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ABSTRACT: Resonant photonic sensors are enjoying much attention based
on the worldwide drive toward personalized healthcare diagnostics and the
need to better monitor the environment. Recent developments exploiting
novel concepts such as metasurfaces, bound states in the continuum, and
topological sensing have added to the interest in this topic. The drive toward
increasingly higher quality (Q)-factors, combined with the requirement for
low costs, makes it critical to understand the impact of realistic limitations
such as losses on photonic sensors. Traditionally, it is assumed that the
reduction in the Q-factor sufficiently accounts for the presence of loss. Here,
we highlight that this assumption is overly simplistic, and we show that losses
have a stronger impact on the resonance amplitude than on the Q-factor. We
note that the effect of the resonance amplitude has been largely ignored in the
literature, and there is no physical model clearly describing the relationship between the limit of detection (LOD), Q-factor, and
resonance amplitude. We have, therefore, developed a novel, ab initio analytical model, where we derive the complete figure of merit
for resonant photonic sensors and determine their LOD. In addition to highlighting the importance of the optical losses and the
resonance amplitude, we show that, counter-intuitively, optimization of the LOD is not achieved by maximization of the Q-factor but
by counterbalancing the Q-factor and amplitude. We validate the model experimentally, put it into context, and show that it is
essential for applying novel sensing concepts in realistic scenarios.

KEYWORDS: resonance amplitude, photonic sensors, limit of detection, metasurface, dielectric resonator, figure of merit

1. INTRODUCTION

Photonic sensors are an important class of sensing devices that
use light to detect modifications in an environment.1

Exploiting photonic resonances allows such sensors to operate
as a label-free modality, which is particularly beneficial for low-
cost realizations as required for near-patient testing and
environmental monitoring.2,3 A key property of such sensors is
the limit of detection (LOD), which is the minimum change in
the measurand that can be detected by the sensor.4 There has
been a recent revival in novel photonic structures for sensing
based on exciting concepts such as metasurfaces,5,6 bound
states in the continuum (BIC),7,8 and topological sensing.9,10

Unlike conventional sensing modalities that were predom-
inantly based on guided-wave optics such as microring
resonators,11 these new concepts exploit leaky modes;
consequently, their ability to achieve high quality (Q) factors
is more susceptible to scattering and absorption losses. Hence,
a model that takes losses into account is required, especially for
describing the impact of losses on the resonance amplitude and
for exploiting these novel sensing concepts to their maximum
potential.
In a milestone paper, White and Fan previously introduced

some of the key parameters, such as the Q-factor of the

resonance (QR), its sensitivity to refractive index changes, and
the signal-to-noise ratio (SNR) of the system.12 Their model,
however, did not explicitly consider the losses of the photonic
structure and the amplitude of the photonic resonance, which
are essential for describing the novel structures referred to
above.
Other works have already considered the effect of optical

losses on the sensing performance13 or highlighted the role of
the SNR, confirming that the best sensing performance is not
always obtained with the highest possible Q-factor.14−16

However, a rigorous analytical approach that includes the
parameters affecting the LOD of a resonant biosensor and
describes their relationship in a closed form is still missing.
Here, we investigate in detail the role of the resonance

amplitude in the LOD and key design strategies to be followed
for optimizing the LOD in lossy systems. We take an a priori
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approach and use temporal coupled mode theory (TCMT)17

to derive the LOD from first principles. We reach a closed
form expression that is very instructive for understanding the
operation and limitation of resonant photonic sensors. The
model is convenient in that it only requires information that is
readily accessible to an experimentalist. Taking the resonance
amplitude into account, the model highlights the trade-off
between the Q-factor and losses, losses being highly relevant as
they are almost unavoidable in real-world experimental
systems, such as BIC resonances that are currently being
considered by many research groups worldwide.18−20 It is
evident from Figure 1a, as an example, how an ideal loss-less
resonator presents a QR and resonance amplitude A = 1, while
for real conditions, the losses, described by the equivalent Q-
factor, QNR (non-resonant Q-factor, higher losses correspond
to lower QNR), strongly affect both the total Q-factor (Qtot <
QR) and the resonance amplitude (A < 1).
We show that, in the presence of losses, the LOD is inversely

proportional to the product of the resonance peak amplitude
and the QR. The model also shows that the optimum LOD is
reached when QR = QNR, which is a manifestation of the well-
known critical coupling condition.7 Surprisingly, we find that it
is more important to improve the amplitude than to reduce the
noise of the system, so that the SNR is no longer a key
parameter describing the system’s performance. To test the
validity of our model, we fabricate a photonic sensor based on
guided mode resonances (GMR) and find an excellent
agreement between our model and the experimental LOD.
Furthermore, we also demonstrate a good match with the
model for a microring resonator, which confirms the versatility
of the model for optical sensors irrespective of the Q-factor.

2. RESULTS

2.1. Model for LOD. We begin by considering Lorentzian
resonances and later extend the discussion to include Fano
resonances. A typical photonic resonance is described by
TCMT,18 assuming that the resonance is coupled to two
channels: light couples into the resonance through channel 1
and leaks out through channel 1 (reflection) and channel 2
(transmission). In the case of a Lorentzian resonance, the
amplitude can be expressed as follows7,21

λ ≈

+ +
λ λ

λ

−

− − −( )
A

Q

i Q Q

( )
2

R
1

R
1

NR
1

2

0

0 (1)

where A(λ) is the signal amplitude as a function of wavelength
λ, with λ0 being the resonance wavelength; QR is the resonant
Q-factor, which is the Q without losses; and QNR is the non-
resonant Q-factor that describes both scattering and/or
absorption losses. In the absence of losses, QNR = ∞.
The presence of losses is usually associated with a

broadening of the resonance, described by the well-known
relation Qtot

−1 = QR
−1 + QNR

−1. The impact of losses on the
amplitude, however, is even more severe than on Q. Indeed, eq
1 describes the amplitude of the resonance peak as followsikjjjjjj y{zzzzzzλ ≈
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which shows that the amplitude scales as the square of the Q-
factor ratio and not linearly. Thus, losses have a stronger
impact on the amplitude than on the Q-factor, as illustrated in
Figure 1a (see also Supporting Information 1).
For every sensor in the real world, the pure Lorentzian of eq

1 is perturbed by noise, as illustrated in Figure 1b. It is the
presence of noise that imposes a limit on the minimum change
in the measurand that can be detected. It is widely accepted
that for a signal to be detectable, it must be at least three times
larger than the standard deviation of the noise σ.12

As shown in Figure 1b, for a Lorentzian resonance, we define
the “signal” as the variation of the resonance amplitude around
the reference resonance wavelength λ0 caused by a
perturbation in the external environment. Notice that the
perturbation causes a shift of the resonance wavelength from
its reference value λ0 to a new value λ0′, thus changing the
amplitude at λ0.
We then define the minimum detectable amplitude variation

as 3σ, where σ is the standard deviation of the amplitude.
Thus, the wavelength λ′ for which a shift of 3σ is obtained
satisfies

λ λ σ− ′ =A A( ) ( ) 30 (3)

where A(λ0) is the resonance amplitude. As illustrated in
Figure 1, the wavelength deviation is thus Δλ = λ′ − λ0. From

Figure 1. (a) Example of reflectance spectra with same QR, but different QNR and resonance amplitude A(λ0) due to a corresponding increase of the
optical losses. (b) Typical experimental reflectance spectrum with noise with n = n0 (black curve) and n = n0 + Δn (gray curve) with A(λ0) − A(λ′)
= 3σ.

ACS Photonics pubs.acs.org/journal/apchd5 Article

https://doi.org/10.1021/acsphotonics.2c00188
ACS Photonics 2022, 9, 1757−1763

1758



eq 1 and 3, the minimum detectable wavelength deviation is
(see Supporting Information 2 for the full derivation)

λ
λ

λ
σΔ ≈

Q A( )
3min

0

R 0 (4)

The minimum wavelength variation can now be easily
correlated with the minimum detectable change in the
measurand through the sensitivity S, which, by definition, is
the ratio of the wavelength shift to the variation of the quantity
of interest. Thus, the LOD is given by

λ

λ
σ=

SQ A
LOD

( )
30

R 0 (5)

In a refractive index sensor, the sensitivity is defined as
wavelength shift versus refractive index change S = Δλ/Δn, in
units of nm/RIU; consequently, the LOD is typically expressed
as the minimum detectable refractive index change Δn.
As expected, the LOD depends inversely on QR. This

dependence is well understood and has driven sensor research
toward resonances with increasingly large Q-factor.22,23

However, our model highlights that this effort is only justified
in ideal scenarios, without losses, because, in the presence of
losses, the resonance peak A(λ0) also depends on QNR (eq 2).
It is then instructive to compare the model obtained in eq 5

with the widely used figure of merit SQtot, where Qtot is the
total measured Q. Substituting eq 2 into 5, and recalling that
Qtot

−1 = QR
−1 + QNR

−1, we find

λ
σ=

( )SQ

LOD 3
Q

Q

0

tot
tot

R (6)

Thus, according to eq 6, the impact of losses on the
amplitude introduce a correction factor of Qtot/QR on the
traditional figure of merit SQtot. The significance of the

correction factor Qtot/QR is expected to increase as Q-factors
are enhanced, especially in low-cost resonators, which tend to
exhibit higher losses.
From eq 5, the minimum LOD is reached when the product

QR·A(λ0) is maximized. We emphasize that, depending on the
relationship between QR and QNR, a larger QR may result in a
worse LOD. Indeed, it is a straightforward matter to prove
that, for a given QNR, the product QR·A(λ0) is maximized when
QR = QNR, which is the critical coupling condition24 (see
Supporting Information 3). Therefore, our model shows that
losses set a limit on the optimum Q-factor for sensing, a
condition that is largely ignored in the literature.
We also note that losses impact more the resonance

amplitude than the Q-factor, which is apparent from the fact
that the term QR, QNR in eq 2 is squared, whereas the
corresponding expression for the total Q-factor is not (for
more details, see (Supporting Information 1 and 3). This
insight also supports our strategy of optimizing the product
QR·A(λ0) in the presence of loss, instead of maximizing any
one parameter individually, or not taking losses into account.
In addition, our model highlights a counter-intuitive

relationship between the signal and noise. It is a common
perception that a system’s performance is dependent only on
the SNR, so that increasing the signal and noise proportionally
does not affect the system performance. Such a perception is
also captured by White and Fan,12 whose fitted equation for
the LOD depends solely on the SNR. This is not true for
resonant sensors suffering from losses, however. Instead, the
signal and noise weigh differently in the equation for the LOD
(eq 5), so that it is more important to improve the signal (the
resonance amplitude) than to reduce the noise. For example,
according to eq 5, if the resonance amplitude A(λ0) and the
noise σ are both doubled, the LOD will be reduced by a factor

of 2 . This surprising feature is a consequence of resonance
reshaping: reducing the losses not only increases the amplitude

Figure 2. (a) Experimental (blue curve) and simulated (red curve) spectra of the GMR structure. (b) Reflectance spectrum with n = n0 (blue
curve) and n = n0 + Δn (red curve), assuming n0 as the water refractive index (= 1.3329) and Δn = 7.5 × 10−3. (c) Resonance amplitude change
over time with different values of refractive index of the solution with the sensor in (a). (d) QR vs A(λ0) for the GMR structure in (a) (sample 1)
compared to another GMR sensors with a different value of QR·A (sample 2) and (e) corresponding expected LOD and measured range of
refractive index change Δn.
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but also reshapes the resonance. For a more detailed
explanation, see Supporting Information 4.
2.2. Validation of the Model. To validate the model and

to exemplify its use, we fabricated a photonic sensor and
determined the LOD experimentally. In our example, the
sensor is based on a GMR,25 but we emphasize that the model
is general and can be applied to any resonant sensor [note that
we also exemplify the model for microring resonators (see
Figure 3)]. Figure 2a shows two Lorentzian resonances: the
blue curve describes the experimentally measured resonance,
while the red curve represents the simulated one. It is obvious
that the experimental resonance is subject to the scattering
(and possibly also absorption) losses that are present in any
real system. Accordingly, the peak value is not unity, and the
resonance linewidth is broader than the linewidth of the
simulated curve. In our model, the peak value corresponds to
the A(λ0) parameter and is 0.59 for this particular example.
The simulated resonance, on the other hand, does not include
any losses and it is not affected by limitations in the optical
setup, for example, the spectral resolution of the spectrometer,
which instead impacts the resonance amplitude. Therefore, the
Q-factor of the simulated resonance is QR of the model, in our
example QR = 540.
The next parameter we consider is the sensitivity S. We

experimentally determine a bulk sensitivity for our sensor of S
= 84 nm/RIU (see Supporting Information 5). We also
measured the standard deviation of the amplitude noise and
found it to be 3σ = 1.42 × 10−2. The 3σ value has been
determined by evaluating the deviation of the signal amplitude
monitored at a fixed wavelength (λ0) over 15 min, while
keeping the refractive index of the solution constant. By using
these values in our model (eq 5), we find that our model
predicts an LOD of 3.1 × 10−3 RIU.
This calculation determines the LOD from the model, using

parameters that are easily accessed by the experimentalists. To
verify the model experimentally, we measured the change in
resonance amplitude for different refractive indices, as shown
in Figure 2b. As it is clear from Figure 2c, we can clearly
discriminate the step change in the signal for Δn = 4 × 10−3

RIU, but we cannot do so for Δn = 2.5 × 10−3 RIU. By
interpolating the experimental shift as a function of the
refractive index change, the expected LOD can be extrapolated
by the intersection of the curve with the 3σ value, which
corresponds to an LOD of 3.0 × 10−3 RIU, with a mismatch
between the model result and the experiments of only 3.2%,
confirming the accuracy of the model for the LOD prediction
(see Table 1). For comparison, we then used the same
experimental parameters with the model determined empiri-
cally in ref 12 and found that their model predicts an LOD of

2.1 × 10−3 RIU, underestimating the value measured
experimentally. One may argue that this difference in LOD
is not very large and therefore not significant in the context of
the experimental uncertainty, but as we show below, our model
is also better at describing important trends in sensor design.
Accordingly, to further validate our model and to highlight

the important dependence of the LOD on the product QR·

A(λ0), we consider a similar GMR structure to that described
in Figure 2a (See Supporting Information 6), but now with a
higher Q-factor, yet with a lower product QR·A(λ0).
Specifically, we now have QR = 890 and A(λ0) = 0.27, thus
resulting in QR·A(λ0) = 240.3. This product is lower than that
in the first experiment (earlier, we had in QR·A(λ0) = 318.6).
According to our model, the lower product results in a worse
LOD than before. Indeed, using these numbers in eq 5 (the
resonance wavelength is now λ0 = 743 nm), one finds LOD =
4.6 × 10−3 RIU (Figure 2e). By repeating the experiment with
this new resonance, we find that the experimental LOD now
lies between 3.7 × 10−3 RIU and 5.6 × 10−3 RIU, with a
predicted value of 4.9 × 10−3 RIU, with an inaccuracy of 6.5%
between the model prediction and the experiments (See
Supporting Information 6, Table 1). Thus, our experiment
confirms that due to the inherent losses of the system, a higher
Q-factor results in a worse LOD, when the product QR·A(λ0) is
lower (Figure 2d).
In order to further demonstrate the versatility and generality

of our model, we also consider a microring resonator with a
relatively high Q-factor, that is, more than 1 order of
magnitude higher than the previous sensors based on GMR.
More details about the design and fabrication of the microring
resonator are reported in refs 26 and 27. The sensor exhibits
A(λ0) ∼ 0.8 with λ0 = 1585.8 nm (Figure 3a), while the
simulated Q-factor is QR ∼ 2.6 × 104. We have measured a
noise level of 3σ = 0.06 and a sensitivity of 65 nm/RIU. By
using these values in our model, we predict an LOD = 2.9 ×

10−4 RIU (Table 1). The experiments verify an LOD that lies
between 1 × 10−4 RIU and 3.5 × 10−4 RIU (Figure 3b), with
an expected LOD value of 2.62 × 10−4 RIU, validating the
predicted value from the model with an uncertainty less than
10%. The fact that the model prediction is also correct for high
Q-factor cavities confirms its generality.
A widespread strategy to improving the LOD is to apply

fitting methods to track the resonance shift.8,27−30 Beyond
clarifying the dependence of the LOD on the various
parameters of the resonance, our model can also be used to
quantify the effect of such fitting methods. As an example, we
use the method to compare the LOD obtained with and
without fitting.
Using this method, we can now infer the equivalent value of

3σ from the model that would be required to reach such a low
LOD without fitting. Using eq 4, we find that the equivalent
noise is up to 3 orders of magnitude lower than the raw noise,
confirming that a simple fitting procedure can provide a
comparable LOD that would be obtained in a system with a
standard deviation of the noise that is a thousand times lower
(See Supporting Information 7).

2.3. Fano Resonances. So far, we have used only
Lorentzian resonances. To emphasize the generality of our
model, we now show that it can be extended to describe Fano
resonances as well. The main difference is that, for Fano
resonances, the dynamic range (DR), defined as the difference
between the peak and dip,31 plays the role of the resonance
amplitude A(λ0). One interesting feature of Fano resonances is

Table 1. Comparison between the Experimental LOD and
the Expected Values Obtained from the Model for Resonant
Structures with Different Values of QR·A(λ0)

QR·A(λ0)

estimated
experimental
LOD [RIU]

expected
LOD from
the model
[RIU]

model
uncertainty

(%)

GMR sensor 1
(low-Q)

3.2 × 102 3.0 × 10−3 3.1 × 10−3 3.2

GMR sensor 2
(moderate-Q)

2.4 × 102 4.9 × 10−3 4.6 × 10−3 6.5

microring
(high-Q)

2.1 × 104 2.62 × 10−4 2.9 × 10−4 9.6
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that, in the presence of losses, the DR depends on the phase of
the Fabry−Perot (FP) background resonance. This feature is
shown in Figure 4a for two different regimes: a low loss regime
(QR = 103 and QNR = 104 with QR/QNR = 0.1) and a moderate
loss regime with QR = QNR = 103 (QR/QNR = 1). The
horizontal axis shows the phase of the FP background
resonance, for which δ = 2π is the condition for a Lorentzian
resonance (see Supporting Information 8 for more details).32

As the phase is decreased from the Lorentzian value and into
the Fano region, the DR increases, and it can even double in
the high loss regime. To illustrate the origin of this behavior,
resonances for three different phases δ are shown in Figure 4.
The phase relationships between the FP background and the
cavity resonance are illustrated by the arrows in the insets of
Figure 4b,c,d. Notice in the insets in Figure 4b,c that the blue
arrows, which represent the phase and amplitude at the dip, are
nearly antiparallel to the black arrows, which represent the FP
background. On the other hand, the red arrows, representing
the peak, are roughly orthogonal to the FP background (black
arrows). Therefore, the phase relationships are more favorable
to destructive interference, which leads to the formation of the
dips, rather than to constructive interference, which instead
leads to the formation of the peaks (Supporting Information

8). Combined with our model, these results indicate that it is
possible to improve the LOD of a sensor by a factor of 2, for a
fixed QNR, by properly adjusting the phase of the background
resonance. In practice, the adjustment of the background phase
depends on the type of resonance; for GMR, the FP
background depends on the thickness of the waveguide film
and on its refractive index.33

3. CONCLUSIONS

We have developed a simple and intuitive model to describe
the LOD of resonant photonic sensors in terms of resonance
parameters that are readily accessible for the experimentalists
and that include losses and their impact on the resonance
amplitude. The model is extremely timely as many novel
sensing concepts such as metasurfaces, BICs, and topological
sensing rely on leaky modes that are more susceptible to losses
than previous concepts based on guided modes. Our model is
derived from first principles and is based on the temporal
coupled mode theory, with no assumptions other than that the
system can be described by the general condition of a single
resonance coupled to two channels. Our key finding is that the
widely used figure of merit, which multiplies sensitivity and the

Figure 3. (a) Transmission spectra and (b) resonance amplitude change of a microring resonator in the Silicon on Insulator (SOI) technology27 for
different refractive index values of the surrounding medium with n0 = 1.31. Please note that the refractive index values are not equally spaced, hence
the curve appears non-linear.

Figure 4. Resonance amplitude as a function of the phase of the FP background δ for the case of moderate losses with QR/QNR = 1 (blue curve)
and low losses with QR/QNR = 0.1 (red-dotted curve). Reflectance spectra with (b) δ/π = 1 and (c) δ/π = 1.8 and related phase relationships
between the FP background (black arrow) and the cavity resonance peak (red arrow) and dip (blue arrow), and (d) with δ/π = 2.
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Q-factor of the resonator, is overly simplistic because it
considers neither the losses nor the amplitude of the
resonance. Instead, our model brings out the requirement
that the LOD is optimized when the product QR·A(λ0) is
maximized. This requirement shows that an exceedingly large
Q-factor may lead to a worsening of the LOD, contrary to a
widely held belief in the community. Indeed, for a given loss,
the LOD is optimized by the critical coupling condition
between the intrinsic resonant quality-factor QR and the loss
quality factor QNR. Thus, our model allows the prediction of
the LOD that can be obtained in a realistic system, where all
the required information can be gathered by straightforward
inspection of the simulation and the experimental resonances.
We have validated our model experimentally and have used it
to show the benefit of simple data processing strategies such as
fitting procedures. Finally, we have shown that it is possible to
improve the LOD up to a factor of 2 by entering the Fano
regime and judiciously adjusting the background resonance
phase. Our model rigorously clarifies the effect of losses on
resonators typically used for photonic sensing and it clarifies
which parameters are most relevant for the further improve-
ment of resonant photonic sensors, in particular the surprising
insight that resonance amplitude is more important than SNR.
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