
This is a repository copy of Formally Verified Animation for RoboChart Using Interaction 
Trees.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/188566/

Version: Accepted Version

Proceedings Paper:
Ye, Kangfeng, Foster, Simon orcid.org/0000-0002-9889-9514 and Woodcock, Jim 
orcid.org/0000-0001-7955-2702 (2022) Formally Verified Animation for RoboChart Using 
Interaction Trees. In: Riesco, Adrian and Zhang, Min, (eds.) Formal Methods and Software 
Engineering - 23rd International Conference on Formal Engineering Methods, ICFEM 
2022, Proceedings. 23rd International Conference on Formal Engineering Methods, 
ICFEM 2022, 24-27 Oct 2022 Lecture Notes in Computer Science . Springer , ESP , pp. 
404-420. 

https://doi.org/10.1007/978-3-031-17244-1_24

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Formally Verified Animation for RoboChart

using Interaction Trees

Kangfeng Ye, Simon Foster, and Jim Woodcock

University of York, York, UK
{kangfeng.ye,simon.foster,jim.woodcock}@york.ac.uk

Abstract. RoboChart is a core notation in the RoboStar framework.
It is a timed and probabilistic domain-specific and state machines based
language for robotics. RoboChart supports shared variables and commu-
nication across entities in its component model. It has a formal denota-
tional semantics given in CSP. Interaction Trees (ITrees) is a semantic
technique to represent behaviours of reactive and concurrent programs
interacting with their environments. Recent mechanisations of ITrees
along with ITree-based CSP semantics and a Z mathematical toolkit
in Isabelle/HOL bring new applications of verification and animation for
state-rich process languages, such as RoboChart. In this paper, we use
ITrees to give RoboChart the first operational semantics, implement it
in Isabelle, and use Isabelle’s code generator to generate verified and
executable animations. We illustrate our approach using an autonomous
chemical detector model. With animation, we show two concrete scenar-
ios when the robot encounters different environmental inputs.

1 Introduction

The RoboStar1 framework [1] brings modern modelling and verification tech-
nologies into software engineering for robotics. In this framework, artefacts, in-
cluding platform, environmental, design, and simulation models, are given for-
mal semantics in a unified semantic framework. So correctness of simulation is
guaranteed with respect to a design model in a particular platform and environ-
ment using a variety of analysis technologies including model checking, theorem
proving, and testing. Additionally, modelling, semantics generation, verification,
simulation, and testing are automated and integrated in an Eclipse-based tool,
RoboTool.2 The core of RoboStar is RoboChart [2, 3], a timed and probabilis-
tic domain-specific language for robotics, which provides UML-like architectural
and state machine modelling notations. RoboChart is distinctive in its formal
semantics [2–4], which enables automated verification using model checking and
theorem proving [5].

Previous work [2] gives RoboChart a denotational semantics based on the
CSP process algebra [6, 7]. This paper defines a first operational semantics for

1 robostar.cs.york.ac.uk
2 robostar.cs.york.ac.uk/robotool/



2 Kangfeng Ye, Simon Foster, Jim Woodcock

RoboChart using Interaction Trees (ITrees) [8]. ITrees are coinductive struc-
tures, and can model infinite behaviours of a reactive system interacting with its
environment. ITrees are a powerful semantic technique for development of formal
semantics that allows to unify trace-based failures-divergences semantics [7,9] for
CSP and transition-based operational semantics, and so unifies verification and
animation [10]. The ITree-based semantics for CSP is also sound with respect to
the standard failures-divergences semantics [10].

The existing implementation of RoboChart’s semantics in RoboTool is re-
stricted to machine readable CSP (or CSP-M) for verification with FDR [11],
and so only a subset of RoboChart’s rich types and expressions can be sup-
ported and quantified predicates cannot be solved. Our contribution is here a
richer ITree-based CSP semantics for RoboChart to address these restrictions.
Our semantics also allows us to characterise systems with an infinite number
of states symbolically. We mechanise the semantics in Isabelle/HOL and then
utilise the code generator [12] to produce Haskell code for animation. Our ani-
mation is formally verified with respect to RoboChart’s semantics in ITrees.

Our technical contributions are as follows: we (1) implement extra CSP oper-
ators (interrupt, exception, and renaming) to deal with the RoboChart semantics
and a bounded sequence type for code generation; (2) define an ITree-based op-
erational semantics for RoboChart; (3) implement the semantics of a RoboChart
model for a case study; and (4) animate the model. With our mechanisation and
the animation, we have detected a number of issues in this RoboChart model.
All definitions and theorems in this paper are mechanised and accompanying
icons ( ) link to corresponding repository artifacts.

The remainder of this paper is organised as follows. In Sect. 2, we introduce
RoboChart through an autonomous chemical detector example. Section 3 briefly
describes the mechanisation of ITrees in Isabelle and presents the additional CSP
operators in detail. Then we present the RoboChart semantics in ITrees in Sect. 4
and use the chemical detector as an example to illustrate animation in Sect. 5.
We review related work in Sect. 6 and conclude in Sect. 7.

2 RoboChart

Modelling We describe features of RoboChart for modelling controllers of robots
using as an example an autonomous chemical detector [2, 13, 14]. The robot is
equipped with sensors to (1) analyse the air to detect dangerous gases; (2) de-
tect obstacles; and (3) estimate change in position (using an odometer). The
controller of the robot performs a random walk with obstacle avoidance. Upon
detection of a chemical with its intensity above a threshold, the robot drops a
flag and stops there. This model3 [2] has been studied and analysed in RoboTool,
using FDR4,4 a CSP refinement checker.

3 https://robostar.cs.york.ac.uk/case_studies/autonomous-chemical-detector/

autonomous-chemical-detector.html
4 https://cocotec.io/fdr/



Formally Verified Animation for RoboChart using Interaction Trees 3

Fig. 1. The module of the autonomous chemical detector model.

The top level structure of a RoboChart model, a module, is shown in Fig. 1.
The module ChemicalDetector contains a robotic platform Vehicle and two con-
troller references MainController and MicroController. The physical robot is ab-
stracted into the robotic platform through variables, events, and operations. The
platform provides the controllers with services (1) to read its sensor data through
three events: gas, obstacle, and odometer; (2) for movement through three op-
erations: move, randomWalk, and shortRandomWalk as grouped in an interface
Operations; and (3) to drop a flag through receiving a flag event.

A platform and controllers communicate using directional connections. For
example, the platform is linked to MainController through an asynchronous con-
nection on event gas of type seq(GasSensor), sequences of type GasSensor. Fur-
thermore, the MainController and MicroController interact using the events turn,
stop, and resume.

The types used in the module are defined in the two imported packages:
Chemical and Location (whose diagrams are omitted here for simplicity). The
two packages declare primitive types Chem and Intensity, enumerations Status,
Angle, and Loc, a record GasSensor containing two fields (c of type Chem and i of
type Intensity), and six functions, of which two are specified using preconditions
and postconditions, and four are unspecified. An operation changeDireciton, with
a parameter l of type Loc and a constant lv, is also defined using a state machine.

MicroController is implemented using the Movement state machine shown in
Fig. 2, and MainController using another state machine called GasAnalysis.

The machine Movement declares various constants such as lv for linear veloc-
ity, four variables (a, d0, d1, and l) for preservation of values (angle, odometer
readings, and location) carried on communication, and a clock T. The machine
also contains a variety of nodes: one initial junction ( ), seven normal states
such as Waiting and Going, and a final state ( ). A state may have an entry



4 Kangfeng Ye, Simon Foster, Jim Woodcock

Fig. 2. Movement state machine of the autonomous chemical detector model.

action such as an operation call move(lv, a) of state Waiting, an exit action, or a
during action such as an operation call randomWalk() of state Going.

In state machines, transitions connect states and junctions. Transitions have
a label with the optional features: a trigger event, a clock reset, a guard condition,
and an action. For example, the transition from TryingAgain to AvoidingAgain
has an input trigger and an action odometer?d1 (an input communication). The
transition from AvoidingAgain to Avoiding has a clock reset #T and a disjunctive
guard in which since(T) counts elapsed time since the last reset of T.

This machine gives the behaviour of the robot’s response to outcomes of the
chemical analysis: (1) resume to state Waiting if no gas is detected (implemented
in GasAnalysis); (2) stop to state Found and then terminate , if a gas above the
threshold is detected; (3) turn to the direction, where a gas is detected but not
above the threshold, with obstacle avoidance in state Going; (4) upon the first
detection of an obstacle, reset T and start Avoiding with an initial odometer
reading and the movement direction changed (software waits for evadeTime for
the effect of that change); (5) if a gas is still detected after the changed direc-
tion, TryingAgain to turn and move to the gas direction; (6) if another obstacle
is detected during avoidance, AvoidingAgain by reading the odometer to check
the distance of two obstacles; (7) if the robot has moved far enough between
the two obstacles or not got stuck long enough, go back to continue Avoiding;
(8) otherwise, the robot has got stuck in a corner, use a shortRandomWalk for
GettingOut of the area, then resume normal activities;

3 Interaction trees

In this section we briefly introduce interaction trees, and extend our existing CSP
semantics with three additional operators to support the RoboChart semantics.



Formally Verified Animation for RoboChart using Interaction Trees 5

Interaction trees (ITrees) [8] are a data structure for modelling reactive sys-
tems that interact with their environment through events. They are potentially
infinite and defined as coinductive trees [15] in Isabelle/HOL.

codatatype ('e, 'r) itree =

Ret 'r | Sil "('e, 'r) itree" | Vis "'e 7→ ('e, 'r) itree"

ITrees are parameterised over two types: 'e for events (E ), and 'r for return
values or states (R) . Three possible interactions are provided: (1) Ret x : termi-
nation (Xx ) with a value x of type R returned; (2) SilP : an internal silent event
(τP , for a successor ITree P); or (3) VisF : a choice among several visible events
represented by a partial function F of type E 7→ (E ,R)itree. Partial functions
are part of the Z toolkit5 [16] which is also mechanised in Isabelle/HOL.

Deterministic CSP processes can be given an executable semantics using
ITrees. Previously, the following CSP processes and operators are defined: (1) ba-
sic processes: skip, stop, and div ; (2) input prefixing c?x ; (3) output prefixing
c!v ; (4) guard b; (5) external choice P ✷ Q ; (6) parallel composition P ‖

E
Q ;

(7) hiding P \ A; (8) sequential composition P # Q ; (9) loop and iterate.
Here, we give an ITree semantics to three extra CSP operators to allow us

to give an ITree-based semantics to RoboChart. The interrupt, exception, and
renaming operators are used in the RoboChart’s semantics to allow interruption
of a during action, termination of a state machine, a controller, or a module,
and alphabet transformation of processes. We restrict ourselves to deterministic
operators as it makes animation of large models more efficient.

The first operator we introduce is interrupt [6, 7], P △ Q , which behaves
like P except that if at any time Q performs one of its initial events then it
takes over. We present partial functions as sets below. This operator, along with
the other two, are defined corecursively, which allows them to operate on the
infinite structure of an ITree. In corecursive definitions, every corecursive call on
the right-hand side of each equation must be guarded by an ITree constructor.

Definition 3.1 (Interrupt).

(SilP ′) △ Q = Sil (P ′ △ Q) P △ (SilQ ′) = Sil (P △ Q ′)

(Ret x ) △ Q = Ret x P △ (Ret x ) = Ret x

(VisF ) △ (VisG) = Vis
(

{e 7→ (P ′ △ Q) | (e 7→ P ′) ∈ (dom(G)−⊳ F )} ⊕G
)

In the definition, −⊳ is called the domain anti-restriction, and A−⊳R denotes the
domain restriction of relation R to the complement of set A. The Sil cases allow
τ events to happen independently with priority and without resolving △. The
Ret cases terminate with the value x returned from either left or right side of △.

For the Vis cases, it is also Vis constructed from an overriding ⊕ of the further
two sets, representing two partial functions. In the partial function, (dom(G)−⊳F )
restricts the domain of F to the complement of the domain of G . The first partial
function denotes that an initial event e of P , that is not the initial event of Q ,
can occur independently (without resolving the interrupt) and its continuation

5 https://github.com/isabelle-utp/Z_Toolkit.



6 Kangfeng Ye, Simon Foster, Jim Woodcock

is a corecursive call P ′ △ Q . The second function is just G , which denotes that
the initial events of Q can happen no matter whether they are in F or not. This
means if P and Q share events, Q has priority. This prevents nondeterminism.

Next, we present the exception operator, P [[A⊲Q , which behaves like P

initially, but if P ever performs an event from the set A, then Q takes over.

Definition 3.2 (Exception).

(Ret x ) [[A⊲Q = Ret x (SilP ′) [[A⊲Q = Sil (P ′ [[A⊲Q)

(VisF ) [[A⊲Q = Vis

(

{e 7→ (P ′ [[A⊲Q) | (e 7→ P ′) ∈ (A−⊳ F )}⊕
{e 7→ Q | e ∈ (A ∩ dom(F ))}

)

The Ret case terminates immediately with the value x returned, and Q will not
be performed. The Sil case allows the τ event to be consumed.

Similar to Definition 3.1, the Vis case is also represented by the overriding of
two partial functions. The first partial function represents that an initial event
e of P , that is not in A (that is, e ∈ dom(A−⊳F )), can occur independently and
its continuation is a corecursive call P ′ [[A⊲Q . Following execution of an initial
event e of P that is in A (that is, e ∈ (A ∩ dom(F )), the exception behaves like
Q , which is expressed by the second partial function.

The last operator we define for this work is renaming, P [[ρ]], which renames
events of P according to the renaming relation ρ : E1 ↔ E2. We note this relation
is possibly heterogeneous, and so E1 and E2 are different types of events. First,
we define an auxiliary function for making a relation functional by removing any
pairs that have duplicate distinct values. This is the case when the renaming
relation, restricted to the initial events of P , is functional.

mk functional(R) = {(x , y) ∈ R. ∀ y ′.(x , y ′) ∈ R ⇒ y = y ′}

This produces the minimal functional relation that is consistent with R. For ex-
ample, mk functional ({e1 7→ e2, e1 7→ e3, e2 7→ e3}) = {e2 7→ e3}. This function
is used to avoid nondeterminism introduced by renaming multiple events to a
same event. We use this function to define the renaming operator.

Definition 3.3 (Renaming).

(Ret x ) [[ρ]] = Ret x (SilP ′) [[ρ]] = Sil (P ′[[ρ]])

(VisF ) [[ρ]] =

(

let G = F ◦ mk functional
(

(dom(F )⊳ ρ)
∼
)

• Vis
(

{e2 7→ (P ′[[ρ]]) | (e2 7→ P ′) ∈ G}
)

)

The Ret case behaves like P and the renaming has no effect on it. The Sil case
allows τ events to be consumed, since they are not subject to renaming.

In the Vis case, G is a partial function (E2 7→ (E1,R)itree) that is the back-
ward partial function composition ◦ of F and a partial function made using
mk functional from the inverse ∼ of the relation (dom(F ) ⊳ ρ) which is the
domain restriction ⊳ of ρ to the domain dom(F ) of F . Basically, the multiple
events of E1 that are mapped to a same event of E2 in ρ and also are the initial
events of P , or in dom(F ), are removed in G . The renaming result is a partial
function in which each event e2 in the domain of G is mapped to a renamed
process by a corecursive call P ′[[ρ]] where (e2 7→ P ′) ∈ G .



Formally Verified Animation for RoboChart using Interaction Trees 7

4 RoboChart semantics in interaction trees

In this section, we describe how we give a semantics to RoboChart in terms
of ITrees in Isabelle/HOL. These include types, instantiations, functions, state
machines, controllers, and modules. In the implementation of RoboChart’s se-
mantics, we also take into account the practical details of the CSP semantics
generation in RoboTool, such as naming and bounded primitive types.

Types. RoboChart has its type system based on that of the Z notation [17]. It
supports basic types: PrimitiveType, Enumeration, records (or schema types), and
other additional types from the mathematical toolkits of Z.

The core package of RoboTool provides five primitive types: boolean, natu-
rals, integers, real numbers, and string. We map integers, naturals, and strings
onto the corresponding types in Isabelle/HOL, but with support for code gen-
eration to target language types. This improve efficiency of evaluation and thus
animation. RoboChart models can also have abstract primitive types with no
explicit constructors, such as Chem and Intensity in the chemical detector model
presented in Sect. 2. We map primitive types to finite enumerations for the pur-
pose of code generation. We define a finite type PrimType parametrised over two
types: 't for specialisation and a numeral type 'a for the number of elements.

datatype ('t, 'a::finite) PrimType = PrimTypeC 'a

For example, Chem is implemented as a generic type (ChemT, 'a) PrimType

( ). An example for a finite type 'a is the numeral type in Isabelle, such as
type 2 which contains two elements: zero (0::2) and one (1::2).

For enumerations and records, we use datatype and record in Isabelle. For
finite sequences such as Seq(GasSensor), we also bound the length of each se-
quence in this type. We define bounded lists or sequences ('a, 'n::finite)

blist ( ) over two parametrised types: 'a for the type of elements and a finite
type 'n for the maximum length of each list. For Seq(GasSensor), its bounded
type in Isabelle is (GasSensor, 2) blist with length bounded to 2.

For other types, we have their counterparts in the Z toolkit.

Instantiations. The instantiation.csp file of the CSP semantics contains com-
mon definitions used by all models for verification using FDR. These include the
definitions of bounded core types (named types in CSP) and arithmetic opera-
tors under which these bounded types are closed. We show below one example
for type core int and one for the plus operator, closed under a bounded type T.

nametype core_int = {-2 .. 2}

Plus(e1, e2, T) = if member(e1 + e2, T) then (e1 + e2) else e1

That is, if e1+e2 is within T then this is the result, otherwise it is e1. We use
locale [18] in Isabelle to define these for reuse in all models. Locales allow us
to characterise abstract parameters (such as min int and max int, to define
bounded core type core int) and assumptions in a local theory context.



8 Kangfeng Ye, Simon Foster, Jim Woodcock

Fig. 3. The specification of function intensity.

Functions. Functions in RoboChart benefit from the rich expressions in Isabelle
and the Z toolkit in Isabelle. The expressions that are not supported in CSP-M
such as logical quantifications are naturally present in Isabelle. Using the code
generator, the preconditions and postconditions of a function definition can be
solved effectively, while this is not possible in CSP-M and FDR.

An example function is intensity, shown in Fig. 3, defined in the chemical
detector model, whose two postconditions ( ) involve universal and existential
quantifications where @ separates constraint and predicate parts, and goreq is a
≥ relation on intensities. The result of the function is the largest intensity in gs.
The precondition ( ) is that the length (size) of the parameter gs is larger than
0. For verification with FDR in RoboTool, an explicit implementation of this
function must be supplied. Our definition of this function in Isabelle, however,
is directly from its specification and is shown below.

definition "pre Chemical intensity gs = (blength gs > 0)"

definition "Chemical intensity gs = (THE result.

(∀x::nat<blength gs. Chemical goreq(result, gs i (bnth gs x)))∧
(∃x::nat<blength gs. result = gs i (bnth gs x)))"

In the definitions, blength gs gives the length of a bounded sequence gs, bnth

gs n gives the nth element in gs, and gs i returns the field value in a record
of type GasSensor. The two definitions are straightforward except that a definite
description (THE result, denoting the unique result such that the predicate
holds) is used to return the result. We have two definitions here corresponding
to the definition of intensity: one for its precondition and one for its postcondi-
tions. This is due to the semantics of such a function f in RoboChart: a boolean
guard (pre(f) & P) where pre(f) is the preconditions of f and f is called in
process P , and so if the preconditions are not satisfied, the semantics deadlocks.

We note that there is an error in the definition of intensity in the original
model where ≤ (instead of <) is used for comparison between x (and y) and
size(gs). This is because sequences are zero-indexed. Our animation detects this
error and so we have fixed it. Similarly, we also found another error in the
postcondition of the function location: the postcondition is not strong enough to
identify a unique result of the function.

State machine definitions. The RoboChart semantics of a state machine is a
parallel composition of memory processes for its variables (MemoryVar) and tran-
sitions (MemoryTrans), and a process (STM) for its behaviour with internal events
hidden and also catering for its termination using the exception operator.

STM is a parallel composition of the behaviour (STM I) for its initial junction
and the restricted behaviour (S R) for each state S synchronising on state enter-



Formally Verified Animation for RoboChart using Interaction Trees 9

ing and exiting events. A state’s behaviour S involves the entering of this state,
the execution of its during action, and the execution of one of its transitions. The
execution of a transition exits the state, executes the action of the transition,
and enters the target state of the transition. Not all transitions are available
for S, such as the transitions from sibling states of S and substates of S. These
transitions are excluded in the restricted behaviour S R.

The state machine semantics uses a general type InOut for the direction of an
event in a connection, two data types for state and transition identifiers (SIDS

and TIDS), and an event alphabet (E ) for the process of this state machine.
The event alphabet is represented by the parametrised type E of events which
is declared through the chantype command. E is expressed by a finite set of
channels declared in the command. We show below an example for the Movement
machine in Fig. 2.

datatype InOut = din | dout

datatype SIDS_Movement = SID_Movement|SID_Movement_Waiting|...

datatype TIDS_Movement = TID_Movement_t1|TID_Movement_t2|...

chantype Chan_Movement = internal_Movement :: TIDS_Movement

terminate_Movement::unit

enter_Movement::"SIDS_Movement×SIDS_Movement" ...

get_l_Movement::"Location_Loc" set_l_Movement::"Location_Loc"

obstacle__Movement::"TIDS_Movement×InOut×Location_Loc"

obstacle_Movement::"InOut×Location_Loc" ...

moveCall_Movement::"core_real×Chemical_Angle" ...

The channel type of Movement includes four kinds of channels. Firstly, flow con-
trol channels include (a) internal6 for transitions without a trigger; (b) enter,
entered, exit, and exited for the entering and exiting of a state; and (c) terminate

for the termination of the machine. Secondly, variable channels contain a set and
a get channel for each variable with an additional set EXT for each shared vari-
able to accept an external update. Thirdly, event channels include two channels
for each event of the machine, one such as obstacle for the event obstacle used in
actions of RoboChart and another such as obstacle (with an additional TIDS

for its type) for the event obstacle used as triggers of transitions. The distinction
of two event channels (obstacle and obstacle ) for each event (obstacle) is
necessary because the guard of a transition is evaluated in MemoryTrans, and so
only the trigger event (not action event) of the transition is subject to the guard
evaluation, and, therefore, has a new channel (obstacle ) with a transition id.
We note, however, that events obstacle .tid of this new channel are even-
tually renamed to the event channel obstacle in the process for the machine.
Fourthly, operation call channels include a channel such as moveCall for each
call to the operation move provided by the platform.

The memory process Memory x for a shared variable x is shown below.

loop (λv. get_x!v → Xv ✷ set_x?x → Xx ✷ set_EXT_x?x → Xx)

6 In the Isabelle code, we include suffixes to ensure that names do not collide, but
omit them here



10 Kangfeng Ye, Simon Foster, Jim Woodcock

The process is an infinite loop. It provides three choices: output the value v on
get x without updating the variable and accept a local (or external) update of
the variable through set x (or set EXT x).

The memory process for transitions of the state machine Movement in Fig. 2
is partially (3 in 24 transitions) illustrated below.

loop (λid. internal!TID_t1 → Xid ✷ resume!(TID_t0,din) → Xid ✷

(get_d1?d1 → get_d0?d0 →
(d1-d0>stuckDist)&(internal!TID_t12 → Xid) ✷ ...)

The state of this loop process is a constant id (used to identify a RoboChart
module). Each choice corresponds to a transition: (1) the first choice for the
default transition t1 from the initial junction to state Waiting which has no
trigger (hence internal); (2) the second for the self transition of state Waiting
whose trigger is resume (an input so din); and (3) the third for the transition from
AvoidingAgain to Avoiding whose guard is (d1-d0>stuckDist) (time semantics is
ignored) and evaluated in this memory transition process.

The process S for the behaviour of a state S is sketched below.

S (id) = enter?sd : OSIDS → S exec(id , fst sd)

S exec(id , s) = S entry # entered !(s,SID S )#
























(S during # stop) △




















✷ t : sTrans •





e t?(TID t , ) → exit !pSID S → S exit#

exited !pSID S → enter !pSID S →
S exec(id ,SID S )



 ✷

✷ t : oTrans •

(

... # exited !pSID S → enter !(SID S ,SID td)
→ entered !(SID S ,SID td) → S (id)

)

✷

✷ e : EvtChs •

(

e ?(TID t , ) → exit?sd : OSIDS →
(S exit # exited?(fst sd ,SID S ) → S (id))

)













































S and S exec are defined by mutual recursion. Initially, S accepts enter ing from
other nodes of the state machine containing S where OSIDS denotes a set of
pairs (oSID ,SID S ) (oSID is SID for one of other nodes and SID S is SID for
S). Afterwards, the behaviour of S is given by S exec with its second argument
being the other node (the first element of sd).

S exec, with a parameter s denoting the node entering S, executes the entry
action of S first, if any, denoted by S entry . Then S is entered . After that, the
behaviour is given by an interrupt. The during action of S (S during) can be
executed if none of the initial events of the right side (external choices) of the
interrupt is performed, that is, none of the self transitions sTrans of S or other
transitions oTrans from S is taken, or none of trigger events EvtChs of the state
machine containing S is signalled. If, however, any of these transitions is taken
or any of these trigger events is signalled, then the during action is interrupted.
A stop process after S during prevents the interrupt from being terminated and
so interruption is always possible.

For each t of sTrans, it behaves as follows: (1) the corresponding event
channel e t for its trigger event, such as obstacle , synchronises on t (iden-



Formally Verified Animation for RoboChart using Interaction Trees 11

tified by TID t) only; (2) S starts to exit by itself where pSID S denotes
(SID S ,SID S ); (3) the exit action of S, denoted by S exit , is executed; (4) S is
exited ; (5) t starts to enter S again because it is a self transition; and (6) finally
S exec is recursively called with the source state s being SID S .

For each t of oTrans, the early behaviour is the same as above and so it
is omitted (...). After S is exited , t starts to enter its target from S, identified
by SID td , and then the target is entered . Finally, S returns to its initial state
(S (id) is called) and accepts a further enter request.

For each trigger event e of the state machine containing S, there is a cor-
responding additional event channel e declared in the channel type of the
machine. The set of these channels are denoted by EvtChs. If this event e of
a transition t is signalled (e?(TID t , )), S accepts an exit from one of other
nodes. Then its exit action, denoted by S exit , is executed. Afterwards, S is
exited from the node (fst sd). Finally, S returns to its initial state (S (id) is
called) and accepts a further enter request.

S and S exec are implemented in ITrees through nested iterations: the outer
iteration, corresponding to S , is an infinite loop and the inner, corresponding
to S exec, is a conditional iteration by the iterate constructor. The condition is
true for self transitions and false otherwise. An example of the process for state
Waiting in Movement can be found online ( ).

Controllers. The event alphabet of the process for a controller contains termina-
tion, event and operation call channels. The event channels include not only the
events of the controller, but also those in connections between its state machines.

Parallel composition of the heterogeneous state machine processes for a con-
troller requires they all share a common event type E , and so we rename them.
The events are renamed to the corresponding events in the controller alphabet,
according to the connections between the controller and its state machines. For
MicroController in Fig. 1, the terminate channel, the event channels, and the
operation call channels of the process for Movement are mapped to the corre-
sponding controller channels.

In particular, for a connection c from an event e of a state machine stm1 to
an event e of another state machine stm2 of a controller, we declare a channel
e ctrl in the event alphabet of the controller. The channel in the process for
stm1 is renamed to that of the controller with the same direction dout. Then the
channel in the process for stm2 is renamed to that of the controller but with the
opposite direction (din to dout). Finally, the processes (D stm1 and D stm2) for
both stm1 and stm2 synchronise on the channels of the controller with direction
dout, which is sketched below.

D__stm1[[{(e_stm1 dout, e_ctrl dout),...}]]
‖

{e ctrl dout, ...}

D__stm2[[{(e_stm2 din, e_ctrl dout),...}]]

Here ‖
E

is parallel composition over event synchronisation set E . In this way,
the output of e in stm1 synchronises with the input of e in stm2, which is the
semantics of connection c.



12 Kangfeng Ye, Simon Foster, Jim Woodcock

✞ ☎

1 Starting ITree animation...

2 Events: (1) RandomWalkCall (); (2) Gas (Din, []); ...;

3 [Choose: 1-22]: 1

4 Events: (1) Gas []; (2) Gas [(0,0)]; (3) Gas [(0,1)]; (4) Gas [(1,0)];

5 (5) Gas [(1,1)]; (6) Gas [(0,0),(0,0)]; (7) Gas [(0,0),(0,1)]; (8) Gas

6 [(0,0),(1,0)]; (9) Gas [(0,0),(1,1)]; ...; (21) Gas [(1,1),(1,1)];

7 [Choose: 1-21]: 9

8 Events: (1) MoveCall (0,Chemical_Angle_Front);

9 [Choose: 1-1]: 1

10 Events: (1) Flag Dout;

11 [Choose: 1-1]: 1

12 Terminated: ()
✝ ✆

Fig. 4. Animation of the example when dangerous chemical detected.

Modules. Similar to the event alphabet of the process for a controller, that of
the process for a module also contains a termination channel, event channels,
and operation call channels. The event channels include not only the events
of its platform, but also the events in connections between its controllers for
the same reason. The process for a module is a parallel composition of the
renamed processes for its controllers, memory processes, and buffer processes
for asynchronous connections between its controllers such as the connection on
event turn from MainController to MicroController in Fig. 1.

5 Code generation, animation, and case studies

As discussed previously in [10, Sect. 5], the animation of ITrees is achieved
through code generation [12] in Isabelle. Infinite corecursive definitions over
ITrees are implemented using lazy evaluation in Haskell. Associative lists are
used as an implementation for partial functions in ITrees and a simple animator
in Haskell is presented.

We illustrate two scenarios of the animation of the autonomous chemical
detector in Figs. 4 and 5. Here, we instantiate Chem and Intensity to be a
numeral type 2 and the sequence of GasSensor is bounded to 2, which is the
same as the instantiations for the verification with FDR4. An animation scenario
represents the interaction of the model with its environment: the lines starting
with Events are produced by the model and represents all enabled events; and
the lines starting with [Choose: 1-n] represents a user’s choice of enabled events
from number 1 to n. In Fig. 5, we omit the lines for enabled events and append
the chosen event to the chosen number for simplicity.

Figure 4 illustrates the behaviour of the model when detecting a dangerous
chemical: (1) initially the controller calls the platform to perform a random walk:
the number 1 event is chosen on line #3, which corresponds to the call of the
during action randomWalk() of state Waiting in Fig. 2; (2) then a sequence of
gas sensor readings is received through the gas event, and we choose number 9



Formally Verified Animation for RoboChart using Interaction Trees 13

✞ ☎

1 [Choose: 1-22]: 1 RandomWalkCall ()

2 [Choose: 1-21]: 4 Gas (Din,[(1, 0)])

3 [Choose: 1-22]: 1 MoveCall (1,Chemical_Angle_Front)

4 [Choose: 1-24]: 2 Obstacle (Din,Location_Loc_right)

5 [Choose: 1-23]: 1 Odometer (Din,0)

6 [Choose: 1-22]: 1 MoveCall (1,Chemical_Angle_Left)

7 [Choose: 1-21]: 8 Gas (Din,[(0, 0),(1, 0)])

8 [Choose: 1-22]: 1 MoveCall (1,Chemical_Angle_Front)

9 [Choose: 1-24]: 1 Obstacle (Din, Location_Loc_left)

10 [Choose: 1-23]: 2 Odometer (Din,1)

11 [Choose: 1-23]: 1 Odometer (Din,0)

12 [Choose: 1-22]: ...
✝ ✆

Fig. 5. Animation of the example when chemical detected with low intensity.

(among 21 enabled gas events shown on lines #4-6 where the first element Din

of each event is omitted) on line #7: Gas [(0,0),(1,1)], representing a chemical
being detected and its intensity is high in the second pair of the sequence; (3) the
controllers call the move operation with speed 0 (on line #9), provided by the
platform, to stop the robot; (4) the controllers indicate the platform to drop a
flag (on line #11); and finally (5) the controllers terminate (on line #12).

In Fig. 5, we illustrate another scenario: a chemical is detected but its in-
tensity is low for the two readings on lines #2 and #7. The model behaves as
follows: (1) the initial behaviour is the same: calling the platform to request
a random walk; (2) a sequence of gas sensor readings is received (on line #2);
(3) the controllers call the move operation (the entry action of state Going in
Fig. 2) to request the robot to move forward at speed 1 (on line #3); (4) an ob-
stacle on its right is encountered (on line #4); (5) the odometer reading is 0 (on
line #5); (6) the controllers call move (the action of a transition in the defined
operation changeDirection) to request the robot to move towards its opposite
direction (left here) to the obstacle at speed 1 (on line #6); (7) another reading
of the gas sensor shows there is still a chemical detected with low intensity (on
line #7); (8) the controllers call move (the entry action of state TryingAgain in
machine Movement) to request the robot to move towards its front at speed 1
(on line #8); (9) an obstacle on its left is encountered (on line #9); (10) the
odometer reading (the action of the transition from state TryingAgain to state
AvoidingAgain) is 1 (on line #10); (11) there is another odometer reading (0) on
line #11, which corresponds to the entry action of state Avoiding (the entering of
this state is resulted from the taken transition from state AvoidingAgain to state
Avoiding due to its guard d1-d0>stuckDist is true where the values of d0 and d1
are the previous two odometer readings 0 and 1, and the value of stuckDist is
set 0 in this animation); (12) we omit further interactions.

Based on the animation, we also observe that if no chemical is detected,
the model returns to its initial state. If low intensity chemical is detected, even
without progress of MicroController, the model can continuously read through the
gas event without blocking. This is due to the connection between the controllers



14 Kangfeng Ye, Simon Foster, Jim Woodcock

on event turn being asynchronous, and so MainController can continuously send
a turn event without waiting for the synchronisation of MicroController.

6 Related work

Animation is a lightweight formal method. Kazmierczak et al. [19] describe the
advantages of using animation to verify models. It is highly automated and
cheap to perform. It provides an insight into the specification and its implicit
assumptions and is very suitable for demonstrating the system. It is a form of
interactive testing of the model and its properties. It requires little expertise:
less than model checking and much less than theorem proving. But its biggest
drawback is that it cannot prove consistency, correctness, or completeness.

Animation can be tailored to specific application domains. For example,
Boichut et al. [20] report on using animation to improve the formal specifications
of security protocols. They animate these specifications to draw diagrams of typ-
ical executions of the protocols. They use this to visualise protocol termination
and understand interleaved execution. They experiment with the animation to
detect unwanted side effects. Finally, they use visualisation to simulate intruders
to find attacks not detected by other protocol analysis tools.

We use ITrees to implement a framework for animation of formal specifica-
tions. The ProB animator and model checker provides a different framework [21].
ProB contains a model checker and a constraint-based checker, both of which
can be used to detect various errors in B specifications. It implements a back-end
in a framework for a variety of different specification languages, including the B
language, Event-B, CSP-M, TLA+, and Z.

De Souza [22] provides another framework: Joker. This is a tool for producing
animators for formal languages. The application is based on general labelled
transition systems and provides graphical animation, supporting B, CSP, and Z.

7 Conclusions

This work gives RoboChart an ITrees-based operational semantics and enables
animation of RoboChart using code generation in Isabelle/HOL. To provide
animation support, we extend ITree-based CSP with three operators and present
their definitions. We describe how the semantics of RoboChart is implemented
in ITree-based CSP, and illustrate it with an autonomous chemical detector
example. With the semantics of a RoboChart model in Isabelle, we generate
Haskell code and animate it using a simple simulator. We show two concrete
scenarios of the example using animation.

This work targets at deterministic RoboChart models and covers a large part
of RoboChart features (but not all). Our immediate future work is to investi-
gate support of nondeterminism and give a semantics to more features such as
hierarchical state machines and timed semantics.

In this paper, we manually translate the RoboChart semantics to Isabelle.
This process can be automated and our work brings insights on how RoboChart



Formally Verified Animation for RoboChart using Interaction Trees 15

semantics in ITrees can be automatically generated. The simple animator will
be improved to directly allow visualisation of RoboChart models in RoboTool.

With the RoboChart semantics in ITrees, we can also conduct verification
in Isabelle/HOL, in addition to animation in this paper. We will investigate the
use of temporal logics as a property language for verification of ITrees. We note
that verification can also capitalise on the contributions of this work.

ITrees can also be extended to other semantic domains. Further work would
be of great help in extending ITrees with probability and linking them to discrete-
time Markov chains (DTMCs) [23, 24], which will allow us give a ITree-based
probabilistic semantics to RoboChart.

Our work has many potential applications in robotics. Further research could
investigate the development of verified ROS nodes using code generation here
for a concrete implementation of RoboChart controllers.

Acknowledgements. This work is funded by the EPSRC projects CyPhyAs-
sure7 (Grant EP/S001190/1), RoboCalc (Grant EP/M025756/1), and RoboTest
(Grant EP/R025479/1). The icons used in RoboChart have been made by Sar-
fraz Shoukat, Freepik, Google, Icomoon and Madebyoliver from www.flaticon.

com, and are licensed under CC 3.0 BY.

References

1. Cavalcanti, A., Barnett, W., Baxter, J., Carvalho, G., Filho, M.C., Miyazawa,
A., Ribeiro, P., Sampaio, A. In: RoboStar Technology: A Roboticist’s Toolbox
for Combined Proof, Simulation, and Testing. Springer International Publishing,
Cham (2021) 249–293

2. Miyazawa, A., Ribeiro, P., Li, W., Cavalcanti, A., Timmis, J., Woodcock, J.: Ro-
boChart: modelling and verification of the functional behaviour of robotic appli-
cations. Softw. Syst. Model. 18(5) (2019) 3097–3149

3. Ye, K., Cavalcanti, A., Foster, S., Miyazawa, A., Woodcock, J.: Probabilistic mod-
elling and verification using RoboChart and PRISM. Software and Systems Mod-
eling (Oct 2021)

4. Woodcock, J., Cavalcanti, A., Foster, S., Mota, A., Ye, K.: Probabilistic Semantics
for RoboChart. In Ribeiro, P., Sampaio, A., eds.: Unifying Theories of Program-
ming, Cham, Springer International Publishing (2019) 80–105

5. Ye, K., Foster, S., Woodcock, J.: Automated Reasoning for Probabilistic Sequential
Programs with Theorem Proving. In Fahrenberg, U., Gehrke, M., Santocanale, L.,
Winter, M., eds.: Relational and Algebraic Methods in Computer Science, Cham,
Springer International Publishing (2021) 465–482

6. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall Int. (1985)
7. Roscoe, A.W.: Understanding Concurrent Systems. Texts in Computer Science.

Springer (2011)
8. Xia, L.y., Zakowski, Y., He, P., Hur, C.K., Malecha, G., Pierce, B.C., Zdancewic,

S.: Interaction Trees: Representing Recursive and Impure Programs in Coq. Proc.
ACM Program. Lang. 4(POPL) (December 2019)

9. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A Theory of Communicating Se-
quential Processes. 560–599

7 CyPhyAssure Project: https://www.cs.york.ac.uk/circus/CyPhyAssure/



16 Kangfeng Ye, Simon Foster, Jim Woodcock

10. Foster, S., Hur, C.K., Woodcock, J.: Formally Verified Simulations of State-Rich
Processes Using Interaction Trees in Isabelle/HOL. In Haddad, S., Varacca, D.,
eds.: 32nd International Conference on Concurrency Theory (CONCUR 2021). Vol-
ume 203 of Leibniz International Proceedings in Informatics (LIPIcs)., Dagstuhl,
Germany, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021) 20:1–20:18

11. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3 - A
Modern Refinement Checker for CSP. In: Tools and Algorithms for the Construc-
tion and Analysis of Systems. (2014) 187–201

12. Haftmann, F., Nipkow, T.: Code Generation via Higher-Order Rewrite Systems.
In Blume, M., Kobayashi, N., Vidal, G., eds.: Functional and Logic Programming,
10th International Symposium, FLOPS 2010, Sendai, Japan, April 19-21, 2010.
Proceedings. Volume 6009 of Lecture Notes in Computer Science., Springer (2010)
103–117

13. Hilder, J.A., Owens, N.D.L., Neal, M.J., Hickey, P.J., Cairns, S.N., Kilgour, D.P.A.,
Timmis, J., Tyrrell, A.M.: Chemical Detection Using the Receptor Density Algo-
rithm. IEEE Trans. Syst. Man Cybern. Part C 42(6) (2012) 1730–1741

14. Miyazawa, A., Cavalcanti, A., Ribeiro, P., Ye, K., Li, W., Woodcock, J.,
Timmis, J.: RoboChart Reference Manual. Technical report, University of
York (2020) www.cs.york.ac.uk/circus/publications/techreports/reports/

robochart-reference.pdf.
15. Blanchette, J.C., Hölzl, J., Lochbihler, A., Panny, L., Popescu, A., Traytel, D.:

Truly Modular (Co)datatypes for Isabelle/HOL. In Klein, G., Gamboa, R., eds.:
Interactive Theorem Proving - 5th International Conference, ITP 2014, Held as
Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014.
Proceedings. Volume 8558 of Lecture Notes in Computer Science., Springer (2014)
93–110

16. Spivey, J.M.: The Z Notation: A Reference Manual. 2nd. Prentice-Hall (1992)
17. Toyn, I., ed.: Information Technology — Z Formal Specification Notation — Syn-

tax, Type System and Semantics. ISO (July 2002) ISO/IEC 13568:2002(E).
18. Ballarin, C.: Locales and Locale Expressions in Isabelle/Isar. In Berardi, S., Coppo,

M., Damiani, F., eds.: Types for Proofs and Programs, Berlin, Heidelberg, Springer
Berlin Heidelberg (2004) 34–50

19. Kazmierczak, E., Winikoff, M., Dart, P.W.: Verifying Model Oriented Specifica-
tions through Animation. In: 5th Asia-Pacific Software Engineering Conference
(APSEC ’98), 2-4 December 1998, Taipei, Taiwan, ROC, IEEE Computer Society
254–261

20. Boichut, Y., Genet, T., Glouche, Y., Heen, O.: Using Animation to Improve Formal
Specifications of Security Protocols. In: 2nd Conference on Security in Network
Architectures and Information Systems (SARSSI 2007. (2007) 169–182

21. Leuschel, M., Butler, M.J.: ProB: A Model Checker for B. In Araki, K., Gnesi,
S., Mandrioli, D., eds.: FME 2003: Formal Methods, International Symposium of
Formal Methods Europe, Pisa, Italy, September 8-14, 2003, Proceedings. Volume
2805 of Lecture Notes in Computer Science., Springer (2003) 855–874

22. de Souza, D.H.O.: Joker: An Animator for Formal Languages. PhD thesis, De-
partamento de Informática e Matemática Aplicada, Universidade Federal do Rio
Grande do Norte (2011)

23. Kemeny, J.G., Snell, J.L., Knapp, A.W.: Denumerable Markov Chains. (1976)
24. Kemeny, J.G., Snell, J.L.: Finite Markov Chains: With a New Appendix "General-

ization of a Fundamental Matrix" (Undergraduate Texts in Mathematics). Springer
(1983)


	Formally Verified Animation for RoboChart using Interaction Trees

