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Abstract

Let Q be an inverse semigroup. A subsemigroup S of Q is a left I-order in Q and Q

is a semigroup of left I-quotients of S if every element in Q can be written as a−1b,

where a, b ∈ S and a−1 is the inverse of a in the sense of inverse semigroup theory. If

we insist on being able to take a and b to be R-related in Q we say that S is straight

in Q and Q is a semigroup of straight left I-quotients of S. We give a set of necessary

and sufficient conditions for a semigroup to be a straight left I-order. The conditions

are in terms of two binary relations, corresponding to the potential restrictions of R
and L from an oversemigroup, and an associated partial order. Our approach relies

on the meet structure of the L -classes of inverse semigroups. We prove that every

finite left I-order is straight and give an example of a left I-order which is not straight.

Keywords Inverse semigroup · I-order · I-quotients

Mathematics Subject Classification Primary: 20M05 · 20M10 Secondary: 20F05

1 Introduction

Several definitions of a semigroup of quotients have been proposed and studied by a

number of authors, each with their own purpose. The earliest definition is that of a

group of left quotients, introduced by Dubreil in 1943 [4], building on the work of Ore
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on rings of left quotients [21]. A subsemigroup S of a group G is a left order in G and

G is a group of left quotients of S if every g ∈ G can be written as g = a−1b for some

a, b ∈ S. Ore and Dubreil showed that a semigroup S has a group of left quotients if

and only if S is cancellative and satisfies the left Ore condition. The latter condition,

also known as right reversibility, says that for any a, b ∈ S there exist c, d ∈ S such

that ca = db.

In 1950 Murata [19] extended the notions of groups and rings of left quotients to

semigroups. He did this by insisting that the semigroup of quotients be a monoid, and

then by considering inverses lying in the group of units. To be precise, a subsemigroup

S of a monoid M is a classical1 left order in M and M is a semigroup of classical

left quotients of S if every m ∈ M can be written as m = a−1b for some a, b ∈ S,

where a−1 is the inverse of a in the group of units of M , and if, in addition, every

cancellative element of S lies in the group of units of M . Murata showed that a

semigroup S has a monoid of classical left quotients if and only if S satisfies the left

Ore–Asano condition, which is the relevant weakening of the left Ore condition. The

condition that cancellative elements of S must acquire an inverse in the group of units

of M exactly reflects the corresponding condition in classical ring theory.

Unlike the case for rings and groups, the identity of a monoid may have little

influence on its structure. In part to reflect this, a different definition of semigroup of

quotients, and one which does not insist on the oversemigroup being a monoid, was

proposed by Fountain and Petrich in 1986 [8]. It was initially restricted to completely

0-simple semigroups of (two-sided) quotients; only in the degenerate case are these

monoids. The first author [12] formally extended this concept to left orders in an

arbitrary semigroup, as follows. A subsemigroup S of a semigroup Q is a left Fountain–

Gould order in Q and Q is a semigroup of left Fountain–Gould quotients of S if every

q ∈ Q can be written as q = a
♯
b for some a, b ∈ S, where a

♯
is the inverse of a in

some subgroup of Q, and if, in addition, every square-cancellable element of S lies in

a subgroup of Q. The notion of square-cancellability is a (strong) necessary condition

for an element to lie in a subgroup of an oversemigroup, corresponding to the way in

which being cancellable is a (strong) necessary condition to lie in the group of units of

an oversemigroup. The characterisations of Fountain–Gould left orders in Q become

more complicated than in earlier cases, reflecting the R- and L -class structure of Q

[14].

All of the above approaches use, in one form or another, the notion of inverses in

a (sub)group. But, in the theory of inverse semigroups, there is another crucial notion

of inverse of an element a, which we write as a−1. The concept central to this paper

makes use of this. Namely, it is that of a semigroup of left inverse quotients, which

we will shorten to left I-quotients, first defined by Ghroda and Gould in 2010 [10].

Definition 1.1 Let S be a subsemigroup of an inverse semigroup Q. Then Q is a

semigroup of left I-quotients of S and S is a left I-order in Q if every q ∈ Q can be

written as

q = a−1b

1 The terminology classical is ours.
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for some a, b ∈ S. If in addition we can choose a, b such that a R b in S, then we say

Q is a semigroup of straight left I-quotients of S and S is a straight left I-order in Q.

The notion of semigroups of I-quotients has effectively been used by a number of

authors without employing the above terminology. The first case of this is probably

Clifford in 1953 [2] where he showed that every right cancellative monoid S with

the (LC) condition has a bisimple inverse monoid of left I-quotients. By saying that a

semigroup S satisfies the (LC) condition we mean for any a, b ∈ S there exists c ∈ S

such that Sa ∩ Sb = Sc. Thus, (LC) is a stronger condition than right reversibility. Left

I-quotients have also appeared implicitly in work on inverse hulls of right cancellative

semigroups developed in [20] and [18], and taken further in [1]. A related approach

recently appeared in Exel and Steinberg’s work on inverse hulls of 0-left cancellative

semigroups [5]. All of these examples are left ample (or right ample), and so we can

determine the structure of their inverse hulls using Theorem 3.7 of [11]. Fountain and

Kambites effectively utilise left I-quotients in Sect. 2 of [6], in which they use the

fact that graph products of right cancellative, right reversible, monoids are again right

cancellative and right reversible, and then show they are left I-orders in the inverse

hull.

None of the earlier work on left I-orders attempts to describe those semigroups

that occur as left I-orders. It transpires that, as for left Fountain–Gould orders, this

question is more amenable in the straight case. The aim of this article, achieved in

Theorem 3.7, is to characterise completely those semigroups that occur as straight left

I-orders. Again, we will need conditions reflecting the R- and L -class configurations

of the oversemigroup.

The structure of the paper is as follows. In Sect. 2 we discuss some connections

between left I-orders and left Fountain–Gould orders and prove that finite left I-orders

are always straight. We also provide some pertinent examples, namely an example

of a left I-order which is not straight and an example of a semigroup with multiple

semigroups of left I-quotients. Sect. 3 contains Theorem 3.7, in which we determine

the conditions under which a semigroup S is a straight left I-order. In Sect. 4 we

use our general result to provide characterisations of right ample and (two-sided)

ample straight left I-orders that sit inside their semigroups of left I-quotients in a way

that preserves their additional unary operation(s). The result for ample semigroups is

particularly pleasing, and after the exigencies of Theorem 3.7 brings us to a condition

reminiscent of that of Ore.

We assume familiarity with the basic notions of semigroup theory, as found in [16]

and [3]. In particular, we make frequent use of Green’s relations and their associated

preorders. To avoid ambiguity, we may use the superscript Q to denote the semigroup

in question, for example, a ≤L Q b if and only if Q1a ⊆ Q1b.

2 Observations on left I-orders: straightness and uniqueness

We will make some brief observations concerning left orders (of various kinds) in

inverse semigroups. Before we begin we remark that [22] gives an infinite list of nec-

essary and sufficient conditions for embeddability of a semigroup S into an inverse
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semigroup. These may be regarded as analogous to those of Mal’cev [17] for embed-

dability of a semigroup into a group. Clearly any left I-order must satisfy the conditions

of [22]. However, our focus here is a particular kind of embedding, and we will pro-

duce a finite list of conditions to check; admittedly, this list is longer than merely

cancellativity and right reversibility, which is all that is required for a semigroup to

have a group of left quotients.

Straightness is not only a very useful property, but one that appears in some typical

examples of left I-orders. We will find in Sect. 3 that if S is straight, we can determine

equalities and products in Q using equalities and relations between elements of S. This

makes straight left I-orders easier to work with than general left I-orders. Because of

this, it is of interest to determine when a left I-order is straight. The following result

is an important tool.

Lemma 2.1 Let S be a left I-order in Q. Then S is straight in Q if and only if S

intersects every L -class of Q.

Proof Let S be straight in Q, and let q = a−1b ∈ Q such that a, b ∈ S and a RQ b.

Then

q−1q = b−1aa−1b = b−1bb−1b = b−1b,

and so b ∈ S ∩ Lq .

Conversely, suppose S∩Lq �= ∅ for all q ∈ Q. Let q ∈ Q; we know that q = a−1b,

where a, b ∈ S. Then

q = a−1aa−1bb−1b = a−1 f b,

where f = aa−1bb−1 ∈ E(Q). Since S intersects every L -class, there exists

u ∈ S ∩ L f , and so f = u−1u. Hence

(ua)(ua)−1 = uaa−1u−1 = u f aa−1u−1 = u f u−1 = uu−1.

Similarly (ub)(ub)−1 = uu−1. We can therefore write

q = a−1 f b = a−1u−1ub = (ua)−1(ub),

where ua RQ u RQ ub. It follows that S is straight in Q.

We now briefly compare the different kinds of left orders in inverse semigroups.

Observe that if an inverse monoid has trivial group of units, then it contains no proper

classical left order. However, if S is a Fountain-Gould left order in an inverse semigroup

Q (and many are known to exist, see, for example [7]), then S1 is easily seen to be a

Fountain–Gould left order in Q1. On the other hand, we have the following.

Lemma 2.2 Let S be a left Fountain–Gould order in an inverse semigroup Q. Then S

is a straight left I-order in Q.
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Proof Let a ∈ S. If a# exists, then clearly a−1 = a#. We have that every q ∈ Q can

be written as q = a#b for some a, b ∈ S. Therefore every q ∈ Q can be written as

q = a−1b for some a, b ∈ S.

We will now prove that S is straight in Q by proving that S intersects every L -class

of Q. Let q ∈ Q. We know that q ∈ Q can be written as q = a#b for some a, b ∈ S.

We see that

q = a#b L Q aa#b = a#ab L Q ab.

We know that ab ∈ S and so ab ∈ Lq ∩ S. Therefore, S intersects every L -class of

Q. We apply Lemma 2.1 to obtain that S is straight in Q. ⊓⊔

The converse to Lemma 2.2 is not true.

Example 2.3 Let B be the bicyclic monoid, which for convenience we write as ele-

ments of N
0×N

0. Let S be theR-class of the identity, S = { (0, n) | n ∈ N
0 }. Certainly

B is an inverse semigroup and for any (a, b) ∈ B,

(a, b) = (a, 0)(0, b) = (0, a)−1(0, b)

so B is a semigroup of left I-quotients of S. Since S intersects every L -class of B
we have from Lemma 2.1 that S is straight.

The monoid B has trivial subgroups, and as the only element of S that lies in a

subgroup is (0, 0), it is clear that S is not a Fountain–Gould left order in B.

We now show that for a wide class of inverse semigroups, all left I-orders are

straight.

Theorem 2.4 Let Q be a completely semisimple semigroup with the ascending chain

condition on the ≤J -order. Then any left I-order in Q is straight.

Proof Let S be a left I-order in Q, and suppose that S is not straight, so that by

Lemma 2.1, S does not intersect every L -class of Q. Let J be a J Q-class maximal

with respect to there being an L Q-class L in J such that S ∩ L = ∅. Let L = L
Q
e

where e = e2. Since S is a left I-order in Q, we know that there exist a, b ∈ S such

that

e = a−1b = b−1a,

the second statement following from the fact that e is an idempotent. Now e ≤L Q a

and as e �= a−1a we have that e <L Q a−1a and then by the semisimplicity of Q

that e <J Q a−1a. By assumption, S intersects every L Q-class of J
Q

a−1a
= J

Q
a . In

particular, there is a c ∈ S such that c−1c = aa−1 and then

e = a−1b L Q aa−1b = c−1cb L Q cb.

But cb ∈ S, a contradiction. ⊓⊔
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Corollary 2.5 Let Q be a finite inverse semigroup. Then any left I-order in Q is straight.

An obvious question to ask is whether every left I-order is straight. The answer to

this is no, although they do seem to be difficult to find. The authors are grateful to

Mark Kambites for the following example.

Example 2.6 Let X be a countably infinite set and let Q = IX be the symmetric

inverse monoid on X . Let S be the set of surjective elements of Q. Then S is a left

I-order in Q which is not straight.

Proof We start by proving that S is a subsemigroup of Q. Let a, b ∈ S so that im(a) =

im(b) = X . We have that

im(ab) = (im(a) ∩ dom(b))b = (X ∩ dom(b))b = (dom(b))b = im(b) = X .

Therefore ab ∈ S and so S is a subsemigroup of Q.

We now prove that S in a left I-order in Q. Let γ ∈ Q with dom(γ ) = A and

im(γ ) = B. Let C = X\A and let D = X\B. Our aim is to find α, β ∈ S such that

γ = α−1β.

Case 1 C and D both infinite.

Split C into two disjoint infinite sets, C = V ∪̇ W . We know that C, D, V , W are all

countably infinite, so we can construct two bijections, λ : W → C and μ : V → D.

We then define α : A ∪̇ W → X by

xα =

{

x if x ∈ A

xλ if x ∈ W ,

and β : A ∪̇ V → X by

xβ =

{

xγ if x ∈ A

xμ if x ∈ V .

It is easy to check that α and β are surjective and one-to-one. We will now prove that

γ = α−1β. We see that

dom(α−1β) = (im(α−1) ∩ dom(β))α

= (dom(α) ∩ dom(β))α

= ((A ∪̇ W ) ∩ (A ∪̇ V ))α

= Aα = A = dom(γ ),

and that for x ∈ A, we have xα−1β = xβ = xγ . Therefore γ = α−1β.

Case 2 C infinite and D finite.

Split C into two disjoint sets, C = U ∪̇ W , with |U | = |D| and W infinite. We

know that C and W are countably infinite, so we can construct a bijection λ : W → C .

Also since |U | = |D|, we can construct a bijection μ : U → D.
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We define α : A ∪̇ W → X by

xα =

{

x if x ∈ A

xλ if x ∈ W ,

and β : A ∪̇ U → X by

xβ =

{

xγ if x ∈ A

xμ if x ∈ U .

In a similar way to the previous case, α and β are surjective with γ = α−1β.

Case 3 C finite and D infinite.

By considering γ −1 : B → A, we can use Case 2 to write γ −1 = α−1β with α, β

surjective. Then γ = β−1α.

Case 4 C and D both finite.

Since C is finite, we know that A = X\C is countably infinite. Therefore we can

construct a bijection β : A → X . We see that

dom(βγ −1) = (im(β) ∩ dom(γ −1))β−1 = (im(β) ∩ im(γ ))β−1 = Bβ−1.

Note that Bβ−1 ⊆ A, and so Bβ−1 is disjoint with C . We define α : C ∪̇ Bβ−1 → X

by

xα =

{

x if x ∈ C

x(βγ −1) if x ∈ Bβ−1.

We firstly prove that α is surjective. We see that α is a piecewise composition of two

functions. The first piece has image C . We calculate the image of the second piece as

follows.

im(βγ −1) = (im(β) ∩ dom(γ −1))γ −1 = (im(β) ∩ im(γ ))γ −1 = Bγ −1 = A.

Therefore im(α) = A ∪̇ C = X . Note that since the domains and images of the two

pieces of α are disjoint and both pieces are one-to-one, it follows that α is one-to-one.

We will now prove that γ = α−1β. We see that

dom(α−1β) = (im(α−1) ∩ dom(β))α

= (dom(α) ∩ dom(β))α

= ((C ∪̇ Bβ−1) ∩ A)α

= (Bβ−1)α = im(βγ −1) = A = dom(γ ),

and that for x ∈ A we have

xα−1β = x(βγ −1)−1β = xγβ−1β = xγ.
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Therefore γ = α−1β.

We have now proved that S is a left I-order in Q. We know that S is not straight in

Q because it does not intersect every L -class of Q. Indeed, although Q has an infinite

number of L -classes, one for each subset of X , S is contained completely within the

largest one. ⊓⊔

Another natural question to ask is whether a given semigroup has at most one

semigroup of left I-quotients. The answer to this is no, as we show in the following

example.

Example 2.7 Sect. 4 of [13] provides an example of a semigroup with two non-

isomorphic Clifford semigroups of left Fountain–Gould quotients. For Q, a Clifford

semigroup, we know that every element lies in a subgroup. Consequently, for every

a ∈ Q, a# exists and a−1 = a#. We can therefore see that a semigroup S is a left

I-order in Q if and only if S is a left Fountain–Gould order in Q.

We end this section by posing the following question: is every left I-order in a

proper inverse semigroup straight?

3 The general case

The aim of this section is to prove Theorem 3.7, which gives necessary and sufficient

conditions for a semigroup S to be a straight left I-order. Our first lemma follows

immediately from the fact that in an inverse semigroup Q we have Qe ∩ Q f = Qef

for any e, f ∈ E(Q) so that the poset Q/L is order isomorphic to the semilattice of

idempotents under the natural partial order.

Lemma 3.1 Let Q be an inverse semigroup. Then Q/L is a meet semilattice with

La ∧ Lb = Lc if and only if c−1c = a−1ab−1b.

Assume now that S has a semigroup of straight left I-quotients Q. We aim to identify

properties of S inherited from Q with the eventual goal of reconstructing Q from these

properties.

By definition, every element in Q can be written as a−1b, where a, b ∈ S and

a RQ b. Therefore, we can reconstruct Q as ordered pairs of elements of S under an

equivalence relation:

Q ∼= {(a, b) | a, b ∈ S, a RQ b}/ ∼

where

(a, b) ∼ (c, d) if and only if a−1b = c−1d in Q.

This relation has already been determined by Ghroda and Gould.
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Lemma 3.2 [11, Lemma 2.7] Let S be a straight left I-order in Q. Let a, b, c, d ∈ S

with a RQ b and c RQ d. Then a−1b = c−1d in Q if and only if there exist x, y ∈ S

such that

xa = yc, xb = yd, x RQ y, x−1 RQ a and y−1 RQ c.

However, we wish to be able to express the conditions in Lemma 3.2 entirely in terms

of elements of S. We remind the reader that in an inverse semigroup Q, we have that

x RQ y if and only if x−1 L Q y−1.

Lemma 3.3 Let Q be an inverse semigroup and let x, a ∈ Q. Then

x−1 RQ a if and only if x RQ xa L Q a.

Proof Let x−1 RQ a. Using the fact that RQ is a left congruence, this implies

xa RQ xx−1 RQ x .

We know that x−1 RQ a implies that x L Q a−1. Therefore, using the fact that L Q is

a right congruence, we also have

xa L Q a−1a L Q a.

Conversely, let xa ∈ Rx ∩ La . By [16, Prop. 2.3.7], we have that Lx ∩ Ra contains

an idempotent, e.

xa x

a e

Then, as x L Q e, we have x−1 RQ e−1 = e RQ a. ⊓⊔

We now rewrite Lemma 3.2 in terms of relations restricted to S.

Lemma 3.4 Let S be a straight left I-order in Q. Let a, b, c, d ∈ S with a RQ b and

c RQ d. Then a−1b = c−1d if and only if there exist x, y ∈ S such that

xa = yc, xb = yd, x RQ xa L Q a and y RQ yc L Q c.

Note that since xa = yc, the conditions imply that x RQ y and a L Q c.

The conditions given in Lemma 3.4 will determine our ∼.

The next thing to address is multiplication in Q. We note that for every b, c ∈ S,

bc−1 ∈ Q and therefore, since Q is a semigroup of straight left I-quotients of S, there

exist u, v ∈ S with u RQ v, such that bc−1 = u−1v in Q. Therefore, multiplication

on Q must be given by a−1bc−1d = (ua)−1(vd), where bc−1 = u−1v in Q. In the
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same way as we need to internalise to S the condition that a−1b = c−1d in Q, we

need to be able to express the equality bc−1 = u−1v solely in terms of elements of S.

We first quote a result from [11].

Lemma 3.5 [11, Lemma 2.6] Let b, c, u, v be elements of an inverse semigroup Q such

that u RQ v. If bc−1 = u−1v, then ub = vc.

Lemma 3.6 Let Q be an inverse semigroup and let b, c, u, v ∈ Q such that u RQ v.

Then bc−1 = u−1v in Q if and only if

ub = vc, v RQ vc and L
Q
b ∧ L Q

c = L
Q
ub.

Proof Let bc−1 = u−1v. By Lemma 3.5, we have ub = vc. Since u RQ v, we know

that uu−1 = vv−1. Therefore, using u−1v = bc−1 and ub = vc, we have

v = vv−1v = uu−1v = ubc−1 = vcc−1

and therefore v RQ vc. Finally, again using bc−1 = u−1v and ub = vc, we have

b−1bc−1c = b−1u−1vc = b−1u−1ub = (ub)−1(ub).

It follows from Lemma 3.1 that L
Q
b ∧ L

Q
c = L

Q
ub.

Conversely, let

ub = vc, v RQ vc and L
Q
b ∧ L Q

c = L
Q
ub.

Since Q is an inverse semigroup v RQ vc implies that vv−1 = vcc−1v−1, and so

v = vcc−1. Using this along with vc = ub, we have

u−1v = u−1vcc−1 = u−1ubc−1 = u−1ubb−1bc−1 = bb−1u−1ubc−1, (1)

using the fact that idempotents commute in the last equality. By Lemma 3.1, we know

that L
Q
b ∧ L

Q
c = L

Q
ub implies that b−1bc−1c = (ub)−1(ub). Therefore

bb−1u−1ubc−1 = b(ub)−1(ub)c−1 = bb−1bc−1cc−1 = bc−1. (2)

Putting Equations (1) and (2) together, we obtain u−1v = bc−1. ⊓⊔

We now introduce the notation used in Theorem 3.7. The relation R∗ is defined on

a semigroup S by the rule that a R∗ b if and only a R b in some oversemigroup of S.

According to Lemma 1.7 of [18], a R∗ b is equivalent to the condition that xa = ya

if and only if xb = yb for all x, y ∈ S1. By considering the right regular embedding

of S as a subsemigroup of TS1 , it is easy to see that a R∗ b if and only if a R b in TS1 .

The relation R∗ will always refer to S. For a given preorder ≤l on S we will use L ′

to denote the associated equivalence relation and L ′
a to denote the L ′-class of a. We

use ∧ to denote the meet of L ′-classes with respect to the partial order induced by ≤l ,
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where these meets exist. We state our theorem making use of Greek letters, which will

aid in applicability and reference, when we will use Roman letters for fixed elements

of our semigroup.

Theorem 3.7 Let S be a semigroup and let R ′ and ≤l be binary relations on S. Then

S has a semigroup of straight left I-quotients Q such that

RQ ∩ (S × S) = R ′ and ≤L Q ∩ (S × S) =≤l

if and only if R ′ is a left compatible equivalence relation; ≤l is a preorder such that

the L ′-classes form a meet semilattice under the associated partial order; and S

satisfies Conditions (M1)–(M6).

(M1) For all α, β ∈ S, there exist γ, δ ∈ S such that

γ R ′ δ R ′ δβ = γα and L ′
α ∧ L ′

β = L ′
γα.

(M2) Right multiplication distributes over meet, that is, for all α, β, γ, δ ∈ S,

L ′
α ∧ L ′

β = L ′
γ implies that L ′

αδ ∧ L ′
βδ = L ′

γ δ.

(M3) For all α, β ∈ S, we have that αβ ≤l β.

(M4) R ′ ⊆ R∗.

(M5) Let α, β, γ, δ ∈ S such that γ R ′ γα L ′ α and δ R ′ δβ L ′ β. Then γ L ′ δ if

and only if α R ′ β.

(M6) For all α, β, γ ∈ S, α L ′ β L ′ γα = γβ implies that α = β.

We start the proof of Theorem 3.7 by with the forward implication. We assume that

S has a semigroup of straight left I-quotients, Q, and we put RQ ∩ (S × S) = R ′,

L Q ∩ (S × S) = L ′ and ≤L Q ∩ (S × S) =≤l . From knowledge of Green’s rela-

tions, we know that R ′ is a left congruence on S, and that ≤l is a preorder on S with the

associated equivalence relation, L ′. Using Lemma 3.1, we know that Q/L Q forms

a meet semilattice under ≤L Q . Since S intersects every L Q-class, this means that

S/L ′ forms a meet semilattice under ≤l . We now prove that Properties (M1)–(M6)

hold.

(M1) Let α, β ∈ S. Then α, β ∈ Q and so, by closure under taking of inverses and

multiplication, αβ−1 ∈ Q. Since Q is a semigroup of straight left I-quotients

of S, there exist γ, δ ∈ S such that αβ−1 = γ −1δ with γ R ′ δ. Lemma 3.6 then

gives the result.

(M2) Since Q is an inverse semigroup, we can use Lemma 3.1 to give us that

L ′
α ∧ L ′

β = L ′
γ is equivalent to α−1αβ−1β = γ −1γ . Therefore

(αδ)−1(αδ)(βδ)−1(βδ) = δ−1α−1αδδ−1β−1βδ

= δ−1α−1αβ−1βδ

= δ−1γ −1γ δ

= (γ δ)−1(γ δ).
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Using Lemma 3.1 again, L ′
αδ ∧ L ′

βδ = L ′
γ δ .

(M3) This is true in any semigroup, since Q1αβ ⊆ Q1β.

(M4) Since R ′ = RQ ∩ (S × S) and Q is an oversemigroup of S, then, by definition,

α R ′ β implies that α R∗ β.

(M5) By Lemma 3.3, in an inverse semigroup we have that γ R ′ γα L ′ α implies

that γ −1 RQ α, and similarly δ R ′ δβ L ′ β implies that δ−1 RQ β. Then α R ′ β

implies that γ −1 RQ α RQ β RQ δ−1. We know that γ −1 RQ δ−1 implies that

γ L Q δ, and so γ L ′ δ. The converse is similar.

(M6) Since α and γ are elements in an inverse semigroup, α L ′ γα if and only if

α = γ −1γα. Similarly, β L ′ γβ if and only if β = γ −1γβ. Therefore, γα =

γβ together with α L ′ γα and β L ′ γβ, implies that

α = γ −1γα = γ −1γβ = β.

This proves the forward implication of Theorem 3.7. Note that in the above we only

required that S is embedded in Q to obtain (M2)–(M6); for (M1) we required S to be

a straight left I-order.

We now prove the converse. This will consist of proving that the following construc-

tion, P , yields a semigroup of straight left I-quotients of S, with R ′ = RP ∩ (S × S)

and ≤l =≤L P ∩ (S × S). For the convenience of the reader, we now set up the

‘roadmap’ for the proof.

Roadmap 3.8 Let S be a semigroup with R ′, ≤l and L ′ satisfying the conditions

of Theorem 3.7. Note that by considering (M2) with α = γ , we see that ≤l is right

compatible. Therefore, since L ′ is an equivalence relation associated with a right

compatible preorder, L ′ is a right congruence.

We begin by defining

� = {(a, b) ∈ S × S | a R ′ b}.

We then define an equivalence relation ∼ on �, by

(a, b) ∼ (c, d)

if and only if there exist x, y ∈ S such that

xa = yc, xb = yd, x R ′ xa L ′ a and y R ′ yc L ′ c.

Note that x R ′ y and a L ′ c as a consequence.

We show that this is an equivalence relation in Lemma 3.10. Using [a, b] to denote

the equivalence class of (a, b) under ∼ we then define P = � /∼ and multiplication

on P via the following rule:

[a, b][c, d] = [ua, vd] where u R ′ v R ′ vc = ub and L ′
b ∧ L ′

c = L ′
ub .
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Note that such a u and v exist in S by (M1). We show that P is a semigroup in

Lemma 3.11 and Lemma 3.12 and an inverse semigroup in Lemma 3.14 and Lemma

3.15.

The next step is to show that S embeds into P , by defining φ : S → P by

aφ = [x, xa], where x is an element in S such that x R ′ xa L ′ a. The existence of

such an x is a consequence of (M1) proved in Lemma 3.9. We will prove that this

function is an embedding in Lemma 3.16.

We show that the restriction of RP to (S × S) is R ′ in Lemma 3.17, and that the

restriction of ≤L P to (S × S) is ≤l in Lemma 3.18. Finally, we verify that P is a

semigroup of straight left I-quotients of Sφ in Lemma 3.19.

Now that we have set up the ‘roadmap’, the rest of the section will be the ‘road trip’.

The properties in Theorem 3.7 will be used extensively, so the reader might prefer to

have the list of properties in front of them whilst reading. For the remaining results in

this section, S, R ′, ≤l and L ′ are as described in the conditions of Theorem 3.7, and

�, ∼, P and φ are as described in Roadmap 3.8.

The following technical lemma will provide a few shortcuts as we proceed with the

main proof.

Lemma 3.9 (i) For all a ∈ S, there exists an x ∈ S such that x R ′ xa L ′ a.

(ii) For all a, b, x ∈ S, x R ′ xa L ′ a and a R ′ b together imply that x R ′ xb L ′ b.

(iii) For all x, a ∈ S, we have L ′
xa ∧ L ′

a = L ′
xa .

(iv) For all a, b, x, y ∈ S, a R ′ b and xa L ′ ya together imply that xb L ′ yb.

Proof (i) By applying (M1) with α = β = a, there exists x ∈ S such that x R ′ xa

and L ′
xa = L ′

a ∧ L ′
a = L ′

a .

(ii) Let a, b, x ∈ S such that a R ′ b and x R ′ xa L ′ a. Using the fact that R ′ is a

left congruence, b R ′ a implies that xb R ′ xa R ′ x . By (i), there exists y ∈ S such

that y R ′ yb L ′ b. We can then use (M5), to see that a R ′ b implies that x L ′ y.

Therefore, using the fact that L ′ is a right congruence, xb L ′ yb L ′ b.

(iii) Let x, a ∈ S. By (M3), we know that xa ≤l a, Therefore, by the definition of

meet, we have that L ′
xa ∧ L ′

a = L ′
xa .

(iv) Applying (M1) to xa and ya, there exist w, z ∈ S such that

w R ′ z R ′ zya = wxa and L ′
xa ∧ L ′

ya = L ′
wxa .

Since xa L ′ ya, this gives us

w R ′ wxa L ′ xa and z R ′ zya L ′ ya.

Using the fact that R ′ is a left congruence, we have that a R ′ b implies that both

xa R ′ xb and ya R ′ yb. Therefore we can apply (ii) to both of the above equations

to get

w R ′ wxb L ′ xb and z R ′ zyb L ′ yb.

Also we can apply (M4) to wxa = zya to get wxb = zyb. Therefore xb L ′ wxb =

zyb L ′ yb. ⊓⊔
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Lemma 3.10 The relation ∼ is an equivalence relation on �.

Proof We check the required properties in turn.

Reflexivity Let (a, b) ∈ �. By definition, (a, b) ∼ (a, b) if there exist x, y ∈ S

such that

xa = ya, xb = yb, x R ′ xa L ′ a and y R ′ ya L ′ a.

By Lemma 3.9 (i), there is an x ∈ S such that x R ′ xa L ′ a. Then take y = x to get

reflexivity.

Symmetry Let (a, b) ∼ (c, d). By definition there must exist x, y ∈ S such that

xa = yc, xb = yd, x R ′ xa L ′ a and y R ′ yc L ′ c,

By switching the roles of x and y, we can immediately see that (c, d) ∼ (a, b).

Transitivity Let (a, b) ∼ (c, d). Therefore there exist x, y ∈ S such that

xa = yc, xb = yd, x R ′ xa L ′ a and y R ′ yc L ′ c. (3)

Suppose also that (c, d) ∼ (e, f ). Then there exist w, z ∈ S such that

wc = ze, wd = z f , w R ′ wc L ′ c and z R ′ ze L ′ e. (4)

We need (a, b) ∼ (e, f ). That is, we need X , Y ∈ S such that

Xa = Ye, Xb = Y f , X R ′ Xa L ′ a and Y R ′ Ye L ′ e. (5)

We apply Property (M1) to y and w, to obtain h, k ∈ S such that

h R ′ k R ′ kw = hy and L ′
y ∧ L ′

w = L ′
hy . (6)

We then take X = hx and Y = kz to give us that

Xa = hxa = hyc = kwc = kze = Ye

Xb = hxb = hyd = kwd = kz f = Y f ,

using (3), (6) and (4). Also, since R ′ is a left congruence,

x R ′ xa �⇒ X = hx R ′ hxa = Xa and

z R ′ ze �⇒ Y = kz R ′ kze = Ye.

Using Property (M2) we have that (6) implies that L ′
yc ∧ L ′

wc = L ′
hyc. Hence, using

xa = yc from (3) and wc L ′ c from (4), we have L ′
xa ∧ L ′

c = L ′
hxa . We can then use

(3) to give us a L ′ xa = yc L ′ c, and so L ′
a ∧ L ′

a = L ′
hxa . Therefore Xa L ′ a.
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The last relation needed can be obtained similarly or achieved more directly by

noticing that

e L ′ c L ′ a L ′ Xa = Ye. ⊓⊔

Lemma 3.11 Multiplication in P is well-defined.

Proof Let [a, b], [c, d] ∈ P . From Roadmap 3.8, we have that

[a, b][c, d] = [ua, vd],

where u, v ∈ S are the elements that exist by (M1) such that

u R ′ v R ′ vc = ub and L ′
b ∧ L ′

c = L ′
ub.

We need to show that the product, [a, b][c, d], depends neither upon the choice of

representative for the equivalence class, nor the choice of u and v appearing in the

rule for multiplication. We start with the choice of u and v.

Choice of u and v: Let

u R ′ v R ′ vc = ub and L ′
b ∧ L ′

c = L ′
ub, (7)

so that [a, b][c, d] = [ua, vd]. Also let

s R ′ t R ′ tc = sb and L ′
b ∧ L ′

c = L ′
sb, (8)

so that [a, b][c, d] = [sa, td]. We show that (ua, vd) ∼ (sa, td), which is true exactly

if there exist w, z ∈ S such that

wua = zsa, wvd = ztd, w R ′ wua L ′ ua and z R ′ zsa L ′ sa. (9)

Applying Property (M1) to ua and sa, let w and z be elements such that

w R ′ z R ′ zsa = wua and L ′
ua ∧ L ′

sa = L ′
wua . (10)

Using the fact that a R ′ b, we see that

wua = zsa
(M4)
�⇒ wub = zsb.

Then, as ub = vc and tc = sb from (7) and (8), this gives us wvc = ztc. We then use

c R ′ d to obtain

wvc = ztc
(M4)
�⇒ wvd = ztd.

From (7) and (8), we also see that

L ′
ub = L ′

b ∧ L ′
c = L ′

sb �⇒ ub L ′ sb,

123



V. Gould, G. Schneider

which, together with a R ′ b, implies that ua L ′ sa by Lemma 3.9 (iv). Using the

definition of ∧, along with (9), we then have

L ′
ua = L ′

sa = L ′
ua ∧ L ′

sa = L ′
wua = L ′

zsa .

This gives us the required properties for (ua, vd) ∼ (sa, td).

First Variable Let (a, b) ∼ (ã, b̃). Therefore there exist x, y ∈ S such that

xa = yã, xb = yb̃, x R ′ xa L ′ a and y R ′ yã L ′ ã. (11)

In order to show well-definedness in the first variable, we need that for all [c, d] ∈ P ,

[a, b][c, d] = [ã, b̃][c, d]. With that goal in mind, we apply (M1) to b and c, to get

that there exist u, v ∈ S such that

u R ′ v R ′ vc = ub and L ′
b ∧ L ′

c = L ′
ub. (12)

Therefore [a, b][c, d] = [ua, vd].

Our aim is to first find elements ũ and ṽ which witness [ã, b̃][c, d] = [ũã, ṽd]. We

will then prove that (ua, vd) ∼ (ũã, ṽd). Of course, we could use (M1) applied to b̃

and c, but for our purposes we need to be more careful.

Applying Property (M1) to u and x , we know that there exist s, t ∈ S such that

s R ′ t R ′ tu = sx and L ′
x ∧ L ′

u = L ′
sx . (13)

We take ũ = sy and ṽ = tv.

We want to prove that [ã, b̃][c, d] = [ũã, ṽd]. To prove this, it is sufficient that

ũ R ′ ṽ R ′ ṽc = ũb̃ and that L ′

b̃
∧ L ′

c = L ′

ũb̃
. Substituting letters and rewriting, we

need to prove that

sy R ′ tv R ′ tvc = syb̃ (14)

and

L ′

b̃
∧ L ′

c = L ′

syb̃
. (15)

We start by proving each relation in Equation (14) in turn:

We know that y R ′ x from (11) and u R ′ v from (12). Using the fact that R ′ is a left

congruence, y R ′ x and u R ′ v imply that sy R ′ sx and tu R ′ tv respectively. Then,

as sx = tu from (13), this gives us that sy R ′ tv. Using left compatibility of R ′ again,

v R ′ vc from (12) implies that tv R ′ tvc. Also, using vc = ub, tu = sx , xb = yb̃, we

get

tvc = tub = sxb = syb̃. (16)

We now verify that Equation (15) holds. We can use (M2) to give us

L ′
x ∧ L ′

u = L ′
sx �⇒ L ′

xb ∧ L ′
ub = L ′

sxb.
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Using Lemma 3.9 (ii) we have that a R ′ b implies that x R ′ xb L ′ b. Using xb L ′ b

and L ′
b ∧ L ′

c = L ′
ub, we have

L ′
b ∧ (L ′

b ∧ L ′
c) = L ′

sxb.

Therefore

L ′
b ∧ L ′

c = (L ′
b ∧ L ′

b) ∧ L ′
c = L ′

sxb. (17)

We have that ã R ′ b̃, so that together with y R ′ yã L ′ ã from (11) we may apply

Lemma 3.9 (ii) again to obtain y R ′ yb̃ L ′ b̃. Using (11) we now have b L ′ xb =

yb̃ L ′ b̃. Using this together with xb = yb̃ and (17), we have

L ′

b̃
∧ L ′

c = L ′

syb̃
,

which is (15). Therefore [ã, b̃][c, d] = [syã, tvd].

Using xa = yã from (11), this also means that [ã, b̃][c, d] = [sxa, tvd]. Therefore,

in order to have well-definedness in the first variable, one needs (ua, vd) ∼ (sxa, tvd).

This is true exactly if there exist w, z ∈ S such that

wua = zsxa, wvd = ztvd, w R ′ wua L ′ ua and z R ′ zsxa L ′ sxa.

Applying Property (M1) to ua and sxa, take w and z to be elements in S such that

w R ′ z R ′ zsxa = wua and L ′
ua ∧ L ′

sxa = L ′
wua . (18)

Since a R ′ b, we know that wua = zsxa implies wub = zsxb by (M4). We then use

sxb = tvc from (16) and ub = vc from (12) to obtain wvc = ztvc. And therefore,

using (M4) again, c R ′ d implies that wvd = ztvd.

Using Property (M2), L ′
x ∧ L ′

u = L ′
sx implies that L ′

xa ∧ L ′
ua = L ′

sxa . We then use

xa L ′ a from (11) and Lemma 3.9 (iii), to get

L ′
xa ∧ L ′

ua = L ′
sxa �⇒ L ′

a ∧ L ′
ua = L ′

sxa �⇒ L ′
ua = L ′

sxa .

We then compare this with L ′
ua ∧ L ′

sxa = L ′
wua from (18) to obtain L ′

ua = L ′
wua .

Lastly, sxa L ′ ua L ′ wua = zsxa. Altogether, this proves that

(ua, vd) ∼ (sxa, tvd) = (ũã, ṽd).

Second Variable Let (c, d) ∼ (c̃, d̃). Therefore there exist x, y ∈ S such that

xc = yc̃, xd = yd̃, x R ′ xc L ′ c and y R ′ yc̃ L ′ c̃. (19)

In order to show well-definedness in the second variable, we need that for all [a, b] ∈ P

we have the equality [a, b][c, d] = [a, b][c̃, d̃]. With that goal in mind, given [a, b] ∈
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P , we apply (M1) to b and c, to get that there exists u, v ∈ S such that

u R ′ v R ′ vc = ub and L ′
b ∧ L ′

c = L ′
ub, (20)

so that [a, b][c, d] = [ua, vd].

Our aim is to find elements ũ and ṽ which witness [a, b][c̃, d̃] = [ũa, ṽd̃]. We will

then prove that (ua, vd) ∼ (ũa, ṽd̃).

Applying Property (M1) to v and x , we know that there exist p, q ∈ S such that

p R ′ q R ′ qx = pv and L ′
v ∧ L ′

x = L ′
pv. (21)

We take ũ = pu and ṽ = qy.

We want to prove that [a, b][c̃, d̃] = [ũa, ṽd̃]. To prove this, it is sufficient that

ũ R ′ ṽ R ′ ṽc̃ = ũb and L ′
b ∧ L ′

c̃ = L ′
ũb. (22)

Rewriting this, we need to prove that

pu R ′ qy R ′ qyc̃ = pub (23)

and

L ′
b ∧ L ′

c̃ = L ′
pub. (24)

We start by proving each relation in Equation (23) in turn

We know that u R ′ v from (20) and that x R ′ y from (19). Using the fact that R ′ is

a left congruence, u R ′ v and x R ′ y imply that pu R ′ pv and qx R ′ qy respectively.

Then, since pv = qx from (21), this gives us that pu R ′ qy. Using left compatibility

of R ′ again, u R ′ ub from (20) implies that pu R ′ pub. Also, using ub = vc from

(20), pv = qx from (21), and xc = yc̃ from (19), we get

pub = pvc = qxc = qyc̃. (25)

We now prove Equation (24). Using (M2) applied to (21), we have

L ′
v ∧ L ′

x = L ′
pv �⇒ L ′

vc ∧ L ′
xc = L ′

pvc.

We use L ′
b ∧ L ′

c = L ′
vc from (20) and xc L ′ c from (19) to get

(L ′
b ∧ L ′

c) ∧ L ′
c = L ′

pvc.

Therefore

L ′
b ∧ L ′

c = L ′
b ∧ (L ′

c ∧ L ′
c) = L ′

pvc.
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We apply c L ′ xc = yc̃ L ′ c̃ from (19) and ub = vc from (20) to get

L ′
b ∧ L ′

c̃ = L ′
pub.

This concludes the verification of Equations (23) and (24), so that using (19)

[a, b][c̃, d̃] = [pua, qyd̃] = [pua, qxd].

Therefore, in order to have well-definedness in the second variable, one needs

(ua, vd) ∼ (pua, qxd). This is true exactly if there exist w, z ∈ S such that

wua = zpua, wvd = zqxd, w R ′ wua L ′ ua and z R ′ zpua L ′ pua.

Applying Property (M1) to ua and pua, take w and z to be elements in S such that

w R ′ z R ′ zpua = wua and L ′
ua ∧ L ′

pua = L ′
wua . We use pub = qxc from (25) and

ub = vc from (20), along with a R ′ b and c R ′ d, to obtain

wua = zpua
(M4)
�⇒ wub = zpub �⇒ wvc = zqxc

(M4)
�⇒ wvd = zqxd.

Using Property (M2), L ′
v ∧ L ′

x = L ′
pv implies that L ′

vc ∧ L ′
xc = L ′

pvc. We then use

xc L ′ c from (19) and Lemma 3.9 (iii), to get

L ′
vc ∧ L ′

xc = L ′
pvc �⇒ L ′

vc ∧ L ′
c = L ′

pvc �⇒ L ′
vc = L ′

pvc �⇒ L ′
ub = L ′

pub.

We apply Lemma 3.9 (iv) to ub L ′ pub and a R ′ b to obtain ua L ′ pua. Therefore

L ′
wua = L ′

ua ∧ L ′
pua = L ′

ua . Finally, pua L ′ ua L ′ wua = zpua, which gives us all

the necessary conditions for (ua, vd) ∼ (pua, qxd) = (ũa, ṽd̃).

Note that by using well-definedness in the first variable and well-definedness in the

second variable together, we can see that for (a, b) ∼ (ã, b̃) and (c, d) ∼ (c̃, d̃), we

get

(a, b)(c, d) ∼ (ã, b̃)(c, d) ∼ (ã, b̃)(c̃, d̃).

Therefore, by transitivity, this multiplication is well-defined. ⊓⊔

Lemma 3.12 Multiplication in P is associative.

Proof Let [a, b], [c, d], [e, f ] ∈ P .

Applying Property (M1) to b and c, we choose u, v ∈ S satisfying

u R ′ v R ′ vc = ub and L ′
b ∧ L ′

c = L ′
ub. (26)

This gives us that [a, b][c, d] = [ua, vd]. Similarly, we choose p, q ∈ S satisfying

p R ′ q R ′ qe = pd and L ′
d ∧ L ′

e = L ′
pd . (27)
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Then [c, d][e, f ] = [pc, q f ].

Applying Property (M1) to v and p, we know that there exist i, j ∈ S such that

i R ′ j R ′ j p = iv and L ′
v ∧ L ′

p = L ′
iv. (28)

We want to prove that

([a, b][c, d])[e, f ] = [ua, vd][e, f ] = [i(ua), ( jq) f ], (29)

and that

[a, b]([c, d][e, f ]) = [a, b][pc, q f ] = [(iu)a, j(q f )]. (30)

This would prove associativity.

In order to prove (29), we need

i R ′ jq R ′ jqe = ivd (31)

and

L ′
vd ∧ L ′

e = L ′
ivd . (32)

We start by proving each relation in Equation (31).

Since R ′ is a left congruence, q R ′ p implies that jq R ′ j p, which in turn is R ′-

related to i . Using again the left compatibility of R ′, we see that q R ′ qe implies that

jq R ′ jqe. Also, using qe = pd and j p = iv, we see that jqe = j pd = ivd.

We now prove Equation (32). We apply (M2) to L ′
v ∧ L ′

p = L ′
iv to give us that

L ′
vd ∧ L ′

pd = L ′
ivd . And so, using L ′

d ∧ L ′
e = L ′

pd and Lemma 3.9 (iii), we have

L ′
vd ∧ L ′

pd = L ′
ivd �⇒ L ′

vd ∧ (L ′
d ∧ L ′

e) = L ′
ivd

�⇒ (L ′
vd ∧ L ′

d) ∧ L ′
e = L ′

ivd

�⇒ L ′
vd ∧ L ′

e = L ′
ivd .

We now have proved both (31) and (32), which together gives us (29).

In order to prove (30), we need

iu R ′ j R ′ j pc = iub (33)

and

L ′
b ∧ L ′

pc = L ′
iub. (34)

We start by proving each relation in Equation (33).

Since R ′ is a left congruence, u R ′ v implies that iu R ′ iv, which in turn is R ′-

related to j . Using again the left compatibility of R ′, we see that c R ′ d implies that
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j pc R ′ j pd and p R ′ pd implies that j p R ′ j pd. Therefore j R ′ j p R ′ j pd R ′ j pc.

Also, using ub = vc and iv = j p, we see that iub = ivc = j pc.

We now prove Equation (34). We apply (M2) to L ′
v ∧ L ′

p = L ′
iv to give us that

L ′
vc ∧ L ′

pc = L ′
ivc. And so, using L ′

b ∧ L ′
c = L ′

vc and Lemma 3.9 (iii), we have

L ′
vc ∧ L ′

pc = L ′
ivc �⇒ (L ′

b ∧ L ′
c) ∧ L ′

pc = L ′
iub

�⇒ L ′
b ∧ (L ′

c ∧ L ′
pc) = L ′

iub

�⇒ L ′
b ∧ L ′

pc = L ′
iub.

We have now proved both (33) and (34), which together gives us (30), finishing the

proof. ⊓⊔

We have now established that P is a semigroup. The next lemma provides a couple

of useful shortcuts to help in later stages.

Lemma 3.13 The following statements are true in P:

(i) [a, a] = [b, b] if and only if a L ′ b;

(ii) [a, b][b, a] = [a, a].

Proof (i) We know that [a, a] = [b, b] if and only if there exist w, z ∈ S such that

wa = zb, w R ′ wa L ′ a and z R ′ zb L ′ b. (35)

Let [a, a] = [b, b]. Therefore there exist w, z ∈ S satisfying (35). Hence a L ′ wa =

zb L ′ b.

Conversely let a L ′ b. Applying (M1) to a and b, there exist w, z ∈ S such that

w R ′ z R ′ zb = wa and L ′
a ∧ L ′

b = L ′
wa Therefore, since a L ′ b, we have L ′

wa =

L ′
a ∧ L ′

b = L ′
a , and consequently zb = wa L ′ a L ′ b. Comparing with (35), we see

that [a, a] = [b, b].

(i i)By Lemma 3.9 (i), there exists y ∈ S such that y R ′ yb L ′ b. By comparing with

the definition of multiplication in Roadmap 3.8, we see that [a, b][b, a] = [ya, ya].

Since a R ′ b, Lemma 3.9 (ii) gives us that y R ′ ya L ′ a. So by (i), [a, b][b, a] =

[a, a]. ⊓⊔

Lemma 3.14 The semigroup P is regular.

Proof Let [a, b] ∈ P . By Lemma 3.13 (ii), [a, b][b, a][a, b] = [a, a][a, b]. By

Lemma 3.9 (i), there exists y ∈ S such that y R ′ ya L ′ a. Therefore, by our defi-

nition of multiplication, [a, a][a, b] = [ya, yb].

We want to prove that (a, b) ∼ (ya, yb). That is there exist w, z ∈ S such that

wa = zya, wb = zyb, w R ′ wa L ′ a and z R ′ zya L ′ ya.

Applying Property (M1) to a and ya, there exist w, z ∈ S such that

w R ′ z R ′ zya = wa and L ′
a ∧ L ′

ya = L ′
wa .
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We use (M4) to give us that wa = zya implies wb = zyb. We can also use a L ′ ya

to give us that L ′
wa = L ′

a ∧ L ′
ya = L ′

a . Therefore a L ′ ya L ′ wa = zya.

So we have that [a, b][b, a][a, b] = [a, b]. Therefore P is regular. ⊓⊔

Note that, in the exactly same way, [b, a][a, b][b, a] = [b, a]. Therefore [b, a] ∈

V ([a, b]).

Lemma 3.15 The semigroup P is an inverse semigroup, with semilattice of idempo-

tents

E(P) = {[a, a] : a ∈ S}

and the inverse of [a, b] given by [a, b]−1 = [b, a].

Proof We start by identifying the idempotents of P . For any [a, a] ∈ P it is easy to

see, using (M1), that [a, a] ∈ E(P).

Let [a, b] ∈ P be an idempotent, so that [a, b][a, b] = [a, b]. We know that

[a, b][a, b] = [ua, vb], where u and v are the elements that exist by (M1) such that

u R ′ v R ′ va = ub and L ′
a ∧ L ′

b = L ′
ub .

Consequently we know that (a, b) ∼ (ua, vb). Therefore there exist w, z ∈ S such

that

wa = zua, wb = zvb, w R ′ wa L ′ a, z R ′ zua L ′ ua.

By Lemma 3.9 (ii) we have that a R ′ b implies that w R ′ wb L ′ b. Also, by applying

(M4) to both wb = zvb and wa = zua and using va = ub, we have

wa
(M4)
= zva = zub

(M4)
= wb.

Therefore a L ′ wa = wb L ′ b. We then apply Property (M6) to give us a = b.

Therefore E(P) is as given in the statement.

We now prove that idempotents commute. Let [a, a], [b, b] ∈ E(P). Applying

Property (M1) to a and b, we choose u and v such that [a, a][b, b] = [ua, vb], where

u R ′ v R ′ vb = ua and L ′
a ∧ L ′

b = L ′
ua .

By inspection we can see that v and u satisfy the necessary properties for

[b, b][a, a] = [vb, ua]. And so we see that, since ua = vb, we have

[a, a][b, b] = [ua, vb] = [vb, ua] = [b, b][a, a].

Therefore the idempotents of P commute. Since P is also regular, this means that P

is an inverse semigroup.

Moreover since [b, a] ∈ V ([a, b]), we easily see that [a, b]−1 = [b, a] for all

[a, b] ∈ P . ⊓⊔
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We now prove that S embeds into P . We do this by defining a function φ : S → P ,

by aφ = [x, xa], where x is the element such that x R ′ xa L ′ a, that exists by Lemma

3.9 (i). Note that [x, xa] ∈ P .

Lemma 3.16 The function φ is an embedding.

Proof Again we must proceed in stages.

Well-defined Let x R ′ xa L ′ a and let y R ′ ya L ′ a. By our definition, this means

that aφ = [x, xa] and that aφ = [y, ya]. Therefore, in order to prove that φ is well-

defined, we need to prove that (x, xa) ∼ (y, ya). This is true exactly if there exist

w, z ∈ S such that

wx = zy, wxa = zya, w R ′ wx L ′ x and z R ′ zy L ′ y.

Applying Property (M1) to x and y, we take w and z to be elements in S such

that w R ′ z R ′ wx = zy and L ′
x ∧ L ′

y = L ′
wx . Trivially, wxa = zya. Using (M5),

x R ′ xa L ′ a and y R ′ ya L ′ a implies that x L ′y. Therefore

L ′
wx = L ′

x ∧ L ′
y = L ′

x .

For the last necessary property, we notice y L ′ x L ′ wx = zy.

Homomorphism Let a, b ∈ S, and let x, y ∈ S such that x R ′ xa L ′ a and

y R ′ yb L ′ b. Therefore, by definition, aφ = [x, xa] and bφ = [y, yb]. Then

(aφ)(bφ) = [x, xa][y, yb] = [ux, vyb] = [ux, uxab],

where u and v are the elements that exist by (M1) such that

u R ′ v R ′ vy = uxa and L ′
xa ∧ L ′

y = L ′
uxa .

We want to prove that this is equal to (ab)φ.

Using the fact that R ′ is a left congruence, we have that yb R ′ y implies that

vyb R ′ vy, and xa R ′ x implies that uxa R ′ ux . Therefore

uxab = vyb R ′ vy = uxa R ′ ux .

We use xa L ′ a to obtain L ′
a ∧ L ′

y = L ′
uxa . We can then apply Property (M2) to

L ′
a ∧ L ′

y = L ′
uxa to give us that L ′

ab ∧ L ′
yb = L ′

uxab. Using yb L ′ b, this means that

L ′
ab ∧ L ′

b = L ′
uxab. We can then apply Lemma 3.9 (iii) to give us ab L ′ uxab.

By the definition of φ, since ux R ′ uxab L ′ ab, this means that

(ab)φ = [ux, uxab] = (aφ)(bφ).

Injective Let a, b ∈ S such that aφ = bφ. Therefore, choosing x and y such that

x R ′ xa L ′ a and y R ′ yb L ′ b, we have that [x, xa] = [y, yb]. This means there
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exist w, z ∈ S such that

wx = zy, wxa = zyb, w R ′ wx L ′ x and z R ′ zy L ′ y.

Therefore, using the fact that L ′ is a right congruence, we have that x L ′ wx implies

that xa L ′ wxa. Consequently, a L ′ xa L ′ wxa. Similarly, y L ′ zy implies that

yb L ′ zyb. And so, b L ′ yb L ′ zyb = wxb, using zy = wx in the last equality.

Therefore, we can apply Property (M6) giving us that a L ′ wxa = wxb L ′ b implies

that a = b. ⊓⊔

Lemma 3.17 Let a, b ∈ S. Then a R ′ b if and only if aφ RP bφ.

Proof We have already proved that P is an inverse semigroup, so aφ RP bφ if and

only if (aφ)(aφ)−1 = (bφ)(bφ)−1.

Let x R ′ xa L ′ a and y R ′ yb L ′ b, so that aφ = [x, xa] and bφ = [y, yb]. Then

(aφ)(aφ)−1 = [x, xa][xa, x] = [x, x], by Lemmas 3.15 and 3.13 (ii). Similarly

(bφ)(bφ)−1 = [y, yb][yb, b] = [y, y].

Therefore aφ RP bφ if and only if (x, x) ∼ (y, y), which is true if and only if

x L ′ y, using Lemma 3.13 (i). We then use (M5) to give us that this is equivalent to

a R ′ b. ⊓⊔

Lemma 3.18 Let a, b ∈ S. Then a ≤l b if and only if aφ ≤L P bφ.

Proof We have already proved that P is an inverse semigroup, so aφ ≤L P bφ if and

only if aφ = (aφ)(bφ)−1(bφ).

Let x R ′ xa L ′ a and y R ′ yb L ′ b, so that aφ = [x, xa] and bφ = [y, yb]. Using

Lemma 3.13, we have (bφ)−1(bφ) = [yb, y][y, yb] = [yb, yb] = [b, b]. Therefore

(aφ)(bφ)−1(bφ) = [x, xa][b, b] = [ux, vb],

where u and v are the elements that exist by (M1) such that

u R ′ v R ′ vb = uxa and L ′
xa ∧ L ′

b = L ′
uxa .

Note that since xa L a, this means that L ′
a ∧ L ′

b = L ′
uxa .

We use vb = uxa to give us that (aφ)(bφ)−1(bφ) = [ux, uxa]. It follows that

aφ ≤L P bφ if and only if (x, xa) ∼ (ux, uxa), which is true exactly if there exist

w, z ∈ S such that

wx = zux, wxa = zuxa, w R ′ wx L ′ x and z R ′ zux L ′ ux . (36)

We know that x R ′ xa, and so ux R ′ uxa as R ′ is a left congruence. Therefore we

can use Lemma 3.9 (ii) to rewrite (36) to the equivalent expression (37). That is,

aφ ≤L P bφ if and only if there exist w, z ∈ S such that

wx = zux, wxa = zuxa, w R ′ wxa L ′ xa and z R ′ zuxa L ′ uxa. (37)
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Let aφ ≤L P bφ, i.e. let w and z exist in S such that (37) is satisfied. We see that

uxa L ′ zuxa = wxa L ′ xa L ′ a. Therefore L ′
a ∧ L ′

b = L ′
uxa = L ′

a . By definition

this means that a ≤l b.

On the other hand, let a ≤l b. By definition L ′
a ∧ L ′

b = L ′
a . Therefore

L ′
uxa = L ′

a ∧ L ′
b = L ′

a = L ′
xa .

Applying Property (M1) to xa and uxa, there exist w, z ∈ S such that

w R ′ z R ′ zuxa = wxa and L ′
uxa ∧ L ′

xa = L ′
wxa .

Using x R ′ xa, we know that zuxa = wxa implies that zux = wx by (M4).

Using the fact that uxa L ′ xa, we see that L ′
wxa = L ′

uxa ∧ L ′
xa = L ′

xa . Therefore

uxa L ′ xa L ′ wxa = zuxa. This gives us (37), and so aφ ≤L P bφ. ⊓⊔

Lemma 3.19 The semigroup P is a semigroup of straight left I-quotients of Sφ.

Proof Let [a, b] ∈ P . Note that a, b ∈ S with a R ′ b.

Let x R ′ xa L ′ a and y R ′ yb L ′ b, so that aφ = [x, xa] and bφ = [y, yb]. By

Lemma 3.17, aφ RP bφ. We have

(aφ)−1(bφ) = [xa, x][y, yb] = [uxa, vyb],

where u and v are the elements that exist by (M1) such that

u R ′ v R ′ vy = ux and L ′
x ∧ L ′

y = L ′
ux .

We want to prove that (aφ)−1(bφ) = [a, b].

We see that (a, b) ∼ (uxa, vyb) exactly if there exist w, z ∈ S such that

wa = zuxa, wb = zvyb, w R ′ wa L ′ a and z R ′ zuxa L ′ uxa.

Applying Property (M1) to a and uxa, we know that there exist w, z ∈ S such that

w R ′ z R ′ zuxa = wa and L ′
a ∧ L ′

uxa = L ′
wa .

We see that wa = zuxa implies wb = zuxb by (M4), and therefore, since ux = vy

we have wb = zvyb. We use Property (M5) to get that a R ′ b implies x L ′y, and

therefore L ′
ux = L ′

x ∧ L ′
y = L ′

x . We then use the fact that L ′ is a right congruence to

give us that ux L ′ x implies uxa L ′ xa L ′ a. Therefore L ′
wa = L ′

a ∧ L ′
uxa = L ′

a , and

so zuxa = wa L ′ a L ′ uxa. This gives us [a, b] = (aφ)−1(bφ), where aφ RP bφ.

⊓⊔

The proof of Theorem 3.7 is now complete.

123



V. Gould, G. Schneider

4 Right ample straight left I-orders

The aim of this section is to give two applications of Theorem 3.7 to new classes of

semigroups. We could, of course, apply it to describe left I-orders in some classes of

semigroups, such as primitive inverse semigroups, that have already been considered,

but we refer the reader to the thesis of the second author [23] for those arguments.

In this work we have already seen the importance of the relation R∗, introduced

in Sect. 3. The dual relation is denoted by L ∗. In fact, L ∗ is the (right compatible)

equivalence relation associated with the (right compatible) preorder ≤L ∗ , where for

a, b ∈ S we have that a ≤L ∗ b if and only if for all x, y ∈ S1, if bx = by then

ax = ay. The latter condition is equivalent to a ≤L b in some oversemigroup of S.

Of course a dual statement is true for R∗ but we do not explicitly need that here. We

remark that as for R∗, the relations L ∗ and ≤L ∗ will always refer to S itself.

A semigroup for which E(S) is a semilattice and every element is R∗-related to an

idempotent is said to be left adequate. Right adequate semigroups are defined dually,

and a semigroup is adequate if it is right and left adequate. Notice that if S is left (right)

adequate, then a ∈ S is R∗-related (L ∗-related) to a unique idempotent, which we

denote by a+ (a∗). Right, left and (two-sided) adequate semigroups are potential

analogues of inverse semigroups. It transpires that for the closest connections with

inverse semigroups, we need some control on moving idempotents in products, as

witnessed by the following definition.

Definition 4.1 A left adequate semigroup is left ample if for all a, b ∈ S we have

ab+ = (ab)+a.

Right ample semigroups are defined dually, and a semigroup is ample if it is both right

and left ample.

It is easy to see that an inverse semigroup is ample, with a+ = aa−1 and a∗ = a−1a.

Moreover, if S is a subsemigroup of an inverse semigroup Q in a way that preserves
+, that is, it is as a unary subsemigroup of Q, then S is left ample, with the dual and

two-sided statements also holding. The precise relationship between one- and two-

sided ample semigroups and inverse semigroups is complex. It is worth noting that an

ample semigroup S may not be embeddable into an inverse semigroup in such a way

that preserves both + and ∗. We refer the reader to [15] for further details.

In [9] a characterisation was given of a particular kind of left ample straight left

I-orders. In this section, we characterise right ample and (two-sided) ample straight

left I-orders, sitting as unary and bi-unary subsemigroups of their semigroups of I-

quotients, as an application of Theorem 3.7. Note that not every right ample left I-order

is straight. It is easy to see that the left I-order given in Example 2.6 is a left cancellative

monoid, which is easily seen to be right ample.

We start with four useful lemmas. The first follows from the well-known fact that

the restriction of ≤L to regular elements is exactly ≤L ∗ .

Lemma 4.2 Let S be a semigroup and let e, f ∈ E(S). Then e ≤L f if and only if

e ≤L ∗ f .
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Lemma 4.3 Let S be a semigroup such that E(S) is a semilattice. Then the L ∗-

classes of idempotents form a meet semilattice under the induced partial order on

S/L ∗. Moreover, for e, f ∈ E(S) we have L∗
e ∧ L∗

f = L∗
e f .

Proof Since ≤L ⊆ ≤L ∗ we certainly have e f ≤L ∗ e, f .

Now let h ∈ S such that h ≤L ∗ e, f . As e1 = ee we have h = h1 = he and

similarly h = h f , so that h = he f ≤L e f and hence h ≤L ∗ e f . The result follows. ⊓⊔

We give some elementary properties of right ample semigroups. The duals of these

properties apply to left ample semigroups.

Lemma 4.4 Let S be a right ample semigroup. Then for all a, b ∈ S:

(i) aa∗ = a;

(ii) (ab)∗ = (a∗b)∗;

(iii) b∗ = (ab)∗ if and only if b = a∗b.

Proof Claim (i) follows similarly to the argument in Lemma 4.3; (ii) uses the fact that

L ∗ is a right congruence. For (iii), let b∗ = (ab)∗. Then, using the ample condition,

b = bb∗ = b(ab)∗ = a∗b.

Conversely, let b = a∗b. Then, applying ∗ to both sides,

b∗ = (a∗b)∗ = (ab)∗,

using (ii) in the last equality. ⊓⊔

Lemma 4.5 Let S be a right ample subsemigroup of an inverse semigroup Q. Then S

is embedded as a unary semigroup into Q if and only if L Q ∩ (S × S) = L ∗.

Proof For any a, b ∈ S we have a L ∗ b if and only if a∗ = b∗. Further, a L Q b if

and only if a−1a = b−1b. The statement follows. ⊓⊔

4.1 Right ample straight left I-orders

The aim of this subsection is to prove the following theorem.

Theorem 4.6 Let S be a right ample semigroup and let R ′ be a binary relation on S.

Then S has a semigroup of straight left I-quotients Q, such that S is embedded in Q

as a unary semigroup and RQ ∩ (S × S) = R ′, if and only if R ′ is a left congruence

on S such that S satisfies Conditions (A1)–(A3).

(A1) For all α, β ∈ S, there exist γ, δ ∈ S such that γ R ′ δ R ′ δβ = γα and αβ∗ =

γ ∗α.

(A2) For all α, β, γ ∈ S, γα R ′ γβ implies that γ ∗α R ′ γ ∗β.

(A3) R ′ ⊆ R∗.

To prove this we will apply Theorem 3.7. In order to apply Theorem 3.7, we must

find ≤L Q and the associated meet.
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Lemma 4.7 Let S be a right ample semigroup embedded as a unary semigroup into

an inverse semigroup Q. Then for all a, b, c, x ∈ S,

(i) a ≤L Q b if and only if a∗ = a∗b∗ if and only if a ≤L ∗ b;

(ii) La ∧ Lb = Lc if and only if c∗ = a∗b∗; and

(iii) La ∧ Lb = Lxa if and only if ab∗ = x∗a.

Proof First recall that since S is embedded in Q in such a way that ∗ is preserved, we

have that for all a ∈ S, a∗ = a−1a.

(i) By Lemma 4.2, a∗ ≤ b∗, a∗ ≤L Q b∗ and a∗ ≤L ∗ b∗ are all equivalent. The

result is then obtained by noticing that a L ∗ a∗ and a L Q a∗.

(ii) Using (i), we can see that the poset Q/L is order isomorphic to Q/L ∗. There-

fore La ∧ Lb = Lc if and only if L∗
a ∧ L∗

b = L∗
c , which is true exactly when

L∗
a∗ ∧ L∗

b∗ = L∗
c∗ . By Lemma 4.3, we know that L∗

a∗ ∧ L∗
b∗ = L∗

a∗b∗ . Therefore

L∗
a∗ ∧ L∗

b∗ = L∗
c∗ if and only if c∗ = a∗b∗.

(iii) Let La ∧ Lb = Lxa . Therefore, by (ii), we have a∗b∗ = (xa)∗. Then, using

Lemma 4.4,

ab∗ = aa∗b∗ = a(xa)∗ = x∗a.

On the other hand let ab∗ = x∗a. Then, again using Lemma 4.4,

(xa)∗ = (x∗a)∗ = (ab∗)∗ = (a∗b∗)∗ = a∗b∗,

and so by (ii), we have La ∧ Lb = Lxa . ⊓⊔

We now prove Theorem 4.6.

Proof We consider the forward implication first. Let S be a right ample straight

left I-order in Q, such that S is embedded in Q as a unary semigroup, and let

R ′ = RQ ∩ (S × S). We know that R ′ is a left congruence and that therefore

γα R ′ γβ implies that γ −1γα R ′ γ −1γβ, so (A2) is satisfied. Using Theorem 3.7,

we know that (M1) and (M4) are satisfied, which are exactly (A1) and (A3) respec-

tively, using Lemma 4.7 (iii).

We will prove the converse by proving each property in Theorem 3.7 with

≤l =≤L ∗ , so that L ′ = L ∗. Using the fact that a L ∗ a∗ for all a ∈ S along

with Lemma 4.2, we see that a ≤l b if and only if a∗b∗ = a∗, for a, b,∈ S. We

already know that ≤L ∗ is a right compatible preorder. By Lemma 4.3, we know that

L∗
a∗ ∧ L∗

b∗ = L∗
a∗b∗ . Therefore, using the fact that there is a unique idempotent in

each L ∗-class, we have that

L∗
a ∧ L∗

b = L∗
c if and only if c∗ = a∗b∗.

We will now prove (M1)–(M6) with ≤l =≤L ∗ in order to satisfy the conditions of

Theorem 3.7.
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(M1) Let α, β ∈ S. Applying Property (A1), there exist γ, δ ∈ S such that

γ R ′ δ R ′ δβ = γα and αβ∗ = γ ∗α. We can use Lemma 4.4 (ii), along with

αβ∗ = γ ∗α to obtain

(γ α)∗ = (γ ∗α)∗ = (αβ∗)∗ = (α∗β∗)∗ = α∗β∗.

Therefore L∗
α ∧ L∗

β = L∗
γα .

(M3) By definition, we know that αβ ≤L ∗ β.

(M2) Let L∗
α ∧ L∗

β = L∗
γ . Then γ ∗ = α∗β∗. Also, let δ ∈ S. We use the ample

condition twice, to get

δ(αδ)∗(βδ)∗ = α∗δ(βδ)∗ = α∗β∗δ.

Therefore, using Lemma 4.4 (ii),

(α∗β∗δ)∗ = (δ(αδ)∗(βδ)∗)∗ = (δ∗(αδ)∗(βδ)∗)∗ = δ∗(αδ)∗(βδ)∗. (38)

Also, since αδ ≤l δ by (M3), we have that

δ∗(αδ)∗ = (αδ)∗. (39)

Lastly, using Lemma 4.4 (ii),

(γ δ)∗ = (γ ∗δ)∗ = (α∗β∗δ)∗. (40)

Putting all this together,

(γ δ)∗
(40)
= (α∗β∗δ)∗

(38)
= δ∗(αδ)∗(βδ)∗

(39)
= (αδ)∗(βδ)∗,

which gives us that L∗
αδ ∧ L∗

βδ = L∗
γ δ .

(M4) This is Property (A3).

(M5) Let γ R ′ γα L ∗ α and let δ R ′ δβ L ∗ β. We have that γ γ ∗ = γ R ′ γα. There-

fore we can use Property (A2) to obtain γ ∗ = γ ∗γ ∗ R ′ γ ∗α. We also have that

γα L ∗ α, and so (γ α)∗ = α∗. By Lemma 4.4 (iii) this is equivalent to α = γ ∗α.

Similarly δ∗ R ′ δ∗β and β = δ∗β.

Let γ L ∗ δ, and so γ ∗ = δ∗. Therefore α = γ ∗α R ′ γ ∗ = δ∗ R ′ δ∗β = β.

Conversely, let α R ′ β. We see that γ ∗ R ′ γ ∗α = α R ′ β = δ∗β R ′ δ∗, and

therefore using (A3), γ ∗ R∗ δ∗. We know that since E(S) is a semilattice, there

can only be one idempotent in each R∗-class, and so γ ∗ = δ∗.

(M6) Let α L ∗ β L ∗ γα L ∗ γβ and let γα = γβ. We have that

α∗ = β∗ = (γ α)∗ = (γβ)∗,

and so we can use Lemma 4.4 (iii) to give us that α = γ ∗α and β = γ ∗β. We

then use the fact that γ L ∗ γ ∗, to give us that γα = γβ implies that γ ∗α = γ ∗β,

and therefore α = β.
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Therefore, S with ≤l =≤L ∗ satisfies the conditions of Theorem 3.7 and we can

apply Theorem 3.7 to give us that S has a semigroup of straight left I-quotients, Q, such

that RQ ∩(S×S) = R ′ and ≤L Q ∩ (S×S) =≤L ∗ . Therefore L Q ∩(S×S) = L ∗,

and so by Lemma 4.5, S is embedded in Q as a unary semigroup. ⊓⊔

4.2 Two-sided ample left I-orders

Finally we consider (two-sided) ample semigroups as left I-orders. Here we have a

pleasing description much more reminiscent of the Ore result describing classical left

orders in groups.

Corollary 4.8 Let S be an ample semigroup. Then S has a semigroup of left I-quotients

Q such that S is a bi-unary subsemigroup of Q, if and only if for all b, c ∈ S, there

exist u, v ∈ S such that

ub = vc, u+ = v+ = (vc)+ and bc∗ = u∗b. (⋆)

Proof We first consider the forward implication. Let S be bi-unary subsemigroup of

an inverse semigroup Q such that Q is a semigroup of left I-quotients of S. We know

that a RQ b if and only if a+ = b+ and a L Q b if and only if a∗ = b∗. By Lemma

2.4 of [11], we know that S is straight in Q. Therefore, by Theorem 4.6, Property (A1)

is satisfied. Therefore (⋆) is satisfied.

For the backward implication, we aim to apply Theorem 4.6 with R ′ = R∗. That

is, a R ′ b if and only if a+ = b+. Note that R∗ is a left congruence. We now prove

Properties (A1)–(A3).

(A1) Satisfied since (⋆) is assumed.

(A2) Let xa R∗ xb. This means

(xa)+ = (xb)+.

We apply the dual of Lemma 4.4 (ii) to get

(xa+)+ = (xb+)+.

Right multiplying this by x gives us

(xa+)+x = (xb+)+x .

We then apply the left ample property to give us

xa+ = xb+.

By the definition of L ∗, we know that x L ∗ x∗. Therefore, the above equation

implies that

x∗a+ = x∗b+.
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Therefore, applying + to both sides, we have

(x∗a+)+ = (x∗b+)+.

Then, the dual of Lemma 4.4 (ii) gives us

(x∗a)+ = (x∗b)+,

and so x∗a R∗ x∗b.

(A3) R ′ = R∗.

Therefore, Theorem 4.6 gives us that S has a straight left I-order Q such that ∗ is

preserved and RQ ∩ (S × S) = R∗. Therefore, by the dual of Lemma 4.5, + is also

preserved. ⊓⊔
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