
eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk

Universities of Leeds, Sheffield and York

Deposited via The University of York.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/189009/

Conference or Workshop Item:
Wright, Steven A., Dudson, Benjamin Daniel, Hill, Peter Alec et al. (2022) Approaches to
Performance Portability for Fusion Applications. In: ExCALIBUR Programme-wide
Workshop, 11-12 Jul 2022.

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/id/eprint/189009/
https://eprints.whiterose.ac.uk/

Project NEPTUNE

NEPTUNE (NEutrals & Plasma TUrbulence

Numerics for the Exascale) is the Fusion

Modelling System use case for the ExCALIBUR

Programme.

The goal is to develop a code that can make

efficient use of current Petascale and future

Exascale hardware in order to draw insights

from ITER, and to guide and optimise the

design of the UK demonstration Nuclear Fusion

Power Plant (STEP).

The initial focus is on simulation of the edge

and divertor regions (or the “exhaust system”).

The Support and Coordination work package

is focussed on establishing a series of best

practices in engineering such an Exascale-

ready simulation code.

Context

Hardware is diversifying. There is a proliferation

of hardware and programming models. Almost

all pre- and post-Exascale systems will be

heterogenous.

Most of the FLOP/s will be provided by GPU

accelerators from NVIDIA, AMD, and Intel.

These will sit alongside x86_64 and ARM CPU

architectures from Intel, AMD, NVIDIA, Fujitsu,

and possibly others.

Each architecture might require a specific

parallel programming model for optimal

performance (e.g. CUDA for NVIDIA).

Avoiding vendor-lock-in requires an approach

that is portable between architectures but also

performant.  

Evaluation

Our evaluation is based on mini-apps that are

available in a range of parallel programming

models that implement algorithms that are of

interest to NEPTUNE.

In particular, we have been periodically

evaluating applications that implement fluid

methods and particle methods. We evaluate

the performance portability of each available

implementations with the Pennycook metric [1].

Since this may hide useful insights, we visualise

portability with the box plot and cascade plot

visualisations from Sewall et al. [2].

Fluid Methods

It is often sufficient to treat plasma as a fluid,

using various computational schemes. Our

evaluation is currently based finite difference

(TeaLeaf), finite element (miniFE) and high-order

finite element (Laghos) schemes.

miniFE from the Mantevo suite implements a

heat diffusion problem in 3D on an unstructured

finite element mesh.

Native implementations (CUDA, MPI, OpenMP)

achieve the highest levels of performance on

their respective platforms. Kokkos is the only

fully portable solution, but may lead to half the

performance or worse.

OpenMP 4.5 and SYCL both perform poorly

(likely due to immature compiler support). The

cascade plot better shows how performance

changes as platforms are added to the

evaluation set. 

Particle Methods

The particle-in-cell (PIC) method is typically

used when a fluid model is insufficient. Our

evaluation of particle methods is based on

three Kokkos-based PIC codes (CabanaPIC,

VPIC and EMPIRE-PIC [3]).

As these applications are only available in a

single programming model, we can only

evaluate each kernel with respect to the

platform’s peak performance.

Across each of the kernels (except sort, which

has a low arithmetic intensity), we typically

achieve a fraction of peak performance (1-4%),

and this approximately correlates with each

platform’s available memory bandwidth.

Highlights

• Pragma-based approaches are the easiest to

implement and can offer good portability.

Achieving high performance on accelerators

often requires different directives (and

therefore multiple implementations).

• Template-based programming models offer

good portability and programmability. SYCL

should offer similar performance as compilers

mature (see data from MG-CFD below [4]).

• Higher-level DSLs (e.g. Firedrake, UFL) may

allow scientists to be more expressive, and

can code-gen to a secondary programming

model. Thus, they may be able to provide

better portability and productivity, but require

complex back-end development.

References

[1] S.J. Pennycook, et al. Implications of a metric for performance

portability. Future Generation Computer Systems, 92:947 –958, 2019.

[2] J.D. Sewall, et al. Interpreting and visualizing performance

portability metrics. In 2020 P3HPC Workshop, pages 14–24, 2020.

[3] M.T. Bettencourt, et al. EMPIRE-PIC: A Performance Portable

Unstructured Particle-in-Cell Code. Comms. in Computational

Physics, 30(4):1232–1268, August 2021

[4] I.Z. Reguly, et al. Under the Hood of SYCL – An Initial Performance

Analysis With an Unstructured-mesh CFD Application, International

Supercomputing Conference (ISC 2021), June 2021

Department of Computer Science

University of York

york.ac.uk

Approaches to Performance Portability  

for Fusion Applications

Steven Wright1, Ben Dudson1, Peter Hill1, David Dickinson1, Edward Higgins1,  

Gihan Mudalige2, Ben McMillan2 and Tom Goffrey2 

1University of York, 2University of Warwick

PP(a, p,H) =

8

>

>

<

>

>

:

|H|
X

i2H

1

ei(a, p)

if i is supported 8i 2 H

0 otherwise

