ≈

ci∑

s=1

〈
ṽi

s2, [C12, ui2]
〉
2

as =

[
ui ,

ci∑

s=1

as ṽ
i
s

]
,

where in the third step we used (33). It follows that
∑ci

s=1 as ṽ
i
s ∈ gui which contradicts

the assumption that {̃vi
r }

ci

r=1 is the basis of some complement of gui in g.
We would like to impose suitable gauge fixing conditions D

p
i ≈ 0, for p =

1, . . . , di , to fix the first class constraints C
p

i and move to a Dirac bracket {·, ·}∗ which
fixes the constraints Ci ≈ 0 strongly. In particular, we would like to compute the Dirac
bracket {̂ui1, û j2}∗ of the g-valued variables ûi = hi ui h

−1
i for i = 1, . . . , N . It turns

out that the result is independent of the choice of gauge fixing condition D
p

i ≈ 0.
Indeed, consider the variables X̂ i := hi X i h

−1
i . One deduces from (31) that they have

the Poisson brackets

{X̂ i1, X̂ j2} = [C12, X̂ i2]δi j , (35a)

{X i1, X̂ j2} = 0 (35b)

for each i, j = 1, . . . , N . In particular, it follows from (35b) that {Ci1, X̂ j2} = 0 for
any i, j = 1, . . . , N . Now the matrix of Poisson brackets between the set of all second
class constraints C

p
i , D

p
i for p = 1, . . . , di and C̃r

i for r = 1, . . . , ci is of the block
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form ⎛
⎝

0 ∗ 0
∗ ∗ ∗

0 ∗ ∗

⎞
⎠ (36)

where the first, second and third block rows and columns correspond to the set of
constraints C

p
i , D

p
i and C̃r

i , respectively. Each ‘∗’ denotes a possibly non-zero block
matrix. The matrix (36) is invertible since the blocks in position (1, 2), (2, 1) and
(3, 3) are all invertible by design. Its inverse is then schematically of the block form

⎛
⎝

0 ∗ 0
∗ ∗ ∗

0 ∗ ∗

⎞
⎠

−1

=

⎛
⎝

∗ ∗ ∗

∗ 0 0
∗ 0 ∗

⎞
⎠ . (37)

Since {C
p
i , X̂ j } = {C̃r

i , X̂ j } = 0 for all p = 1, . . . , di and r = 1, . . . , ci , the zero
block in the middle of the right-hand side of (37) implies that the Poisson brackets
(35a) will remain unchanged when passing to the Dirac bracket, i.e. we have

{X̂ i1, X̂ j2}∗ = [C12, X̂ i2]δi j .

Finally, using the fact that X̂ i = −ûi after imposing the constraint Ci = 0 strongly, we
deduce that the g-valued variables ûi for i = 1, . . . , N satisfy N commuting copies
of the Kostant–Kirillov bracket

{̂ui1, û j2}∗ = −[C12, ûi2]δi j . (38)

To avoid overburdening the notation, and since we shall need to introduce a further
Dirac bracket in Sect. 3.3, we will denote the Dirac bracket {·, ·}∗ introduced above
simply as {·, ·} from now on.

3.2 Hamiltonian and secondary constraints

The Hamiltonian density is defined as the Legendre transform of the Lagrangian
density (25). However, since the field At is non-dynamical, i.e. there are no time
derivatives of At in the action, we shall perform the Legendre transform only with
respect to the dynamical fields Az̄ , Bz and the dynamical variables hi . So we define

H := 〈z̄, ∂t Az̄〉 + 〈Pz, ∂t Bz〉 + 〈X i , h−1
i ∂t hi 〉 − L

(
A, B, {hi }

N
i=1

)

=
1

2π i
〈Cz, ∂t Az̄〉 + 〈Pz, ∂t Bz〉 +

N∑

i=1

〈Ci , h−1
i ∂t hi 〉

−
1

2π i
〈Bz, ∂z̄ At + [Az̄, At ]〉 +

N∑

i=1

〈̂ui , At 〉δzzi
+ H P

w δzw
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where in the second line we have used the definition of the bulk constraint Cz in (26)
and of the defect constraints Ci for i = 1, . . . , N in (32). Since we have already set
these along with Pz strongly to zero, we can drop the corresponding terms in the
Hamiltonian density.

The Hamiltonian is the integral of the Hamiltonian density over C , namely

H :=

∫

C

H dz ∧ dz̄

= −
1

2π i

〈〈
Bz, ∂z̄ At + [Az̄, At ]

〉〉
+

∫

C

( N∑

i=1

〈̂ui , At 〉δzzi

)
dz ∧ dz̄ + H P

w ,

where in the first term of the right-hand side we introduced the notation

〈〈
X , Y

〉〉
:=

∫

C

〈X , Y 〉 dz ∧ dz̄

for any g-valued fields X and Y on C .
It is convenient to introduce the bulk g-valued field

μ :=
1

2π i

(
∂z̄ Bz + [Az̄, Bz]

)
= −∂z̄z̄ − [Az̄,z̄], (39)

where in the second equality we have used the constraint Cz = 0 in (26) which is now
imposed strongly. Introducing also the g-valued field

μ̂ := μ +

N∑

i=1

ûiδzzi
, (40)

the Hamiltonian can be rewritten succinctly as

H =

〈〈
μ̂, At

〉〉
+ H P

w . (41)

At this point, it is interesting to note the similarity between the g-valued fields μ

and μ̂ just introduced and the moment map of the Hitchin system [43] (we refer the
reader to [3, §7.11] for a concise review of Hitchin systems). The latter is the moment
map on the cotangent bundle T ∗A of the space A of (0, 1)-forms on the Riemann
surface C , parameterised by the (0, 1)-form A and the Higgs field �, defined by
μHit := ∂̄A� = ∂̄� + [A,�]. The phase space of the Hitchin system without marked
points is defined as the symplectic reduction to the level surface μHit = 0. This would
coincide exactly, upon identifying Bz with the Higgs field � and the (0, 1)-form A

with Az̄ , with the condition μ = 0. In the presence of marked points zi the level of
the moment map of the Hitchin system is chosen instead to be

∑N
i=1 ûiδzzi

. As we
will see, this level surface corresponds exactly to the constraint μ̂ ≈ 0 coming from
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the gauge invariance in 3d mixed BF theory with the defects introduced in Sect. 2.3.
Without the defects, the constraint would reduce to μ ≈ 0 in pure BF theory.

3.2.1 Gauge invariance

We need to ensure that the remaining primary constraint, t ≈ 0, is preserved under
time evolution. That is,

{H ,t } = μ̂ ≈ 0,

giving rise to the secondary constraint μ̂ ≈ 0. We see from the canonical brackets (27)
that −μ̂ is the generator of gauge transformations (3) on the fields Az̄ and Bz since

{μ̂1(z), Az̄2(z′)} = −[C12, Az̄2(z)]δzz′ − ∂z̄(C12δzz′) (42a)

{μ̂1(z), Bz2(z′)} = −[C12, Bz2(z)]δzz′, (42b)

where we have used the identity [C12, Az̄2(z) + Az̄1](z) = 0 for (42a). Note that the
moment map μ satisfies the following Poisson bracket

{μ1(z), μ2(z′)} =
1

2π i
{μ1(z), ∂z̄′ Bz2(z′)} +

1

2π i

{
μ1(z), [Az̄2(z′), Bz2(z′)]

}

=
1

2π i

(
− ∂z̄′ [C12δzz′ , Bz2(z′)] −

[
Az̄2(z), [C12, Bz2(z′)]

]
δzz′

−
[
[C12, Az̄2(z)]δzz′ + ∂z̄(C12δzz′), Bz2(z′)

])

=
1

2π i

(
− [C12, ∂z̄ Bz2(z)]δzz′ −

[
C12, [Az̄2(z), Bz2(z′)]

]
δzz′

)

= −[C12, μ2(z)]δzz′ ,

where in the second equality we used the relations (42), which also trivially hold with
μ̂ replaced by μ. In the third equality, we have used the Jacobi identity and the fact
that ∂z̄δzz′ + ∂z̄′δzz′ = 0, which follows using the identity ∂z̄(z − z′)−1 = −2π iδzz′ .

The Poisson bracket of μ̂ with itself is therefore

{μ̂1(z), μ̂2(z′)} = {μ1(z), μ2(z′)} +

N∑

i, j=1

{̂ui1, û j2}δzzi
δz′z j

= −[C12, μ2(z)]δzz′ −

N∑

i=1

[C12, ûi2δzzi
]δz′zi

= −[C12, μ̂2(z)]δzz′

where in the second equality we have used (38) for the second term. This vanishes
on the constraint surface so μ̂ is first class–we will set it strongly to zero with an
appropriate gauge fixing condition in the following section.

The time evolution of μ̂ is given by

{H , μ̂(z)} ≈
1

2π i

{
H P

w , [Az̄(z), Bz(z)]
}
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=
1

2π i

[
{H P

w , Az̄(z)}, Bz(z)
]

= −[P ′(Bz(w)), Bz(z)]δzw = 0,

and therefore, we have no tertiary constraints.

3.3 Gauge fixing and Lax formalism

Recall that so far we have fixed the pair of second class constraints Pz ≈ 0 and Cz ≈ 0
by introducing the corresponding Dirac bracket in Sect. 3.1.1. We kept the notation
{·, ·} for this Dirac bracket. In Sect. 3.1.2, we introduced a further Dirac bracket {·, ·}∗

to fix the constraints Ci ≈ 0. As mentioned at the end of that section, by abuse of
notation we continued to call this Dirac bracket {·, ·} since the Dirac bracket of the
bulk fields is unaffected. In this section, we start with the latter Dirac bracket and wish
to fix the gauge invariance arising from the constraint μ̂ ≈ 0.

We will use the gauge fixing condition Az̄ ≈ 0 and simultaneously impose this
condition and the constraint μ̂ ≈ 0 strongly by defining a new Dirac bracket. To this
end, recall that

{μ̂1(z), Az̄2(z′)} = −[C12, Az̄2(z)]δzz′ − ∂z̄(C12δzz′) ≈ −∂z̄(C12δzz′)

where the first equality is (42a) and in the last step we have used the new constraint
Az̄ ≈ 0. This can be inverted, since

〈〈
− ∂z̄(C12δzz′),

1

2π i

C23

z′ − z′′

〉 〉

(z′,2)

=
i

2π
C13∂z̄

(
1

z − z′′

)
=

i

2π
C13(−2π iδzz′′)

= C13δzz′′ . (43)

Here the subscript (z′, 2) means that the pairing 〈·, ·〉 is taken in the second tensor
space and the integration is with respect to z′. We therefore define the new Dirac
bracket, denoted {·, ·}⋆ for g-valued functions U and V on C , by the usual formula
[42, §1.3.3], see also [65, §2.6] for the analogous derivation in the 4d Chern–Simons
theory context, namely

{U1(z), V2(z′)}⋆ = {U1(z), V2(z′)}

−

〈〈
{U1(z), μ̂3(z′′)},

〈〈
1

2π i

C34

z′′ − z′′′
, {Az̄4(z′′′), V2(z′)}

〉〉

(z′′′,4)

〉〉

(z′′,3)

−

〈〈
{U1(z), Az̄3(z′′′)},

〈〈
1

2π i

C34

z′′ − z′′′
, {μ̂4(z′′′), V2(z′)}

〉〉

(z′′′,4)

〉〉

(z′′,3)

.

By construction, working with this Dirac bracket allows us to set the pair of constraints
μ̂ ≈ 0 and Az̄ ≈ 0 strongly to zero.
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3.3.1 Lax algebra

We will show that the Dirac bracket of Bz with itself satisfies the Lax algebra

{Bz1(z), Bz2(z′)}⋆ =
[
r12(z, z′), Bz1(z) + Bz2(z′)

]
, (44)

where r12(z, z′) is the standard classical r -matrix

r12(z, z′) =
C12

z′ − z
. (45)

To compute this Dirac bracket, we begin by noting that (42b) implies

{Bz1(z), μ̂2(z′)} = [C12, Bz1(z)]δzz′ .

Using this and the bracket {Bz1(z), Az̄2(z′)} = −2π iC12δzz′ which follows from
(27b) along with the constraint Cz = 0 in (26), we find

{Bz1(z), Bz2(z′)}⋆

= −

〈〈
[C13, Bz1(z)]δzz′′ ,

〈〈
1

2π i

C34

z′′ − z′′′
, 2π iC24δz′z′′′

〉〉

(z′′′,4)

〉〉

(z′′,3)

−

〈〈
− 2π iC13δzz′′ ,

〈〈
1

2π i

C34

z′′ − z′′′
,−[C24, Bz2(z′)]δz′z′′′

〉〉

(z′′′,4)

〉〉

(z′′,3)

= −

〈〈
[C13, Bz1(z)]δzz′′ ,

C23

z′′ − z′

〉〉

(z′′,3)

−

〈〈
C13δzz′′ , [

C23

z′′ − z′
, Bz2(z′)]

〉〉

(z′′,3)

= −

[
C12

z − z′
, Bz1(z)

]
−

[
C12

z − z′
, Bz2(z′)

]
=

[
C12

z′ − z
, Bz1(z) + Bz2(z′)

]
.

In other words, we recover the Lax algebra (44).

3.3.2 Lax matrix

By definition of μ̂ in (40), it follows that setting this constraint and its gauge fixing
condition to zero strongly, i.e. μ̂ = 0 and Az̄ = 0, leads to the equation

∂z̄ Bz = −2π i

N∑

i=1

ûiδzzi
, (46)

or ∂z̄ Bz = −2π i ûiδzzi
in a small neighbourhood of the point zi , which is equivalent

to (12). This then leads to the local meromorphic behaviour (13) of the (1, 0)-form B,
namely

B =
ûi

z − zi

dz + O(1).

123



   79 Page 20 of 25 B. Vicedo, J. Winstone

The Kostant–Kirillov bracket (38) for the residues ûi obtained in Sect. 3.1.2 (recall
that we are now denoting the Dirac bracket {·, ·}∗ of Sect. 3.1.2 simply as {·, ·}) is
equivalent to the Lax algebra (44) derived in Sect. 3.3.1.

3.3.3 Lax equation

At this point, we have now fixed all the constraints strongly except for the primary
constraint t ≈ 0. However, now that μ̂ = 0 is imposed strongly, the Hamiltonian
(41) no longer involves the field At and simply reduces to

H = H P
w .

In particular, together with the Dirac bracket (44) this now implies the Lax equation
(22) in the Hamiltonian formalism

{
H P

w , Bz(z)
}⋆

=

[
P ′

(
Bz(w)

)

z − w
, Bz(z)

]
. (47)

We deduce, as claimed at the end of Sect. 2, that the time flow ∂t along the topological
direction of the 3-dimensional space R × C is the one induced by the Hamiltonian
H P

w = P(Bz(w)) with respect to the Dirac bracket, i.e. ∂t f = {H P
w , f }⋆ for any

function f of the Lax matrix Bz . Focusing on such observables, we are also free to
set t = 0 strongly since these all Poisson commute with t under the Dirac bracket
{·, ·}⋆ and so their bracket will remain unchanged after introducing a further Dirac
bracket to fix the constraint t ≈ 0.

3.3.4 Involution

It is well known [3] that the Lax algebra (44) implies the involution property

{
H P

w , H Q
z

}⋆
= 0, (48)

for any pair of G-invariant polynomials P, Q : g → C and distinct points w, z ∈ C .
This can also be seen more directly from the above Hamiltonian analysis of 3d

mixed BF theory as follows. Since H P
w = P(Bz(w)) only depends on the field Bz , we

have the involution property {
H P

w , H Q
z

}
= 0 (49)

with respect to the Poisson bracket (more precisely, recall that {·, ·} denotes the Dirac
bracket introduced in Sect. 3.1), for any polynomials P, Q : g → C and distinct
points w, z ∈ C . But since H P

w is gauge invariant for G-invariant polynomials P and
−μ̂ is the generator of gauge transformations, see (42), we have {μ̂(z), H P

w } = 0. The
involution property (49), for any polynomials P, Q : g → C, therefore immediately
implies the involution property (48), for any G-invariant polynomials P, Q : g → C.
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4 Discussion

In this article, we showed that Gaudin models associated with a finite-dimensional
semisimple Lie algebra, and more generally tamely ramified Hitchin systems, can be
obtained from 3d mixed BF theory in the presence of certain line defects by moving
to the Hamiltonian framework and fixing the gauge symmetry using the gauge fixing
condition Az̄ ≈ 0.

This 3-dimensional gauge theoretic origin of finite-dimensional Gaudin models is
exactly analogous to that of affine Gaudin models in terms of 4-dimensional mixed
topological–holomorphic Chern–Simons theory [65].

We note in passing that it would be interesting to relate the connection between
affine Gaudin models and 2d integrable field theories, in the context of the present
work, to another description of 2d integrable field theories via an affine extension of
the Hitchin system considered in [47].

4.1 Alternative realisations

The Lax matrix of the Gaudin model, or the Higgs field of the Hitchin system, arises
from the (1, 0)-form B of the 3d mixed BF theory. In particular, after going to the
gauge Az̄ = 0 the latter becomes meromorphic with simple poles (13) at each zi ,
the location of the type A line defects. The specific choice of line defect (7) led to
the residues of B at these simple poles being coadjoint orbits ûi = hi ui h

−1
i of some

fixed Lie algebra elements ui ∈ g. As is well known, and as we have rederived in
the present setting in Sect. 3.1.2, such coadjoint orbits provide a realisation of the
Kostant–Kirillov Poisson bracket (38).

It would be interesting to see if other realisations of the Kostant–Kirillov Poisson
bracket can be obtained by making other choices of type A defects than (7). Indeed,
since the field Bz satisfies the Lax algebra (44) regardless of the choice of type A

line defects we make, the residues ûi at each simple pole zi of Bz will necessarily
satisfy the Kostant–Kirillov bracket. As mentioned in the affine case in [65, §4.1], it
would be desirable to find the precise dictionary between the possible choices of type
A line defects one can introduce in 3d mixed BF theory and different types of possible
representations of the Kostant–Kirillov bracket.

4.2 Generalised Gaudinmodels

We have focused in this paper on the case when the Lax matrix of the Gaudin model,
or the Higgs field of the Hitchin system, has simple poles at the marked points zi .

It would be interesting to consider also type A line defects which would give rise
to higher-order poles in the Lax matrix in order to construct Gaudin models with
irregular singularities [28, 29, 63]. In the affine setting, generalised surface defects in
4-dimensional Chern–Simons theory leading to affine Gaudin models with irregular
singularities were recently considered in [8, 46].

Other generalisations of the Gaudin model which one could try to relate to 3d mixed
BF theory, or some generalisation thereof, include cyclotomic Gaudin models [58, 62,

123



   79 Page 22 of 25 B. Vicedo, J. Winstone

63] or dihedral Gaudin models (see [64] in the affine case), whose Lax matrices are
equivariant under the action of cyclic or dihedral groups, respectively. In the affine case,
such a generalisation was considered recently in [57] where the symmetric space λ-
model, which can be described as a Z4-cyclotomic affine Gaudin model, was obtained
along the lines of [65] starting from 4d Chern–Simons theory with a Z4-equivariance
condition imposed on the gauge field.

As another direction for further possible generalisation, it would be interesting to
understand whether the generalised Gaudin-type models of [10], which are based on
solutions of the classical Yang–Baxter equation and classical N -reflection equations,
can similarly be obtained from 3d mixed BF theory or some generalisation thereof.

4.3 QuantumGaudinmodels

The 4-dimensional gauge theoretic origin of 2-dimensional integrable field theories,
as proposed by Costello and Yamazaki in [17], has been extensively studied over the
past couple of years, see for instance [1, 8, 9, 11, 14, 20, 21, 32–36, 45, 46, 56, 57,
59–61].

The proposal of [64], see also [19, 44], to reformulate non-ultralocal integrable
field theories with twist functions as affine Gaudin models similarly provides a deeper
origin, more algebraic in nature, of the integrable structure in these theories.

Both the gauge theoretic and algebraic approaches to 2-dimensional integrable field
theories, which are of course intimately related [65], have been used to construct many
new examples of 2-dimensional classical integrable field theories in recent years; see,
for instance, [2, 4, 18, 19] in the affine Gaudin model setting and the references above in
the 4d Chern–Simons theory setting. Finite Gaudin models, or equivalently 3d mixed
BF theory, could similarly be used to extend the list of known finite-dimensional
integrable systems.

However, the main interest in both approaches lies in their potential to offer new
perspectives on various long-standing open problems in quantum integrable field the-
ory, such as the problem of quantisation of non-ultralocal integrable field theories or
the search for a deeper understanding of the celebrated ODE/IM correspondence [5,
6, 22, 26, 48]. Indeed, one of the main original motivations in [64] for reformulating
non-ultralocal integrable field theories as affine Gaudin models was the remarkable
observation made in [26], based on the example of quantum KdV theory, that this may
provide an explanation for the ODE/IM correspondence in terms of some suitable
affine generalisation of the geometric Langlands correspondence.

By contrast with the affine case, however, the quantisation of the finite Gaudin
model, and more generally of the Hitchin system, is extremely well understood; see
e.g. [7, 27–31, 49–53, 55]. The connection between 3d mixed BF theory and finite
Gaudin models should therefore provide a useful toy model for further developing
our understanding of the gauge theoretic approach to integrable models and more
generally integrable field theories in the sense of [17]. In particular, it would be very
desirable to understand the Bethe ansatz construction in quantum Gaudin models,
and more generally the Gaudin/oper correspondence [28–31, 49, 50], from the point
of view of quantum 3d mixed BF theory. In fact, the quantisation of 3d mixed BF
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theory and its embedding in 4d super-Yang–Mills theory was also recently described
in [37], in relation to the analytic version of the geometric Langlands correspondence
proposed in [23–25]. It is expected that the quantum Gaudin model, and more generally
the quantisation of the Hitchin system, should arise from critical level quantum 3d
Chern–Simons theory [37, 66], a certain deformation of quantum 3d mixed BF theory,
in accordance with the central role played by the critical level in the quantum Gaudin
model [28–31, 49, 50].
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