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When solving a combinatorial problem, the formulation or model of the problem is 
critical to the efficiency of the solver. Automating the modelling process has long been 
of interest because of the expertise and time required to produce an effective model of a 
given problem. We describe a method to automatically produce constraint models from a 
problem specification written in the abstract constraint specification language Essence. Our 
approach is to incrementally refine the specification into a concrete model by applying a 
chosen refinement rule at each step. Any non-trivial specification may be refined in multiple 
ways, creating a space of models to choose from.
The handling of symmetries is a particularly important aspect of automated modelling. 
Many combinatorial optimisation problems contain symmetry, which can lead to redundant 
search. If a partial assignment is shown to be invalid, we are wasting time if we ever 
consider a symmetric equivalent of it. A particularly important class of symmetries are 
those introduced by the constraint modelling process: modelling symmetries. We show 
how modelling symmetries may be broken automatically as they enter a model during 
refinement, obviating the need for an expensive symmetry detection step following model 
formulation.
Our approach is implemented in a system called Conjure. We compare the models 
produced by Conjure to constraint models from the literature that are known to be 
effective. Our empirical results confirm that Conjure can reproduce successfully the kernels 
of the constraint models of 42 benchmark problems found in the literature.

 2022 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Efficient decision-making is of central importance to a modern society. It is natural to represent and reason about 
decision-making problems in terms of constraints. For example, in scheduling a football league many constraints occur, 
such as: every team has to play every other, home and away; every match must be assigned a set of officials, and no official 
or team can be in two places at once; no team should be scheduled to play more than, say, four consecutive away games. 
Constraint programming [1] offers a means by which solutions to such problems can be found automatically. Constraint 
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1 language Essence 1.3
2 given w, g, s : int(1..)
3 letting Golfers be new type of size g * s
4 find sched : set (size w) of

5 partition (regular, numParts g, partSize s)
6 from Golfers
7 such that

8 forAll g1, g2 : Golfers, g1 < g2 .
9 (sum week in sched . toInt(together({g1, g2}, week))) <= 1

Fig. 1. An Essence problem specification of the Social Golfers Problem (Problem 10 at CSPLib.org). In a golf club there are a number of golfers who wish to 
play together in g groups of size s. Find a schedule of play for w weeks such that no pair of golfers play together more than once.

solving of a given problem proceeds in two phases. First, the problem is modelled as a set of decision variables, and a set 
of constraints on those variables that a solution must satisfy. A decision variable represents a choice that must be made in 
order to solve the problem. The domain of potential values associated with each decision variable corresponds to the options 
for that choice. In our football league example, one might have two decision variables per match to represent each of the 
home and away teams. The second phase consists of using a constraint solver to find solutions to the model: assignments 
of values to decision variables satisfying all constraints.

There are typically many possible models for a given problem, and the model chosen can dramatically affect the efficiency 
of constraint solving. This presents a serious obstacle for non-expert users, who have difficulty in formulating a good (or 
even correct) model from among the many possible alternatives. Modelling is therefore a critical bottleneck in the process 
of constraint solving, considered to be one of the key challenges facing the constraints field [2].

It is desirable, therefore, to automate constraint modelling as far as possible. Several approaches have been taken to 
automate aspects of constraint modelling. Some approaches learn models from, variously, natural language [3], positive or 
negative examples [4–6], membership queries, equivalence queries, partial queries [7,8], generalisation queries [9] or ar-
guments [10]. Other approaches include: automated transformation of medium-level solver-independent constraint models 
[11–17]; deriving implied constraints from a constraint model [18–22]; case-based reasoning [23]; and refinement of ab-
stract constraint specifications [24] in languages such as ESRA [25], Essence [26], F [27] or Zinc [28–30]. We focus herein 
on the refinement approach, where a user writes a constraint specification describing a problem above the level of abstrac-
tion at which modelling decisions are made. In Section 8 we discuss in more detail alternative approaches to automated 
constraint modelling by this method.

This paper presents the automated constraint modelling system Conjure, which serves to demonstrate the efficacy of 
the refinement-based approach. A problem is input to Conjure in Essence, an abstract constraint specification language.
Essence’s support for abstract decision variables with types such as set, multiset, relation and function, as well as nested 
types, such as set of sets and multiset of relations allows a problem to be specified without committing to constraint 
modelling decisions. To illustrate, consider the fragment of the Essence specification of the Social Golfers Problem [31]
presented in Fig. 1. Given a number of weeks (w), a number of groups (g) and a group size (s), the problem is to find a 
schedule of play over the w weeks for the g × s golfers divided into g groups of size s, subject to a socialisation constraint 
among the golfers that stipulates that no pair of golfers play together more than once. The Social Golfers Problem is naturally 
conceived as finding a set of partitions of golfers subject to some constraints, which can be specified in Essence via a single
abstract decision variable, as presented in the figure where the variable is sched.

Since these abstract types are not supported directly by constraint solvers,1 an Essence specification must be transformed 
(refined) into a constraint model. Automating this process presents a considerable challenge and the contributions of this 
work are in meeting that challenge. Principal among these is a carefully designed rule-based architecture implemented in
Conjure to refine an Essence specification into a constraint model. One key contribution is that Conjure can refine nested 
types without resorting to enumerating the values of the inner type (for example, refining a set of sets of integers without 
enumerating all possible values of the inner set). This capability is vital to refining many of the Essence specifications that 
we use in the evaluation. As we will demonstrate, different rule application pathways produce different constraint models, 
supporting an automated model selection process among the many possible alternatives. This approach also facilitates the 
automated production of channelled constraint models [32], in which a single abstract decision variable is refined in multiple 
ways. Channelling constraints are elegantly generated for an abstract decision variable A by creating the equality A = A and 
refining it with two different representations of A, thus ensuring the two representations take the same abstract value in 
all solutions. Channelled models have previously been created manually by experts, typically in an effort to simplify the 
statement of the problem constraints so as to strengthen the inference of the constraint solver and reduce search.

A further important contribution of our rule-based architecture is in the treatment of symmetry, a structure-preserving 
transformation. In the context of a constraint problem, given a solution to a problem instance we can obtain another 
symmetric solution. Symmetry can lead to redundant search: if the constraint solver reaches a dead end in its search for a 

1 Set variables are a notable exception, which are widely supported. However, the solvers that support set variables do not offer a choice as to the 
underlying representation of the set, and do not support nested sets.
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solution, we are wasting time if we ever consider a symmetric equivalent of it. A particularly important class of symmetries 
are those introduced by the constraint modelling process, which we have called modelling symmetries [33–35]. Modelling 
symmetries occur naturally as abstract decision variables are refined into constraint models.

As a simple example consider representing a set of size n by a vector of n variables, constrained to take distinct values. 
Without care, this can introduce n! symmetries for the set represented by the vector in all possible orders. If the elements 
of the set are integers, there is no deep problem: we can add to the model the constraint that the integers appear in the 
vector in increasing order. However, this simple approach cannot be used directly if the elements of the set are themselves 
(for example) sets of multisets. As we will discuss, our rule-based architecture can recognise when modelling symmetries 
arise in the refinement of a constraint model and add symmetry breaking constraints to deal with complex symmetries of 
this type. This obviates the need for an expensive symmetry detection step following model formulation, as used by other 
approaches [36–38]. When a refinement performed by Conjure introduces symmetry, the symmetry is broken consistently 
and completely by the addition of symmetry-breaking constraints. In several cases this also allows for improved refinement 
of Essence expressions. Furthermore the symmetry breaking constraints added hold for the entire parameterised problem 
class captured by the Essence specification — not just a single problem instance — without the need to employ a theorem 
prover.

Our final contribution is an empirical evaluation of the coverage of the model space provided by Conjure. In an extensive 
set of experiments we show that, for a wide variety of problems, the substantial majority of models crafted manually by 
human experts can be automatically generated by Conjure from Essence specifications of those problems. In addition, we 
present a simple and lightweight heuristic for choosing among the models generated by Conjure. The CompactEP heuristic 
is often able to select a good model for a given problem specification. We evaluate the accuracy of CompactEP on a wide 
range of problems. Rather than focusing on the runtime performance of models with particular solvers and instance sets 
(which would give a very limited picture of model quality), we performed a qualitative comparison of the generated models 
with previously published models in Section 7.

Our approach to the refinement of types and expressions is from the outside-in, which allows refinement rules to handle 
a single layer of a type, or single operator, at a time – although multiple types or operators can be handled where this can 
improve the refinement. Quantified expressions are handled generically in a way that is independent of which quantifier 
is used, by separating the gathering of values to be quantified over and application of the quantifying operator. Conjure
is designed to be extended with further types, attributes and operators in the future – several types, including sequences, 
have been added to Essence since the first release of Conjure.

The work presented in this paper summarises and extends over fifteen years of our work on automated constraint 
modelling. Our earliest work on refinement-based automated constraint modelling appeared between 2002 and 2005 [39–
42,24]. We introduced the Essence language in 2005 [43,44], which is the subject of a separate journal article [26]. Following 
the presentation of initial prototypes [24,45] the first full version of Conjure was presented in 2011 [46] then extended to 
handle automated symmetry breaking [34,35], and presented in detail in Akgun’s thesis [47]. Herein, we give a complete 
overview of Conjure, including the most recent advances.

1.1. Contributions

In summary, our main contributions are as follows:

• Conjure is unique in refining problem class specifications to class-level constraint models.
• Multiple models are generated from one Essence specification by following different rule application pathways.
• Conjure is able to refine nested abstract types (for example, a set of sets of integers) without enumerating all possible 

values of the inner type (in this example, set of integers).
• Symmetry introduced during refinement is broken consistently and completely.
• Conjure is able to generate channelled models by representing an abstract decision variable in more than one way, 

with an elegant mechanism for producing channelling constraints from a simple equality constraint.
• Model selection is achieved via the simple and lightweight CompactEP heuristic, which is shown to select good models 

in many cases.
• The system is evaluated comprehensively on 42 problem classes from CSPLib [48], demonstrating that Conjure is able 

to generate models similar to models in the literature produced by experts.

2. CONJURE by Example

This section illustrates the operation of Conjure on a simple problem specification. It exemplifies some constructs of the 
input language Essence and the output language Essence Prime. There are a large number of refinements that are applied 
to transform a full Essence specification into a concrete Essence Prime constraint model. The goal of this example is to 
highlight the most important kinds of refinements before we describe them in their full generality. We include forward 
references to later sections where appropriate.
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1 language Essence 1.3
2 given object new type enum

3 given weight, value : function (total) object --> int(1..)
4 given maxWeight: int(1..)
5 find knapsack : set of object
6 maximising sum i in knapsack . value(i)
7 such that (sum i in knapsack . weight(i)) <= maxWeight

Fig. 2. An Essence specification of the Knapsack Problem.

2.1. The Knapsack Problem in Essence

Fig. 2 shows an Essence specification for the Knapsack Problem. We have chosen this familiar problem to illustrate the 
basics of refinement. The Knapsack specification does lack some of the more sophisticated features of Essence, such as 
nested types, and we will explain how Conjure treats these in later sections.

Lines 2–3 specify the problem class parameters: an enumerated type of objects; a weight and a value per item, repre-
sented as total functions; and the maximum weight of the knapsack. Line 5 specifies the single decision variable, the set of 
objects to be placed in the knapsack. Line 6 specifies the objective function, which is to maximise the value of the collection 
of items in the knapsack. Finally, line 7 specifies the capacity constraint.

Some features of Essence, such as the function domains in this specification, are not supported by conventional con-
straint modelling languages. Therefore, they need to be refined to use supported features like integer and matrix domains. 
Moreover, the problem constraints are stated in terms of Essence domains, which also need to be refined accordingly.

Some refinement steps are simple, such as replacing enumerated domains with isomorphic integer domains. Others are 
more complex, such as choosing a representation for abstract decision variables and refining abstract constraint expressions. 
In the rest of this section we focus on the set decision variable knapsack and present multiple ways of refining it.

2.2. Choosing Representations

Before applying any modelling refinements, Conjure traverses the entire model and labels every reference to abstract 
decision variables (Section 3.1) with a representation decision (Section 4.1). In this example, the knapsack variable is an 
abstract decision variable and is referenced in two places, on lines 6 and 7.

We consider two representations for a set domain in this section: the Explicit representation and the Occurrence rep-
resentation. The Explicit representation uses a matrix of decision variables, representing the elements of the set, together 
with a single integer variable, representing the cardinality of the set. Structural constraints (Section 4.1) are posted to en-
sure these variables represent valid set values. The Occurrence representation uses a Boolean matrix of decision variables, 
indexed by the domain of possible elements of the set. In this representation, a true value at a certain index of the matrix 
indicates set membership.

Conjure may use either of these representations for each reference to the knapsack variable.2 Choosing multiple 
representations for the same abstract decision variable leads to channelled models (Section 4.3).

2.3. The Explicit representation

Choosing the Explicit representation for both references to the knapsack variable leads to the addition of new variable 
declarations and structural constraints to the model, as shown in Fig. 3. The matrix knapsack_ Explicit represents 
the elements of the set, and the integer variable knapsack_Size represents the cardinality of the set. The first structural 
constraint both enforces distinctness and achieves symmetry breaking by sorting the entries in the matrix. The sorting is 
only enforced up to the cardinality of the set, since entries after this point are not members of the set. The second structural 
constraint assigns the variables after the knapsack_Size marker to take an arbitrarily chosen value of their domain, as 
described in Section 4.1.3.

The two references to knapsack are refined using the Explicit representation. Fig. 4 shows the refinement of only 
one of the expressions, the other expression is refined similarly. The sum expression quantifying over the set decision 
variable is refined to another sum expression quantifying over a simple integer domain. We use a multiplication with the 
set membership condition inside the quantified expression. This allows us to exclude entries in the matrix that do not 
represent members of the set.

2.4. The Occurrence representation

Similarly, choosing the Occurrence representation for both references to the knapsack variable leads to the addition of 
a new variable declaration to the model. This is shown in Fig. 5. The matrix knapsack_Occurrence represents the set. 

2 These two representations are given as examples here; there are more representation options in Conjure.
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1 find knapsack_Explicit: matrix indexed by

2 [int(1..|object|)] of object
3 find knapsack_Size : int(0..|object|)
4 such that

5 forAll i : int(1..|object|) .
6 i + 1 <= knapsack_Size ->
7 knapsack_Explicit[i] < knapsack_Explicit[i+1],
8 forAll i : int(1..|object|) .
9 i > knapsack_Size ->

10 dontCare(knapsack_Explicit[i])

Fig. 3. The new declarations and structural constraints after choosing the Explicit representation.

(sum i : int(1..|object|) .
toInt(i <= knapsack_Size) * weight(knapsack_Explicit[i]))

<= maxWeight

Fig. 4. Expression refinement after choosing the Explicit representation.

find knapsack_Occurrence : matrix indexed by [object] of bool

Fig. 5. The new declaration after choosing the Occurrence representation.

(sum i : object . toInt(knapsack_Occurrence[i]) * weight(i)) <= maxWeight

Fig. 6. Expression refinement after choosing the Occurrence representation.

forAll i : object . knapsack_Occurrence[i] ->
exists j : int(1..|object|) .

j <= knapsack_Size /\ knapsack_Explicit[j] = i,
forAll i : int(1..|object|) . i <= knapsack_Size ->

knapsack_Occurrence[knapsack_Explicit[i]]

Fig. 7. Channelling constraints between the Explicit and Occurrence representations.

A true assignment at index i of the matrix indicates that value i is in the set. This representation does not introduce any 
symmetry, and it does not require any structural constraints to be posted. This is because every assignment to the Boolean 
matrix corresponds to a unique assignment to the original set variable.

The two references to the knapsack variable are refined using the Occurrence representation. Fig. 6 shows the refine-
ment of one of the expressions, and the other is refined similarly. The sum expression quantifying over the set decision 
variable is refined to another sum expression quantifying over the potential members of the set. Once again we use multi-
plication to exclude the values that are not members of the set.

2.5. Channelled models

Suppose we chose more than one representation for a single abstract decision variable. Each representation would be 
generated as above, but they would also need to be connected together to ensure the representations all represent the same 
value of the original decision variable. Models with more than one representation are called channelled models, and the 
constraints connecting the representations are channelling constraints.

In a channelled model with two representations, both sets of decision variables and structural constraints are added to 
the model. Each reference to the decision variable is refined using its chosen representation. The channelling constraints are 
generated by posting an equality constraint (in this example, knapsack=knapsack) and tagging the two occurrences of 
the decision variable with different representations. The equality is then refined using the same refinement procedures that 
are applied to any constraint. For our running example, the channelling constraints are given in Fig. 7. The first constraint 
ensures all members of the Occurrence representation are also members of the Explicit representation, and the second 
constraint ensures the same holds in the opposite direction.
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Table 1

Domains and domain constructors (parameterised domains) in Essence. Arguments of domain 
constructors are denoted τ or τ1 , τ2 , etc. Domains and domain constructors may be nested 
arbitrarily.

Domain Handling
Concrete domains (Atomic)
bool Kept unchanged
int Kept unchanged
enumerated Mapped to integers
unnamed Mapped to integers

Concrete domains (Compound)
tuple (τ1,τ2, . . .) Separated into components
record {(alice, τ1), (bob, τ2), . . .} Separated into components
variant {(alice, τ1), (bob, τ2), . . .} Separated into components
matrix [τ1, τ2, ..., τn] of τ Kept unchanged

Abstract domains
set of τ Refined
mset of τ Refined
sequence of τ Refined
function τ1 -> τ2 Refined
relation of (τ1,τ2, . . .) Refined
partition from τ Refined

2.6. Summary

In this section we have illustrated how Conjure generates multiple diverse models from a single specification by choos-
ing representations of the abstract decision variables. In the following sections we describe the Conjure system, its input 
language Essence, and the set of refinement rules and representations that allow us to generate a diverse set of models. 
Section 3.3 presents Conjure in the context of a pipeline of tools and languages.

3. Automated Modelling in CONJURE

In this section we set the scene for automated modelling by describing Conjure itself, the toolchain it sits within, and the 
languages produced and consumed by Conjure and the other tools. First we summarise the Essence language consumed by
Conjure and highlight its most important features. We then summarise the Essence Prime language produced by Conjure, 
and the tool Savile Row that translates Essence Prime to the language of a target solver.

3.1. Summary of the Essence Language

This section provides a summary of the current state of the Essence language sufficient to describe the operation of
Conjure. For further details the reader is referred to the original journal paper describing Essence [26] and the frequently 
updated documentation accompanying the Conjure release [49].

Conjure takes as input an abstract problem specification written in Essence and automatically generates Essence Prime

models as output. Essence is a high-level problem specification language providing a rich set of built-in domains and 
domain constructors (parameterised domains), such as multi-sets, functions, and partitions. Decision variables can have 
these domains so as to precisely encode what they mean, and to avoid the need to model these complex domains via 
multiple decision variables with simpler domains. Essence domains that are not directly represented in Essence Prime are 
called abstract domains and domains that are shared between the two languages are called concrete domains (Boolean, int, 
and matrices of these). We also characterise domains as compound when they contain multiple elements (such as a tuple 
or matrix). Tuples and records contain a fixed number of fields. Fields in a tuple domain are identified by their position 
and fields in a record domain are identified by the field name. Variants are tagged unions: they contain a single value for 
one of the components, tagged by the name of the component. The full set of domains and domain constructors in Essence

and the handling of abstract and concrete domains is given in Table 1. Domains and domain constructors may be nested 
arbitrarily, allowing for rich domains such as a partition of sets of integers.

Unnamed types [26] may be unfamiliar so we briefly describe them here. An unnamed type represents a set of objects 
that are indistinguishable, such as the golfers of the Social Golfers Problem (Fig. 1). The elements of an unnamed type are 
not named or numbered individually, and so cannot be referred to directly in the specification. Unnamed types exist to 
provide an abstraction for sets of indistinguishable objects, allowing such sets to be specified without introducing symme-
try. However, the current implementation of unnamed types in Conjure (mapping to integers) introduces symmetry. An 
implementation that does not do so is challenging and an important area of future work, as described in Section 4.1.2.

Domains are further specified by adding attributes, and each domain constructor has its own set of attributes that may 
be used with it. Attributes further restrict (i.e. make precise) an abstract domain, so the user of Essence does not need to 
use constraints to achieve the desired effect. For instance, a set variable may have a minSize attribute attached to it, which 

6
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Table 2

All domain attributes in Essence.

Domain Attributes
set of τ size, minSize, maxSize
mset of τ size, minSize, maxSize, minOccur, maxOccur
sequence of τ size, minSize, maxSize, injective, surjective, bijective
function τ1 -> τ2 size, minSize, maxSize, injective, surjective, bijective, total
relation of (τ1,τ2, . . .) size, minSize, maxSize. For binary relations only: reflexive, irreflexive, coreflexive,

symmetric, antiSymmetric, aSymmetric, transitive, total, connex, Euclidean, 
serial, equivalence, partialOrder

partition from τ numParts, minNumParts, maxNumParts, partSize, minPartSize, maxPartSize, regular

Table 3

Operators of abstract types and matrices in Essence. In addition, equality, disequality, and ordering operators are provided for all types, and 
many types may be used as generators of comprehensions and quantifiers as shown in Table 4. For a full list of operators on all types and 
full definitions see the Conjure documentation [49].

Domain Operators
matrix [τ1,τ2, . . .] of τn [x] (indexing), [..] (slicing), lexicographic ordering, sum, product, and, or, xor, min, max
set of τ in, subset, subsetEq, supset, supsetEq, intersect, union, powerSet, - (difference), |x|

(cardinality), sum, product, and, or, xor, min, max
mset of τ union, intersect, - (difference), subset, subseteq, supset, supseteq, |x| (cardinality), in,

freq, hist, sum, product, and, or, xor, min, max
sequence of τ subsequence, substring, |x| (cardinality), defined, range, image, preImage
function τ1 -> τ2 union, intersect, - (difference), subset, subseteq, supset, supseteq, |x| (cardinality), 

defined, range, inverse, image, preImage
relation of (τ1, . . .) union, intersect, - (difference), subset, subseteq, supset, supseteq, |x| (cardinality), 

relation application, relation projection
partition from τ |x| (cardinality), together, apart, participants, parts, party

ensures that the values of the decision variable are sets containing at least the given number of elements. The attributes of 
each domain constructor are given in Table 2.

Essence is statically typed and Conjure completely type-checks a specification before refining it. Each decision variable 
or parameter has a domain, and to obtain the corresponding type Conjure strips the attributes from the domain, replaces all
int(...) with the type int, and replaces all subsets of enumerated types with the corresponding full enumerated type.
Essence also has a rich collection of operators that allow concise expressions to be written on abstract types. For example, 
for functions there is an inverse operator, which ensures two functions are inverses of each other. For relations, relation 
projection lets us create a relation of smaller arity while fixing some of the components to a specific value. Excepting 
integer and Boolean operators, which may be found in the manual, the complete set of operators in Essence is summarised 
in Table 3, organised by the types to which they may be applied. Operators may be nested in any way that respects type-
correctness.

Essence also provides quantifiers and comprehensions to construct complex expressions that are difficult or impossible to 
express using only the operators in Table 3. Quantifiers and comprehensions introduce local variables that take values from 
a domain or an abstract decision variable. For example, the knapsack specification in Section 2 contains the following sum 
quantifier, where knapsack is a decision variable of type set of int, and value is a function from objects to their 
monetary value. The quantifier calculates the total value of objects in the knapsack.

sum i in knapsack . value(i)

A quantifier has a keyword (forAll, exists, or sum), the quantified variable, a domain or abstract decision vari-
able that defines the set of values that the quantified variable will take, and finally an inner expression (of type int for
sum quantifiers, otherwise bool). A quantifier can be evaluated by binding the quantified variable to each value in turn, 
evaluating the inner expression for each value, then aggregating the results by conjunction, disjunction, or addition for the 
quantifiers forAll, exists, or sum respectively. Table 4 summarises the types of expressions that may be used to gen-
erate the set of values that the quantified variable will take, and the corresponding type of the quantified variable in each 
case.

Medium-level constraint modelling languages (such as Essence Prime and OPL [13]) typically have the quantifiers
forAll, exists, and sum (and in some cases others such as product, min, max), but the quantified variable has 
type int, and the values are drawn from a domain with type set of int, not from an abstract domain or abstract de-
cision variable. Quantifiers in Essence are substantially more general than those in Essence Prime, which does not have the 
abstract types.

Comprehensions in Essence create a one-dimensional matrix (a list). The list may then be aggregated to a single value 
using a function such as and, or, xor, sum, product, min, max, or global constraints like allDifferent. Lists gener-
ated via comprehensions can be used as arguments to several operators, in contrast quantified expressions are limited to
forAll, exists, and sum. In common with quantified expressions, comprehensions have an inner expression and they 
introduce local variables whose values are drawn from an abstract domain or abstract decision variable. Comprehensions 
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Table 4

Types of expressions that can act as generators for quantified expressions and comprehensions. The type of the 
quantified variables changes depending on the type of the collection being quantified on.
Type of collection Type of quantified variable Quantified variable represents
matrix [...] of τ τ Member
set of τ τ Member
mset of τ τ Member
sequence of τ tuple(index,τ ) Member and its sequence index
function τ1 -> τ2 tuple(τ1,τ2) Mapping in the function
relation of (τ1, . . .) tuple(τ1, . . .) Member of relation
partition from τ set of τ Part in the partition

also have conditions: Boolean expressions that act as a filter. The condition can contain references to decision variables, 
which is not possible in the comprehensions found in Essence Prime for example. Comprehensions (with aggregation func-
tions) are more expressive than quantifiers, and they are used internally throughout Conjure in preference to quantifiers. 
The example above can be expressed as a comprehension as follows:

sum([ value(i) | i <- knapsack ])

As a final example of both quantifiers and comprehensions, suppose we wished to find a multiset of integers where all 
elements above 10 are even numbers. In the following Essence specification, the constraint on the elements of the multiset
M is expressed using a quantifier and an implication.

find M : mset (maxSize 5) of int(1..20)
such that forAll i in M . i > 10 -> i % 2 = 0

The same constraint can also be expressed using a comprehension with a condition, as follows.

such that and([ i % 2 = 0 | i <- M, i > 10 ])

In both quantified expressions and comprehensions, all collection types can be used as generators. The type of the 
quantified variable is chosen based on the type of the generator.

3.2. Summary of the Essence Prime Language

Essence Prime [50] is a medium-level solver-independent constraint modelling language with some similarities to other 
modelling languages such as OPL [13] and MiniZinc [12]. Essence Prime was originally conceived as a subset of Essence

without the abstract types. For the purposes of this paper, Essence Prime can be considered as a subset of Essence with the 
following restrictions:

1. There are no abstract types (sets, multisets, sequences, functions, relations, or partitions). Essence Prime supports deci-
sion variables and problem class parameters of type int, bool, and matrix of int and bool. Matrices may have any 
number of dimensions, and may be indexed by any integer domain.

2. Generators and conditions within comprehensions and quantifiers are not allowed to contain decision variables.

3.3. The Pipeline

Our modelling and solving pipeline is illustrated in Fig. 8. An Essence problem specification is given to Conjure, which 
refines the specification into a set of concrete models in Essence Prime. Both the specification and the model typically relate 
to a problem class, i.e. they both have problem class parameters that need to be instantiated before instances of the class 
can be solved. Conjure separately translates problem class parameters expressed in Essence into Essence Prime using the 
representations selected when refining the problem specification. This allows the user to solve multiple instances of the 
same problem class while only performing refinement once.

Savile Row [16] is the second tool in the pipeline. It takes as input the model and problem class parameters in Essence 
Prime, and produces output for a number of different solvers. Savile Row instantiates the model and performs optimisations 
before translating the instance into the input language of a solver. Currently Savile Row translates to CP solvers Minion [51]
and Gecode [52], the learning CP solver Chuffed [53], SAT solvers such as Glucose [54], MaxSAT solvers such as Open-
WBO [55], and SMT solvers such as Yices [56], Z3 [57], and Boolector [58].

Once a solution has been found Savile Row translates the solution back into Essence Prime. Conjure then translates the
Essence Prime solution back into Essence. Thus the user of Conjure can specify a problem in terms of abstract types such 
as partition, and receive solutions in terms of the same types.
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Fig. 8. Automated Constraint Modelling Pipeline.

3.4. How Essence is represented in Conjure

Problem specifications are represented internally using an abstract syntax tree (AST). A complete specification contains a 
language declaration line and a list of statements. Each statement is either a declaration (of parameters, decision variables, 
or aliases), a constraint, an objective (for optimisation problems) or a where statement. Decision variables (find), parameters 
(given) and aliases (letting) have names as part of their declaration statement and they can be referred to by their name 
in the subsequent statements. Constraints (such that) and where statements contain a list of Boolean expressions. The 
objective statement contains a single expression of type int or an enumerated type. A problem specification can have at 
most one objective statement. There is no restriction on the order of statements of different kinds, the only restriction is 
that declarations cannot be referred to before they are declared, thus circular definitions are disallowed.

Expressions in the Conjure AST are composed of references to existing declarations, operator applications, literal values 
for the various types in Essence, quantified expressions, and comprehensions. Conjure implements 76 operators in its latest 
version. We do not give a list of all operators here, these are available in the Conjure documentation [49]. Quantified 
expressions and comprehensions are commonly found in many modelling languages. Internally, only comprehensions are 
represented and quantified expressions are converted to comprehensions directly after parsing. Conjure implements a full 
evaluator for Essence, which can be used to validate solutions. The full evaluator is able to compute a Boolean value for 
constraint expressions as long as values for the declarations referenced in the expression are fully defined. Typically values 
for givens come from a parameter file and values for finds come from solution files during solution validation. In addition 
to the full evaluator, a partial evaluator is implemented which is used to simplify expressions where possible. The partial 
evaluator is applied in a very similar way to the refinement rules (discussed in Section 4). The partial evaluator has the 
highest precedence, so expressions are always evaluated rather than refined if possible.

4. Refinement Rules in CONJURE

Conjure translates an abstract problem specification written in Essence into a concrete model in Essence Prime via a 
series of transformations. These transformations are written as rules in Conjure. There are two main kinds of rules: represen-
tation selection and expression refinement. Applying representation selection rules to each abstract variable in a specification 
corresponds to choosing a viewpoint for the problem. A viewpoint is a selection of variables with associated domains suf-
ficient to characterise the solutions to the problem. Different viewpoints give rise to fundamentally different models of a 
problem [59,60]. Multiple representation selection rules may be applied to the same abstract variable to create a channelled 
model [32], in which a single abstract decision variable is refined in multiple ways. Expression refinement rules rewrite 
expressions to use one of the selected representations of an abstract variable. Thus the two types of rules correspond to 
modelling steps taken by human modellers: selection of a viewpoint or viewpoints, and formulating the constraints.

Refinement rules in Conjure encode known modelling transformations that are well established in the literature and are 
known to be correct. We do not formally prove the correctness of the refinement rules; a full and formal exposition of the 
rules together with proofs of correctness is out of the scope of this paper.
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4.1. Representation Selection Rules

Representation selection rules operate on decision variables or parameters with abstract domains. When a representation 
selection rule is applied to a domain, it removes the outermost abstract type and replaces it with a concrete type such as 
a matrix. The output domain is not necessarily concrete, however a concrete domain can always be reached by repeated 
application of representation selection rules.

In some cases the output domain of a representation selection rule may have values in its domain that do not correspond 
to values of the input domain. In this case, structural constraints are needed to rule out these values.

As an example, consider the Occurrence representation of a set. The original domain is set (size n) of T, where T
represents an Essence domain. The new domain has one Boolean variable for each value that may be in the set, where the 
Boolean is assigned true if the value is in the set. The rule is represented below.

input-declaration: find x : set (size n) of T
output-declaration: find x_Occurrence : matrix indexed by [T] of bool

structural-constraint: (sum i : T . toInt(x_Occurrence[i])) = n

The input-declaration part of the rule is pattern-matched against the abstract domains. The output-
declaration gives the resulting domain, where the value of T is given from the input-declaration. Finally the
structural-constraint requires that n of the Booleans are true, as the set is required to be size n.

Whenever multiple representation selection rules match one abstract domain, one or more representations must be 
selected in some way. In Section 6 below we present a simple heuristic that is often able to select a good model.

Each representation selection rule has associated mapping functions that translate between values in the input domain 
and those in the output domain. The mapping functions are used to translate parameter values from Essence to Essence 
Prime, and to translate solutions expressed in Essence Prime to Essence (Fig. 8). Each representation only encodes one step 
of this translation and Conjure applies them successively to convert between Essence and Essence Prime.

4.1.1. Conditional Structural Constraints
Structural constraints are essential for the correctness of representation selection rules. However, in some cases we need 

to condition the application of these structural constraints on other parts of the model. For example, if the Occurrence
representation of a set (shown above) were contained in another set of cardinality 0 or 1, then the structural constraint 
would be required when the outer set has cardinality 1, otherwise the Occurrence representation is unused and its structural 
constraint is not required. For a further example, see Section 4.1.3.

We introduce an operator structuralCons(X) representing the structural constraints (if any) of the chosen represen-
tation of X. Concrete types have no structural constraints and by default these are treated as the true constraint. Structural 
constraints are always applied for the outermost type of the abstract domain of a declaration. Representation selection 
rules are responsible for applying structural constraints to any abstract decision variables that they declare in their output 
declaration section. Many representation selection rules simply apply structuralCons(X) for every X they declare, but 
some do not. Section 4.1.2 and Section 4.1.3 have examples of representation selection rules that use the structuralCons
function.

4.1.2. Modelling Symmetry
Symmetry enters constraint models in two ways. Some problems have inherent symmetries, for example the rotations of 

a chessboard, which if not broken are reflected in the model. Many symmetries however are introduced by the modelling 
process; in this case a single solution to the problem corresponds to multiple assignments to the variables of the model. For 
example, in the Explicit representation a set is represented as a list — reordering the members of this list does not change 
the set represented. Frisch et al. [33] show how each representation selection rule of Conjure can be extended to generate 
a description of the symmetries it introduces and how the generated descriptions can be composed to form a description of 
the symmetries introduced into the model. However, they do not show how to convert model symmetry descriptions into 
symmetry breaking constraints.

Conjure takes a different approach to generate symmetry breaking constraints: rules that introduce symmetries also 
generate a constraint to break those symmetries (excepting unnamed types, discussed below). A modelling symmetry is 
introduced whenever the application of a representation selection rule increases the number of solutions. This occurs when 
the output domain, constrained by the structural constraints, has more values than the input domain. Suppose we define 
the Explicit representation of a set as follows.

input-declaration: find x : set (size n) of T
output-declaration: find x_Explicit :

matrix indexed by [int(1..n)] of T
structural-constraint: allDifferent(x_Explicit),

forAll i : int(1..n) . structuralCons(x_Explicit[i])

In this rule the allDifferent structural constraint prevents repeated values in x_Explicit, however it does not 
constrain the order of the values in the matrix. The structural constraint suffices for correctness, however the rule would 
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introduce modelling symmetry, which in turn may degrade the performance of a solver. The second line of the structural 
constraint section applies the structural constraints of the inner type to all elements of this set. Each representation is 
responsible for applying the structural constraints to the nested objects, since these are not always applied unconditionally. 
In Section 4.1.3 we see an example of the conditional application of the structural constraints for the elements.

To avoid modelling symmetry, in addition to ensuring the elements are all different we also impose an order on the 
matrix. As the elements of the matrix can be any type T we introduce two new operators, ≤̇ and <̇ (also written as .<=
and .<). These operators provide a total ordering (and a strict version of the same total ordering) for all types in Essence. 
These orderings are not intended to be “natural” and are not available in the Essence language. As these orderings are 
only used to break symmetries, the specific ordering used will never change the solutions of any specification. The two 
arguments of ≤̇ and <̇ must have the same representation. They are used only in refinement rules to generate effective 
symmetry-breaking constraints. Using these orderings, the Explicit rule for sets is modified to break all the symmetries it 
introduces, as follows.

input-declaration: find x : set (size n) of T
output-declaration: find x_Explicit :

matrix indexed by [int(1..n)] of T
structural-constraint:

forAll i : int(1..n-1) . x_Explicit[i] .< x_Explicit[i+1],
forAll i : int(1..n) . structuralCons(x_Explicit[i])

Rather than introducing a chain of ≤̇ constraints, this rule exploits the fact that the elements of the set are required to 
be different and strengthens the ordering to a <̇ constraint.

As well as providing efficient and composable symmetry breaking, breaking symmetry immediately in this way has 
other advantages. Expression refinement rules (described below) can exploit the fact that symmetry breaking is performed 
immediately to produce more efficient refinements. Consider refining the constraint S = T by representing the sets S and T
of the same fixed size as matrices S ′ and T ′ with the allDifferent structural constraint. To check if S ′ and T ′ represent 
the same set we need to check if each element of S ′ is equal to any element of T ′ , since the order of elements in the 
matrices can be different. However, with the <̇ ordering we can refine S = T to S ′ = T ′ , because each assignment of S
corresponds to exactly one assignment to S ′ . This gives a much smaller and simpler refined expression and both provides a 
simpler constraint and smaller search trees.

Both ≤̇ and <̇ are entirely removed within Conjure by translating them into lexicographic (lex) ordering constraints [61,
62]. The ordering imposed by ≤̇ and <̇ is allowed to differ depending on the representation chosen for each variable, to 
allow Conjure to use the most simple and efficient lex ordering constraints. Removing ≤̇ and <̇ operators is achieved 
with a small set of rewriting rules. First, references to abstract decision variables are replaced with their representation. 
If the representation has multiple output declarations (e.g. a matrix and a size variable) then they are contained in a 
tuple. Once the arguments of the ≤̇ or <̇ contain no abstract types, each matrix is flattened into a one-dimensional matrix 
using flatten, and each tuple is concatenated into a single one-dimensional matrix using concatenate. Finally A≤̇B is 
replaced by A ≤lex B and similarly for <̇ (or ≤ and < for a single integer or Boolean). The flatten and concatenate
functions exist in Essence Prime so there is no need to further translate them.

The representation selection rules in Conjure are designed to avoid introducing modelling symmetry. Many representa-
tion selection rules have additional structural constraints to prevent modelling symmetry arising. In this way we maintain 
a model that is free of modelling symmetry throughout the refinement process with one exception: unnamed types.

Unnamed type symmetry cannot be handled in the same way as the other modelling symmetries introduced by Conjure. 
Unnamed type symmetries must be removed first, because we cannot put a complete ordering on an unnamed type, or any 
type which contains an unnamed type, as by definition unnamed types are not ordered. However, breaking general unnamed 
type symmetry is extremely difficult. Consider the type set of set (size 2) of U for an unnamed type U – this 
type represents an undirected graph on a set of vertices U, and checking if two graphs are the same (allowing reordering 
of the vertices) is the famous “Graph Isomorphism” problem, whose complexity is unknown. Extending to two unnamed 
types with matrix indexed by [U1,U2] of bool produces a matrix where the rows and columns can be permuted, 
which is known to be NP-complete and there have been several papers investigating the best way to partially deal with this 
symmetry group [63,64]. As a final example, the type matrix indexed by [int] of U has value symmetry which 
can be broken in polynomial time for some problem classes [65]. In future work we will look at general methods of dealing 
with unnamed type symmetry, which will cover all the different symmetries which can arise from the use of unnamed 
types.

4.1.3. Types with Variable Size
Many domains in Essence have values of different sizes. A simple example would be a set domain with no attributes 

restricting the size of the set. If the set is a decision variable then deciding the size of the set becomes part of the decision 
problem. The Explicit representation selection rule only works for fixed cardinality sets, whereas variable cardinality sets are 
also commonly found in combinatorial optimisation problems. We define a representation (called Explicit-VariableSize) which 
uses a single integer decision variable to track the cardinality of the set, and creates a matrix that has sufficient entries of 
type T to represent the largest possible set.
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input-declaration: find x : set of T
output-declaration: find x_ExpVarSize : matrix indexed by

[int(1..Tsize)] of T
output-declaration: find x_Card : int(0..Tsize)
structural-constraints:

forAll i : int(2..Tsize) . i <= x_Card ->
x_ExpVarSize[i-1] .< x_ExpVarSize[i],

forAll i : int(1..Tsize) . i <= x_Card ->
structuralCons(x_ExpVarSize[i])

In this rule, Tsize is the smallest of the size of the domain T (which is calculated automatically) or the maxsize
annotation for x, if one is given. The structural constraint for Explicit-VariableSize orders the elements for the first x_Card 
indices of the matrix, breaking the modelling symmetry on those elements. However, the remaining elements of the ma-
trix are now free to take any value in T, therefore the representation has conditional symmetry [66]. Solvers may search 
over all possible assignments, both increasing the size of the search and producing many solutions which represent the 
same solution of the specification. Other abstract types that have a non-trivial refinement (multiset, function, relation, and 
partition) may also be of variable size, so this issue of unconstrained variables occurs in many representations. In general,
dontCare constraints are used to fix the values of any free variables introduced by the representations. Another example 
of free variables occur in the representation of partial functions. In cases where a value is not defined in the function, the 
corresponding image variables are free.

We introduce a new operator named dontCare to break conditional symmetry caused by free variables. For any Essence

decision variable x, dontCare(x) assigns all decision variables in the concrete representation of x to their smallest value. 
This prevents the target solver from searching on any of the decision variables in the concrete representation of x.

All dontCare operators are removed before the Essence Prime model is produced, so there is no need to extend other 
tools to support it. Removing dontCare operators is achieved with a small set of rewriting rules. A dontCare operator 
on a decision variable with an abstract domain is rewritten as dontCare on the representation of the decision variable. 
When dontCare is applied to a tuple or a matrix, it is rewritten to apply to each element of the tuple or matrix separately. 
When dontCare is applied to a Boolean or integer variable, it is rewritten to an equality constraint fixing the variable to 
its smallest value. These rules suffice to remove dontCare completely before an Essence Prime model is produced.

The assignment made by dontCare(x) may not correspond to a value in the abstract domain of x. For example, if the 
abstract domain is set (minSize 2) of int(1..3) and the Occurrence representation is used (as in Section 2.4), the 
current implementation of dontCare(x) assigns all variables to false, and therefore produces an empty set. This will 
conflict with the annotation minSize 2. Therefore the structural constraints of x will conflict with dontCare(x), and 
we ensure that Conjure avoids asserting both together.

Representation rules are required to ensure each abstract variable they introduce will have exactly one of dontCare or
structuralCons placed on them in any assignment, to ensure both the removal of symmetries and correct answers. The 
Explicit-VariableSize rule is therefore written as follows:

forAll i : int(1..Tsize) . i > x_Card ->
dontCare(x_Explicit[i]),

forAll i : int(1..Tsize) . i <= x_Card ->
structuralCons(x_Explicit[i])

The dontCare constraint is refined using the standard expression refinement processes within Conjure, and it is used 
in some refinements of several other abstract types. In Section 5 we evaluate the impact of breaking conditional symmetry 
using dontCare.

4.1.4. Consistent Symmetry Breaking
A well known issue when using constraints to break multiple sets of symmetries in the same problem is that the 

constraints can conflict, leading to lost solutions (e.g. [63]). This problem does not occur when Conjure breaks symmetries 
and conditional symmetries introduced during refinement. The reason for this is simple: each symmetry is broken as soon 
as it is introduced, allowing us to handle each introduced symmetry group in isolation.

To elaborate, one important feature of Conjure is that during refinement we have a valid specification after the ap-
plication of each refinement rule (these partially-refined specifications include some constructs internal to Conjure not in
Essence). Therefore when we introduce a symmetry or conditional symmetry during refinement, and then immediately re-
move it by the addition of new constraints, at no point simultaneously are there two model symmetries that we have to 
break consistently. If, on the other hand, we delayed breaking symmetry until refinement was complete, we would then 
have to break all symmetries in a consistent manner.

The symmetry breaking constraints generated by Conjure cannot conflict with any constraints in the original specifi-
cation either. Conjure only breaks the symmetry introduced by a representation selection rule. For this purpose, it posts 
symmetry breaking constraints on the concrete decision variables it generates. The concrete variables are not present in the 
original specification so it is impossible to write conflicting constraints in terms of them.

Refining any Essence specification using Conjure produces a model that has an identical number of solutions to the 
specification. Therefore we have broken all symmetries which would lead to one Essence solution mapping to multiple
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Essence Prime solutions. We only need to ensure each representation selection rule in isolation preserves exactly one as-
signment for each solution, and the application of any set of representation selection rules will also preserve the number of 
solutions.

We have focused in this paper on breaking modelling symmetry. While the abstraction of the Essence language naturally 
lends itself to writing Essence specifications without symmetry, we do expect that some Essence specifications will contain 
symmetries and conditional symmetries, for example representing the reflections and rotations of a chessboard. Assuming 
the symmetry in the specification has been detected (a topic not addressed in this paper) and broken consistently by adding 
constraints to the specification prior to refinement (for example via the lex leader method [61]) there will be no consistency 
issue with the way in which Conjure breaks modelling symmetry.

4.1.5. Viewpoint Selection
Choosing a representation selection rule to apply to a decision variable corresponds to a human modeller selecting a 

viewpoint. It is therefore crucially important to the efficiency of the model, affecting the ease of stating constraints, their 
propagation and ultimately the efficiency of the search for a solution.

Conjure makes all representation choices in one pass, separating the choice of representations from the actual applica-
tion of the representation selection rules. It chooses a representation for each decision variable in the specification. Every 
reference to a decision variable is tagged with the name of its representation (which guides the application of expression 
refinement rules, as described in Section 4.2 below). For simplicity we assume here that each decision variable has one 
representation. However, in a channelled model a decision variable may have multiple representations. Section 4.3 describes 
how Conjure generates channelled models.

4.1.6. Representation Selection Rules in Conjure

Table 5 gives a brief description of each of Conjure’s representation selection rules. There are 17 representations in total, 
spread across the 6 abstract domain constructors. Three representations (FunctionAsRelation, RelationAsSet, PartitionAsSet) 
work by converting an abstract domain to another abstract domain, which is then converted to a concrete domain by 
subsequent representation rule applications. We briefly explain the remaining representations in this section.

A common method shared by several representations is to use marker or flag variables to indicate the relevant members 
of a matrix. For example, in a variable size set representation (with a marker variable), Conjure creates a matrix with 
sufficient entries to represent the maximum number of elements of the set. In addition a marker variable is used to indicate 
the size of the set. Decision variables in the matrix that are not used are irrelevant to the final value of the abstract variable. 
These are fixed to break symmetry using dontCare constraints, as described in Section 4.1.3.

There are two main kinds of representations for sets: the Occurrence representation and four flavours of explicit represen-
tations. The Occurrence representation creates a Boolean variable for every potential member of the set. This representation 
does not introduce modelling symmetry, but it can create a prohibitively large number of variables when given a large set 
domain. The basic Explicit representation works for fixed cardinality set variables. For a set with cardinality n, it creates a 
matrix indexed by {1..n} where each element of the matrix represents one member of the set. Symmetry breaking con-
straints ensure the matrix is in increasing order. The ExplicitVariableSizeMarker and ExplicitVariableSizeFlags representations 
work for variable cardinality sets. They both have a matrix similar to Explicit but with one matrix element per potential 
element of the set, using the maximum cardinality of the set as the limit. The former then uses a single integer variable to 
denote the cardinality of the set and the latter uses a Boolean variable per element of the matrix to indicate membership. 
Appropriate symmetry breaking constraints are added to enforce an increasing order among the elements of the set and to 
fix the irrelevant variables using dontCare constraints. ExplicitVariableSizeDummy is similar to Explicit but adds a dummy 
value to the domain of the elements of the matrix.3

Representations of multisets are similar to those of sets. In contrast to sets, multisets allow repeated values. In order to 
accommodate this, the multiset Occurrence representation introduces an integer decision variable (instead of a Boolean) for 
each value of the set. The domain of this variable ranges from zero to the maximum number of occurrences allowed per 
value. The ExplicitFlags representation uses a decision variable per distinct value and a corresponding decision variable for 
the number of repetitions of that value. The ExplicitRepetition representation uses a matrix of decision variables bounded by 
the maximum cardinality of the multiset. Repeated values are allowed in this matrix and the resulting symmetry is broken 
by placing them in non-decreasing order.

Sequences in Essence are ordered collections of values of variable length (with an upper bound). Sequences are repre-
sented with a matrix and a length variable. Elements of the matrix which have an index greater than the length of the 
sequence are fixed using dontCare constraints.

There are four representations of functions. FunctionAsMatrix represents a total function τ1 → τ2 using a matrix indexed 
by τ1 , containing τ2 . The remaining three representations are used for partial functions. The FunctionAsMatrixPartial is 
the FunctionAsMatrix representation plus a Boolean variable corresponding to every value in τ1 to indicate whether this 
value is defined in the function. Undefined values are fixed using dontCare constraints. FunctionAsMatrixDummy extends 
FunctionAsMatrix with a dummy value to indicate undefined values.

3 Some solvers support decision variables with ‘set of int’ domains. In addition to the representation options presented here, Conjure could trivially be 
made to output these variables without converting them to matrices.
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Table 5

Representation selection rules in Conjure.

Representation Description
set of τ

Occurrence Matrix of Boolean flags indicating presence of each value.
Explicit Fixed size matrix of distinct values.
ExplicitVariableSizeMarker Explicit with size variable.
ExplicitVariableSizeFlags Explicit with Boolean flags to mark unused elements.
ExplicitVariableSizeDummy Explicit with dummy value for unused elements.

mset of τ

Occurrence Matrix of integers indicating frequency of each value.
ExplicitFlags Matrix of distinct values with counter for each.
ExplicitRepetition Matrix of values, repetition allowed.

sequence of τ

ExplicitBounded Matrix of τ and length variable.

function τ1 -> τ2
FunctionAsMatrix Total functions only. Matrix indexed by τ1 of τ2 .
FunctionAsMatrixPartial Matrix indexed by τ1 of τ2 and matrix of Boolean flags to mark unused elements.
FunctionAsMatrixDummy Matrix indexed by τ1 of τ2 extended with a dummy value to indicate missing values.
FunctionAsRelation Relation where each element of τ1 is related to at most one element of τ2.

relation of ( τ1, . . . ,τi , . . . )
RelationAsMatrix For relations of integers or Booleans only. Matrix of Boolean flags indicating presence of each tuple in 

the relation.
RelationAsSet Set of tuples.

partition from τ

Occurrence For partitions of integers only. Cells are numbered. A matrix indexed by τ contains the cell number of 
each element. The size and first element of each cell are also represented.

PartitionAsSet Set of sets where inner sets represent cells of the partition.

The RelationAsMatrix representation has a Boolean matrix indexed by the components of the relation, where a true value 
indicates relation membership. The partition (from τ ) Occurrence representation has a matrix indexed by τ to represent the 
cell of the partition that each value belongs to. Cells are identified using integers. The cardinality and the first element of 
each cell are also represented for efficiency reasons. The modelling symmetry arising from this representation is broken by 
its structural constraints.

4.2. Expression Refinement Rules

Expression refinement rules are the second kind of rules in Conjure. They are used to translate Essence expressions 
to equivalent Essence Prime expressions. They may or may not depend on the representations of decision variables and 
parameters. Rules that do not depend on representations are called horizontal rules, and those that do are called vertical 
rules. Horizontal rules do not change the representation of decision variables, they merely translate Essence expressions 
to other Essence expressions. Horizontal rules are representation independent, and they reduce the need for a very large 
number of representation-dependent vertical rules.

4.2.1. Vertical Rules
Vertical rules replace references to abstract decision variables with their representations. There must exist vertical rules 

for the most basic operations on the abstract types. One of the most important classes of vertical rules are the comprehen-
sion generator rules that allow comprehensions to iterate over elements contained in an abstract decision variable. Suppose 
we have the following comprehension containing the abstract variable S, of type set of int. All items in S must be odd. 
In addition we have an in operator, one of the simplest binary operators on sets.

find S : set (size 3) of int(1..10)
such that and([ i%2 = 1 | i <- S ]), 5 in S

If the Occurrence representation is chosen for S, one vertical rule replaces the generator i <- S with i: int(1..10), 
i in S. Another vertical rule replaces both i in S and 5 in S as follows.

find SOccurrence : matrix indexed by [int(1..10)] of bool

such that

sum([ SOccurrence[i] | i : int(1..10) ]) = 3,
and([ i%2 = 1 | i : int(1..10), SOccurrence[i] ]),
SOccurrence[5]

If the Explicit representation is chosen, the resulting model is quite different. A vertical rule replaces the generator i 
<- S with q: int(1..3), and references to i with SExplicit[q], producing a straightforward model of the first 
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constraint. For the second constraint, there is no vertical rule so a horizontal rule is applied first, producing or([q = 5 | 
q <- S]). From there, the same vertical rule is applied to the generator q <- S, producing the model below. To complete 
the refinement of this model fragment the .< would be refined as described in Section 4.1.2.

find SExplicit : matrix indexed by [int(1..3)] of int(1..10)
such that

and([ S_Explicit[q] .< S_Explicit[q + 1] | q : int(1..2)]),
and([ SExplicit[q]%2 = 1 | q : int(1..3) ]),
or( [ SExplicit[q] = 5 | q : int(1..3) ])

All comprehension generators i <- T have a vertical rule for every possible representation of T, and all abstract types 
are allowed in a generator (see Section 3.1). Other operators may have vertical rules for some representations and not 
others. In the example above, i in S was refined with a vertical rule when S took the Occurrence representation. Vertical 
rules take priority over horizontal rules.

4.2.2. Horizontal Rules
Horizontal rules are entirely independent of the chosen representation of the abstract decision variables. They allow

Conjure to reformulate expressions, adding to the diversity of models that Conjure can produce and also avoiding the 
need for a huge number of vertical rules. When there is no vertical rule available for an expression, Conjure applies a 
horizontal rule to replace the expression with a simpler expression, often by decomposing an operator. Repeated application 
of horizontal rules always allows Conjure to reach a vertical rule.

For example, suppose we have two decision variables A and B of type set of int, and one constraint A = B. Refine-
ment of equality is important for channelling constraints (as described in Section 4.3 below) and for cases where equality 
is part of a larger expression.

find A, B : set (size 3) of int(1..10)
such that A = B

Suppose the Occurrence representation is chosen for A and Explicit is chosen for B in the constraint A = B. There is no 
vertical rule for equality between these two distinct representations of sets. A horizontal rule is applied to decompose A 
= B into A subsetEq B /\ B subsetEq A. However subsetEq also has no vertical rule. Another horizontal rule is 
applied to each of the subsetEq operators, resulting in the following specification.

find A, B : set (size 3) of int(1..10)
such that (and([ i in A -> i in B | i : int(1..10) ]) /\

and([ i in B -> i in A | i : int(1..10) ]))

To complete the refinement, Conjure applies the relevant vertical rules for in, replacing i in A with AOccur-
rence[i], and i in B with the following:

exists q : int(1..3) . BExplicit[q]=i

Thanks to being representation-oblivious, horizontal rules allow Conjure to achieve full coverage of the Essence language 
using a manageable number of rules and without having to repeat similar rules for each new representation.

4.3. Channelling Multiple Representations

Combining multiple representations of one abstract decision variable in a channelled model can be remarkably powerful 
[67]. Constraints may be stated on the most appropriate of the chosen representations, allowing for more concise expression 
of constraints and in some cases improved propagation, both of which can improve efficiency of the search for a solution. 
However channelling also introduces overheads in the form of additional decision variables and constraints, which may 
outweigh their potential benefits.

Conjure chooses a representation for each reference to a decision variable in the specification, therefore it may choose 
multiple representations for one decision variable. All representation choices are made in one pass where every reference 
to a decision variable is tagged with the name of a suitable representation. In this way the choice of representations is 
separated from the actual application of the representation selection rules.

When a decision variable is represented in more than one way, channelling constraints are added to ensure consistency 
between the representations. A channelling constraint is simply an equality between two references to the same decision 
variable, where the two references are tagged with different representations. The equality is then refined using the standard 
refinement processes for expressions, described in Section 4.2. A channelling constraint is created for every pair of distinct 
representations. An example of refining a channelling constraint for the knapsack problem is given in Section 2.5.

By default Conjure produces multiple models by enumerating all possible ways of selecting representations (i.e. all ways 
of tagging every reference to a decision variable in the AST) and all possible ways of generating constraint expressions 
once a representation is selected. Depending on the specification, large numbers of models may be produced from one 
specification (as shown in Table 7). We discuss the issue of selecting an effective model in Section 6, and in Section 7
we evaluate Conjure by examining whether it can generate known good models from the literature for a wide range of 
specifications.
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Table 6

Number of solutions with and without dontCare constraints. A ≥ indicates number of solutions found within 1 hour CPU timeout.

Outer
Inner

set multiset function relation partition

With Without With Without With Without With Without With Without
set 11 38 22 87 46 632 67 297 15 845
multiset 19 58 34 129 73 928 101 441 25 1315
function 25 64 49 144 100 1024 144 484 36 1444
relation 137 632 667 3222 4042 174512 7382 36542 296 318452
partition 41 310978 352 9092502 10 ≥ 277220736 88574 ≥ 198611820 208 ≥ 138135600

5. The Impact of Breaking Modelling Symmetries

In this section we evaluate the impact of breaking model symmetries automatically. Throughout, it is important to bear 
in mind that these symmetries are broken by Conjure at the problem class level, hence the benefit of symmetry breaking 
is automatically obtained for every instance of the problem class being refined. This approach is substantially more effi-
cient than analysing an individual instance to identify symmetries [68]. At present there are two mechanisms for breaking 
modelling symmetries. The first breaks unconditional variable symmetries using ordering constraints (introduced in Sec-
tion 4.1.2). In this case the number of symmetries can be represented with closed-form expressions and we give a detailed 
example in Section 5.1. The second mechanism breaks conditional symmetries that arise when parts of representations are 
unused in a solution (introduced in Section 4.1.3). Here the number of symmetries, and thus the impact of symmetry-
breaking constraints, is not straightforward to represent mathematically so we have an experiment in Section 5.2 below.

5.1. Breaking Unconditional Variable Symmetries

In order to illustrate both the importance of symmetry breaking, and the way in which the high level of abstraction 
of Essence allows us to avoid the expensive step of detecting modelling symmetries, we will consider the refinement of 
the Social Golfers Problem specification presented in Fig. 1. The single abstract decision variable in the specification is a 
set (representing the weeks) of partitions (representing the groups of golfers). A standard refinement of a fixed-cardinality 
set, particularly when its elements are themselves complex objects, is into a matrix with the same number of elements 
as the cardinality of the set (the Explicit representation). Of course, since matrices have indices whereas sets do not, this 
immediately introduces a symmetry whereby any permutation of the matrix represents the same set. In this case, there will 
be w! such symmetries. However, the refinement rule employed by Conjure recognises this modelling symmetry and breaks 
it as it enters the model, by ordering the elements of the matrix, without the need for a costly symmetry-identification 
process in the final model.

The partition of the golfers can be thought of as a set of sets of golfers subject to the additional constraints that the 
outer set contains exactly g sets, each of size s, and the intersection of any pair of inner sets is empty. A natural refinement 
of this nested object is into a g × s matrix, introducing a symmetry on the g! possible arrangements of the groups and 
the s! arrangements of golfers within those groups. Since each group can be arranged independently, this results in g!(s!)g

symmetries for each partition, which again Conjure identifies and breaks as they enter the model.
Since each partition forms one of the weeks, the final model derived as above has w!g!(s!)g symmetries in total. This 

is a vast number for even relatively small instances of the social golfers problem, which, if left in the model, could have a 
significant adverse influence on the performance of search. Conjure’s ability to deal with these symmetries automatically at 
the class level (as described in Section 4.1.2) is therefore very valuable.

5.2. Breaking Conditional Symmetries

Conditional symmetries arise when refining abstract domains where the values have distinct sizes, and so parts of the 
representation may be redundant in a solution (depending on the chosen representation). As described in Section 4.1.3,
dontCare constraints are used to assign redundant variables in order to break the conditional symmetry. We ran an 
experiment to illustrate the effectiveness of automated conditional symmetry breaking in Conjure by counting the number 
of solutions to Essence problem specifications with and without dontCare constraints. The experiment also demonstrates 
that arbitrary combinations of nested types can be handled, even with conditional symmetries in each. In these experiments
Savile Row and Minion were run with their default settings on a 32-core AMD Opteron 6272 at 2.1 GHz.

First, we generated 25 Essence specifications. Each contains a single decision variable with a 3-level nested domain, 
but no constraints. The innermost domain is always an integer domain, and we generate all combinations of 5 Essence

domain constructors for the other layers. The outer two layers have a bounded size of 2, so can also be empty or size 1, 
meaning that both layers will require conditional symmetry breaking using dontCare constraints. Moreover, the structural 
constraints of the inner layer will need to be posted conditionally. Conjure contains multiple refinement options for all of 
the domains in this experiment. In some cases it is able to generate thousands of models for one problem. However, since 
the conditional symmetry breaking constraints are needed in all of these models we chose one model per problem using 
the CompactEP heuristic (see Section 6).
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Table 6 presents the number of solutions for the same problem specification with and without conditional symmetry 
breaking constraints. The results are as expected: models with dontCare constraints have fewer solutions than those 
without. The most extreme cases involve partitions, and can produce hundreds of millions of solutions when there are only 
ten symmetrically distinct ones. When using dontCare constraints, these symmetric solutions are avoided and the solver 
need not waste effort searching through them.

6. Model Selection with the COMPACTEP Heuristic

Conjure is able to produce multiple models by enumerating all possible ways of selecting representations. If time is 
limited it is sensible to provide a rapid model selection method, avoiding both generating all models and training using 
instance data. In earlier work we proposed a method based on racing [34] to select a subset of the models that perform 
well on a given set of training instances. Racing methods allow comparing alternative algorithms without necessarily having 
to run all algorithms on all instances. Racing for model selection can be very computationally expensive. The focus of this 
paper is on refinement within Conjure so we omit model selection methods that are essentially external to Conjure such 
as racing.

Conjure contains greedy model selection heuristics that are used for making local decisions during model generation. 
These can be employed during both representation selection and expression refinement. The default heuristic is called
CompactEP, which stands for “compact except parameters”, and it is a combination of the Compact heuristic and the Sparse

heuristic. We define these heuristics in the following.
The Compact heuristic favours transformations that produce simpler types of variables and smaller expressions at each 

point during refinement where multiple rules are applicable. We define the compact ordering on abstract types as follows: 
concrete domains (such as bool, matrix) are smaller than abstract domains; within concrete domains, bool is smaller 
than int and int is smaller than matrix. These rules are applied recursively, so that a one-dimensional matrix of int
is smaller than any two-dimensional matrix. Abstract type constructors have the ordering set < mset < sequence 
< function < relation < partition, which is also applied recursively. At each stage of representation selection, 
the CompactEP heuristic will select the smallest domain according to this order. As an example, a set(size n) of 
int is represented as a matrix indexed by [int] of bool with the Occurrence representation, and as a matrix 
indexed by [int] of int with the Explicit representation. As bool is smaller than int under our ordering, Compact

will always pick the Occurrence representation in this example.
During expression refinement Compact chooses the rule that produces the most shallow abstract syntax tree (AST) 

directly following its application. For example an expression like a subsetEq has a shallower AST (depth 1) than forAll 
i in a. exists j in b. i = j (depth 3). To break ties, an arbitrary total ordering is defined over all abstract syntax 
trees.

The Sparse heuristic is intended to enable small representations of parameter values. It employs a built-in ordering 
of representations that gives priority to those that take advantage of sparsity. For example, the Explicit representation 
would take priority over the Occurrence representation for a fixed-cardinality set because Explicit scales with the cardinality 
whereas Occurrence scales with the number of values potentially in the set. Consider a parameter with the domain re-
lation of (int(1..100) * int(1..100)). A sparse member of this domain like relation((1,2), (3,4))
would require 10,000 Booleans with the RelationAsMatrix representation and only 4 integers with the RelationAsSet repre-
sentation.

The default CompactEP heuristic is a combination of these two heuristics: during representation selection, Conjure uses 
the Sparse heuristic when representing problem class parameters and the Compact heuristic for everything else.

7. Evaluation: CONJURE Produces Kernels of Good Models

Conjure provides full coverage of the Essence language. It has at least one variable representation rule (typically several, 
see Table 5) for every abstract variable type, and horizontal and vertical expression refinement rules for all the operators 
defined on them. In this section we test the hypothesis that the kernels of constraint models written by experts can be au-
tomatically generated by refining a problem’s abstract specification. For two CP models to have the same model kernel, they 
need to share the same viewpoint, the same representation of decision variables and the same formulation of the problem 
constraints, together with symmetry breaking. Expert models can have additional features such as implied constraints or 
dominance breaking [69] constraints but these are not considered to be in the kernel of the CP model for this evaluation. 
Some expert models contain global constraints that are not present in Essence Prime. In these cases, if Conjure generates 
an equivalent decomposition then we consider the two models to have the same kernel.

In order to test this hypothesis, we took a diverse set of 42 benchmark problems drawn from the literature and refined 
them with Conjure. Our main source for these problems is CSPLib [48]. We cover the entire CSPLib problem class collection 
(at the time of writing), except those problems that are naturally represented using only matrices of Booleans or integers, 
i.e. without the facilities that Essence provides in addition to those of lower level constraint modelling languages.

In Table 7 we present the set of problem classes and the abstract types of their decision variables in Essence. We also 
cite the papers that contain a kernel that Conjure is able to generate. We begin by noting the variety of decision variable 
types involved in the benchmark problems, representing further evidence that the current collection of rules, the rewrite 
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Table 7

Running Conjure on 42 benchmark problems from CSPLib. We highlight the features of Essence used in the problem specification for each problem class and include a reference to at least one published model 
for each problem that is comparable to one of the models automatically generated by Conjure. In addition, we present the estimated number of models Conjure can produce using 6 configurations of the model 
selection heuristics.
# Problem Essence features Refs Pruning No Pruning

NoCh VarsCh FullCh NoCh VarsCh FullCh
1 Car Sequencing function [71] 1 1 1 4 64 10,368
2 Template Design 1 1D function, 1 2D function [72] 1 1 1 12 576 5184
3 Quasigroup Existence 2D function [73] 1 1 1 3 729 729
5 Low Autocorrelation Binary Sequences function variable [74] 1 1 1 4 64 64
6 Golomb Ruler set variable [75] 2 32 32 2 32 32
7 All-Interval Series 2 bijective functions [76] 1 1 1 16 1024 1024
8 Vessel Loading 4 functions [77] 1 1 4 256 1.8 · 1019 4.8 · 1023

9 Perfect Square Placement 2 functions [78] 1 1 1 16 1.7 · 107 1.7 · 107

10 Social Golfers Problem set of partition [31] 3 9 9 3 9 9
13 Progressive Party Problem set of partition [79] 4 256 256 16 2.6 · 105 9.4 · 106

15 Schur’s Lemma partition [80] 4 16 32 5 25 50
16 Traffic Lights function [81] 1 1 1 3 27 27
17 Ramsey Numbers function [82] 2 128 512 3 2187 8748
18 Water Bucket Problem 2 sequences [35,83] 1 1 32 4 1.1 · 109 1.1 · 1012

21 Crossfigures sequence, variant [84] 1 1 1 1 1 1
22 Bus Driver Scheduling partition of int [85] 4 64 256 9 729 2916
24 Langford’s number problem sequence and injective function [86,87] 1 1 1 3 243 243
26 Sports Tournament Scheduling relation between enums a set of enums [88] 2 16 16 2 16 16
28 Balanced Incomplete Block Designs relation of unnamed types [89] 1 1 1 3 243 243
30 Balanced Academic Curriculum Problem binary relation and a function variable [90] 1 1 1 4 16,384 2.9 · 105

31 Rack Configuration Problem a partial nested function [91] 1 1 1 12 2.5 · 105 5.4 · 108

32 Maximum Density Still Life set of tuples [92–94] 2 256 256 2 256 256
33 Word Design for DNA Computing set of function [95] 2 32 32 8 32768 32768
34 Warehouse Location Problem function [27] 4 4 4 16 1024 18432
36 Fixed Length Error Correcting Codes set of functions [64] 1 1 2 4 64 192
38 Steel Mill Slab Design partition of orders. [96,97] 4 2.6 · 105 2.6 · 105 8 1.3 · 108 3.6 · 109

39 The Rehearsal Problem 3 functions, 1 bijection [98] 1 1 1 64 1.7 · 107 1.2 · 109

40 Wagner-Whitin Distribution Problem partial 2D function [99] 1 1 4 1 1 4
44 Steiner triple systems matrix of set [100] 2 8 8 2 8 8
45 The Covering Array Problem mset of function [101] 2 4 8 8 64 320
49 Number Partitioning 2 set variables [102] 4 256 256 4 256 256
51 Tank Allocation set parameters [103] 1 1 32 1 1 32
53 Graceful Double Wheel Graphs injective functions [104] 1 1 1 16 2.7 · 108 2.7 · 108

53 Graceful Gears injective functions [104] 1 1 1 16 65536 65536
53 Graceful Helms injective functions [104] 1 1 1 16 4.2 · 106 4.2 · 106

53 Graceful Wheel Graphs injective functions [104] 1 1 1 16 65536 65536
55 Equidistant Freq. Permutation Arrays set [105] 1 1 1 4 256 256
56 Synchronous Optical Networking mset of set [106] 8 512 1024 8 512 1024
65 Optimal Financial Portfolio Design set of set [107] 2 4 4 2 4 4
83 Transshipment Problem 2 partial functions [108] 4 256 256 16 65,536 2.1 · 107

85 Van der Waerden Numbers partition of numbers [109,110] 4 16 16 5 25 25
86 Capacitated Vehicle Routing Problem set of sequences [111] 4 256 256 4 256 256
110 Peaceably Co-existing Armies of Queens 2 sets of tuples [112] 8 2048 4096 60 1.5 · 1011 7.4 · 1012

115 Tail Assignment relations, sets of nested functions [113] 6 3 · 1014 3 · 1014 45 5.2 · 1030 4.2 · 1032

116 Vellino’s Problem partial function of msets [114] 1 1 1 4 64 10368
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rule mechanism, and the Conjure system as a whole is capable of refining a wide variety of abstract problem specifications 
into concrete models. The number of models generated for a problem specification depends on the number of representation 
options for its decision variables.

7.1. Configurations of Conjure

In Table 7 we report a lower bound on the number of models that can be generated by Conjure with six configurations. 
One source of variation in models is the selection of different representations for decision variables, parameters, and quan-
tified variables. We calculate the exact number of representations available for each by examining the domain. A second 
source of variation arises from expression refinement. We calculate a lower bound on the number of attainable models by 
taking the product of the number of representation options for each reference to a declaration in the model (where chan-
nelling is enabled for the declaration). For example, if a decision variable may be channelled, has two representations, and 
is referred to three times in the model, there are 23 = 8 ways of tagging the references with a representation. The result 
of this calculation is a lower bound because it ignores the potential for multiple expression refinement pathways after the 
selection of representations.

The six configurations represent different trade-offs between time taken and the ability to generate diverse models. One 
option is to prune the set of representations:

• Pruning: Use a built-in heuristic to filter the list of representations. This heuristic only allows the use of one variable 
cardinality representation (ExplicitVariableSizeMarker) for sets created by the RelationAsSet and PartitionAsSet representa-
tions.

• No Pruning: Explore all applicable representations for every decision variable and parameter.

Pruning and No Pruning are combined with each of the following options for channelling:

• NoCh: Decision variables and parameters each have only one representation (no channelling).
• VarsCh: Channelling is allowed for decision variables but not for parameters.
• FullCh: Channelling is allowed for both decision variables and parameters.

The number of models Conjure can generate for a problem class depends heavily on the abstract types used in the 
problem specification. In particular, decision variables and parameters that have abstract domains present an opportunity 
for using different representations. When channelling is enabled, the number of models also depends on the number of 
times each decision variable (or parameter) is mentioned in the constraints: each use of a decision variable presents an 
opportunity for a new representation. In addition to choosing one representation for each use of decision variables, we allow 
the addition of one extra representation, used mainly for providing a search order [70]. In Table 7 we present the numbers 
of models for the six configurations. In terms of the numbers of models, it is always the case that NoCh ≤ VarsCh ≤ FullCh, 
and Pruning ≤ No Pruning. In some cases channelling dramatically increases the number of models (Steel Mill Slab Design 
for example), and similarly turning off pruning can have a dramatic impact (for example, the Water Bucket Problem).

7.2. Comparing Generated Models to Published Models

In this section we briefly compare the models generated by Conjure to published models written by expert modellers 
for each of the 42 problem classes.

CSPLib 1 For the car sequencing problem using the default heuristic Conjure generates a model that uses an integer 
matrix to represent the function variable. This is the same viewpoint as the model published in [71]. In addition, Conjure
generates a 2-dimensional Boolean representation of the same function variable which is commonly used when developing 
MIP or SAT models.

CSPLib 2 The template design problem has two function variables in its Essence specification. These variables are repre-
sented using integer matrices via the default heuristic since they are total functions. This model has the same viewpoint as 
[72].

CSPLib 3 For several variations of the quasigroup existence problem, Zhang [73] used a 2-dimensional matrix to represent 
an integer square grid. This model is produced as the default model by Conjure.

CSPLib 5 The low autocorrelation binary sequences problem contains a function variable which is modelled in a similar 
way to the template design problem (CSPLib 2), see [74].

CSPLib 6 The golomb ruler problem is naturally modelled as a set. From this set model Conjure generates an explicit 
representation with symmetry breaking and a Boolean occurrence representation. In the explicit model, the distinctness of 
the inter-tick distances are modelled using an all-different constraint (thanks to Savile Row). The explicit model is given in 
Section 2 of [75] and the occurrence model in Section 7 of the same paper.

CSPLib 7 The all-interval series problem is modelled as 2 bijective functions in Essence. Previous work on this model 
looks into breaking symmetry [76] and they use a 1-dimensional array-based representation for each function variable with 
appropriate constraints to enforce the bijection property. The default model generated by Conjure is the same as this model.
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CSPLib 8 The vessel loading problem is described by Brown [77]. He used an array based model to represent the function 
variables that are found in the Essence problem specification. Among other representations, Conjure generates the same 
viewpoint as this published model.

CSPLib 9 The perfect square placement problem is specified using function variables in Essence. The default model 
generated by Conjure uses the same viewpoint as the model given in [78]. This published model uses the cumulative global 
constraint which is not generated by Conjure currently, instead Conjure generates an equivalent decomposition.

CSPLib 10 The social golfers problem is specified using a set of partitions in Essence. The set represents the weeks and 
each partition is the schedule for a week. This abstract domain gives rise to a 3-dimensional matrix model, with appropriate 
constraints posted to enforce the set and the partition structure. This is the viewpoint used by the default model generated 
by Conjure and it corresponds to the model presented in [31].

CSPLib 13 Progressive party problem includes a set of partitions in its problem specification. This domain can be refined 
into representations that have the same viewpoint as both of the models presented in [79].

CSPLib 15 Schur’s lemma [80] is specified using a single partition variable. Using quantification over all sets of triples 
of potential members of this partition and an apart operator, the problem is stated using a single top level constraint. The 
default model Conjure generates uses a set of sets and includes automated symmetry breaking constraints.

CSPLib 16 The traffic lights problem is used as an example in [81] as a demonstration of higher-arity constraints. In
Essence this problem can be specified using functions and set membership.

CSPLib 17 The Ramsey numbers problem is modelled using a function variable and universal quantification over fixed 
size subgraphs. The default model generated by Conjure uses a variable to represent each edge in the graph and its colour, 
which corresponds to the model presented in [82].

CSPLib 18 The water bucket problem is a planning problem. It is modelled using a sequence of states and actions in
Essence. The sequence type allows modelling a list with a bounded (but not fixed) length. The default model generated 
for this problem represents the states and the actions explicitly and breaks the conditional symmetry [35] arising from the 
variable length of the data structures. A comparable model is given in [83].

CSPLib 21 The crossfigures problem benefits from bounded length sequences in a similar way to the water bucket prob-
lem. In addition, it uses a variant type to represent the 8 different kinds of clues succinctly. The generated Essence Prime

model is comparable to a MiniZinc model published on the CSPLib page [84].
CSPLib 22 The natural language specification of the bus driver scheduling problem starts with the following sentence: 

“Bus driver scheduling can be formulated as a set partitioning problem”. The problem specification in Essence is very 
succinct and has a single decision variable that represents this partition. Starting from this problem specification, one of the 
models generated by Conjure uses the same core viewpoint as the model published in [85].

CSPLib 24 A channelled Essence model for the Langford’s number problem is presented in [86]. The output of Conjure
for this problem corresponds very closely to the models presented by Smith [87].

CSPLib 26 The sports tournament scheduling problem is specified using an arity 3 relation of week, period and a set of 
two teams. Each entry in the relation indicates that the two teams are timetabled to play a game on the selected week and 
the period. This abstract type (and using the relation projection operator) allows a succinct specification of the problem in
Essence. One of the generated CP models uses a viewpoint similar to the one published in [88].

CSPLib 28 The balanced incomplete design problem (BIBD) is typically modelled in CP using a 2-dimensional array with 
symmetry-breaking constraints [89]. In Essence, the problem is specified using a relation with arity 2 between two unnamed 
types. This domain allows us to break all of the symmetry in this problem (which is not the most computationally efficient 
approach), or produce the more commonly used double-lex constraints.

CSPLib 30 The balanced academic curriculum problem (BACP) is modelled using a relation to represent the prerequisites 
between courses and a function variable to represent the assignment of periods to courses. Using this problem specification,
Conjure generates a model very similar to the one published in [90].

CSPLib 31 The rack configuration problem is modelled using a partial function that represents whether each rack is used 
in a solution or not, and if it is, the model and quantity of each card type in this rack. This representation captures the 
decision abstractly and allows the generation of the kernels of both models presented in [91].

CSPLib 32 For the maximum density still life problem, we obtain a comparable model to that of Bosch & Trick [92] with 
the difference that Conjure chooses an explicit instead of an occurrence representation. However, we obtain nothing like 
the dual model obtained by Smith [93] in which supercells in the original grid are used as variables: this is an example of a 
reformulation that could be implemented generally but remains outside the scope of this paper. Using even more advanced 
techniques, a complete solution to the problem has been found for all n [94].

CSPLib 33 The DNA word design problem is very succinctly specified in Essence using a set of functions. It is an optimi-
sation problem where the objective is to minimise the cardinality of the abstract set. For this problem, Conjure produces a 
model similar to the one published in [95], together with symmetry breaking constraints between the (function) members 
of the set.

CSPLib 34 The warehouse location problem is a typical network flow problem. Function variables in Essence can be used 
to specify this problem at a high level of abstraction, and Conjure is able to generate the two main alternative viewpoints 
described in [27] as well as channelled versions of these two viewpoints.
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CSPLib 36 The fixed length error correcting codes problem uses a partial function in its Essence problem specification 
and an abstract decision variable whose domain is a set of functions. Thanks to this abstract type, the models produced by
Conjure include symmetry breaking constraints similar to those presented in [64].

CSPLib 38 For the steel mill slab design problem, Conjure obtains models where the set of orders assigned to each slab, 
and the set of colours on each slab, are refined using occurrence or explicit representations. If occurrence is used for both, 
then the model is similar to the model in [96]. The later model of [97] uses a different viewpoint (as well as exploiting 
dominance) and is not generated by Conjure.

CSPLib 39 The rehearsal problem uses 3 function variables, one of which is a bijection. When defining its objective 
function, this problem specification uses the list comprehension feature of Essence. Smith [98] presents a model which is 
very similar to one of the models generated by Conjure.

CSPLib 40 The distribution problem with Wagner-Whitin costs is a warehouse stock distribution problem where each 
warehouse may order stock from one other warehouse at each time step. The specification uses a partial function variable 
to represent the orders. Conjure generates the conventional viewpoint of Tarim and Miguel [99] where value 0 is used to 
represent no order, and a variation of it where additional Boolean variables indicate whether orders are made, however
Conjure does not generate the echelon model [99].

CSPLib 41 The n-fractions puzzle is not a very complex problem to specify, but it still benefits from a surjective attribute 
in Essence. Frisch et al. [115] use this problem to explore implied constraints and one of the models generated by Conjure

is the same as the one they present.
CSPLib 44 The Steiner triple systems problem is a special case of the balanced incomplete block design problem. Its 

problem specification uses set variables and the set intersection operator and Conjure is able to generate an explicit repre-
sentation of these set variables, similar to a viewpoint used in [100].

CSPLib 45 The covering array problem is modelled using a 2-dimensional matrix variable. The statement of the con-
straints uses a quantified expression over all values of a fixed length sequence. The output models are similar to those 
published in [101].

CSPLib 49 The set partitioning problem is very directly specified in Essence using 2 set variables and a constraint to 
enforce the main sum constraint in the problem. Alternatively a partition with 2 parts can also be used. In either case, the 
output models will use an Explicit set representation based viewpoint or an Occurrence based set representation. Depending 
on instance size one or the other model is likely to be a better choice. Both of these viewpoints are explored in previous 
work in the context of mathematical programming [102].

CSPLib 51 Schaus et al. [103] present a viewpoint for the tank allocation problem that uses a single integer variable 
representing the product type per tank. The Essence problem specification follows this viewpoint closely, benefiting from
Essence features to represent the parameters (a set of sets for representing incompatibilities) and when stating the con-
straints.

There are 4 variants of the graceful graphs problem on CSPLib 53: Wheel Graphs, Double Wheel Graphs, Gears, Helms. 
Smith and Puget [104] present two viewpoints for this family of problems: one primarily based on the nodes, and another 
primarily based on the edges. The Essence problem specification gives rise to viewpoints based on the nodes.

CSPLib 55 The equidistant frequency permutation arrays (EFPA) problem is specified using a single set variable. This 
allows Conjure to generate several alternative models, with symmetry breaking and channelling between representations. 
The generated models include the Boolean, Non-Boolean, and Channelled models that were presented in [105].

CSPLib 56 The synchronous optical networking (SONET) problem uses a single variable with a nested domain: multiset of 
set of nodes. In addition to the declaration of this variable, the problem specification has a single statement for the objective 
and a single statement for the problem constraint (to enforce that the demand is met). Starting from this high level problem 
specification, Conjure not only produces a model comparable to the one published in [106], but it also creates the same 
symmetry breaking constraints automatically.

CSPLib 65 The optimal financial portfolio design problem is specified in Essence using a set of set of integers as a single 
top level decision variable. The main constraint is written very succinctly using the universal subset quantification feature of
Essence. Starting from this high-level specification, Conjure generates a model that uses the same matrix-based viewpoint 
that is published in [107].

CSPLib 83 The transshipment problem [108] is a network flow problem where the nodes are warehouses, transshipment 
points, or customers. The model in Essence uses a partial function from pairs of nodes to the amount of flow on the 
corresponding edge to model this structure. The default model generated by Conjure uses a 2-dimensional Boolean matrix 
to model edge existence and a 2-dimensional integer matrix to model the amount of flow on an edge. A second model 
which uses a list of triples (2 nodes and the flow amount) is also generated. The latter model is likely to be a good choice 
for sparse networks.

CSPLib 85 There is one common model for Van der Waerden numbers (using a 2-dimensional Boolean matrix viewpoint) 
used in both CP [109] and SAT [110]. This model is among the models generated by Conjure and it is chosen by the default 
heuristic.

CSPLib 86 There are two main approaches to modelling the capacitated vehicle routing problem: vehicle flow formula-
tions and set partitioning formulations [111]. The first has an integer variable per edge representing the flow on that edge, 
and this is the default model produced by Conjure. The second uses Boolean variables to represent set partitioning, and
Conjure also generates this model.
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CSPLib 110 The Essence problem specification for the ‘peaceable armies of queens’ problem uses two set variables to 
represent the location of white and black queens. These sets are represented by Conjure in several ways, including the 
viewpoint given in [112], together with the symmetry breaking constraints presented there.

CSPLib 115 The tail assignment problem is defined using a single function variable. This function variable finds a partial 
mapping from flights to flights, representing a route, for every plane. The basic model in [113] uses 3 sets of decision 
variables to represent the same information. Conjure generates a comparable viewpoint automatically.

CSPLib 116 The Essence problem specification for Vellino’s problem uses a partial function of multisets to represent the 
contents of each active bin. Bins that are not used are undefined in this function. The problem is stated using function 
operators (defined, range, quantification etc). A similar viewpoint to the default model generated by Conjure is published 
in [114].

In this section we have demonstrated that Conjure is able to generate models that are similar to published models 
produced by experts, for a wide range of problem classes drawn from a public repository. Also, all six of the abstract types 
in Essence (set, multiset, sequence, function, relation, and partition) are used in the specifications of the 42 problem classes, 
showing that each of these types is a necessary part of Essence. Moreover, in 30 out of these 42 problem classes Conjure’s 
default heuristic is able to choose a model that is equivalent to a published model for the same problem class.

8. Related Work in Automated Constraint Modelling by Refinement

This section primarily surveys other languages and systems that have been employed in refinement-based approaches 
to automated constraint modelling, and compares them with our own work on Essence and Conjure. Beyond this body of 
work, there exists a variety of other approaches to automated modelling, which we discuss briefly before proceeding.

One such line of work is example driven. O’Casey [23] is a case based reasoning tool, which uses recordings of previous 
problem solving episodes. Problems are paired with problem instances to form a case. The experience obtained from cases 
are mainly the selection of propagators and search heuristics. Conacq [116] is a SAT-based version space algorithm to 
acquire constraint networks. Its inputs are the set of decision variables, and a collection of positive and negative examples. 
Positive examples are valid solutions to the problem and negative examples are non-solutions. It automatically generates 
constraints by applying machine learning techniques. The Constraint Seeker [117] focuses on the automated acquisition of 
individual global constraints from a large collection of positive and negative examples. The Model Seeker [7] uses only 
positive examples to learn complete models.

Another approach is to transform an existing constraint model to improve solver performance. The CGrass [118] sys-
tem explores the idea of reformulating CP models using a collection of rules in order to improve them. It is limited to 
integer variables, and arithmetic and logical operators on integer expressions, and does not change representations of deci-
sion variables, but it can rearrange constraint expressions and reduce domains of decision variables. Tailor [11] performs 
common-subexpression elimination (CSE) and its successor, Savile Row [16], extends CSE and adds other powerful transfor-
mations.

MiniZinc [12] is a medium-level constraint modelling language. It contains features common to many CP modelling 
languages such as Boolean and integer domains, and arrays for collections of these variables. MiniZinc can be used to 
describe problem class models, however it does not perform any reformulations at the class level. When presented with 
problem instance data, the class model is instantiated into an instance model which can be targeted to one of several solver 
backends. MiniZinc uses a solver-dependent instance level language called FlatZinc to interact with solvers.

8.1. Refining Abstract Constraint Problems

The NP-Spec language [119] allows the specification of NP-complete problems in a subset of existential second order 
logic. It provides a small number of high level domains, sets and partitions of integers, which are automatically refined into 
decision variables with simpler domains. NP-Spec provides only one way to refine each high-level domain and operator. 
Hence, it does not allow for the generation of alternative models.

The ESRA language [25] has a particular focus on decision variables with relation domains. It is translated to the language 
OPL [114,13], a constraint modelling language with similar facilities to Essence Prime, by refining relation domains and 
operators. Like NP-Spec, however, it does not consider multiple alternative refinement pathways. Moreover, the abstract 
domains offered by ESRA cannot be nested arbitrarily.

The F language [27] supports function variables. Problems modelled in F are refined into OPL using a system called Fiona. 
F supports function attributes such as total and bijective. Function domains in F cannot be nested arbitrarily, a function 
variable is simply a mapping between non-nested domains like integers or enumerations. Fiona does, however, support 
multiple alternative refinements for function domains, among which it selects using a number of heuristics. Fiona always 
generates a single output model using these heuristics. If the same function variable is refined in multiple ways within a 
single model, Fiona is able to generate channelling constraints automatically.

The constraint language most closely resembling Essence is Zinc [28]. Both languages support type constructors that can 
be nested to arbitrary depth, and they have a number of type constructors in common, such as sets, arrays and tuples.
Essence supports more abstract decision variables than Zinc, for example via multiset, partition, function, and relation 
type constructors, which in Zinc must be modelled using a constrained collection of variables of a more primitive type. 
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Quantification over decision variables, which Essence supports, is vital for concision when dealing with variables that have 
nested domains. Essence and Zinc provide a similar selection of atomic types, although Zinc supports floats, which Essence

does not, and unnamed types [120] are unique to Essence. Zinc is extensible via user-defined functions and predicates, a 
feature which Essence lacks.

Work on refining Zinc has focused on the production of models for different solving paradigms, such as mixed inte-
ger programming, constraint programming, and local search [121,29,30], rather than alternative refinement pathways for a 
particular type of solver. De Koninck et al. describe plans to use annotations to guide the use of alternative refinements 
manually [29].

Hernández [122] considers the problem of channelling different representations of high-level variables. She produces 
similar results to the implementation used in Conjure, which produces channelling constraints by refining X = X where the 
left and right X have different representations.

8.2. Encoding Constraint Models to Other Formalisms

A related body of work seeks to encode a given constraint model into another formalism, such as mixed integer program-
ming (MIP), propositional satisfiability (SAT), or SAT modulo theories (SMT). In selecting how the variables and constraints 
of the constraint model are to be encoded, this approach shares many of the concerns of the refinement of abstract specifi-
cations described above. The substantial difference is in the lower level of abstraction of the input.

One popular method of solving constraint problems is to encode them to SAT and employ a SAT solver. The two key 
considerations are: first, the way in which the CP variables (i.e. variables of the constraint model) are encoded by a set 
of SAT variables and associated clauses; and second, how the constraints are encoded into SAT clauses (and additional SAT 
variables if necessary). The simplest such scheme introduces one SAT variable per domain value of each CP variable [123], 
adding clauses to ensure that every CP variable takes exactly one value. An important alternative is the log encoding [124], 
in which we represent a variable of domain size n by ⌈log2 n⌉ SAT variables. Another alternative is the order encoding: 
each SAT variable indicates whether the CP variable is greater than a constant [125–127]. The order encoding can be useful 
when inequality reasoning is important. There is an extensive literature on encoding constraints into SAT, including generic 
encodings of arbitrary constraints (e.g. the direct or support encodings among others [123,124,128]). Special-purpose encod-
ings for particular constraint types can vastly outperform generic encodings, for example cardinality networks for counting 
constraints [129], and the compact order encoding for sums [130] among many others. Picat is notable for using a log encod-
ing throughout [131]. The availability of many encodings suggests that automatic selection of encodings is important. It is 
complementary to automatic generation and selection of models. Proteus [132], meSAT [133] and Satune [134] are examples 
of systems that automatically select SAT encodings.

SMT solvers have made remarkable progress in recent years, making SMT an attractive target for encoding constraint 
models. FZN2OMT [135] translates the FlatZinc language to SMT, while SR-SMT [136] is a component of Savile Row [16]
that outputs SMT. Both systems are able to target multiple theories and multiple SMT solvers. Selection of encodings is 
similarly important when encoding to SMT as it is with SAT.

Encoding of constraint modelling languages to MIP (linearization) has a long history. OPL is an early example [137], 
however the OPL system was not able to linearize the entire OPL language. More recently, Rafeh and Jaberi [30] presented 
LinZinc, a library to linearize the Zinc language in its entirety, and Belov et al. [138] presented a linearization of MiniZinc. 
For several constraint types (such as allDifferent), linearization of the constraint requires a 0/1 variable for each domain 
value of each CP variable in scope, similar to the direct SAT encoding. In contrast to SAT and SMT, the issue of selection 
among multiple encodings is not discussed in any of these works [137,30,138].

A related field in which specification languages are extensively used is that of formalising computing systems. Specifi-
cation languages such as Z [139] and VDM-SL [140] are used for describing general computing systems. These languages 
typically allow lambda expressions, set theoretic operators, and first-order logic. In comparison, Essence is a problem spec-
ification language in the domain of combinatorial problem solving and it offers specific features such as decision variables, 
a rich selection of finite domains and operators for posting a variety of constraints on these decision variables. Generic 
formal specification languages do not typically encode decision problems, instead they encode properties of a system that 
are required to be true, and enable formal proofs of those properties.

9. Conclusions and Future Work

In this paper we have presented the automated constraint modelling system Conjure. It employs a set of refinement rules 
to transform the specification of a parameterised problem class in the abstract constraint specification language Essence

into a concrete constraint model. By varying the selection and application of these rules Conjure can produce a set of 
alternative models. We have demonstrated on a large set of problem classes that, in the vast majority of cases, the set 
produced includes those formulated by human experts in the literature. Furthermore, we have presented a heuristic by 
which an effective model can be selected.

A particular advantage of this approach is in the treatment of symmetry. Much of the symmetry typically present in 
a constraint model arrives through the process of modelling [33]. Conjure recognises and removes this symmetry as it 
enters a model, removing the need for an expensive symmetry detection step following model formulation, as used by 
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other approaches [141,37]. Furthermore, the symmetry breaking constraints added to the model are valid for the entire 
problem class, rather than just a single instance. An important item of future work is the treatment of symmetry arising 
from unnamed types.

Another important item of future work is a more informed method of model selection to complement the data-free 
heuristic presented herein. Following the practice of algorithm selection [142], a set of training instances for a problem 
class could be used to learn how to select an effective model for an unseen instance from the same problem class.
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[110] M.R. Dransfield, V.W. Marek, M. Truszczyński, Satisfiability and computing van der waerden numbers, in: E. Giunchiglia, A. Tacchella (Eds.), Theory 

and Applications of Satisfiability Testing, Springer Berlin Heidelberg, Berlin, Heidelberg, 2004, pp. 1–13.
[111] P. Toth, D. Vigo, Models, relaxations and exact approaches for the capacitated vehicle routing problem, Discrete Appl. Math. 123 (1–3) (2002) 487–512.
[112] B.M. Smith, K.E. Petrie, I.P. Gent, Models and symmetry breaking for ‘peaceable armies of queens’, in: International Conference on Integration of 

Artificial Intelligence (AI) and Operations Research (OR) Techniques in Constraint Programming, Springer, 2004, pp. 271–286.
[113] M. Grönkvist, A constraint programming model for tail assignment, in: International Conference on Integration of Artificial Intelligence (AI) and 

Operations Research (OR) Techniques in Constraint Programming, Springer, 2004, pp. 142–156.
[114] P. Van Hentenryck, L. Michel, L. Perron, J.-C. Régin, Constraint programming in opl, in: Principles and Practice of Declarative Programming, Springer, 

1999, pp. 98–116.
[115] A.M. Frisch, C. Jefferson, I. Miguel, Symmetry breaking as a prelude to implied constraints: a constraint modelling pattern, in: Proc. ECAI 2004, 2004, 

pp. 171–175.
[116] C. Bessiere, R. Coletta, F. Koriche, B. O’Sullivan, Acquiring Constraint Networks Using a Sat-Based Version Space Algorithm, Proceedings of the National 

Conference on Artificial Intelligence, vol. 21, AAAI Press, MIT Press, Menlo Park, CA, Cambridge, MA, London, 1999, 2006, p. 1565.
[117] N. Beldiceanu, H. Simonis, A constraint seeker: finding and ranking global constraints from examples, in: Proceedings of 17th International Conference 

on Principles and Practice of Constraint Programming {CP-2011}, Springer, 2011, pp. 12–26.
[118] A.M. Frisch, I. Miguel, T. Walsh, CGRASS: a system for transforming constraint satisfaction problems, in: B. O’Sullivan (Ed.), International Workshop 

on Constraint Solving and Constraint Logic Programming, in: Lecture Notes in Computer Science, vol. 2627, Springer, 2002, pp. 15–30.
[119] M. Cadoli, G. Ianni, L. Palopoli, A. Schaerf, D. Vasile, {NP-SPEC}: an executable specification language for solving all problems in {NP}, Comput. Lang. 

26 (2000) 165–195, http://citeseer.ist .psu .edu /71095 .html.

26



Ö. Akgün, A.M. Frisch, I.P. Gent et al. Artificial Intelligence 310 (2022) 103751

[120] A.M. Frisch, I. Miguel, The Concept and Provenance of Unnamed, Indistinguishable Types, sep 2006.
[121] R. Becket, S. Brand, M. Brown, G.J. Duck, T. Feydy, J. Fischer, J. Huang, K. Marriott, N. Nethercote, J. Puchinger, et al., The many roads leading to rome: 

solving zinc models by various solvers, in: 7th International Workshop on Constraint Modelling and Reformulation, 2008.
[122] B. Martínez-Hernández, B. Martinez-Hernandez, Thesis: the Systematic Generation of Channelled Models in Constraint Satisfaction, Ph.D. thesis, Uni-

versity of York, 2008.
[123] J. De Kleer, A comparison of atms and csp techniques, in: IJCAI, Vol. 89, Citeseer, 1989, pp. 290–296.
[124] T. Walsh, Sat v csp, in: Principles and Practice of Constraint Programming–CP . . . (1894), 2000, pp. 441–456, http://link.springer.com /chapter /10 .1007 /

3 -540 -45349 -0 _32.
[125] I.P. Gent, P. Nightingale, A new encoding of AllDifferent into SAT, in: Proc. 3rd International Workshop on Modelling and Reformulating Constraint 

Satisfaction Problems (CP2004), 2004, pp. 95–110.
[126] C. Ansótegui, F. Manyà, Mapping problems with finite-domain variables into problems with boolean variables, in: SAT 2004 - the Seventh International 

Conference on Theory and Applications of Satisfiability Testing, 10-13 May 2004, Vancouver, BC, Canada, Online Proceedings, 2004, http://www.
satisfiability.org /SAT04 /programme /53 .pdf.

[127] N. Tamura, A. Taga, S. Kitagawa, M. Banbara, Compiling finite linear CSP into SAT, Constraints. An Int. J. 14 (2) (2009) 254–272, https://doi .org /10 .
1007 /s10601 -008 -9061 -0.

[128] I.P. Gent, Arc consistency in SAT, in: Proceedings of the 15th European Conference on Artificial Intelligence (ECAI 2002), 2002, pp. 121–125.
[129] R. Asín, R. Nieuwenhuis, A. Oliveras, E. Rodríguez-Carbonell, Cardinality networks: a theoretical and empirical study, Constraints 16 (2) (2011) 

195–221, https://doi .org /10 .1007 /s10601 -010 -9105 -0.
[130] T. Tanjo, N. Tamura, M. Banbara, Azucar: a sat-based csp solver using compact order encoding, in: International Conference on Theory and Applications 

of Satisfiability Testing, Springer, 2012, pp. 456–462.
[131] N.-F. Zhou, H. Kjellerstrand, Optimizing SAT encodings for arithmetic constraints, in: International Conference on Principles and Practice of Constraint 

Programming, Springer, 2017, pp. 671–686.
[132] B. Hurley, Exploiting machine learning for combinatorial problem solving and optimisation, Ph.D. thesis, University College Cork, 2016.
[133] M. Stojadinovic, F. Maric, meSAT: multiple encodings of CSP to SAT, Constraints 19 (4) (2014) 380–403, https://doi .org /10 .1007 /s10601 -014 -9165 -7.
[134] H. Gorjiara, G.H. Xu, B. Demsky, Satune: synthesizing efficient sat encoders, in: Proceedings of the ACM on Programming Languages 4 (OOPSLA), 2020, 

pp. 1–32.
[135] F. Contaldo, P. Trentin, R. Sebastiani, From minizinc to optimization modulo theories and back (extended version), CoRR, arXiv:1912 .01476 [abs], 

http://arxiv.org /abs /1912 .01476.
[136] E. Davidson, O. Akgün, J. Espasa, P. Nightingale, Effective encodings of constraint programming models to SMT, in: Proceedings of the 26th Interna-

tional Conference on Principles and Practice of Constraint Programming, 2020, pp. 143–159.
[137] P.V. Hentenryck, Constraint and integer programming in OPL, INFORMS J. Comput. 14 (4) (2002) 345–372.
[138] G. Belov, P.J. Stuckey, G. Tack, M. Wallace, Improved linearization of constraint programming models, in: International Conference on Principles and 

Practice of Constraint Programming, Springer, 2016, pp. 49–65.
[139] J. Woodcock, J. Davies, Z. Using, Specification, Refinement and Proof, Prentice Hall International, 1996.
[140] N. Plat, P.G. Larsen, An overview of the ISO/VDM-SL standard, ACM SIGPLAN Not. 27 (8) (1992) 76–82.
[141] T. Mancini, M. Cadoli, Detecting and breaking symmetries by reasoning on problem specifications, in: Abstraction, Reformulation and Approximation, 

in: Lecture Notes in Computer Science, vol. 3607, Springer, Berlin Heidelberg, 2005, pp. 165–181.
[142] J.R. Rice, The algorithm selection problem, Adv. Comput. 15 (1976) 65–118.

27


	Conjure: Automatic Generation of Constraint Models from Problem Specifications
	1 Introduction
	1.1 Contributions

	2 CONJURE by Example
	2.1 The Knapsack Problem in Essence
	2.2 Choosing Representations
	2.3 The Explicit representation
	2.4 The Occurrence representation
	2.5 Channelled models
	2.6 Summary

	3 Automated Modelling in CONJURE
	3.1 Summary of the Essence Language
	3.2 Summary of the Essence Prime Language
	3.3 The Pipeline
	3.4 How Essence is represented in Conjure

	4 Refinement Rules in CONJURE
	4.1 Representation Selection Rules
	4.1.1 Conditional Structural Constraints
	4.1.2 Modelling Symmetry
	4.1.3 Types with Variable Size
	4.1.4 Consistent Symmetry Breaking
	4.1.5 Viewpoint Selection
	4.1.6 Representation Selection Rules in Conjure

	4.2 Expression Refinement Rules
	4.2.1 Vertical Rules
	4.2.2 Horizontal Rules

	4.3 Channelling Multiple Representations

	5 The Impact of Breaking Modelling Symmetries
	5.1 Breaking Unconditional Variable Symmetries
	5.2 Breaking Conditional Symmetries

	6 Model Selection with the COMPACTEP Heuristic
	7 Evaluation: CONJURE Produces Kernels of Good Models
	7.1 Configurations of Conjure
	7.2 Comparing Generated Models to Published Models

	8 Related Work in Automated Constraint Modelling by Refinement
	8.1 Refining Abstract Constraint Problems
	8.2 Encoding Constraint Models to Other Formalisms

	9 Conclusions and Future Work
	Declaration of competing interest
	References


