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Abstract—Deep Neural Network (DNN) classifiers perform
remarkably well on many problems that require skills which are
natural and intuitive to humans. These classifiers have been used
in safety-critical systems including autonomous vehicles. For such
systems to be trusted it is necessary to demonstrate that the risk
factors associated with neural network classification have been
appropriately considered and sufficient risk mitigation has been
employed. Traditional DNNs fail to explicitly consider risk during
their training and verification stages, meaning that unsafe failure
modes are permitted and under-reported. To address this limi-
tation, our short paper introduces a work-in-progress approach
that (i) allows the risk of misclassification between classes to be
quantified, (ii) guides the training of DNN classifiers towards
mitigating the risks that require treatment, and (iii) synthesises
risk-aware ensembles with the aid of multi-objective genetic
algorithms that seek to optimise DNN performance metrics while
also mitigating risks. We show the effectiveness of our approach
by using it to synthesise risk-aware neural network ensembles
for the CIFAR-10 dataset.

Index Terms—deep neural network, risk, risk mitigation

I. INTRODUCTION

Image classification using machine learning has been pro-

posed for use in applications including medical diagnosis

and autonomous driving [2], [14]. In particular, deep neural

network (DNN) classifiers have shown remarkable results on

a range of problems that were previous only thought to be pos-

sible using humans. Such problems include speech recognition

[4], biomedical imaging and diagnosis [15], and autonomous

driving [4]. Despite these advances, image classifiers have

limitations that hinder their use in safety-critical applications.

These limitations include viewpoint-dependent object variabil-

ity [5] and overly confident incorrect classification [17].

In safety-critical applications, the risk factors associated

with the use of DNNs need to be mitigated appropriately.

Nevertheless, current DNN classifier approaches do not explic-

itly consider risk during the training and verification stages,

and make no difference between misclassification of relevant

class pairs, where a class pair is formed by the actual and the

predicted class. As an example, a bicycle misclassified as a

motorbike could lead to an accident if overtaking decisions

are made based on the speed of classified vehicle. Traditional

approaches treat all misclassifications as equally important,

although in many contexts this is not the case.

To addresses this problem, we propose an approach that

considers risk during the DNN classifier development process.

To that end, we define the risk of misclassification as a function

of three factors: (i) the likelihood of encountering each class

in the operating environment, (ii) the impact associated with

the misclassification of a class as each other class, and (iii) the

likelihood of such a misclassification occurring. Our approach

enables the calculation of risk ratings for each pair of classes,

and therefore the identification of high-risk class pairs—with

consideration of the context in which the system is to operate.

Using these risk ratings we train specialist DNN classifiers

that mitigate the risks identified, and then synthese ensembles

of the risk-aware classifiers by using multi-objective genetic

algorithms (GAs). These ensembles seek to optimise DNN

performance metrics while also mitigating risk. To demon-

strate the effectiveness of our approach, we make use of the

commonly used CIFAR-10 dataset [11] and show how a set of

ensembles may be constructed which allow a trade-off between

risk and traditional DNN performance metrics to be selected.

II. BACKGROUND

Image classification is the process of allocating a label, from

a set of possible labels, to an image. This is a fundamental

problem in computer vision, where it forms the basis of

localisation, detection, and segmentation [2], [14].

Recently, DNNs have proven to be particularly effective at

image classification tasks. A DNN is a layered structure where

the output of each layer forms the input to the next. Each

layer is constructed from a set of neurons, i.e., computational

units that calculate a weighted sum of their inputs and apply

a non-linear function. The output yli of a unit i in layer l is

a function of the outputs of the earlier layer such that yli =
f(
∑nl−1

j=1 wl−1
j yl−1

j +bl) where nl−1 is the number of neurons

in layer l− 1, yl−1
j is output of the jth neuron in layer l− 1,

wl−1
j is a weight associated with the output, bl is a bias term

for layer l, and f is a non-linear activation function.

Initially, the weights are randomly assigned, and then a

learning algorithm is used to find the weights which minimise

a loss function that computes a distance score between the true

target and the DNN prediction for a set of data [4].

Consider an n-sample data set D = {d1, d2, ..., dn} and a

set of classes C = {c1, c2, ...cs}. Image classification involves

assigning a class ci ∈ C to each data sample dk ∈ D. Let

Y = {y1, y2, ..., yn} be the set of actual classes (ground truth)

corresponding to the data set D, where yk is the actual class

of dk. And let Y ′ = {y′1, y
′

2, ..., y
′

n} be the set of predictions

made by a DNN model M for each element in D where y′k
is the prediction for the element dk. The performance of M
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Fig. 1: Sample confusion matrix for a three-class classifier.

can be assessed using a measuring function Φ, which assigns

a metric φ ∈ R to the pair (Y, Y ′), that is, (Y, Y ′)
Φ
−→ φ [12].

The performance of a DNN classifier can be evaluated using

a confusion matrix. Figure 1 shows an example of a confusion

matrix for a three-class classifier. The elements on the diagonal

of the matrix (highlighted in green) indicate the number of

correct predictions made for each class, i.e., the true positive

elements (TP), the cells shaded in orange count the number

of false negative predictions (FN), and the red cells represent

false positive (FP) prediction counts. For instance, the value

2 from row A and column B indicates that 2 data samples

with true class A were misclassified as belonging to class

B. Traditional DNN performance metrics calculated from the

confusion matrix include recall and precision. Recall measures

the effectiveness of a classifier to identify positive labels and

is defined as REC = TP
TP+FN

[13]. Precision denotes the

proportion of predicted positive cases that are correctly real

positives, and can be calculated using the following expression

PRC = TP
TP+FP

[13]. Lastly, the F1 measure is a combination

of the above and is defined as the harmonic mean of precision

and recall. It can be obtained using F1 = 2 PRC·REC
PRC+REC

[3].

Derived metrics—such as the F1 score—aim to provide a

trade-off between precision and recall. Nevertheless, none

of these metrics consider the risk associated with modes of

misclassification as addressed in our paper.

III. APPROACH

The steps of our method for taking risk into account in DNN

classifiers are depicted in Figure 2 and described as follows.

Step 1: Risk-oblivious training. In this stage, we obtain a set

of traditionally trained DNN models. The fact that initially the

weights in the DNN are randomly assigned results in different

final models, even though the DNN structure remains intact.

By generating a set of models we are able to identify those

concerns which are common to all models generated from the

training set. We term these as risk-oblivious because the risk

information has not been included during the training of these

models and because we use the traditional loss function which

gives the same importance to all misclassifications.

Step 2: Risk-aware verification. The objective of this step

is to obtain a set of risk concerns, which are risk values

associated with class pairs deemed to require treatment. We

follow the ISO/IEC 31010 risk management standard [8] that

provides guidance on how information provided by a domain

expert can be included in a risk assessment process by using

the following parameters:

1) the likelihood LoEi of encountering each class i, provided

on a five-point ordinal scale—very low (VL), low (L),

TABLE I: Likelihood OL(i,j)

LoM(i,j)

LoEi VL L M H VH

VH L M H VH VH

H L M M H VH

M L L M M H

L VL L L M M

VL VL VL L L L

TABLE II: Risk r(i,j)

impact(i,j)
OL(i,j) VL L M H VH

VH L M H VH VH

H L L M H H

M VL L M M M

L VL L L L L

VL VL VL VL VL VL

medium (M), high (H) and very high (VH), and reflecting

the likelihood of encountering an instance of a class in a

given context;

2) the impact of misclassifying an instance of class i as class

j when i ̸= j, which is defined on the same five-point

scale, i.e., impact(i,j) ∈ {V L,L,M,H, V H};

3) the likelihood of misclassification (LoM ) thresholds

LoM0, LoMVL, LoML, LoMM, LoMH, LoMVH, where

0 = LoM0 < LoMVL < LoML < LoMM < LoMH <

LoMVH<LoM1= 1;

4) the risk threshold τ which specifies the maximum risk level

that can be tolerated; the risk associated with misclassify-

ing a data sample of class i as class j needs to be mitigated

if its risk level r(i,j) exceeds τ .

Given these parameters, and the fraction p(i,j) of data

samples of class i from a test data set that are misclassified

as class j ̸= i by the DNNs from step 1, we first establish

the likelihood of misclassification LoM(i,j) for the class pair

(i, j) as the unique element from {V L,L,M,H, V H} that

satisfies LoMpred(LoM(i,j)) < p(i,j) ≤ LoMLoM(i,j) , where

the predecessor function pred is defined by pred(VL) = 0,

pred(L) = VL, etc. Next, we compute the overall likelihood

OL(i,j) of misclassifying class i as class j by combining LoEi

and LoM(i,j) by using the mapping from Table I. Finally, we

use the mapping from Table II to derive the risk level r(i,j)
associated with misclassifying class i as class j from OL(i,j)

and impact(i,j), and we consider the class pair (i, j) as a risk

concern if and only if r(i,j) > τ .

As an example, suppose LoEi = M , LoM(i,j) = V H and

impact(i,j) = H for a class pair (i, j). Using the mapping

from Table I, we obtain OL(i,j) = H; then, we combine

OL(i,j) and impact(i,j) by using the mapping from Table I,

obtaining r(i,j) = H . If we further consider τ = M , then all

the class pairs with risk level above M , i.e., those correspond-

ing to the highlighted cells from Table II represent the risk

concerns. This includes the class (i, j) from our example.

Step 3: Risk-aware training. In this step, the risk concerns

previously identified are used to produce sets of risk-aware

DNN models that aim to mitigate the risk for the concern they

were created for. To achieve that, we modify the cross-entropy

loss function by multiplying the result of the classification

loss by a weights matrix ω that encodes a penalty value in the

class pair whose misclassification risk needs to be mitigated.

This amplifies the contribution of the misclassifications to

be mitigated to the loss function. As such, the network

is “forced” to tweak its weights to reduce the error, and

achieves a smaller misclassification value for the concern.

The cross-entropy function traditionally assumes a uniform
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Fig. 2: Four-step method for the synthesis of risk-aware DNN classifiers.

weighting independent of the predicted or actual class. In

contrast, our a class-weighted cross entropy is constructed as:

L(θ) = −
1

M

M
∑

i=1

N
∑

n=1

ωny
i
nlog

(

p̂in
)

(1)

where θ represents the DNN parameters to be learnt, M is the

number of instances in the data set, yin is the target probability

that the ith instance belongs to class n and p̂in is the output

of the soft-max for instance i belonging to class n. Note that

generally yin is either 1 or 0 depending on whether the instance

belongs to the class or not. Finally, ωn is a weight associated

with misclassifying class n. Weighting the class in this way

is commonly used to tackle class imbalance in training sets.

The resulting risk-aware models may be viewed as “experts”

in avoiding one form of misclassification. In the next step, we

show how these experts are combined with the “generalists”

created in the first step of our approach.

Step 4: Risk-aware ensemble synthesis and verification.

The final step of our approach combines subsets of the risk-

oblivious and the risk-mitigating models obtained in steps 1

and 3, respectively where these subsets are selected based

on their performance and risk values. The models in these

subsets are fed to a multi-objective genetic algorithm (GA)

(we used the DEAP evolutionary framework [6]) whose fit-

ness function seeks to create a DNN ensemble that max-

imises the F1 score and minimises the residual risk =
∑

r(i,j)>τ res risk(LoEi, impact(i,j), p(i,j), τ), subject to a

fixed number l of models allowed into the ensemble.1 The GA

is responsible for (i) selecting these models and (ii) providing

a set of weights for each of the l models in the ensemble and

for each of the s classes: Wi = {w1, w2, ..., ws} for 1 ≤ i ≤ l.

These weights are used to multiply each predicted probability

of each model in the ensemble. The output from each model

in the ensemble is then weighted before an arg max function

is applied to the sum of predictions for each class. The

intuition here is that an expert in classifying class i will

end up being more highly weighted in the ensemble when

predicting class i. The knowledge combination of each of the

models in the ensemble is given by ensemble prediction =
(Y ′

1 ∗ W1 + Y ′

2 ∗ W2, ... + Y ′

i ∗ Wi), where Y ′

i is the set of

1The residual risk res risk(LoEi, impact(i,j), p(i,j), τ) for the class

pair (i, j) is a positive value that reflects by how much the risk of misclas-
sifying class i as class j exceeds τ if r(i,j) > τ , and zero otherwise. Its
calculation is detailed on our supporting web site https://rb.gy/ytkawe.

predictions made by a DNN model in the ensemble and Wi

the set of weights provided by the GA.

IV. PRELIMINARY EVALUATION

To show the effectiveness of our approach, we conducted a

series of experiments using the CIFAR-10 dataset [11], which

contains 60, 000 colour images belonging to 10 classes includ-

ing animals (cat, dog, etc.) and vehicles (truck, automobile,

etc.). The risk-oblivious and risk-aware models were trained

using the CIFAR-10 training images, the models were then

combined to train the ensemble and it was tested using the

test images 2. The experimental results are described below

and supplementary material is available on our supporting web

site https://rb.gy/ytkawe. In step 1 we trained 30 risk-oblivious

models with an average F1 score of 0.7902 and an average

residual risk of 5.1668. In step 2 we defined our risk threshold

τ = M i.e. we consider risk-concerns all those class pairs with

risk level above ≥ H . We obtained nine risk concerns. In step

3, we trained 30 risk-aware models for each concern, with

10 models built for each ω ∈ {2, 5, 10} with an average F1

score of 0.7946 and average residual risk of 5.4547.

Finally, in step 4 we synthesised three different risk-aware

ensembles varying the number of allowed models l in each

of them. We first randomly selected eight models per concern

and eight of the risk-oblivious ones from the F1/residual-risk

Pareto front for each type of model, obtaining a set of 80

models, these models were given to the GA to synthesise

an ensemble allowing two, five and ten models. We did it

in this way because, we had the intuition that as the size of

the ensemble grows we could obtain classifiers with higher F1

score capable of mitigating the risk-concerns. Figure 3 shows

that our intuition is correct; however, we acknowledge that

as the number of models grows, so does the time required to

synthesise the ensemble (see Table III). Figure 4 shows the

Pareto-optimal ensembles found when 10 models are allowed,

as expected while generations elapse the F1 score of the

classifiers increases and the residual risk is reduced. We also

note that this improvement is less and less noticeable, which

suggest we approximate the best solution that the GA can

produce. We can also notice that all ensemble sizes achieved

better F1 score (at the minimum residual risk) than the risk-

oblivious models and the risk-aware models: 0.8208, 0.8476,

and 0.8549 from the ensembles vs 0.7902 and 0.7946 from

the risk-oblivious and the risk-aware models respectively.

2A full description of how the data is split in the CIFAR-10 dataset can be
found at https://www.cs.toronto.edu/∼kriz/cifar.html



Fig. 3: Pareto-optimal ensembles for different ensemble sizes.

TABLE III: Residual risk, F1 score and GA execution time for

2500 generations and ensembles with l = 2, 5 and 10 models

Initial value Ens. 2 Ens. 5 Ens. 10

Residual risk 4.84 1.015 0.85 0.23

F1 score 0.7902 0.82088 0.8476 0.8549

Time (hours) - 2.28 4.2 13.18

V. RELATED WORK

Various research efforts focus on the importance of weight-

ing for DNNs [1], the problem of unbalanced data along the

training process [16], and tackling imbalance classification

[10]. These studies mention risk minimisation but refer only

to the loss function; a proper risk profile is never used in the

training and verification stages. The use of cost matrices to

assign a cost to each misclassification based on the distribution

of each class is proposed in [16] and [10]. While this is similar

to our approach, in the sense that [16] and [10] target particular

classes, these solutions focus on modifying the output of a

classifier. In contrast, we target the loss function. Additionally,

the objective of [16] and [10] is purely to increase the

final classification accuracy; the importance of relevant class

misclassifications is disregarded in these approaches.

Studies such as [7] use ensemble models to handle concept

drift and oversampling, and for dealing with class imbalance;

they briefly mention the importance of class misclassification

reduction. However, their main focus is not on tackling class

misclassification, and their ensembles use simple averaging

to combine probability outputs from a set of models. Finally,

[9] presents an ensemble for imbalanced classification, and

employs an evolutionary algorithm for simultaneous classifier

selection and assignment of weights for the fusion process.

However, this ensemble synthesis approach does not consider

risk; its goal is solely to tackle the imbalance classification. To

the best of our knowledge, no existing approaches mitigate the

risk associated to different DNN misclassifications explicitly.

VI. CONCLUSION

We presented an approach for effectively identifying and

mitigating risks associated with relevant misclassifications for

DNN image classifiers. Its preliminary evaluation indicates

that better image classifiers can be constructed by synthesising

Fig. 4: Ensemble learning history when 10 models are allowed.

Pareto-optimal ensembles that include risk-oblivious and risk-

mitigation models. Our experiments also show that, as the size

of the ensemble increases so does its F1 score and its ability to

mitigate risks. Further experiments are needed to identify if at

some point the size of the ensemble limits its performance, and

whether the GA can find suitable solutions for larger search

spaces than in our experiments, and for additional data sets.
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