
This is a repository copy of Minimizing Execution Duration in the Presence of Learning-
Enabled Components.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/170534/

Version: Accepted Version

Proceedings Paper:
Agrawa, Kunal, Baruah, Sanjoy, Burns, Alan orcid.org/0000-0001-5621-8816 et al. (1 more
author) (2020) Minimizing Execution Duration in the Presence of Learning-Enabled 
Components. In: DATE '20:Proceedings of the 23rd Conference on Design, Automation 
and Test in Europe March 2020. Design Automation, 01 Apr - 30 Jun 2020 ACM , pp. 
1644-1649. 

https://doi.org/10.23919/DATE48585.2020.9116505

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Minimizing Execution Duration in the Presence of

Learning-Enabled Components

Kunal Agrawal

kunal@wustl.edu

Sanjoy Baruah

baruah@wustl.edu

Alan Burns

alan.burns@york.ac.uk

Abhishek Singh

abhishek.s@wustl.edu

Abstract—Autonomous systems are increasingly using compo-
nents that incorporate machine learning and other AI-based
techniques in order to achieve improved performance. We
address the problem of assuring correctness in safety-critical
systems that use such components. We investigate an approach
which formulates the problem as one in which performance is
an objective function to be optimized while safety is a hard
constraint that must be satisfied. We then apply heuristics and
algorithmic techniques from optimization theory in order to solve
the resulting constrained optimization problem.

Index Terms—Learning-enabled components (LECs); Safety-
critical systems; Performance optimization; Run-time monitor-
ing; Typical analysis.

I. INTRODUCTION

Many autonomous cyber-physical systems (CPS’s), includ-

ing unmanned aerial vehicles, self-driving cars, and unmanned

underwater vehicles, are safety-critical. The safety of the run-

time behavior of such safety-critical systems must be assured

before they can be considered for deployment. However it

is challenging to directly apply traditional approaches towards

safety assurance to modern autonomous CPS’s due to multiple

reasons, including the presence of complex and adaptive func-

tionalities depending upon machine learning techniques that

are not well understood in the way that components tradition-

ally used in safety-critical systems are. The importance and the

immense complexity of the problem of obtaining assurance for

autonomous CPS’s that incorporate machine learning has been

widely recognized, and approaches for solving this problem

are being actively sought. For example, the Assured Autonomy

Program [1] of the United States Defense Advanced Research

Projects Agency (DARPA) has a goal of creating technology

for establishing assurance of CPS’s that contain “Learning-

Enabled Components” (LECs), which are an abstraction

defined in [1] that generalizes a wide variety of popular

machine learning approaches. In a similar vein, the Assuring

Autonomy International Programme [2] is an initiative funded

by the international insurance company Lloyd’s of London at

the University of York (UK), in response to a 2016 study by

Lloyd’s that identified assurance and regulation as the biggest

obstacles to gaining the benefits of robotics and autonomy.

Yet another important example is the Bounded Behavior

Assurance initiative [3]spearheaded by the major US defense

This research presented was supported, in part, by the National Science
Foundation (USA) under Grant Numbers CNS-1814739, CPS-1932530, and
CNS-1911460, and the EPSRC (UK) funded project Strata.

contractor Northrop Grumman Corporation, which seeks to

define processes for establishing assurance (and eventually,

obtaining certification) that the behavior of unmanned aerial

vehicles that use machine learning to make safety-critical

and mission-critical decisions will always remain within pre-

specified bounds.

It has been observed [4] that predictability of run-time

behavior is key to assuring safety in safety-critical systems.

Although most non-trivial safety-critical systems inevitably

encounter some unpredictability in run-time behavior, safety-

critical systems designers have developed techniques for deal-

ing with inherent run-time unpredictability with regards to

extra-functional properties such as timing (the duration re-

quired to complete execution) or energy consumption. How-

ever, safety-critical systems that make use of LECs tend to

additionally not be predictable from the functional perspective:

the precise “worth” or value of a computation performed

by an LEC that incorporates deep learning or similar AI-

based techniques is often not easily predicted beforehand.

How should one deal with such functional non-predictability

in safety-critical systems? In this paper, we propose a possible

approach towards doing so for a particular form of computa-

tion involving LECs, that possess the following characteristics:

• The overall computation can be looked upon as a multi-stage

one, in which a series of functional blocks are to be

executed in a specified sequence. For an execution of the

computation to be considered correct (and hence safe), a

specified minimum level of service must be obtained over

all the stages; we assume that this minimum level of service

is quantified as a numerical target value.

• We have a choice of different alternative implementations

for each stage of the computation, some or all of which may

involve the use of LECs. Each implementation takes some

duration to complete execution, and achieves an associated

value – a quantitative measure of the quality of the com-

putation that was achieved by executing that implementa-

tion.1 We perform the complete end-to-end computation by

selecting and executing exactly one of the implementation

choices for each stage, in sequence. The total value obtained

by the end-to-end computation is defined to be the sum of

the values associated with the implementations that were

1It may be convenient to think of this value as a measure of the progress
that will be made towards achieving the overall objective for the computation,
if this implementation were selected for this stage of the computation.



selected for the individual stages.

• We can monitor the computation — determine certain

aspects of system state — after each stage during run-time.

For computations possessing these properties we consider

different approaches for scheduling the computation that can

guarantee safety — i.e., guarantee that the computation will

achieve the specified target value of quality of service —

and optimize for performance – specifically, reduce the

overall duration of the computation. We provide a precise

formulation of the scheduling problem that needs to be solved

as a constrained optimization problem (Section II); explore

a number of algorithms, ranging from simple heuristics that

are efficiently implementable to provably optimal ones, for

solving this problem (Section III); and compare these different

algorithms via simulation experiments on randomly-generated

synthetic workloads (Section V).

The model of computation that we are considering in this

paper is rather restrictive: several reasonable generalizations

(a few of which are discussed in Section IV and others are

enumerated in Section VI) could be thought of. We plan to

explore these generalizations in future work – we look upon

the results in the current paper as an initial step towards

developing a body of results that will prove capable of dealing

with a far more general model of LEC-based computations

than the simple one we consider here.

II. MODEL AND PROBLEM STATEMENT

As discussed above, we consider multi-stage computations

in which a series of functional blocks are to be executed

in a specified sequence, and we have a choice of several

different implementations for each stage. Let n denote the

number of stages, and m the maximum number of available

alternative implementations for any stage. (An example multi-

stage computation with n and m both equal to 2 is depicted

in Figure 1.). Let V ∈ N denote a target value that must be

obtained cumulatively across all stages of the computation. We

will use the notation Ii,j to denote the j’th implementation

choice for the i’th stage, 0 ≤ i < n and 0 ≤ j < m. Let

Vi,j ∈ N denote the value that is obtained by executing the

implementation Ii,j , and let Ci,j ∈ N denote the duration of

this execution — we do not assume that the numerical value of

these parameters are known prior to executing Ii,j (and indeed

allow for the possibility that they may be different on different

executions of Ii,j). Consider some execution of the end-

to-end computation, and let φ(i) denote the implementation

of the i’th stage that is chosen (i.e., Ii,φ(i) is the executed

implementation) for each i, 0 ≤ i < n. (Note that the

function φ(·) thus specifies the schedule for the computation.)

It is required that this function φ(·) satisfy the constraint that
P

i Vi,φ(i) ≥ V; from amongst all such φ, we seek the one

that minimizes
P

i Ci,φ(i). That is, our correctness constraint

is that the sum of the values returned across all n stages should

equal (or exceed) the specified threshold value V , while the

performance objective is that the cumulative duration of the

computation be minimized.

As stated above, the Cij , Vij values are unknown prior to

actually executing Ii,j , and will in general take on different

values each time Ii,j is executed. In order to be able to do pre-

run-time verification, it is necessary that worst-case bounds be

known on the values that these quantities may take. Let ci,j
and vi,j denote safe worst-case bounds on the values of Ci,j

and Vi,j respectively, that can be determined beforehand; by

“safe,” we mean that it is guaranteed that Ci,j ≤ ci,j and

Vi,j ≥ vi,j for all executions of Ii,j .

• The value of ci,j is what is commonly referred to in the

real-time computing literature as the worst-case execution

time (WCET) of the implementation Ii,j , and may be

determined using the wide range of tools, techniques, and

methodologies for WCET-determination [5] that have been

developed within the real-time computing community.

• We require that similar tools, techniques, and methodologies

be developed that enable us to determine lower bounds on

the value of the computation that is performed by an LEC.

While we recognize that this is a major “ask” that will

require a large concerted effort on the part of the safety-

critical systems community, we believe it is unavoidable —

we don’t really see any other path to enabling the safe and

effective use of LECs in safety-critical systems.

If we are to be able to verify correctness of a given compu-

tation prior to run-time, it is evident that there should exist

some implementation of each stage such that the worst-case

value bounds of these implementations sum to at least the

target value – this correctness requirement is formalized in

Section III as a feasibility test, and computations passing

the feasibility test are said to be feasible. If a computation

is deemed feasible, our approach, as briefly described in

Section I, will generate a schedule prior to run-time that can be

verified for correctness, and shown to have an acceptably small

duration. What properties must such a schedule satisfy? Recall

that the function φ : [0, . . . , n− 1] → [0, . . . ,m− 1] specifies

the schedule for the computation – i.e., which implementation

of each stage is selected for execution. One possibility for

the initial schedule would be to choose φ(·) to minimize

the quantity
�
Pn−1

i=0 ci,φ(i)
�

, subject to the constraint that
�
Pn−1

i=0 vi,φ(i) ≥ V
�

. Such a schedule guarantees to have the

optimal (i.e., smallest) duration bound in the worst case; in the

absence of additional information about run-time behavior, this

is a reasonable initial schedule to choose to work with. How-

ever, it may be the case that additional information regarding

run-time behavior is available prior to run-time (in addition to

the worst-case bounds ci,j and vi,j); if so, it may be possible

to use such additional information in order to further optimize

the initial schedule provided we are able to do so without com-

promising the correctness guarantee whatsoever. An example

of such additional information that may be available, that we

believe may be particularly interesting and useful, is suggested

by Quinton et al. [6] via the concept of typical analysis.

The idea behind typical analysis is that while a worst-case

characterization of a system must encompass all possible

behaviors of the system, a “typical” characterization excludes



0

1

V = 10

I0,0: (6, 6, 30, 30) I0,1: (4, 6, 10, 10)

I1,0:(7, 7, 50, 50) I1,1:(4, 4, 20, 20)

Fig. 1: An example instance: a 2-stage computation (n = 2),
with two possible implementations per stage (m = 2), that must
achieve a value of at least 10 (V = 10). The 4-tuples represent the

(vi,j , v
T
i,j , ci,j , c

T
i,j) parameters of the implementations.

pathological behaviors that are extremely unlikely to occur

in practice.2 Let us suppose that our multi-stage computation

is subjected to such typical-case analysis, and let parameters

cT
i,j and vT

i,j denote the typical execution duration of, and

the typical value obtained by, the implementation Ii,j ; the

interpretation of these parameters being that implementation

Ii,j will complete execution within a duration no greater

than cT
i,j (Ci,j ≤ cT

i,j) and obtain a value no smaller than

vT
i,j (Vi,j ≥ vT

i,j) in all non-pathological executions of the

computation.

Problem statement. We now summarize our workload model,

and the problem we seek to solve. A problem instance is

specified by specifying values for

• the number of stages n of the multi-stage computation;

• the maximum number of alternative implementations m for

each stage;

• the target value V that is needed for correctness; and

• the worst-case and typical values ci,j and cT
i,j for the

execution-duration and vi,j and vT
i,j for the value-obtained

parameters, for each implementation Ii,j , 0 ≤ i < n, 0 ≤

j < m.

Given an instance specified in this manner, we will consider

how to schedule it in order to guarantee correctness under all

circumstances (assuming this is possible – i.e., the instance is

feasible) while optimizing for duration. We will consider two

different objectives with regards to this optimization criterion

1) minimize duration under all circumstances; and

2) minimize duration under all non-pathological conditions

only (while continuing to guaranteeing correctness under

all circumstances, including atypical, pathological ones).

We illustrate some of these concepts (in particular, the differ-

ence between the two optimization criteria) via an example:

Example 1: Consider a 2-stage computation (n = 2) with

a choice of 2 implementations per stage (m = 2), for

2E.g., worst-case characterization of the value obtained by an implemen-
tation may be obtained by performing static analysis of the implementation,
making worst-case (or pessimistic) assumptions and rigorously proving the
value that will be obtained under these assumptions. In contrast, a typical
characterization of this value may be obtained via extensive experimentation
and measurement, executing the implementation under a wide range of
“typical” conditions and using the smallest measured value that is obtained.

which correctness requires that a cumulative value of at least

10 be obtained (V = 10) — see Figure 1. This example

has been constructed to be particularly simple in order to

highlight the difference between the two optimization criteria:

the typical delay estimate for each of the four implementations

is equal to its worst-case delay estimates, and the second

implementation of the first stage, I0,1, is the only one of the

four implementations for which its typical value estimate is

different from its worst-case estimate (the specification of this

implementation is enclosed within a box in the figure).

This instance is clearly feasible; e.g., executing the im-

plementations I0,0 and I1,0 yields a value ≥ v0,0 + v1,0 =
(6 + 7) = 13, which is ≥ the target value V of 10.

If we seek to optimize for the worst case, then the initial

schedule would choose the implementations I0,0 and I1,1
(equivalently, φ(0) ← 0 and φ(1) ← 1), for a cumulative

value at least v0,0 + v1,1 = (6 + 4) = 10 (thereby assuring

correctness), and a corresponding duration bound equal to

c0,0 + c1,1 = (30 + 20) or 50.

If, however, we seek to optimize for the typical case, then

the initial schedule would choose the implementations I0,1 and

I1,0 (equivalently, φ(0) ← 1 and φ(1) ← 0). This guarantees

a cumulative value at least v0,1+v1,0 = (4+7) = 11, thereby

assuring correctness.

• During a typical execution of I0,1, we would expect to

obtain a value ≥ vT
0,1 or 6. This will be determined by the

run-time monitor, which will thus know that the remaining

value that needs to be obtained is at most (V − 6), or 4.

But this value can also be guaranteed by implementation

I1,1 (because v1,1 = 4); since I1,1 has a smaller execution

duration than I1,0, the run-time monitor will modify the

remainder of the schedule by changing φ(1) to equal 1.

Implementation I1,1 is therefore executed next, for a dura-

tion bound equal to (10 + 20) or 30. Hence under typical

circumstances the duration bound of 30 (rather than the 50

that was obtained by optimizing for worst-case behavior).

• Even during non-typical (pathological) executions, I0,1
guarantees a value of at least 4. If the value obtained is

determined to be smaller than 6 by the run-time monitor,

then implementation I1,0 is executed next as per the ini-

tial schedule (that was constructed prior to run-time); the

resulting duration bound is then equal to (10 + 50) or 60.

As illustrated in the example above, optimizing for typical-

case behavior may yield very different schedules than opti-

mizing for worst-case behavior. Which is more appropriate

to use? We argue that there is no single good answer here:

different applications and different use-cases may favor one

over the other. Optimizing for typical-case behavior results in

better average performance (assuming that the typical cases

are accurately characterized), which optimizing for worst-case

behavior ensures smaller durations under all circumstances.

We therefore consider below, a number of algorithms for

scheduling under both optimization metrics; we reiterate that

the algorithms for both metrics guarantee correctness under



all circumstances – even if duration is being optimized for the

typical case, correctness guarantees remain worst-case ones.

III. ALGORITHMS FOR ANALYSIS AND SCHEDULING

We now propose several different approaches for solving
the scheduling optimization problem that was formalized in
Section II above; all involve deciding at each stage which
of the available implementations to choose. These approaches
may be characterized along four orthogonal axes:

1) LOCAL/ GLOBAL: is the choice at a stage made based only on
information available at that stage, or are the static attributes of
future stages taken into account?

2) STATIC/ DYNAMIC: is the schedule that must be synthesized prior
to run-time and verified for safety, subject to modification based
on information obtained via run-time monitoring?

3) OPTIMAL/ HEURISTIC: We will both consider approaches for
which precise notions of optimality can be proved, and ones based
on what appear to be intuitively reasonable heuristics.

4) WORST-CASE/ TYPICAL: as discussed above, the problem frame-
work is open to a worst-case or typical-case focus.

Recall that our correctness requirement mandates that we ob-

tain a cumulative value ≥ V across all the stages of our multi-

stage computation. Hence a feasibility test would check that

the largest worst-case value obtainable at each stage, summed

across all the stages, is ≥ V:
X

0≤i<n

max
0≤j<m

{vi,j} ≥ V . As

the computation progresses, in order to retain feasibility it is

necessary that the actual cumulative value obtained thus far,

plus the largest values obtainable from the remaining stages,

remains ≥ V .

From this consideration of feasibility and the character-

istics outlined above it is possible to define a number of

potential scheduling approaches; Figure 2 enumerates a (non-

exhaustive) list of potential candidates. The first three are

based upon reasonable heuristics that are very efficiently

implementable; the last two are obtained by applying standard

dynamic programming techniques that translate into pseudo-

polynomial time algorithms,3 to obtain optimal solutions.

IV. ADDING STATE AND MODES

As stated in Section I, the model of computation considered

in this paper is rather restrictive; analysis of this simple model

should be considered a (necessary) first step towards enabling

the safe use of LECs in safety-critical systems. We now

describe two generalizations that we believe would enhance

its applicability; we have some preliminary ideas as to how to

extend our analysis techniques to deal with these extensions,

that we propose to study as future research.

State. Since we are modeling multi-stage computations, it

is likely that some state is generated by a stage and com-

municated to subsequent stages, in the sense that (some

of) this state will influence the behavior of the available

implementations of subsequent stages. For instance, the typical

value that is obtained by an implementation may depend

3Due to lack of space we will not describe these algorithms here, instead
explaining what each seeks to optimize. They are compared with the simple
heuristics in our experimental evaluation (Section V). We will detail these
algorithms in an extended version of this paper currently under preparation.

1) NAÏVE: At each stage, execute the implementation with the largest
worst-case value (vi,j). This strategy ensures a correct solution
for any feasible instance, and will hence constitute the baseline
strategy for our experimental evaluation.

2) LARGEST (vT/cT): At each stage execute the implementation
with the largest typical “value density” from amongst those
implementations that retain feasibility.

3) SMALLEST cT: At each stage execute the implementation with
the smallest typical execution duration from amongst those im-
plementations that retain feasibility.

4) WORST-CASE: The initially-generated schedule seeks to optimize
for worst-case behavior; modifications made to this schedule in
response to run-time monitoring make use of worst-case parameter
estimates for future stages.

5) TYPICAL: The initially-generated schedule, as well as modifica-
tions resulting from run-time monitoring, seek to optimize for
typical-case behavior; the notion of typical-case optimality is
analogous to that described in [7], [8].

Fig. 2: The scheduling strategies considered.

upon the progress achieved by the implementations chosen.

at previous stages. Consider for example a stage of an image

progressing algorithm tasked with determining how many

people there are in an image. The next stage may consist

of classifiers, some of which are sensitive to this number.

Knowing the value achieved at the previous stage is one

method of capturing influence, but in general it is likely that

further state information will be required.

The introduction of value-influencing state does not effect

the framework developed in this paper. We retain the notions

of worst-case value and duration, and hence retain the same

definition of feasibility. However, the optimization problem

becomes more difficult if there is a significant quantity of state

with this influencing role; there may be more typical values

to accommodate.

Modes. Some implementations may have more than one mode

of operation: they offer a number of “(value, computation-

time)” profiles, that are mutually incomparable. If the number

of such modes is small then this is essentially equivalent to

having more actual implementations (that happen to share the

same worst-case behavior). However if the number of modes

is high, or any one of a continuum of profiles is possible

(as is the case with some anytime algorithms), then it is not

immediately evident whether our proposed algorithms would

scale appropriately with the number of modes that need to be

considered.

As future work we will attempt to classify the problem

space into domains that are amenable to optimal solutions and

those that will need to fall back on the use of heuristics. (Note

that in the evaluation section that follows the systems under

evaluation simple ones without state or modes.)

V. EXPERIMENTAL EVALUATION

We conducted our experimental evaluation upon two

synthetically-generated sets of 100 multistage computation

instances each – the two generation methods that we used are

detailed below. Each instance was separately scheduled over



500 simulated runs according to each of the five scheduling

approaches described in Figure 2. For each instance and each

strategy, we measured the cumulative computation duration

over all 500 simulations. We quantified the normalized per-

formance of each strategy S vis-à-vis NAÏVE as follows:

perfS
def

=
total duration of NAÏVE

total duration of S

We now briefly4 describe our two workload-generation

methods. All generated instances have ten stages (n = 10) and

a choice of five implementations per stage (m = 5). For every

one of the fifty implementations Ii,j in each generated in-

stance, we randomly select a sub-interval (vL
ij , v

H
ij) of (1, 100),

and a sub-interval (cL
ij , c

H
ij) of (1, 1000) – the manner in which

we do so for each of our two generation methods is discussed

below. The interpretation is that the duration of each execution

of Iij will be ≥ cL
ij and ≤ cH

ij , and the value obtained,

≥ vL
ij and ≤ vH

ij ; in simulation runs during our experiments

we choose values from these intervals according to some

probability distribution (as discussed below). We assign the

worst-case parameters accordingly: vij ← vL
ij , and cij ← cH

ij .

For our experiments, we assign the typical parameters vT
ij and

cT
ij the expected value of the parameters (as discussed below).

Once all the parameters of all implementations of an

instance have been assigned values, we need to assign a

value to V , the target value parameter. Here we introduce

a configuration parameter p ∈ {10, 20, . . . , 90} denoting the

percentage of the largest value that can be guaranteed, and set

V as follows:

V = (p/100)×
�

X

0≤i<n

max
0≤j<m

{vi,j}
�

Generation Method 1. For each implementation Iij , cL
ij and

cH
ij are chosen uniformly over (1, 1000), and vL

ij and vH
ij

uniformly over (1, 100). The actual durations taken and values

obtained by executing Iij during simulation runs are drawn

from one of two distributions (in different experiments): one

a symmetric distribution derived from the Normal distribution

and the other, a skewed distribution derived from the Gamma

distribution with shape parameter 2. Since we have a choice

of two forms of distributions for the computation duration and

for the value obtained, we have a total of 2 × 2 or four sub-

configurations; we report on results for all four.

Generation Method 2. Instances are generated to have a

positive correlation between the cT
ij and vT

ij values for each im-

plementation. To do so, a value is assigned to vT
ij according to

the uniform distribution, and cT
ij set equal to vT

ij (appropriately

scaled) plus some random noise. Next, values are assigned

to vL
ij and vH

ij such that the vT
ij = (vL

ij + vH
ij)/2.0, thereby

ensuring that vT
ij corresponds to the mean of our symmetric

distribution (derived from the normal distribution). Values for

cL
ij and cH

ij are assigned analogously. The actual durations

4The 6-page limit prevents us from providing further detail here; we will
make fully annotated versions of our workload-generation code available on-
line subsequent to anonymous peer-review.

taken and values obtained by executing Iij during simulation

runs are drawn from the symmetric distribution only; we do

not use the skewed distribution in Generation Method 2.

Results. A subset of our results are graphically depicted in

Figures 3 and 4. As previously stated, performance of each

strategy is normalized against the performance of the baseline

NAÏVE strategy; the scale of the vertical axes in these graphs

represent this performance improvement. Each colored vertical

box extends from the lower to the upper quartile of the data

being depicted, with a horizontal black line at the median. The

“whiskers” show the range of the data (with extreme outliers

discarded – in plotting these graphs, the whis parameter5

retained its default value of 1.5).

In each of the graphs in Figure 3, each group represents one

of the four sub-configurations of Generation Method 1 that are

obtained by choosing symmetric or skewed distributions for

each of the two parameters, duration and value; individual

columns within these groups represent the four individual

strategies numbered (2)-(5) in Figure 2.

There is only one configuration for Generation Method

2, with both value and duration drawn from the symmetric

distribution. Figure 4 depicts the performance improvement

over NAÏVE for the different strategies, with each group

representing a different choice for parameter p (and hence V).

Discussion. In addition to providing strong evidence that

all the strategies considered appear to provide significant

improvement (up to a factor of 10) over the baseline NAÏVE

strategy, some obvious conclusions leap out from our experi-

mental observations. First, we note that in all our experiments

the simple local heuristic of choosing at each stage the

implementation with smallest WCET that retains feasibility

proves remarkably efficient: its performance closely tracks

that of the optimal strategy TYPICAL, which requires pseudo-

polynomial pre-processing and run-time monitoring. Next,

we observe that skewing the distributions from which actual

execution durations and obtained values are drawn results

in all the algorithms showing improved performance vis-à-

vis NAÏVE. This is consistent with expectations: the more

skewed the distributions, the more benefit we would expect

to obtain by adapting our choice of implementations based

upon run-time monitoring observations. Third, we note that the

performance improvements obtained when Generation Method

II is used are significantly better than when Generation Method

I is used – the y-axis in Figure 4 is labeled over the range

[0, 12] in contrast to the range [0, 5] of Figure 3. This, too,

is intuitively appealing: correlated values of WCET and value

obtained imply that choosing an implementation that returns

greater value takes a greater duration, and hence making the

right choice should yield greater benefit. LARGEST (vT/cT)
is the only under-performer because it is uniquely ill-suited

for multi-stage computations generated under the correlation

hypothesis, since vT/cT is close to constant.

5See https://matplotlib.org/3.1.1/api/ as gen/matplotlib.pyplot.boxplot.html



Skewed c and v Skewed c, normal v Normal c, skewed v Normal c and v

0

1

2

3

4

5

Im
p
ro
v
em

en
t
o
v
er

N
ä
ıv
e
a
p
p
ro
a
ch

Largest (vT/cT )

Smallest cT

Worst-case

Typical

Skewed c and v Skewed c, normal v Normal c, skewed v Normal c and v

0

1

2

3

4

5

Im
p
ro
v
em

en
t
o
v
er

N
ä
ıv
e
a
p
p
ro
a
ch

Largest (vT/cT )

Smallest cT

Worst-case

Typical

Fig. 3: Generation Method I: Comparing strategies at p = 20 (left figure) and p = 80 (right figure).

p=60 p=70 p=80 p=90
0

2

4

6

8

10

12

Im
p
ro
v
em

en
t
o
v
er

N
ä
ıv
e
a
p
p
ro
a
ch

Largest (vT/cT )

Smallest cT

Worst-case

Typical

Fig. 4: Generation Method II: Comparing strategies at p ∈

{60, 70, 80, 90}.

VI. CONCLUSIONS

It appears inevitable that Learning-Enabled Components

(LECs) based upon deep learning and similar AI-based prin-

ciples will play an increasingly major role in safety-critical

autonomous CPS’s; it is therefore incumbent on the safety-

critical systems research community to devise techniques for

the analysis of such systems. This paper reports on our

initial efforts in this direction. We have proposed a formal

model for representing the behavior as well as the timing

properties of some kinds of LECs. We have formulated the

problem of synthesizing computations that can be modeled

as chains of functional blocks using LECs and that need to

achieve a minimum cumulative value to assure safety, and for

which performance is quantified by the total duration of the

computation, as an optimization problem. We have proposed

several strategies, some heuristic and others provably optimal,

for solving this optimization problem, and have compared

these different strategies via simulation experiments upon

synthetically generated workloads. As ongoing and future

work we are evaluating, and will continue to evaluate, specific

LECs (such as ones based on deep learning) to determine

whether they are amenable to representation using our model

and if not, how our model may be generalized to accommodate

them (see, e.g., the discussion in Section IV that has come

out of our efforts in this direction). We will further develop

our workload generator and simulation platform, incorporating

insights from our study of specific LECs, in order to be able

to conduct more extensive experiments of the kind reported

in this paper. We plan to further explore the simple heuristic

“SMALLEST cT” that seems to have performed very well in

our experimental evaluation, to further study its properties and

thereby understand the conditions and circumstances where its

use is particularly warranted. From an algorithmic perspective,

we plan to formally characterize notions of optimality for com-

putations involving the use of LECs, and to develop algorithms

for generating optimal schedules for these computations.

REFERENCES

[1] Sandeep Neema. Assurance for Autonomous Systems is Hard.
https://www.darpa.mil/attachments/AssuredAutonomyProposersDay
ProgramBrief.pdf. Accessed: 2019-03-07.

[2] Assuring autonomy international programme. https://www.york.ac.uk/
assuring-autonomy/ Accessed: 2019-09-20.

[3] J. Lee, A. Prajogi, E. Rafalovsky, and P. Sarathy. Assuring behavior of
autonomous UxV systems. In S5: The Air Force Research Laboratory

(AFRL) Safe and Secure Systems and Software Symposium, July 2016.
[4] John A. Stankovic and Krithi Ramamritham. What is predictability for

real-time systems? Real-Time Syst., 2(4):247–254, October 1990.
[5] R. Wilhelm et al. The worst-case execution-time problem – overview of

methods and survey of tools. ACM Transactions on Embedded Computing

Systems, 7(3):36:1–36:53, May 2008.
[6] Sophie Quinton, Matthias Hanke, and Rolf Ernst. Formal analysis of

sporadic overload in real-time systems. In Proceedings of the Conference

on Design, Automation and Test in Europe, DATE ’12, pages 515–520,
San Jose, CA, USA, 2012. EDA Consortium.

[7] Sanjoy Baruah. Rapid routing with guaranteed delay bounds. In Real-

Time Systems Symposium (RTSS), 2018 IEEE, Dec 2018.
[8] Kunal Agrawal and Sanjoy Baruah. Rapid routing in polynomial time.

In Real-Time Systems Symposium (RTSS), 2019 IEEE, Dec 2019.


