
This is a repository copy of A robust approach to heteroskedasticity, error serial correlation
and slope heterogeneity in linear models with interactive effects for large panel data.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/186330/

Version: Published Version

Article:

Cui, Guowei, Hayakawa, Kazuhiko, Nagata, Shuichi et al. (1 more author) (2022) A robust 
approach to heteroskedasticity, error serial correlation and slope heterogeneity in linear 
models with interactive effects for large panel data. Journal of Business and Economic 
Statistics. ISSN 0735-0015 

https://doi.org/10.1080/07350015.2022.2077349

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ubes20

Journal of Business & Economic Statistics

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ubes20

A Robust Approach to Heteroscedasticity, Error
Serial Correlation and Slope Heterogeneity in
Linear Models with Interactive Effects for Large
Panel Data

Guowei Cui, Kazuhiko Hayakawa, Shuichi Nagata & Takashi Yamagata

To cite this article: Guowei Cui, Kazuhiko Hayakawa, Shuichi Nagata & Takashi Yamagata
(2022): A Robust Approach to Heteroscedasticity, Error Serial Correlation and Slope Heterogeneity
in Linear Models with Interactive Effects for Large Panel Data, Journal of Business & Economic
Statistics, DOI: 10.1080/07350015.2022.2077349

To link to this article:  https://doi.org/10.1080/07350015.2022.2077349

© 2022 The Author(s). Published with
license by Taylor & Francis Group, LLC.

View supplementary material 

Published online: 07 Jul 2022. Submit your article to this journal 

Article views: 306 View related articles 

View Crossmark data



JOURNAL OF BUSINESS & ECONOMIC STATISTICS

2022, VOL. 00, NO. 0, 1–14

https://doi.org/10.1080/07350015.2022.2077349

A Robust Approach to Heteroscedasticity, Error Serial Correlation and Slope
Heterogeneity in Linear Models with Interactive Effects for Large Panel Data

Guowei Cuia, Kazuhiko Hayakawab, Shuichi Nagatac, and Takashi Yamagatad,e

aSchool of Economics, Huazhong University of Science and Technology, Wuhan, China; bGraduate School of Social Sciences, Department of Economics,
Higashi-Hiroshima City, Hiroshima, Japan; cSchool of Business Administration, Kwansei Gakuin University, Nishinomiya, Hyogo, Japan; dDepartment of
Economics and Related Studies, University of York, York, UK; eInstitute of Social and Economic Research, Osaka University, Ibaraki, Osaka, Japan

ABSTRACT

In this article, we propose a robust approach against heteroscedasticity, error serial correlation and slope
heterogeneity in linear models with interactive effects for large panel data. First, consistency and asymp-
totic normality of the pooled iterated principal component (IPC) estimator for random coefficient and
homogeneous slopemodels are established. Then, we prove the asymptotic validity of the associatedWald
test for slope parameter restrictions based on the panel heteroscedasticity and autocorrelation consistent
(PHAC) variance matrix estimator for both random coefficient and homogeneous slope models, which
does not require the Newey-West type time-series parameter truncation. These results asymptotically
justify the use of the same pooled IPC estimator and the PHAC standard error for both homogeneous-
slope and heterogeneous-slopemodels. This robust approach can significantly reduce themodel selection
uncertainty for applied researchers. In addition, we propose a Lagrange Multiplier (LM) test for correlated
random coefficients with covariates. This test has nontrivial power against correlated random coefficients,
but not for random coefficients and homogeneous slopes. The LM test is important because the IPC
estimator becomes inconsistent with correlated random coefficients. The finite sample evidence and an
empirical application support the reliability and the usefulness of our robust approach.
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1. Introduction

In recent years, the increasing availability of panel data with

both a large cross-sectional dimensionN and a large time series

dimension T has necessitated the development of statistical

methods to exploit the rich information they contain, but it has

also created technical challenges. In particular, the control of

cross-sectional dependence, parameter heterogeneity and serial

dependence has been the main focus of the literature. Among

other things, themodeling of the cross-sectional dependence by

interactive effects has been widely adopted in recent years.
In particular, the past decade has seen significant develop-

ment in estimation and inferential methods for linear models
with interactive effects for large panel data. Two estimation
approaches are particularly popular. The first involves elimi-
nating the interactive effects from both the error term and the
regressors. Representative methods for static models include
the Common Correlated Effects (CCE) approach proposed
by Pesaran (2006), the principal component (PC) approach
investigated by Westerlund and Urbain (2015), the maximum
likelihood (ML) approach of Bai and Li (2014), and the two-
step instrumental variable (2SIV) approach proposed by Cui
et al. (2021), among others. The second approach asymptotically
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eliminates the interactive effects from the error term only. The
representative method is the iterative principal components
(IPC) estimator of Bai (2009), further developed by Moon
and Weidner (2015), and Bai and Liao (2017), among many
others.

Concerning the
√
NT-consistent estimation and the associ-

ated inference against error serial correlation and heteroscedas-
ticity, the CCE, PC, 2SIV, and IPC approaches typically permit
idiosyncratic errors to be serially correlated and heteroscedastic
(see, Remark 1 in Westerlund and Urbain 2015, Assumptions
2.1 and 2.2 in Cui et al. 2021, Remark 8 in Bai 2009), whereas
the ML approach generally does not allow such a degree of
robustness (see Assumption B in Bai and Li 2014). The CCE,
PC, and IPC estimators, however, will have asymptotic biases,
essentially due to the endogeneity arising from estimating the
interactive effects. Note that the properties of the asymptotic
biases in the CCE and PC estimators and those of the IPC esti-
mator are different, because of the difference in their approaches
for eliminating the interactive effects. These asymptotic biases
should be controlled, particularly for inference, either analyti-
cally or numerically by, for example, jackknife subsampling. For
the latter, see Fernández and Weidner (2016) and Westerlund
(2018).

© 2022 The Authors. Published with license by Taylor & Francis Group, LLC.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/ ), which
permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.
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For testing linear restrictions on the slope coefficients,
most existing work routinely employs the Newey and West
(1987) type heteroscedasticity and autocorrelation consistent
(HAC) variance-covariance estimator, which requires time-
series parameter truncation. This includes the CCE and the
PC estimators (see Westerlund 2018), as well as the IPC
estimator (see Remark 8 in Bai 2009). The 2SIV estimator of
Cui et al. (2021) and other related papers, including Greenaway-
McGrevy, Han, and Sul (2012), Bonhomme and Manresa
(2015), and Fernández andWeidner (2016), employ the Hansen
(2007) type panel HAC (PHAC) variance-covariance estimator
without the parameter truncation. In this article we employ this
PHAC estimator.1

One of the attractive features of the CCE, PC, and 2SIV
approaches is that they permit estimation and inference for the
models with (cross-sectionally) heterogeneous slopes. For such
models, the parameter of interest is often the population average
of slope coefficients, which is typically estimated as an average
of estimators of cross-section specific slopes. This is called a
mean-group (MG) estimator. For the MG estimators based on
the CCE, PC, and 2SIV approaches, see Pesaran (2006) and
Cui et al. (2021). Interestingly, as shown by Pesaran (2006) and
Reese and Westerlund (2018), if the cross-sectional variation
of slopes is independent of the regressors (i.e., if slopes are
random coefficients), the aforementioned pooled CCE and PC
estimators are

√
N-consistent to the population average of slope

coefficients. Pesaran (2006) proposes a nonparametric estima-
tor of the variance-covariance matrix of the

√
N-consistent

pooled CCE estimator. This estimator uses the sample variance-
covariance matrix of cross-section specific slope estimates. The
evidence therein has shown that this estimator behaves very well
in finite samples.2

On the other hand, the IPC approaches typically do not
permit models with heterogeneous slopes.3 In this article we
investigate asymptotic properties of the pooled IPC estima-
tor for the models with heterogeneous slopes assuming the
regressors are subject to a factor structure. To the best of our
knowledge, this is new to the literature. In this article, we show
that the pooled IPC estimator is

√
N-consistent for the models

with heterogeneous slopes (and confirm it is
√
NT-consistent

for the models with homogeneous slopes), when the regressors
have the factor structure. We also prove that the use of the
PHAC variance-covariance matrix estimator for the pooled IPC
estimator is asymptotically justified for the models with hetero-
geneous slopes, as well as for the models with homogeneous
slopes. Our findings essentially imply that the inference based
on the pooled IPC estimator and the associated PHAC variance
estimator is asymptotically valid for both homogeneous slope
and heterogeneous slope models.

Building upon these novel asymptotic results, we propose
a robust approach against heteroscedasticity, error serial cor-

1In the fixed T panel data analysis, the PHAC estimator is proposed by
Arellano (1987) and widely used in the related literature.

2In this article, we propose to use the PHAC estimator for the
√
N-consistent

estimator,which is different fromPesaran (2006) andReese andWesterlund
(2018). See Section 2.

3One important exception is Ando and Bai (2017), inwhich shrinkage estima-
tors for sparse heterogeneous slopes in the models with interactive effects
are considered.

relation and slope heterogeneity in linear models with inter-
active effects for large panel data. The basic idea behind this
approach is classical. For the models with homogeneous slopes
and homoscedastic and uncorrelated idiosyncratic errors, the
pooled estimator is expected to be most efficient. Otherwise, an
alternative estimator, such as a suitable generalized least squares
(GLS) estimator, can be more efficient; see Bai and Liao (2017)
for the extension of the IPC estimator in this direction. This
potential efficiency gain hinges on the correct specification of, in
our context, error serial correlation, heteroscedasticity and slope
heterogeneity, and achieving such specifications simultaneously
does not seem easy in practice. In this kind of situation, the
use of the pooled estimator, together with a robust variance-
covariance matrix estimator for inference, is very likely to have
practical appeal.4

Another main contribution of this article is a novel test for
correlation and dependency between the random coefficients
and covariates (hereafter called correlated random coefficients).
For the proposed robust approach to work, the slope hetero-
geneity, if any, has to be essentially independent of the covariates
(i.e., random coefficients). The proposed test is designed to
detect departures from this independence and slope homogene-
ity. Note that the existing slope homogeneity tests for large panel
data, such as Pesaran and Yamagata (2008) and Su and Chen
(2013), amongothers, have power against randomcoefficients as
well as correlated random coefficients, and these are not suitable
for our purpose.

Here, we briefly discuss a related study, Galvao and Kato
(2014), which considers estimation and inference of pseudo-
true parameters under some model misspecifications, such as
inconsistent estimators in the fixed effectmodels with correlated
random coefficients (see sec. 5.1.2 in Galvao and Kato 2014).
Their theoretical results are closely related to ours in that the
convergence rate of the pooled estimator changes from

√
NT

to
√
N under correlated random coefficients. It is important

to emphasize that this article deals with consistent estimation
of true parameters of interest and the associated inference in
the models with interactive effects, which is not explicitly con-
sidered in Galvao and Kato (2014). In addition, in contrast to
Galvao and Kato (2014), our approach advocates a method that
enables empirical researchers to statistically identify misspeci-
fiedmodels (i.e., correlated random coefficient models) that can
result in inconsistent estimation.

We have examined the finite sample performance of the
estimators, the tests of parameter restrictions using the PHAC
variance estimator, and the LM test for correlated random
coefficients. The results show that the size of the proposed robust
Wald test with the bias-corrected IPC estimator is sufficiently
close to the nominal level in both slope homogeneity and
slope heterogeneity, and that the LM test for correlated random
coefficients has correct size under both slope homogeneity and
random coefficients while exhibiting high power for correlated
random coefficients. The practical usefulness of our robust
approach is illustrated by applying the proposed methods to
analyze the Feldstein–Horioka puzzle, presented in Feldstein
and Horioka (1980).

4In this article, we do not consider the model with the group-wise homoge-
neous slope model, which is considered by Su and Ju (2018).
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The article is organized as follows. The asymptotic proper-
ties of the IPC estimator and the associated robust Wald test
statistic based on the PHAC variance-covariance estimator are
investigated in Section 2. In Section 3, we introduce the LM test
statistic for correlated random coefficients and study its limiting
distribution. The finite sample performance of the IPC estima-
tors, the robustWald test and the LM test for correlated random
coefficients is investigated using the Monte Carlo method in
Section 4. An empirical application is provided in Section 5.
Section 6 contains some concluding remarks. Proofs of the
main results, additional discussions and experimental results are
relegated to the supplementary materials.

Notations: we denote the largest eigenvalues of the N × N

matrix A = (aij) by μmax(A), its trace by tr(A) =
∑N

i=1 aii, its

Frobenius norm by ‖A‖ =
√
tr(A′A). The projectionmatrix on

A isPA = A(A′A)−1A′ andMA = I−PA.� is a generic positive
constant large enough, δ2NT = min{N,T}. We use N,T → ∞
to denote that N and T pass to infinity jointly. We use � (�) to
represent≤ (≥) up to a positive constant factor. For any positive
sequences an and bn that converge to some points or diverge as
n → ∞, we write an ≍ bn if an � bn and an � bn.

2. Panel Data Models with Interactive Effects

We consider the following panel data model with possibly het-
erogeneous coefficients,

yit = x′
itβ i + λ0′

i f
0
t + εit ,

(i = 1, 2, . . . ,N ; t = 1, 2, . . . ,T ), (1)

xit = Ŵ0′
i g

0
t + vit , (2)

where xit is a k× 1 vector of regressors, f0t and g
0
t denote r1 × 1

and r2 × 1 vectors of latent factors, respectively. Correspond-
ingly, their factor loadings are λ0

i and Ŵ0
i = (γ 0

1i, . . . , γ
0
ki). εit

and vit are the idiosyncratic disturbance terms.
If we stack the Equations (1) and (2) over t, we have

yi = Xiβ i + F0λ0
i + εi , (3)

Xi = G0Ŵ0
i + Vi, (4)

where yi = (yi1, . . . , yiT)′, Xi = (xi1, . . . , xiT)′, F0 =
(f01 , . . . , f

0
T)′, G0 = (g01, . . . , g

0
T)′, εi = (εi1, . . . , εiT)′ and

Vi = (vi1, . . . , viT)′. Supposing random coefficients

β i = β0 + ηi, (5)

we can rewrite the model (3) using the process (4) as

yi = Xiβ
0 + W0ϑ0

i + Viηi + εi, (6)

where W0 = (G0,F0) and ϑ0
i = (η′

iŴ
0′
i ,λ

0′
i )′. The results in

this article will hold when F0 andG0 share common factors (say,
W0 = G0 ∪ F0 and F0 ∩ G0 �= 0). However, for simplicity, we
suppose F0 ∩ G0 = 0 and rank(W0) = r1 + r2.

Noting that for the IPC estimator the interactive effects F0λ0
i

for the models with homogeneous slopes and W0ϑ0
i for the

models with heterogeneous slopes are extracted from the error
vector yi − Xiβ

0
i , we employ the following common expression

to describe both homogeneous-slope and heterogeneous-slope
models:

yi = Xiβ
0 + ui, with ui = H0φ0

i + ei, (7)

where {H0,φ0
i , ei} = {F0,λ0

i , εi} and r = r1 for the models with
homogeneous slopes and {H0,φ0

i , ei} = {W0,ϑ0
i ,Viηi+εi} and

r = r1+ r2 for the models with heterogeneous slopes. Hereafter,
we use Equation (7) to describe both homogeneous-slope and
homogeneous-slope models.

Controlling the interactive effects, H0φ0
i , typically results in

asymptotic biases of the
√
NT-consistentCCE, PC, and IPC esti-

mators, as shown by Pesaran (2006), Bai (2009), andWesterlund
and Urbain (2015), among others.

As discussed in the introduction section, in this article we
focus on the iterative principal component (IPC) estimator pro-
posed by Bai (2009), which estimates the interactive effects in
ui by the PC method and the slope coefficient β0 by the least-
squares method, iteratively.

In particular, define the least squares objective function

SSR(β ,H) =
1

NT

N∑

i=1

(yi − Xiβ − Hφi)
′(yi − Xiβ − Hφi)

subject to the constraints H′H/T = Ir and
∑N

i=1 φiφ
′
i being

diagonal.
The least squares estimator for (β ,H), denoted by

(
β̂ , Ĥ

)
,

is the IPC estimator, which is the solution to the following
nonlinear equations:

β̂ =

(
N∑

i=1

X′
iMĤXi

)−1 (
N∑

i=1

X′
iMĤyi

)

[
1

NT

N∑

i=1

(
yi − Xiβ̂

) (
yi − Xiβ̂

)′
]
Ĥ = ĤVNT (8)

where VNT is a diagonal matrix that contains the r largest
eigenvalues of the matrix in the square brackets in decreasing
order. Given

(
β̂ , Ĥ

)
, we can estimate φi by

φ̂i =
1

T
Ĥ′(yi − Xiβ̂).

The number of factors, r, and an initial estimator of β0,
should be chosen to obtain the IPC estimator. In this section
and the next, we suppose that r and the initial estimator of β0

are given, and the procedure to choose them is discussed in
Section 4.1.

Remark 1. Permitting different sets of interactive effects in Xi

and ui is important, because the IPC estimator extracts the
interactive effects in ui only, which does not necessarily project
out the factors in Xi. Nevertheless, our results in this article
hold when Xi and ui share the same set of interactive effects.
See Norkutė et al. (2021) and Cui et al. (2021) for further
discussions.

Remark 2. The factor model for the regressors specified in (2)
has been widely employed in the literature: see Pesaran (2006),
Bai and Li (2014), Westerlund and Urbain (2015), Li, Cui, and
Lu (2020), Norkutė et al. (2021), among many others. For the
IPC estimators, typically no factor structure in the regressors is
imposed. However, only the model with homogeneous slopes
is considered; see Bai (2009) and Moon and Weidner (2015),
among others. Importantly, our new results shown below will



4 G. CUI ET AL.

reveal that, the pooled IPC estimator remains consistent for
the random coefficient models with interactive effects if the
regressors have a factor structure as in (2).

For the asymptotic analysis of the estimator, we impose the
following assumptions.

Assumption 1 (idiosyncratic error in y). (i) εit is distributed
independently across i; (ii) E(εit) = 0 and E|εit|8 ≤ �;

(iii) T−1
∑T

s=1

∑T
t=1 E|εisεit| ≤ �; (iv) E|N−1/2

∑N
i=1

[εisεit − E(εisεit)] |4 ≤ � for each (s, t); (v) N−1T−2
∑N

i=1∑T
t=1

∑T
s=1

∑T
r=1

∑T
w=1 |cov (εisεit , εirεiw)| ≤ �; (vi) 
ε,i =

E(εiε
′
i) is positive definite and its largest eigenvalue is bounded,

uniformly every i and T.

Assumption 2 (idiosyncratic error in x). Let vℓit be the ℓth
element of vit and vℓ,i = (vℓi1, . . . , vℓiT)′. Then we assume that
(i) vit is independently distributed across i and independent
of {εjs} for 1 ≤ j ≤ N and 1 ≤ s ≤ T; (ii) E(vit) =
0 and E‖vit‖8 ≤ �; (iii) T−1

∑T
s=1

∑T
t=1 E|vℓisvℓit| ≤

�; (iv) E|N−1/2
∑N

i=1 [vℓisvℓit − E(vℓisvℓit)] |4 ≤ � for

every ℓ, s, and t; (v) N−1T−2
∑N

i=1

∑T
t=1

∑T
s=1

∑T
r=1

∑T
w=1

|cov(vℓisvℓit , vℓirvℓiw)| ≤ �; (vi) the largest eigenvalue of
E(vℓ,iv

′
ℓ,i) is bounded uniformly for every ℓ, i, and T.

Assumption 3 (random coefficients). ηi is independent across
i, and is independent of εit , vit , λ0

i and Ŵ0
i ; E(ηi) = 0 and

E‖ηi‖4 ≤ �; E(ηiη
′
i) = 
η,i is a fixed positive definite matrix

uniformly over i.

Assumption 4 (factor components). (i) Let w0
t = (f0′t , g

0′
t )′.

E‖w0
t ‖4 ≤ � and T−1

∑T
t=1 w

0
tw

0′
t

p
→ �w =

[
�f �fg

�gf �g

]
,

which is positive definite and w0
t is independent of vit and εit ;

(ii) E‖Ŵ0
i ‖4 ≤ �, E‖λ0

i ‖4 ≤ �, N−1
∑N

i=1 Ŵ0
i Ŵ

0′
i

p
→ �Ŵ ,

N−1
∑N

i=1 Ŵ0
i ηiη

′
iŴ

0′
i

p
→ �γ η and N−1

∑N
i=1 λ0

i λ
0′
i

p
→ �λ,

where �Ŵ , �γ η, and �λ are positive definite matrices. Ŵ0
i and

λ0
i are independent of vit and εit .

Assumption 5 (identification and variance matrices). We assume
that the four matrices

A0 = lim
N,T→∞

1

NT

N∑

i=1

E(V′
iVi),

A1 = plim
N,T→∞

1

NT

N∑

i=1

Z′
iMH0Zi,

C0 = lim
N,T→∞

1

NT2

N∑

i=1

E(V′
iViηiη

′
iV

′
iVi),

B1 = plim
N,T→∞

1

NT

N∑

i=1

Z′
iMH0
ε,iMH0Zi

are fixed and positive definite, where Zi = Xi − N−1
∑N

j=1 φ0′
i

ϒ−1
φ0 φ0

j Xj, ϒφ0 = N−1
∑N

i=1 φ0
i φ

0′
i .

Assumption 6 (Central Limit Theorem). When N,T → ∞ such

that T/N → ρ ∈ (0,�], 1√
NT

∑N
i=1 Z

′
iMH0εi

d−→ N (0,B1).

Assumptions 1 and 2 are very similar to Assumption in Bai
(2009), though, εit and vit are independent of each other and
independent over i. Assumption 3 is a typical assumption for
random coefficient models with interactive effects (see, e.g.,
AssumptionHET inReese andWesterlund 2018). Assumption 4
implies that the factor loadings Ŵ0

i and λ0
i are allowed to be

correlated with each other. Assumption 5 is for identification
of the parameters and for estimation of the variance-covariance
matrices. Assumption 6 is imposed following Bai (2009) for
the asymptotic normality of the pooled IPC estimator for the
models with homogeneous slopes.

In what follows, we investigate asymptotic properties of the
IPC estimator for the models with homogeneous and heteroge-
neous slopes, assuming that the regressors have a factor struc-
ture. As discussed in the introduction section, the results for
the models with heterogeneous slopes are new additions to the
literature. We first derive asymptotic expressions of the pooled
IPC estimator, β̂ , for the models with homogeneous and het-
erogeneous slopes in Proposition 1. These confirm the presence
of asymptotic bias in β̂ for the models with homogeneous
slopes, as shown by Bai (2009) and Cui et al. (2021), among
others. After introducing an asymptotic expression for the bias-
corrected IPC estimator, which is common to the models with
homogeneous and heterogeneous slopes in Proposition 2, we
present asymptotic normality of the bias-corrected IPC estima-
tor for both models in Theorem 1. Finally, in Theorem 2, we
show the asymptotic validity of the robust Wald test for linear
constraints on β0, which is based on the same statistic for both
homogeneous-slope and heterogeneous-slope models.

A similar line of discussion in Bai (2009) andCui et al. (2021)
for the model with homogeneous slopes, and in Pesaran (2006)
for the case of heterogeneous slopes provides the following
asymptotic expressions:

Proposition 1. Suppose that Assumptions 1–5 hold.

(a) For the model with homogeneous slopes, we have

β̂ − β0 =

(
1

NT

N∑

i=1

Z′
iMH0Zi

)−1
1

NT

N∑

i=1

Z′
iMH0εi

+
1

N
ξNT +

1

T
ζNT + Op(δ

−3
NT ), (9)

where the bias terms are given by

ξNT = −

(
1

NT

N∑

i=1

Z′
iMH0Zi

)−1

1

NT

N∑

i=1

T∑

t=1

Z′
iH

0(H0′H0)−1ϒ−1
φ0 φ0

i E(e2it),

ζNT = −

(
1

NT

N∑

i=1

Z′
iMH0Zi

)−1

1

N2

N∑

i=1

N∑

j=1

X′
iMH0E(eje

′
j)H

0(H0′H0)−1ϒ−1
φ0 φ0

i .
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(b) For the model with heterogeneous slopes, we have

β̂ − β0 =

(
1

NT

N∑

i=1

V′
iVi

)−1
1

NT

N∑

i=1

V′
iViηi + Op(δ

−2
NT).

(10)

A few remarks regarding Proposition 1 arewarranted. Propo-
sition 1(a) is essentially the same result for the models with the
homogeneous slopes shown in Bai (2009) and Cui et al. (2021).
Because of the estimation of the interactive effects, Xi has to
be replaced by Zi, and the bias terms ξNT and ζNT are present.
Under our assumptions ξNT and ζNT are Op(1), because Zi can

be correlated with φ0
i andE(eje

′
j) is not necessarily proportional

to IT . Proposition 1(b) reveals that the pooled IPC estimator
is

√
N-consistent and asymptotically free from the effects of

interactive effects. See a similar result for pooled CCE and PC
estimators in Pesaran (2006) and Reese andWesterlund (2018).

To derive an asymptotically unbiased estimator of β0 in
the case of homogeneous slope, we should estimate the bias
terms. Following Bai (2009) and Moon and Weidner (2015),
we propose an analytically bias corrected estimator, which is
defined by

β̃ = β̂ −
1

N
ξ̂NT −

1

T
ζ̂NT , (11)

where

ξ̂NT = −

(
1

NT

N∑

i=1

Ẑ′
iMĤẐi

)−1
1

NT2

N∑

i=1

T∑

t=1

Ẑ′
iĤϒ̂

−1
φ φ̂ îe

2
it

ζ̂NT = −

(
1

NT

N∑

i=1

Ẑ′
iMĤẐi

)
1

N

N∑

i=1

̂X′
iMH
H

T
ϒ̂

−1
φ φ̂i

with Ẑi = Xi − N−1
∑N

j=1 φ̂
′
iϒ̂

−1
φ φ̂jXj, ϒ̂φ = N−1

∑N
i=1 φ̂iφ̂

′
i,

̂X′
iMH
H

T
=

1

TN

N∑

j=1

[
T∑

t=1

ê2jt̂xitĥ
′
t +

S∑

s=1

T∑

t=s+1

(
1 −

s

S + 1

)

êjt̂ej,t−s

(
x̂itĥ

′
t−s + x̂i,t−ŝh

′
t

)]
(12)

and êit being the tth element of êi = yi − Xiβ̂ − Ĥφ̂i.
Following Bai’s (2009) suggestion we employ the Newey

and West (1987) type estimator of ζNT as shown in Equation
(12). In the Monte Carlo experiment in Section 4, we set
S = ⌊T1/4⌋.

Remark 3. Recently, jackknife bias-correction, a numerical
way of asymptotically eliminating the asymptotic biases, was
proposed and applied in Fernández and Weidner (2016) and
Westerlund (2018), among others. The bias terms in Equation
(11) are Op(N

−1) and Op(T
−1), which indicates that the

jackknife bias-correction of Dhaene and Jochmans (2015) by
splitting the time-series and cross-section dimensions would be
applicable for β̂ . We provide the procedure for this jackknife

bias-correction and examine its finite sample performance in
Section 4.

Now consider the robust approach against slope heterogene-
ity. Such robustness may be achieved when the leading terms in
Equations (9) and (10) share a common expression, and the esti-
mated asymptotic bias terms are bounded for the models with
heterogeneous slopes. Indeed, we prove that for themodels with

heterogeneous slopes 1
NT

∑N
i=1 Z

′
iMH0Zi = 1

NT

∑N
i=1 V

′
iVi +

op(1),
1√
NT

∑N
i=1 Z

′
iMH0ui = 1√

NT

∑N
i=1 V

′
iViηi + op(1),

ζ̂NT = Op(1) and ζ̂NT = Op(1), and for the models with

homogeneous slopes 1√
NT

∑N
i=1 Z

′
iMH0ui = 1√

NT

∑N
i=1

Z′
iMH0εi under Assumptions 1–5; see the supplementary

materials.
The following proposition shows a common stochastic rep-

resentation of the bias-corrected IPC estimator for the models
with homogeneous and heterogeneous slopes.

Proposition 2. Suppose that Assumptions 1–5 hold. Then, we
have

β̃ − β0 =

(
1

NT

N∑

i=1

Z′
iMH0Zi

)−1

×
1

NT

N∑

i=1

Z′
iMH0ui + Op(δ

−ǫ
NT) (13)

where ǫ = 3 for themodels with homogeneous slopes and ǫ = 2
for the models with heterogeneous slopes, as (N,T) → ∞ and
T/N → ρ ∈ (0,�].

Equipped with Assumption 6, we are ready to present the
asymptotic normality of the bias-corrected estimator β̃ .

Theorem 1. Suppose that Assumptions 1–6 hold and T/N →
ρ ∈ (0,�].

(a) For the model with homogeneous slopes, we have

√
NT(β̃ − β0)

d−→ N(0,A−1
1 B1A

−1
1 ).

(b) For the model with heterogeneous slopes, we have

√
N(β̃ − β0)

d−→ N(0,A−1
0 C0A

−1
0 ),

where A0, A1, B1, and C0 are defined in Assumption 5.

Let us now turn our attention to the estimation of the
asymptotic variance-covariance matrix of β̃ . Define the panel
heteroscedasticity and autocorrelation consistent (PHAC)
variance-covariance matrix estimator by

�̂β̃ =

(
N∑

i=1

Ẑ′
iMĤẐi

)−1 (
N∑

i=1

Ẑ′
iMĤûîu

′
iMĤẐi

)

×

(
N∑

i=1

Ẑ′
iMĤẐi

)−1

, (14)

where ûi = yi − Xiβ̂ . Note that this PHAC estimator does
not require Newey and West (1987) type time-series parameter
truncation.
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One of the highlights of this article is the revelation of
the asymptotic validity of the PHAC variance estimator for
both homogeneous-slope and heterogeneous-slopemodels with
interactive effects.5 This may be intuitively understood by the
following discussion, with the help of Propositions 1 and 2
and Theorem 1. For the models with homogeneous slopes,
Equations (9) and (13) yield

√
NT(β̃ − β0) =

(
1

NT

N∑

i=1

Z′
iMH0Zi

)−1

×
1

√
NT

N∑

i=1

Z′
iMH0ui + op(1)

=

(
1

NT

N∑

i=1

Z′
iMH0Zi

)−1

×
1

√
NT

N∑

i=1

Z′
iMH0εi + op(1).

From this, we can easily infer that NT�̂β̃

p
−→ A−1

1 B1A
−1
1 . For

the models with heterogeneous slopes, Equations (10) and (13)
give

√
N(β̃ − β0) =

(
1

NT

N∑

i=1

Z′
iMH0Zi

)−1

×
1

√
NT

N∑

i=1

Z′
iMH0ui + op(1)

=

(
1

NT

N∑

i=1

V′
iVi

)−1

×
1

√
NT

N∑

i=1

V′
iViηi + op(1), (15)

from which, we can conjecture that N�̂β̃

p
−→ A−1

0 C0A
−1
0 .

In the following theorem, we formally establish the limit
distribution of the Wald test statistic for linear restrictions on
β0, based on the bias-corrected IPC estimator β̃ and the PHAC
variance estimator �̂β̃ .

Theorem 2. Consider testing m linearly independent restric-
tions on β0, H0 : Rβ0 = r against H1 : Rβ0 �= r, where
R is anm×k fixed matrix of full row rank. Consider the model
(7) and the Wald statistic

W̃NT = (Rβ̃ − r)′
(
R�̂β̃R

′
)−1

(Rβ̃ − r) (16)

where β̃ and �̂β̄ are defined by (11) and (14), respectively. Sup-
pose that Assumptions 1–6 hold. Then, under the null hypoth-
esis, for the models with homogeneous slopes (ηi = 0 for all i)

and for the models with heterogeneous slopes, W̃NT
d→ χ2

m, as
(N,T) → ∞ and T/N → ρ ∈ (0,�].

5See Galvao and Kato (2014) for a similar discussion in misspecified dynamic
panel data models.

To our knowledge, this is the first article which shows the
consistency of the PHAC estimator in the random coefficients
models with interactive effects for large panel data. As discussed
in the introduction section, the use of the PHAC variance
estimator for the models with homogeneous slopes with largeN
andT is proposed byHansen (2007) for the fixed effects models,
and considered by Greenaway-McGrevy, Han, and Sul (2012),
Vogelsang (2012), Fernández and Weidner (2016), and Cui
et al. (2021) for the models with homogeneous slopes, among
others.

Remark 4. Our approach is also robust against mixtures of
homogeneous and heterogeneous slopes.6 To illustrate this, con-
sider the model without common components and the case in
which the k slopes are partitioned in such a way that k = k1+k2,

where β i =
(
β ′
1i,β

0′
2

)′
, β1i = β0

1 + η1i, E
(
η1i

)
= 0 and

var
(
η1i

)
= 
1i, with β0

=
(
β0′
1 ,β

0′
2

)′
. The expansion of the

pooled ordinary least squares (OLS) estimator β̂ =
(
β̂

′
1, β̂

′
2

)′

gives

√
N

(
β̂ − β

)
=

(∑N
i=1 X

′
iXi

NT

)−1
1

√
NT

N∑

i=1

X′
iui

=

(∑N
i=1 X

′
iXi

NT

)−1
1

√
N

N∑

i=1

(
X′
iX1i

T

)
η1i

+Op

(
1/

√
T
)

d→ N
(
0,A−1CA−1

)

where A = plim
N,T→∞

(NT)−1
∑N

i=1 X
′
iXi, which is accordingly

partitioned as

A =
[
A11 A12

A21 A22

]
, and

C = plim
N,T→∞

1

N

N∑

i=1

(
X′
iX1i

T

)
η1iη

′
1i

(
X′
1iXi

T

)
,

which are assumed to be fixed and positive definite. Also note
that the convergence rate of (β̂1 and) β̂2 is

√
N, as the variation

of β̂ is dominated by that of η1i.
Now consider a special case in which plimT→∞X′

1iX2i =
0. Then, a similar discussion gives

√
N

(
β̂1 − β0

1

)
d→ N

(
0,A−1

11 C11A
−1
11

)
and

√
NT

(
β̂2 − β0

2

)
d→ N

(
0,A−1

22 B22A
−1
22

)
,

where C11 = plimN,T → ∞(NT2)−1
∑N

i=1 X
′
1iX1iη1iη

′
1i

X′
1iX1i and B22 = plimN,T→∞(NT)−1

∑N
i=1 X

′
2iεiε

′
iX2i.

Therefore, the asymptotic normality of β̂ , the consistency
of the PHAC estimator and the asymptotic validity of Wald
test hold with mixtures of homogeneous and heterogeneous
slopes.

6We do not consider cross-sectional and/or time-series structural breaks in
β i which is beyond the scope of this article.
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3. LM Test for Correlated Random Coefficients with

Covariates

As discussed earlier, the proposed robust approach is asymptot-
ically justified for the models with homogeneous slopes and for
random coefficient models, in which the slope heterogeneity is
generally independent of the variations of the regressors (see
Assumption 3). In particular, when the heterogeneous coef-
ficients are correlated with the defactored regressor matrix,
MH0Xi, the approach may not work. To see this, consider the
bias-corrected IPC estimator β̃ defined by Equation (11) for
the models with heterogeneous slopes. Equation (15) gives β̃ −
β0≈

(∑N
i=1 V

′
iVi

)−1 ∑N
i=1 V

′
iViηi. If E

(
ηi|Vi

)
�= 0, which

violates the random coefficient assumption (in Assumption 3),
E

[
V′
iViE

(
ηi|Vi

)]
is not necessarily a zero vector, and this may

render β̃ inconsistent, in general. Note that even if we had
nonzero correlations between ηi and the factor loadings, the
slope estimator would remain consistent so long as the regressor
matrix is defactored, because the leading term in Equation (15)
does not contain the factor loadings. Therefore, we focus on the
correlated random coefficients caused by E

(
ηi|Vi

)
�= 0.

There are studies which propose tests to detect slope hetero-
geneity for large panel data.However,most of themhave focused
only on testing the slope heterogeneity, not the dependence of
the slope heterogeneity on the regressors. Such examples are
found in Pesaran and Yamagata (2008) and Su and Chen (2013),
among others. These existing tests are not suitable for our robust
approach, because they have power against the random coeffi-
cientmodels aswell as the correlated randomcoefficientmodels.

In view of this, we propose a novel Lagrange Multiplier
(LM) or Score test of dependence of random coefficients on
covariates. The proposed test is designed to detect departures
from the assumption of independence between slope hetero-
geneity and the regressors, or departures from the assumption
of slope homogeneity toward slope heterogeneity dependent on
the regressors. Hereafter, for simplicity, we call it the LM test for
correlated random coefficients (CRC). Specifically, we extend
the test of correlated random effects proposed in Wooldridge
(2010, chap. 11.7.4) for short panels in the fixed effects models.
Therein, using a similar approach taken byMundlak (1978) and
Chamberlain (1980), the correlated heterogeneity is modeled
as a linear function of within average of the regressors, β i =
μ + θ x̄i + ωi, where x̄i = T−1

∑T
t=1 xit and ωi is a mean-zero

random vector which is uncorrelated with x̄i. From equations
(4) and (5), it is easily seen that the error term ui for the model
of omitted slope heterogeneity will contain the term Xiβ i and
this motivates his test of correlated random coefficients, which
examines the significance ofXix̄i. As pointed out byWooldridge
(2010, p. 386), this test does not have power against uncorrelated
slope heterogeneity, which is the desirable property for our
approach. We extend the test by considering the models with
interactive effects for large N and T and by permitting the
alternatives, E

(
ηi|Vi

)
, to be a nonlinear function of Vi.

To motivate the LM test for correlated random coefficients,
suppose that the random part of the coefficients, ηi (see
Equation (5)), is decomposed into correlated and uncorrelated
parts:

ηi = ψ (Vi) + ωi, (17)

where E[ψ (Vi) |Vi] �= 0 but E[ωi|Vi] = 0. Various functional
forms ofψ(.) can be entertained. As an illustration, suppose the
ℓth element ofψ(Vi) to beψℓi = 1√

T

∑T
t=1{f (vℓit)−E[f (vℓit)]},

where the function f (.) satisfies certain regularity conditions.
Then, the qth-order Maclaurin series expansion of f (vℓit) −
E[f (vℓit)] gives ψℓi =

∑q
p=1 θp

1√
T

∑T
t=1[v

p
ℓit − E(v

p
ℓit)] + Rq,

where θp = 1
p! f

(p)(0), f (p)(.) is the pth-order derivative of f (.),

and Rq is the reminder term. For testing purposes, examining
whether the first few terms of the expansion, say g(≤ q) terms,
are zero or not may suffice. This motivates our test of correlated
random coefficients (defined below) for the null hypothesis,

H0 : θ = 0 against H1 : θ �= 0, (18)

where θ = (θ1, . . . , θg)
′ .7

Having discussed a process of the correlated random
coefficients, let us turn our attention to the test statistic.
Following on from the above discussion, we define the infeasible
score of the LM test for the models with homogeneous

(respectively, heterogeneous) slopes as 1√
NT

∑N
i=1 L

′
iMH0ui

(resp. 1√
NT

∑N
i=1 L

′
iMH0ui), where Li = Xi

√
T (�i − �),

�i =
(
v
(1)
i , v

(2)
i , . . . , v

(g)
i

)
, (19)

� = limN→∞ N−1
∑N

i=1 E[�i], with v
(p)
i =

(
v
(p)
1i , v

(p)
2i , . . . ,

v
(p)
ki

)′
, v

(p)
ℓi = T−1

∑T
t=1 v

p
ℓit , v

p
ℓit is the pth power of the (t, ℓ)

element of Vi, p = 1, . . . , g. Observe that the direct alternative
model of ψ(Vi) for this score is

√
T (�i − �) θ , where θ is the

g × 1 constant vector.
To construct the associated feasible score, Li, H

0, and ui
should be replaced by their sample counterparts, which are L̂i =
Xi

√
T

(
�i − �

)
, Ĥ, and ũ = yi − Xiβ̃ , respectively, where

�̂i =
(
v̂
(1)
i , v̂

(2)
i , . . . , v̂

(g)
i

)
, v̂

(p)
i =

(
v̂
(p)
1i , v̂

(p)
2i , . . . , v̂

(p)
ki

)′
,

v̂
(p)
ℓi = T−1

∑T
t=1 v̂

p
ℓit with V̂i = MĤXi = (̂vℓit), p = 1, . . . , g.

The resulting feasible score for the models with homogeneous

(resp. heterogeneous) slopes is 1√
NT

∑N
i=1 L̂

′
iMĤũi (respectively,

1√
NT

∑N
i=1 L̂

′
iMĤũi). Let us sketch the derivation of the LM

test statistic next. For the models with homogeneous slopes, a
familiar expansion gives ũi = ui − Xi

(
β̃ − β0

)
, which yields

1
√
NT

N∑

i=1

L̂′
iMĤũi =

1
√
NT

N∑

i=1

L̂′
iMĤui

+
1

NT

N∑

i=1

L̂′
iMĤXi

√
NT

(
β̃ − β0

)
.

For a reason similar to why β̂ has asymptotic bias terms, the
first term of the right hand side of the above equation will
have asymptotic bias terms. For the second term, demeaning Li
and Xi is required for a reason similar to why the asymptotic
variance of β̂ involves Z′

iMH0Zi rather than X′
iMH0Xi. Define

such a demeaned Li, Li = Li −N−1
∑N

j=1 φ0′
i ϒ−1

φ0 φ0
j Lj. For the

LM test, we impose the following assumption, which is similar
to Assumption 6:

7For testing H0 : θp = 0 for p = 1, . . . ,∞, a nonparametric regression
approach (e.g., sieve or spline regressions) could be employed.
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Assumption 7. When N,T → ∞ such that T/N →
ρ ∈ (0,�], 1√

NT

∑N
i=1 L

′
iMH0εi

d−→ N (0,B2), where

B2 = plimN,T→∞
1
NT

∑N
i=1 L

′
iMH0
ε,iMH0Li, which is positive

definite.

For the slope heterogeneous case, the use of the same score
scaled by 1√

T
will be justified. For more details, see proof of

Theorem 3 in the supplementary materials.
Consequently, the LM test statistic for correlated random

coefficients, which is common to the model with homogeneous
slopes and the random coefficient model, is defined by

LM
(g)
CRC = ŝ†′�̂

−1
ss ŝ† (20)

where ŝ† = ŝ−N−1̂ξ
†
NT − T−1ζ̂

†
NT with ŝ =

∑N
i=1 L̂

′
iMĤũi,

ξ†NT = −
1

NT2

N∑

i=1

T∑

t=1

L̂
′
iĤϒ̂

−1
φ φ̂ îe

2
it , ζ

†
NT

= −
1

N

N∑

i=1

̂L
′
iMH
H

T
ϒ̂

−1
φ φ̂i,

L̂i = L̂i − N−1
∑N

j=1 φ̂
′
iϒ̂

−1
φ φ̂ ĵLj,

̂L
′
iMH
H

T is computed analo-

gously to the computation of
̂X′
iMH
H

T (see Equation (12)), and

�̂ss =
∑N

i=1 K̂
′
iMĤũĩu

′
iMĤK̂i with

K̂i = L̂i − Ẑi

(
N∑

i=1

Ẑ′
iMĤẐi

)−1 N∑

i=1

Ẑ′
iMĤL̂i.

Now we are ready to present the results of the limiting distribu-
tion of the LM test statistic.

Theorem 3. Consider the model (7). Suppose that Assump-
tions 1–7 hold. Then, under the null hypothesis specified in (18),

LM
(g)
CRC

d→ χ2
g , as N,T → ∞ and T/N → ρ ∈ (0,�], for both

homogeneous-slope and heterogeneous-slope models.

In practice, the degree of polynomial, g, for the statistic

LM
(g)
CRC, should be chosen. In order to approximate the function

ψ (Vi) to the extent that the LM test has sufficient power, a small
value of g, such as two, may be sufficient. The experimental
results reported below support the choice of g = 2. In addition,
the asymptotic local power analysis, which is provided in the
supplementary materials, suggests that the LM test has nontriv-
ial power when ||θ || ≍ 1√

NT
and that the LM test associated

with the pth column of the test matrix Li has nontrivial power
only against the pth term in the expansion of ψ(Vi), that is,
H1 : θp �= 0. The experimental results shown below support
these analytical results.

When the null hypothesis of random coefficient models is
rejected in favor of the alternatives, it is preferable to employ
estimators which are consistent to β0. For the estimation of the
models with interactive effects for large panel data, the CCE and
2SIV mean group estimators and the ML estimators proposed
by Pesaran (2006), Cui et al. (2021), and Li, Cui, and Lu (2020),
among others, would be possible choices.

4. Monte Carlo Experiments

In this section we investigate the finite sample performance of
our robust approach against slope heterogeneity, error serial cor-
relation and heteroscedasticity. We consider the performance
of the (analytically) bias-corrected IPC estimator defined by
(11), which is denoted as BC-IPC. In addition, as discussed in
Remark 3, we introduce a jackknife bias-corrected IPC estima-
tor, which is denoted as JK-IPC. To evaluate accuracy of the bias-
correction, the IPC estimator without bias-corrections is con-
sidered as well. In particular, we examine biases, standard devia-
tions and root mean square errors (RMSEs) of these estimators,
and empirical size of the (Wald) test for linear restrictions of
slope coefficients. Furthermore, performance of the LM test for
correlated random coefficients is examined.

Before introducing our experimental design, we discuss how
to choose the initial estimator and the number of factors r for the
IPC estimation in Section 4.1, then the procedure for computing
the jackknife bias-corrected IPC estimator in Section 4.2.

4.1. Initial Value for the IPC Estimator and the Number of

Factors

In practice, to compute the IPC estimator, an initial (con-
sistent) estimator of β0 and the number of factors in ui
must be given. Exploiting the factor structure in Xi and
ui, we propose to employ the consistent PC estimator of
Westerlund and Urbain (2015) and Reese and Westerlund
(2018) as the initial estimator of β0, which is defined as β̂PC =(∑N

i=1 X
′
iMŴXi

)−1 ∑N
i=1 X

′
iMŴyi, where Ŵ is a T × r̂1 + r2

PC estimator of a span of W0 = (F0,G0). r̂1 + r2 and Ŵ

are estimated using {Xi, yi}Ni=1, applying the Eigenvalue Ratio
(ER) or the Growth Ratio (GR) estimators proposed by Ahn
and Horenstein (2013), and the PC method, respectively. The
estimate of the number of factors in ui, r̂, is obtained using the
residual, ûPCi = yi − Xiβ̂PC, applying the ER or GR methods.8

In the experiment below, we set themaximumnumber of factors
to six to estimate r1 + r2 and r. Alternatively, the CCE or 2SIV
estimator of Pesaran (2006) and Cui et al. (2021) can be used as
an initial estimator of β0, which is not pursued in this article.

4.2. Jackknife Bias Correction

In Sections 2 and 3, the analytical bias correction of the IPC
estimator β̂ is considered. Instead, as discussed in Remark 3,
subsampling methods can be employed for bias corrections.
Specifically, we consider the split panel jackknife in both the
cross-section and time dimensions, which is proposed in Fer-
nández and Weidner (2016).

To define the jackknife bias-corrected IPC estimator, assum-
ing that N and T are even numbers for simplicity, consider
the index set, N = {1, . . . ,N}, which is divided into two
subgroups, N1 = {1, . . . ,N/2} and N2 = {(N/2) + 1, . . . ,N}.
Similarly define T = {1, . . . ,T}, T1 = {1, . . . ,T/2} and
T2 = {(T/2) + 1, . . . ,T}. Let us denote the IPC estimator as
β̂N ,T (= β̂), in order to explicitly express the dependence on

8Alternatively, we may use the criteria proposed by Bai and Ng (2002).
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the (sub)sample, (i, t) ∈ (N , T ). Then, we define the jackknife
bias-corrected IPC estimator as β̂JK =

(
β̂TS + β̂CS

)
− β̂N ,T ,

where β̂TS = 2β̂N ,T − β̂N ,T1
+β̂N ,T2
2 and β̂CS = 2β̂N ,T −

β̂N1,T
+β̂N2,T

2 . Formore details, see the supplementarymaterials
and Section 3.2 in Fernández and Weidner (2016).

4.3. Experimental Design

Consider the following data generating process:

yit =
k∑

ℓ=1

xℓitβ
0
ℓi + f 01tλ

0
1i + f 02tλ

0
2i + σε,itεit ,

i = 1, 2, . . . ,N; t = 1, 2, . . . ,T (21)

where λ0si ∼ iidN(0, 1), f 0st = ρf f
0
s,t−1 +

√
1 − ρ2

f ǫf ,st , ǫf ,st ∼
iidN(0, 1) with f 0s0 ∼ iidN (0, 1) for s = 1, 2, 3, εit = ρεεit−1 +√
1 − ρ2

ε ǫε,it , ǫε,it ∼ iidN(0, 1) with εi0 ∼ iidN (0, 1), and

σε,it =
(
κε,iκε,t

)1/2
, κε,i ∼ iidU (0.5, 1.5) and κε,t = 0.5 + t/T.

(22)
The regressors xℓit , ℓ = 1, 2, . . . , k, are generated as

xℓit = f 01tγ
0
ℓ1i + f 03tγ

0
ℓ3i + 0.3σv,itvℓit , (23)

where vℓit = ρvvℓit−1 +
√
1 − ρ2

v̟ℓit . Note that f
0
1t is common

to both yit and xℓit , whereas f
0
2t and f 03t are unique to yit and

xℓit , respectively. ̟ℓit is generated as ̟ℓit =
(
̟ ∗

ℓit − c
)
/
√
2c,

̟ ∗
ℓit ∼ iidχ2

c and vℓi0 =
(
v∗
ℓi0 − c

)
/
√
2c, v∗

ℓi0 ∼ iidχ2
c with

c = 6.9 The factor loadings in xℓit are generated as

γ 0
ℓsi = 0.7λ0si +

(
1 − 0.72

)1/2
ϕℓsi, (24)

ϕℓsi ∼ iidN(0, 1) for ℓ = 1, . . . , k and s = 1, 3, so that they are
correlated with factor loadings in yit .

σv,it =
(
κv,iκv,t

)1/2
,κv,i ∼ iidU (0.5, 1.5) and κv,t = 4.5 + t/T.

(25)
Finally we have

βℓi = β0
ℓ + σηηℓi, (26)

ηℓi = ρxηψℓi +
√
1 − ρ2

xηωℓi (27)

ωℓi ∼ iidN (0, 1) for ℓ = 1, . . . , k and ψ
(P)
ℓi =

∑q
p=1 θp̃zℓi,p/√∑q

p=1 θ2p , whereP = {p : θp �= 0, p ∈ I}with I = {1, 2, . . . , q}
and θp ∈ {0, 1},

z̃ℓi,p =
zℓi,p − z̄ℓ,p

szℓ,p

with z̄ℓ,p = N−1
∑N

i=1 zℓi,p, s2zℓ,p = (N − 1)−1 ∑N
i=1(

zℓi,p − z̄ℓ,p
)2

and zℓi,p = T−1
∑T

t=1 v
p
ℓit . Observe that the

variance of βℓi is controlled to be σ 2
η . θp selects the term

z̃ℓi,p. Specifically, in the experiment, we consider ψ
(1,2,3,4)
ℓi =

9 We also considered the case in which ̟ℓit is generated from normal
distribution. The results are not reported because they were qualitatively
very similar.

Table 1. Experimental designs.

Design Model r ση ρxη ψ
(P)
ℓi

1 Homogeneous slopes 2 0 0 −
2 Heterogeneous slopes uncorrelated with xℓit 3 0.50 0 −
3 Heterogeneous slopes correlated with xℓit 3 0.50 0.50 ψ

(1,2,3,4)
ℓi

4 Heterogeneous slopes correlated with xℓit 3 0.50 0.50 ψ
(1)
ℓi

5 Heterogeneous slopes correlated with xℓit 3 0.50 0.50 ψ
(2)
ℓi

6 Heterogeneous slopes correlated with xℓit 3 0.50 0.50 ψ
(3)
ℓi

7 Heterogeneous slopes correlated with xℓit 3 0.50 0.50 ψ
(4)
ℓi

NOTE: r is the number of factors in the error term. ση is standard deviation of

βℓi − β0
ℓ
(= σηηℓi), and ρxη is the correlation between ηℓi and a function of the

defactored regressor ψ
(P)
ℓi , where ψ

(1,2,3,4)
ℓi =

∑4
p=1 z̃ℓi,p/

√
4, ψ

(p)
ℓi = z̃ℓi,p

for p = 1, . . . , 4, and z̃ℓi,p is the cross-sectionally standardized within average of

the defactored regressor, T−1 ∑T
t=1 v

p
ℓit , for ℓ = 1, . . . , k. In the articlewe report

the results of designs 1–3, with the rest in the supplementary materials.

∑4
p=1 z̃ℓi,p/

√
4 and ψ

(p)
ℓi = z̃ℓi,p, p = 1, . . . , 4. It is interesting

to examine the impact of such linear and highly nonlinear
relationships on the estimators and the power of the LM
tests.

We set k = 2 (two regressors) for all experiments. Before the
estimation, the data is within-transformed and cross-sectionally
demeaned, to make the results invariant to the inclusion of
(additive) individual effects and time effects. For parameter
values, we set

(
β0
1 ,β

0
2

)
= (1, 1).

We consider seven experimental designs as outlined in
Table 1. Designs 1–7 are considered to investigate the finite
sample behavior of the slope estimator, the associated robust
Wald test and the LM test for correlated random coefficients.

Design 1 corresponds to themodel with homogeneous slopes
(ση = 0) and Design 2 to the model with random coefficients
(ση = 0.5 and ρxη = 0). Designs 3-7 correspond tomodels with
heterogeneous slopes that depend on the regressors (ση = 0.5
and ρxη = 0.5) in different ways. These designs are considered
in order to investigate the impact of such dependence on the
estimators and the power properties of the LM test. In Design 3,
the slope heterogeneity contains a fourth-degree polynomial of

the defactored regressors (ψ
(1,2,3,4)
ℓi ), which is highly nonlinear.

In Designs 4–7, the slope heterogeneity contains ψ
(1)
ℓi , ψ

(2)
ℓi ,

ψ
(3)
ℓi , and ψ

(4)
ℓi , respectively. In the article we present the results

for Designs 1 to 3, with the rest in the supplementary materials.
We consider all combinations of N = 50, 100, 200 and

T = 25, 50, 100, 200. Throughout the experiment, we set ρf =
0.5, ρε = 0.5 and ρv = 0.5. All tests are conducted at 5%
significance level. All experimental results are based on 2000
replications.

4.4. Results

In order to compute the IPC estimator, it is necessary to estimate
the number of factors in the error term, ui. The frequencies
of the number of factors estimated by the ER and GR meth-
ods proposed by Ahn and Horenstein (2013) are reported in
Table 2; see Section 4.1 for the estimation procedure. Note that,
as summarized in Table 1, r is two in the models with homoge-
neous slopes (Design 1) and three in the models with random
coefficients (Design 2). The results in Table 2 suggest that ER
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Table 2. Frequency of the estimated number of factors in the error term by the ER and GR methods.

Design 1: homogeneous slopes (r = 2) Design 2: random coefficients (r = 3)

Freq ER GR ER GR

T/N 50 100 200 50 100 200 50 100 200 50 100 200

r̂ = 1
25 1.0 0.3 0.2 3.6 1.5 1.0 3.2 1.4 0.7 13.5 7.9 5.0
50 0.0 0.0 0.0 0.2 0.0 0.0 0.4 0.0 0.0 3.1 0.6 0.1
100 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.6 0.1 0.0
200 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.3 0.0 0.0

r̂ = 2
25 98.9 99.7 99.8 96.5 98.5 99.1 16.6 10.3 6.7 23.4 17.9 14.4
50 100.0 100.0 100.0 99.9 100.0 100.0 6.5 1.4 0.5 11.7 4.3 1.7
100 100.0 100.0 100.0 100.0 100.0 100.0 2.3 0.1 0.0 6.4 0.6 0.0
200 100.0 100.0 100.0 100.0 100.0 100.0 1.7 0.0 0.0 4.2 0.1 0.0

r̂ = 3
25 0.1 0.0 0.0 0.0 0.0 0.0 80.1 88.3 92.7 63.1 74.3 80.7
50 0.0 0.0 0.0 0.0 0.0 0.0 93.2 98.7 99.6 85.2 95.2 98.3
100 0.0 0.0 0.0 0.0 0.0 0.0 97.7 100.0 100.0 93.1 99.4 100.0
200 0.0 0.0 0.0 0.0 0.0 0.0 98.3 100.0 100.0 95.5 99.9 100.0

r̂ = 4
25 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0
50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
200 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

NOTE: We set the maximum number of factors to six to estimate r (and r1 + r2). The frequencies of r̂ = 5 and 6 were zero. ER and GR stands for the Eigenvalue Ratio and
Growth Ratio methods proposed by Ahn and Horenstein (2013). See Table 1 for a summary of experimental designs.

and GR estimate r precisely enough for all designs, though the
ER estimator is slightly more accurate than the GR, especially
when T is not large. Based on this result, the experimental
results reported hereafter are based on the r estimated by the
ER method.

Given the estimated number of factors, we can proceed to
the estimation of β0 and associated inferences based on the
robust PHAC standard errors. In this experiment, we consider
three different estimators of β0: the IPC estimator without bias
correction (IPC), the analytically bias-corrected IPC estimator
(BC-IPC), and the jackknife bias-corrected IPC estimator (JK-
IPC). Table 3 summarizes the performance of these IPC estima-
tors for Designs 1–3. The “ER” signifies the dependence of the
estimators on the ER estimation of r. In the table, the bias (Bias),
standard deviation (SD), root mean square error (RMSE) of the
estimates for β0

1 , and the size (in percent) of the robustWald test
for H0 : β

0
1 = 1 (Size), are reported. Bias, SD, and RMSE are all

multiplied by 100. The results for β0
2 are not reported because

they are qualitatively very similar.
First, we discuss the results for Design 1 (the model with

homogeneous slopes). As can be seen in the table, the IPC
estimator (without bias-correction) suffers from a large bias. As
a result, the size of the robust Wald test deviates significantly
from the nominal level. In contrast, the BC-IPC estimator with
the analytical bias correction and the JK-IPC estimator with the
jackknife bias correction successfully reduce the bias. The BC-
IPC estimator and the JK-IPC estimator perform comparably.
However, when the sample size is small (e.g., T = 25 or N =
50), the jackknife method can reduce the bias more effectively
than the analytical bias correction. Meanwhile, the jackknife
bias correction is likely to lead to greater sampling variability
than the analytical bias correction. The standard deviation of
the JK-IPC estimator is uniformly larger than the standard
deviation of the BC-IPC estimator. As a result, the BC-IPC
estimator uniformly outperforms the JK-IPC estimator in terms

of the mean squared error criterion.10 Reflecting this small
sample bias, there is a mild size distortion in the robust Wald
test for small T or smallN, which tends to disappear asN and T
increase.

The results for Design 2 (random coefficient models) in
Table 3 are qualitatively similar to those for Design 1. However,
reflecting the fact that the IPC estimators are less efficient for
random coefficient models, there is a moderate small sample
bias in the BC-IPC and JK-IPC estimators, which dissipates as
N increases. Due to this bias, there is a moderate size distortion
in the robust Wald test for small N, but it quickly decreases as
the sample size increases.

Next, let us look at the results for Design 3, in which the het-
erogeneity of the slopes depends on the regressors. The bias of
the IPC, BC-IPC, and JK-IPC estimators is large and persistent
for any sample size. As a consequence, the size distortions of
the robust Wald tests are large and increase as the sample size
rises. This implies the importance of the LM test for correlated
random coefficients in our robust approach.

Table 4 reports the size and power of the LM test for the
dependence of the random coefficients on the regressors. We
note that in our alternative model (Design 3), the slope het-
erogeneity contains a fourth-degree polynomial of the defac-

tored regressors (i.e., ψ
(1,2,3,4)
ℓi ), which is highly nonlinear. In

this experiment, we consider LM
(1)
CRC and LM

(2)
CRC tests, which

are defined in equation (20). Recall that we recommend the

test using the LM
(2)
CRC statistic, because it is expected to have

nontrivial power against a sufficiently broad class of alternative

models, while the LM
(1)
CRC test may not be sufficiently powerful

against certain alternatives (see discussions in Section 3). The

results reported in Table 4 show that the size of the LM
(1)
CRC and

10A similar superior performance of analytical bias-correction over jackknife
bias-correction is found in Fernández and Weidner (2016).
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Table3. Finite sampleproperties of the IPCestimators ofβ0
1 and theassociated robustWald testwith interactive effects, heteroscedastic and serially correlated idiosyncratic

errors.

Design 1: homogeneous slopes
(
ση=0 , ρxη = 0

)

Bias(×100) SD(×100) RMSE(×100) Size(%)

T/N 50 100 200 50 100 200 50 100 200 50 100 200

IPC(ER)
25 −3.599 −1.674 −0.739 6.556 4.418 3.074 7.478 4.725 3.161 49.4 44.8 39.0
50 −4.069 −1.978 −0.992 4.485 2.878 1.974 6.056 3.492 2.209 57.5 46.6 39.6
100 −4.315 −2.085 −1.034 3.122 1.887 1.250 5.326 2.812 1.622 71.6 54.4 41.2
200 −4.721 −2.274 −1.113 2.323 1.424 0.996 5.262 2.683 1.494 87.9 68.5 51.7

BC-IPC(ER)
25 0.228 0.160 0.099 3.042 2.083 1.441 3.050 2.089 1.445 8.2 7.6 6.0
50 0.047 0.033 0.016 1.958 1.367 0.939 1.959 1.368 0.939 7.4 6.9 5.6
100 −0.003 −0.006 0.008 1.497 1.010 0.710 1.497 1.010 0.710 7.7 6.7 5.7
200 0.006 0.000 0.001 1.218 0.825 0.573 1.218 0.825 0.573 7.0 5.9 5.4

JK-IPC(ER)
25 0.096 0.093 0.038 3.506 2.274 1.580 3.507 2.276 1.580 11.8 11.0 9.2
50 0.015 0.007 0.002 2.156 1.480 1.005 2.156 1.480 1.005 9.3 9.6 7.6
100 −0.033 −0.014 0.004 1.590 1.061 0.746 1.590 1.061 0.746 9.4 7.3 6.4
200 −0.022 −0.004 −0.002 1.292 0.856 0.590 1.292 0.856 0.590 9.5 7.2 5.9

Design 2: heterogeneous slopes uncorrelated with xℓit
(
ση = 0.5, ρxη = 0

)

Bias(×100) SD(×100) RMSE(×100) Size(%)

T/N 50 100 200 50 100 200 50 100 200 50 100 200

IPC(ER)
25 −4.294 −2.282 −0.963 10.680 7.490 5.247 11.511 7.830 5.334 16.4 12.3 9.7
50 −4.693 −2.506 −1.143 9.069 6.257 4.322 10.212 6.741 4.471 17.6 11.7 8.7
100 −4.901 −2.611 −1.205 8.114 5.763 3.984 9.479 6.327 4.162 19.2 12.7 8.4
200 −5.371 −2.770 −1.311 7.666 5.487 3.824 9.360 6.147 4.042 20.4 13.1 7.9

BC-IPC(ER)
25 0.163 0.099 0.155 10.455 7.240 4.939 10.457 7.241 4.942 12.6 9.3 6.2
50 −0.202 −0.174 −0.017 9.073 6.150 4.219 9.076 6.153 4.219 12.8 8.6 7.1
100 −0.233 −0.197 −0.049 8.328 5.742 4.004 8.331 5.746 4.005 12.9 8.7 7.3
200 −0.263 −0.171 −0.050 7.933 5.555 3.860 7.937 5.557 3.861 12.8 9.1 6.5

JK-IPC(ER)
25 −0.414 −0.199 −0.077 12.167 7.994 5.314 12.174 7.997 5.315 18.0 11.9 9.0
50 −0.184 −0.204 −0.082 9.763 6.342 4.373 9.765 6.345 4.373 15.1 9.5 8.1
100 −0.100 −0.121 −0.060 8.726 5.865 4.062 8.726 5.867 4.062 14.5 9.7 7.4
200 −0.093 −0.083 −0.027 8.145 5.617 3.874 8.145 5.617 3.874 13.9 9.0 6.4

Design 3: heterogeneous slopes correlated with xℓit

(
ση = 0.5, ρxη = 0.5, ψ

(1,2,3,4)
ℓi

)

Bias(×100) SD(×100) RMSE(×100) Size(%)

T/N 50 100 200 50 100 200 50 100 200 50 100 200

IPC(ER)
25 1.070 3.570 4.964 11.075 7.527 5.137 11.127 8.331 7.144 15.3 12.8 18.6
50 1.066 3.746 5.217 9.357 6.377 4.164 9.418 7.396 6.675 13.5 13.3 22.6
100 0.882 3.735 5.256 8.228 5.596 3.568 8.275 6.728 6.353 11.5 12.5 23.1
200 0.778 3.876 5.493 7.879 5.248 3.320 7.917 6.524 6.418 11.7 13.5 26.9

BC-IPC(ER)
25 4.567 5.160 5.592 10.452 7.129 4.913 11.406 8.801 7.444 15.3 16.3 22.0
50 5.065 5.823 6.250 9.064 6.149 3.964 10.383 8.469 7.401 16.9 19.6 29.6
100 5.221 5.956 6.356 8.318 5.555 3.565 9.821 8.145 7.287 18.5 20.2 34.4
200 5.540 6.291 6.662 8.050 5.322 3.368 9.772 8.240 7.465 21.4 23.7 40.0

JK-IPC(ER)
25 4.798 5.451 5.789 12.302 8.062 5.462 13.205 9.732 7.959 22.3 20.5 26.0
50 5.937 6.444 6.572 9.981 6.522 4.141 11.613 9.168 7.768 21.7 24.1 33.7
100 6.118 6.548 6.656 8.793 5.734 3.634 10.712 8.704 7.583 23.4 25.1 38.2
200 6.560 6.909 6.981 8.521 5.404 3.398 10.754 8.772 7.764 26.4 27.7 43.3

LM
(2)
CRC tests is very close to the nominal level for Design 1 (the

model with homogeneous slopes) and Design 2 (random coef-
ficient models). In the results for Design 3 (correlated random

coefficients), we find that the power of the LM
(2)
CRC test is high

and rises asN and T increase, while the LM
(1)
CRC test is much less

powerful. Table C.3 in the supplementary materials reports the

power of the LM
(1)
CRC and LM

(2)
CRC tests for Designs 4–7. Therein

it is found that the LM
(2)
CRC test remains as powerful across

Designs 4–7 as inDesign 3,whilst the LM
(1)
CRC test is substantially

less powerful in Design 5 (ψ
(2)
ℓi ) and Design 7 (ψ

(4)
ℓi ). These

findings are in line with the results of our asymptotic local

power analysis and they support our claim that the LM
(2)
CRC test is

powerful against a broad class of alternativemodels of correlated
coefficients.
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Table 4. Size and power of the LM
(1)
CRC

and LM
(2)
CRC

tests of correlated random

coefficient.

Size (Design 1) Size (Design 2) Power (Design 3)
ση = 0, ρxη = 0 ση = 0.5, ρxη = 0 ση = 0.5.ρxη = 0.5

T,N 50 100 200 50 100 200 50 100 200

LM
(1)
CRC

25 2.6 2.6 3.1 2.7 2.4 2.4 5.9 7.1 9.7
50 3.4 3.3 2.3 2.5 3.0 3.3 8.9 12.0 16.8
100 3.3 2.0 2.6 2.7 2.3 2.3 12.1 16.9 28.8
200 3.4 2.9 2.3 2.7 3.0 2.4 18.8 32.2 51.4

LM
(2)
CRC

25 2.9 3.5 3.9 3.4 3.7 3.6 9.9 18.3 34.2
50 2.9 2.7 3.2 4.4 3.9 3.8 22.7 48.8 77.8
100 2.9 2.8 3.4 4.4 3.2 3.0 45.3 83.2 97.2
200 2.9 3.0 2.9 4.5 3.7 3.7 68.4 97.7 100.0

NOTE: For Designs 1–3, see Table 1. The LM
(g)
CRC

is the proposed LM test of correlated

random effects defined by (20), based on the BC-IPC estimator. The test statistics

are referred to the 95% quantile of χ2
g distribution. All results are based on 2000

replications. The number of factors is estimated by the ER method.

5. An Empirical Application: Feldstein–Horioka Puzzle

In this section, we present an empirical illustration of the pro-
posed method. Specifically, we analyze the Feldstein–Horioka
(F–H) puzzle, which has attracted recent attention in the
literature.

Feldstein andHorioka (1980) found that in OECD countries,
the long-run average of the national savings rate is significantly
correlated with the long-run average of the domestic investment
rate. This empirical finding seems to conflict with macroeco-
nomic theory, which predicts that the determinants of saving
and investment are different and that, assuming perfect inter-
national capital mobility, the investment decisions in a country
should not be constrained by domestic saving. This is known as
the F–Hpuzzle, and is included as one of the sixmajor puzzles in
international macroeconomics by Obstfeld and Rogoff (2000).

Several econometric methods have been applied to investi-
gate the F–H puzzle, including instrumental variable methods,
cointegration regressions and the standard fixed effectmodels.11

Recently, Giannone and Lenza (2010) and Ginama, Hayakawa,
and Kanemi (2018) analyzed the F–H puzzle by considering a
panel regression model with interactive effects.

In this section, we apply our approach to analyze the F–H
puzzle by using the OECD panel dataset covering 1968–1996
with N = 24 and T = 29, as used in Ginama, Hayakawa, and
Kanemi (2018). Specifically, we estimate the following model:

(
Iit

Yit

)
= βi

(
Sit

Yit

)
+ λ0′

i f
0
t + εit ,

where Iit , Sit , andYit denote investment, gross savings, andGDP
for country i and year t, respectively. This specification is more
general than considered in the literature in that the coefficient is
allowed to be heterogeneous and interactive effects are included.

We now describe how we proceed when using our approach.
Our interest lies in estimating the population mean of βi. First,
we need to determine the number of factors in the error term for

11See sec. 1 of Ginama, Hayakawa, and Kanemi (2018) for a brief literature
survey.

Table 5. Estimation results for the Feldstein–Horioka puzzle based on OECD data
covering 1968–1996, (N = 24, T = 29).

Estimated number of factors

r̂ r̂,ER = 1 r̂,GR = 1

LM test for correlated random coefficient

test statistic p-value

LM
(2)
CRC

0.5101 0.7749

Estimation results with r̂ = 1

BC-IPC JK-CCEP

Coef. 0.4238 0.3518
S.E. 0.0891 0.1193

NOTE: BC-IPC is the bias-corrected IPC estimator with the PHAC standard error. JK-
CCEP is the jackknife bias-corrected CCEP estimator of Westerlund (2018) with
the nonparametric standard error of Pesaran (2006) for random coefficients. For
the estimation of the number of factors and computation of BC-IPC, data are
demeaned in both dimensions while undemeaned data is used for JK-CCEP.

the model in which the slope heterogeneity (if any) is ignored.
Here, we follow the procedure described in Section 4.1. Having
estimated the number of factors in the error term, we conduct
the LM test for correlated random coefficients, which is pro-
posed in Section 3. If the null hypothesis is not rejected, we
proceed to statistical inference using the robust PHAC standard
errors; otherwise we need to consider an alternative approach,
as described at the end of Section 3.

Table 5 provides the estimation results. As a comparison, we
computed a jackknife bias-corrected CCEP estimator proposed
by Westerlund (2018) and the associated nonparametric stan-
dard error of Pesaran (2006, eq. (69)) for random coefficient
models.12 With regard to the number of factors, both r̂GR and
r̂ER suggest that the number of factors is one. The LM test

for correlated random coefficients, LM
(2)
CRC, does not reject the

null hypothesis of random coefficients or homogeneous slopes,
which validates our robust approach. Note that the PHAC stan-
dard error is asymptotically valid for the models with homoge-
neous slopes or random coefficients. Meanwhile, the nonpara-
metric standard error used for the CCEP estimator is developed
primarily for the models with random coefficients, and a dif-
ferent standard error may have to be employed for the models
with homogeneous slopes; see Theorem 4 in Pesaran (2006).
Nevertheless, the BC-IPC and JK-CCEP estimation results show
that the savings-GDP ratio is highly significant in the regression
of the investment-GDP ratio, indicating the existence of the F–H
puzzle.

6. Concluding Remarks

In this article, we have proposed a robust approach against
heteroscedasticity, error serial correlation and slope hetero-
geneity in linear models with interactive effects for large panel
data. First, consistency and asymptotic normality of the pooled
iterated principal component (IPC) estimator for the models

12For the IPC estimation, the data are within-transformed and cross-
sectionally demeaned, while for the CCEP estimation the data are within
transformed only.



JOURNAL OF BUSINESS & ECONOMIC STATISTICS 13

with random coefficients and homogeneous slopes have been
established. Then, we have proved the asymptotic validity of
the associated Wald test for slope parameter restrictions based
on the panel heteroscedasticity and autocorrelation consistent
(PHAC) variance matrix estimator for the models with random
coefficients and homogeneous slopes, which does not require
the Newey-West type time-series parameter truncation. These
results asymptotically justify the use of the same pooled IPC
estimator and the PHAC standard error for both homogeneous-
slope and heterogeneous-slope models. This robust approach
can significantly reduce the model selection uncertainty for
applied researchers. In addition, we have proposed a Lagrange
Multiplier (LM) test for correlated random coefficients with
covariates. This test has nontrivial power against correlated
random coefficients, but not for random coefficients and
homogeneous slopes. The LM test is important because the IPC
estimator becomes inconsistent with correlated random coeffi-
cients. The finite sample evidence and an empirical application
support the usefulness and reliability of our robust approach.

We have examined finite sample performance of the estima-
tors, the tests of linear restrictions on the slope parameters, and
the LM tests for correlated random coefficients. We have exam-
ined the finite sample performance of the estimators, the tests
of parameter restrictions using the PHAC variance estimator,
and the LM test for correlated random coefficients. The results
show that the size of the proposed robustWald test with the bias-
corrected IPC estimator is sufficiently close to the nominal level
in both slope homogeneity and slope heterogeneity, and that
the LM test for correlated random coefficients has correct size
under both slope homogeneity and random coefficients while
exhibiting high power for correlated random coefficients. The
finite sample evidence, together with the empirical application
for the Feldstein–Horioka puzzle, support the reliability and the
usefulness of the proposed robust approach.

It is well recognized that bootstrapping in general can pro-
vide more accurate inference; see, for example, Hall (1992).
Recently, there has been a rapid growth in the study of bootstrap
methods for factor models; see Gonçalves and Perron (2014,
2020), among others. This is an interesting research direction,
as applying bootstrap methods to panel data models with inter-
active effects can lead to more precise inferences.

The proposed approach investigated for the IPC estimator
is most likely to be applicable for pooled estimators in other
approaches, including the Common Correlated Effects (CCE)
estimator of Pesaran (2006), the principal component (PC)
estimator investigated by Westerlund and Urbain (2015), and
the two-step instrumental variable (2SIV) estimator proposed
by Cui et al. (2021), among others. In particular, for these
estimators the factors in the regressors and in the error term are
extracted, whilst the IPC estimator only exploits the information
of the factors in the error term. Studying such applications seems
to be an interesting extension.

As emphasized in the article, when the null hypothesis of
randomcoefficientmodels is rejected in favor of the alternatives,
it is preferable to employ estimators which are consistent for the
models with correlated random coefficients. In this situation,
the mean group estimators based on the CCE, 2SIV and ML
approaches proposed by Pesaran (2006), Cui et al. (2021), and
Li, Cui, and Lu (2020), among others, seem to be possible

choices. Investigating inferential methods for such estimators
under correlated random coefficients seems to be an intriguing
future research theme.

SupplementaryMaterials

The supplementary material consists of online appendices that discuss the
experimental results with proofs of key results and additional discussion,
and computational codes that replicate the experimental and empirical
results.
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