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ABSTRACT

The most significant trend in real-time systems design in recent

years has been the adoption of multi-core processors and the

accompanying integration of functionality with different criticality

levels onto the same hardware platform. This paper integrates

mixed criticality aspects and assurances within a multi-core

system model. It bounds cross-core contention and interference by

considering the impact on task execution times due to the stress

on shared hardware resources caused by co-runners, and each

task’s sensitivity to that resource stress. Schedulability analysis is

derived for four mixed criticality scheduling schemes based on

partitioned fixed priority preemptive scheduling. Each scheme

provides robust timing guarantees for high criticality tasks,

ensuring that their timing constraints cannot be jeopardized by the

behavior or misbehavior of low criticality tasks.

CCS CONCEPTS

· Computer systems organization → Real-time systems;

Real-time systems; · Software and its engineering →

Real-time schedulability; Real-time schedulability.
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1 INTRODUCTION

The most significant trend in real-time systems design in recent

years has been the migration from using single-core to multi-core

processors [1, 2] and the accompanying integration of

functionality of different criticality levels onto the same hardware

platform, i.e. the advent of mixed criticality systems [65].
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In mixed criticality systems, the main challenge is to provide

appropriate levels of assurance, such as timing guarantees, to

software tasks that have different levels of criticality. Crucially,

this needs to be done without having to treat all of the tasks as

having the highest level of criticality, with the attendant increase

in verification costs and reduction in usable system capacity that

would entail. In multi-core systems, the main challenge is to bound

and correctly account for the effects of cross-core contention over

shared hardware resources, due to tasks running on different cores,

and the impact that has on task response times and consequently

on system schedulability.

In this paper, we consider mixed criticality multi-core systems

with two criticality levels. More specifically, HI - and LO-criticality

tasks running on a multi-core processor that are subject to cross-

core contention and interference over shared hardware resources.

In this context, HI -criticality tasks must be afforded robust timing

guarantees, such that their timing constraints cannot be jeopardized

by the behavior or misbehavior of LO-criticality tasks running on

either the same or different cores. Following Vestal’s model [65], LO-

criticality tasks have a single low assurance estimate of their stand-

alone Worst-Case Execution Time (WCET), whereas HI -criticality

tasks have two such estimates; one low assurance estimate and

a larger high assurance estimate that may, for example, include

provision for error handling code that is not expected to execute

during normal operation [50].

Multi-core processors typically share hardware resources, such

as the interconnect and the memory hierarchy, between cores.

Unfortunately, a consequence of these hardware design decisions

is that the execution time of a task running on one core can be

impacted by co-running tasks on other cores contending with it

for access to shared hardware resources. This increase in execution

time is referred to as interference.

Work on micro-benchmarks [36, 44, 56, 60, 61] has sort to

characterize the maximum amount of interference that a task can

be subject to, assuming a given multi-core hardware configuration.

Further research on the Multi-core Resource Stress and Sensitivity

(MRSS) task model [30, 31] takes this idea a step further, aiming to

bound the total amount of interference that can occur from two

different perspectives by employing additional task parameters:

(1) The Resource Sensitivity of a task characterizes the

maximum increase in its execution time that can occur due

to contention over a specific resource emanating from any

possible co-runner.

(2) The Resource Stress of a task characterizes the maximum

increase in the execution time of any possible co-runner due

to contention over a resource emanating from the task.

1
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The resource sensitivity and resource stress parameters of a task

characterize, in a simple but useful way, the impact on that task’s

execution time of contention over the resource and the behavior

of the arbitration policy in controlling access to it. See [30, 31] for

a discussion of how the resource sensitivity and resource stress

parameters can be obtained.

By combining measures of resource stress and resource

sensitivity, analysis of the MRSS task model can more accurately

bound the amount of interference that can actually occur. The

MRSS task model retains the advantages of the two-step approach

that is traditionally employed on single-core systems, providing a

separation of concerns between timing analysis and schedulability

analysis, and has been validated via a proof-of-concept case study

on multi-core hardware [30, 31].

This paper builds on the MRSS task model and its schedulability

analysis for partitioned fixed priority preemptive scheduling on

multi-core systems. The main contribution of this work is the

integration of mixed criticality and multi-core in the form of the

MRSS task model, along with the derivation of schedulability

analysis for four mixed criticality scheduling schemes.

The remainder of the paper is organized as follows: Section 2

discusses related work. Section 3 introduces the system model,

terminology, and notation used. Section 4 presents schedulability

analysis for the four mixed criticality schemes studied, with a

systematic evaluation of their performance given in Section 5.

Finally, Section 6 concludes with a summary.

2 RELATED WORK

In this section, we outline prior work on: (i) mixed criticality fixed

priority scheduling schemes for single-core processors, since those

schemes form the basis for partitioned multi-core systems; (ii)

mixed criticality systems on multi-cores that seeks to enforce

limits on the amount of cross-core contention and interference

that can occur; and (iii) single criticality multi-core systems that

integrate interference effects into schedulability analysis.

Since Vestal’s seminal paper [65] in 2007, mixed criticality

systems have become a hot topic of real-time systems research,

see [20, 21] for a survey and a more recent review. Many of these

papers focus on scheduling schemes that are based on fixed

priorities, most notably Static Mixed Criticality (SMC) [11] and

Adaptive Mixed Criticality (AMC) [12]. AMC is considered the

most effective fixed priority scheme [43] for single cores, and has

been extended to account for many additional aspects including:

preemption thresholds [68, 69], multiple criticality levels [37],

criticality-specific task periods [13], changes in priority [10],

communications [18], deferred preemption [19], a fast return to

LO-criticality behavior [15, 16], weakly-hard timing

constraints [38], probabilistic task models [54], design

optimization [71], context switch costs [28], robustness and

resilience [23], implementation overheads [51], and

semi-clairvoyant timing behavior [22, 70]. An exact analysis for

AMC has also been developed for periodic task sets with

offsets [6, 58]. Finally, a modified AMCR runtime protocol [17] has

been developed that delays the onset of degraded behaviour where

LO-criticality jobs are dropped.

The first work to discuss mixed criticality within the context of

multi-core systems was by Anderson et al. [4, 55], with later work

in this area addressing overheads [26, 42], showing the advantages

of using different partitioning and isolation techniques at different

criticality levels [47], and reconciling issues of data sharing [25]

and simultaneous multithreading [9].

In the context of multi-core systems, much of the prior work

on mixed criticality has sort to limit the amount of interference

that can occur. To achieve this, criticality-based partitioning is

typically assumed, with HI -criticality tasks allocated on one core,

and LO-criticality tasks to other cores. Here, one way of limiting

interference is to monitor the execution time of each HI -criticality

task and to abort co-running LO-criticality tasks when no more

interference can be tolerated [48]. A more subtle approach is to

throttle the resource access bandwidth available to theLO-criticality

cores, temporarily suspending execution on those cores whenever

the maximum permitted number of accesses in a given period has

been reached [67].

Research into the timing analysis and schedulability analysis

of multi-core systems has also become a hot topic of real-time

systems research over the past 15 years, see [53] for a survey. Of

specific interest here is the integration of interference effects into

schedulability analysis.

Early work in this area [63] used arrival curves to model the

memory bus accesses of each task, and how delays due to

contention impact task response times. Subsequently, more

detailed analysis [39, 49, 59, 64] divided each task into a sequence

of blocks and used information about the number of accesses

within each block to provide more refined results. Further

work [57] proposed using a WCET-matrix and WCET-sensitivity

values to characterize the variation in task execution times for

different numbers of contending cores. A later more detailed

analysis [5] considered different execution times dependent on

specific co-runners, but suffered from significant scalability issues.

An alternative approach [27] used request functions to model the

maximum number of resource accesses from each task in a given

time interval, and integrated this request function into response

time analysis. Further work [46, 66] along this line provided detailed

analysis of the contention caused by memory accesses, accounting

for variations in latencies due to different memory states.

Subsequently, the Multi-core Response Time Analysis (MRTA)

framework [3, 29] was introduced, aimed at combining the demands

that tasks place on difference types of shared resources with the

resource supply provided by those resources, and integrating the

resulting explicit interference directly into response time analysis.

This framework was later built upon to analyze bus arbitration

policies on a many-core processor [62]. Further, the symmetry

between processing and resource access has been leveraged to

derive a suspension-based schedulability analysis [24], with similar

performance to MRTA.

3 SYSTEM MODEL

In this paper, we assume a mixed criticality multi-core system with

m homogeneous cores that executes tasks under various scheduling

schemes, based on partitioned fixed priority preemptive scheduling.

2
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With partitioning, tasks are assigned to a specific core and do not

migrate from one core to another.

The mixed criticality system is assumed to have two criticality

levels: HI and LO . Each task τi is characterised by its criticality

level Li , which is either HI or LO . Each LO-criticality task τj has a

single estimateCj (LO) of itsWCETwhen executing stand-alone. By

contrast, each HI -criticality task τk has two estimates Ck (LO) and

Ck (HI ) of its WCET when executing stand-alone, where Ck (HI ) ≥

Ck (LO). (Note for ease of presentation of the analysis in Section 4,

we assume thatCj (HI ) = Cj (LO) for LO-criticality tasks). Each task

τi has a minimum inter-arrival time or period Ti between releases

of its jobs, and a constrained relative deadline Di , where Di ≤ Ti .

Each task τi is assumed to have a priority that is unique across

all cores, with hp(i) used to denote the set of tasks with higher

priority than task τi . The priorities of tasks are unrelated to their

criticality levels. The notation Γx is used to denote the set of tasks

that execute on the same core, with index x , as the task of interest

τi . Similarly, Γy is used to denote the set of tasks that execute on a

different core with index y.

The tasks are assumed to be independent, but may access a set

of shared hardware resources r ∈ H , thus causing interference on

the execution of tasks on other cores via cross-core contention.

Further aspects of the model are based on the concept of resource

sensitive contenders and resource stressing contenders [30, 31].

A resource stressing contender maximizes the stress on a resource

r by repeatedly making accesses to it that cause the most contention.

Running a resource stressing contender in parallel with a task

creates the maximum increase in execution time for the task due to

contention over resource r emanating from any single co-runner.

A resource sensitive contender for a resource r suffers the

maximum possible interference by repeatedly making accesses to

the resource that suffer the most contention. Running a resource

sensitive contender in parallel with a task creates the maximum

increase in execution time for any single co-running contender

due to contention over resource r emanating from the task.

Each task τi is characterised by its resource sensitivity X r
i and

its resource stress Y ri for each shared hardware resource r ∈ H .

X r
i captures the maximum increase in execution time of task τi

(fromCi toCi +X
r
i ) when it is executed in parallel with a resource

stressing contender for resource r . Thus X r
i models how much task

τi behaves like a resource sensitive contender. Similarly,Y ri captures

the increase in execution time of a resource sensitive contender

for resource r , when it is executed in parallel with task τi . Hence

Y ri models how much task τi behaves like a resource stressing

contender. With this model, the execution time of a task τi running

on one core, subject to interference via shared hardware resource

r from a single task τk running in parallel on one other core, is

increased by at most min(X r
i ,Y

r
k
) i.e. from Ci to Ci +min(X r

i ,Y
r
k
).

Assuming the worst-case stress on resource r emanating from any

arbitrary tasks onm − 1 other cores, the execution time of task τi
is increased from Ci to at most Ci + (m − 1)X r

i . Finally, the multi-

core system is assumed to be symmetrical, and so the cross-core

contention between two tasks over a resource does not depend on

the two specific cores on which those tasks run.

We do not assume dual values1 for resource sensitivity X r
i and

resource stress Y ri based on criticality. For a LO-criticality task,

these values reflect its LO-criticality execution behavior, but cannot

impact the guarantees afforded to HI -criticality tasks under the

analysis described in this paper. For a HI -criticality task the values

reflect its worst-case i.e. HI -criticality execution behavior.

The Real-Time Operating System (RTOS) is required to provide

standard per task execution time monitoring and budget

enforcement facilities. The RTOS is assumed to abort any job of a

task τi that does not complete within its execution time budget

Bi (Li ). This budget is set to Ci (Li ) +
∑

r ∈H (m − 1)X r
i , where H is

the set of shared hardware resources, m is the number of cores,

and Li is the criticality level of the task. The budget Bi (Li ) thus

accounts for the WCET of the task when faced with the worst-case

stress on every resource r , from any arbitrary tasks on all of the

other m − 1 cores. Assuming that the parameters Ci (Li ) and X r
i

represent sound upper bounds, then budget enforcement will only

occur if the task itself executes erroneously. (Note, no enforcement

is assumed on the number of accesses that can be made to shared

hardware resources).

The schedulability tests introduced in this paper are named

using the following convention: CpSched-m-X-MCS, where C

indicates a contention-based test for p partitioned scheduling,

using the basic scheduling policy Sched, which is FPPS. The test

is form cores, makes use of information X , which is either D or R

meaning the deadlines or the response times of the tasks on other

cores, or fc meaning fully composable, i.e. the test does not rely on

any information about the tasks running on the other cores, or no

meaning no effects of contention are included. Finally, MCS is the

mixed criticality scheme employed, which is either NMC, SMC,

AMC, or AMCR, as described in Section 4. This naming

convention builds on that introduced in [30, 31] for schedulability

tests compatible with the MRSS task model.

4 SCHEDULING SCHEMES AND ANALYSES

In this section, we derive schedulability analysis for partitioned

fixed priority preemptive scheduling of mixed criticality systems

on multi-cores, under four different mixed criticality scheduling

schemes, in each case accounting for cross-core contention and

interference, according to the MRSS task model.

Most scheduling schemes for mixed criticality systems identify

two distinct modes of behavior. A normal or LO-criticality mode,

which comprises the expected behavior of the system, and an

abnormal or HI -criticality mode, which is expected to be rarely if

ever entered as a consequence of the runtime behavior of

HI -criticality tasks.

There are disparate views within the real-time systems

community as to the timing requirements for mixed criticality

systems [20], while most works assume that LO-criticality tasks do

not have to meet their deadlines in abnormal mode, and can

potentially be dropped, others [34, 35] argue that this represents a

disconnect with respect to industry practice and standards. The

argument against missing deadlines and job dropping is that

1In this first paper combining mixed criticality and the MRSS model, we choose not to
use dual values so as to simplify the overall model and analyses. Models and analyses
for mode specific resource sensitivity and resource stress are left for future work).
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criticality is not synonymous with importance, and thus the

functionality of LO-criticality tasks cannot simply be discarded. In

this section, we derive analyses for different schemes that reflect

these different viewpoints. Four schemes are considered:

1. No Mixed Criticality (NMC): Assumes that jobs of all tasks

are required to meet their deadlines in both normal and

abnormal modes. Under NMC no runtime mode change

operations are required. NMC provides a baseline for

systems where missing deadlines or dropping jobs is not

acceptable even for LO-criticality tasks.

2. Static Mixed Criticality (SMC) [11]: Assumes that jobs of

LO-criticality tasks continue to execute and to be released

in abnormal mode, but are not required to meet their

deadlines in that mode. Under SMC no runtime mode

change operations are required.

3. Adaptive Mixed Criticality (AMC) [12]: Assumes that no new

jobs of LO-criticality tasks are released in abnormal mode,

and that any previously released jobs of LO-criticality tasks

are not required to meet their deadlines in that mode. With

AMC, the RTOS is responsible for runtime mode change

operations, and for ensuring that LO-criticality tasks do not

release new jobs in abnormal mode.

4. Adaptive Mixed Criticality with modified runtime protocol

(AMCR) [17]: AMCR is similar to AMC, but uses a modified

runtime protocol that delays the time at which LO-criticality

tasks stop releasing new jobs in abnormal mode, see Section

4.4 for details.

In this paper, we assume that each core is considered separately

and independently in terms of the runtime mode change

operations performed by the RTOS; however, in contrast the

timing requirements placed upon the tasks are defined by the

overall system behavior, with different levels of timing assurance

required for HI - and LO-criticality tasks as follows:

R1 LO-criticality tasks require assurance that they will meet their

timing constraints (deadlines) under normal system behavior,

i.e. under the condition that all tasks on all cores comply

with their LO-criticality execution time Ci (LO), resource

sensitivity X r
i , and resource stress Y ri parameters.

R2 HI -criticality tasks require more robust assurance that they

will meet their timing constraints at all times (irrespective

of the behavior or misbehavior of other tasks) i.e. subject

only to the condition that they comply with their own HI -

criticality execution timeCi (HI ) and resource sensitivity X r
i

parameters.

4.1 No Mixed Criticality (NMC)

In this section, we build upon the schedulability analysis for the

MRSS task model given in [30, 31], making use of the

context-dependent schedulability tests for LO-criticality tasks, and

the fully composable context-independent schedulability test for

HI -criticality tasks, see Sections 3.1 and 3.3 of [30] respectively.

Adding cross-core interference considering each resource r ∈ H

to the standard response time analysis [8, 45] for fixed priority

preemptive scheduling, we can compute the worst-case response

time for mixed criticality tasks under the NMC scheme as follows:

Ri (Li ) = Ci (Li ) +
∑

j ∈Γx∧j ∈hp(i)

⌈

Ri (Li )

Tj

⌉

Cj (Lj )

+

∑

r ∈H

I ri (Ri (Li )) (1)

where I ri (Ri (Li )) is an upper bound on the interference that may

occur within the response time of task τi , via shared hardware

resource r , due to tasks executing on the other cores.

The interference term I ri (Ri (Li )) depends on: (i) the total

resource sensitivity for resource r , denoted by Sri (Ri (Li ), x), for the

tasks executing on the same core x as task τi within its response

time Ri (Li ); and (ii) the total resource stress on resource r , denoted

by Eri (Ri (Li ),y), that can be produced by tasks executing on each

of the other cores y within an interval of length Ri (Li ).

I ri (Ri (Li )) =
∑

∀y,x

min(Eri (Ri (Li ),y), S
r
i (Ri (Li ), x)) (2)

This is the case, since the maximum interference due to contention

from each core y cannot exceed the total resource stress

Eri (Ri (Li ),y) from that core within an interval of length Ri (Li ).

The total resource sensitivity Sri (Ri (Li ), x) is computed based on

the jobs that may execute on the same core x within the worst-case

response time of task τi , thus we have
2:

Sri (Ri (Li ), x) = X r
i +

∑

j ∈Γx∧j ∈hp(i)

⌈

Ri (Li )

Tj

⌉

X r
j (3)

The total resource stress Eri (Ri (Li ),y) due to tasks that execute

on another core y in the interval Ri (Li ) can be upper bounded in

three different ways.

When analysing a HI -criticality task τi , the total resource stress

Eri (Ri (Li ),y) is assumed to be infinite, and hence the

schedulability test for that task becomes context-independent and

fully composable, since the computed response time is unaffected

by any changes to the parameters of the tasks that execute on the

other cores. In other words, when (4) is used, (1), (2), and (3)

become dependent only on the set of tasks executing on the same

core as τi .

Eri (Ri (Li ),y) = ∞ (4)

When analysing a LO-criticality task τi , the total resource stress

Eri (Ri (Li ),y) can be upper bounded in two ways, making use of

either the deadlines or the response times of the contending tasks

that execute on the other cores:

Eri (Ri (Li ),y) =
∑

j ∈Γy

⌈

Ri (Li ) + D j

Tj

⌉

Y rj (5)

Eri (Ri (Li ),y) =
∑

j ∈Γy

⌈

Ri (Li ) + Rj (Lj )

Tj

⌉

Y rj (6)

Here, the upper bound on the worst case does not correspond to

synchronous release of the contending tasks at the start of the

interval Ri (Li ), but rather to a scenario where the first job of a

contending task executes as late as possible within its own period

2Note, for systems where memory accesses issued by a preempted lower priority task
on the same core may be still pending after a context switch, then the analysis needs
to also include such additional accesses.
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(i.e. assumed in (5) to be just before its deadline, and assumed in (6)

to be just before its response time) and then further jobs of that

task execute as early as possible in their subsequent periods.

Further, for the purposes of ensuring a correct upper bound,

resource stress from each contending job is assumed to be able to

occur instantaneously. This leads to a sound, but potentially

somewhat pessimistic upper bound Eri (Ri (Li ),y). However, to

provide a tighter bound would require highly detailed information

about the timing of resource accesses within each task. Note that

tasks of any priority can cause contention when executing on the

other cores.

Bounding the total resource stress Eri (Ri (Li ),y) via (5) or (6)

results in a context-dependent schedulability test for LO-criticality

task τi , since schedulability of the task is dependent on the

parameters of the contending tasks that execute on the other cores.

Using (6), the response times of the LO-criticality tasks on the

same and different cores become interdependent; however,

schedulability can still be determined via fixed point iteration. In

this case, an outer iteration starts with Rj (Lj ) = Cj (Lj ) for every

task τj in the system, and repeatedly computes the response times

for all tasks on all cores. This is done using the Rj (Lj ) values in the

right hand side of (6) from the previous round, until all response

times either converge, in other words are unchanged from the

previous round, or one of them exceeds the associated deadline.

The correctness of the context-dependent schedulability test [30,

31], embodied in (1), (2), (3) and either (4) or (5), is sufficient to

ensure compliance with the timing assurance requirement R1 for

LO-criticality tasks. In fact the test provides a stronger guarantee,

ensuring that LO-criticality tasks are schedulable provided that all

HI -criticality tasks comply with their HI -criticality stand-alone

execution timesCi (HI ), rather than their LO-criticality stand-alone

execution times Ci (LO) as required by R1. However, all tasks must

still comply with their resource sensitivity X r
i , and resource stress

Y ri parameters for the guarantee to hold.

We now show that the requirement R2 for robust timing

assurance of HI -criticality tasks is also met. Each HI -criticality

task τi is analysed using the fully composable context-independent

schedulability test, comprising (1), (2), (3), and (4). This test

effectively assumes that the contribution to the response time of

task τi from each job of another task τk that executes on the same

core is bounded by Bk (Lk ) = Ck (Lk ) +
∑

r ∈H (m − 1)X r
k
, (see

Section 3 for details of how Bk (Lk ) is defined and why this is a

valid bound). If a job of task τk has not completed after executing

for a time Bk (Lk ) due to internal overrun of its own code, or extra

interference resulting from a higher than expected level of

resource sensitivity, then the RTOS will prevent the job of task τk
from continuing to execute. Hence the RTOS prevents other tasks

that execute on the same core within the response time of

HI -criticality task τi from compromising its timing constraints.

Since the fully composable schedulability test considers the

maximum possible interference of
∑

r ∈H (m − 1)X r
i occurring

during the execution of task τi , then provided that the stand-alone

execution time Ci (HI ) and the resource sensitivity parameters

(X r
i ) of task τi have been correctly upper bounded, then the task

will complete its execution within its budget, irrespective of the

level of resource stress emanating from potentially misbehaving

tasks on other cores. Hence, task τi has robust assurance that it

will meet its deadline, assuming of course that it has been deemed

schedulable by the test.

Three NMC schedulability tests are evaluated in Section 5:

• CpFPPS-m-fc-NMC: Uses the context-independent test,

comprising (1), (2), (3), and (4), for all tasks.

• CpFPPS-m-D-NMC: Uses the context-independent test,

comprising (1), (2), (3), and (4), for HI -criticality tasks, and

the deadline based context-dependent test, comprising (1),

(2), (3), and (5), for LO-criticality tasks.

• CpFPPS-m-R-NMC: Uses the context-independent test,

comprising (1), (2), (3), and (4), for HI -criticality tasks, and

the response time based context-dependent test, comprising

(1), (2), (3), and (6), for LO-criticality tasks, and also to

compute Rj (Lj ) for HI -criticality tasks, used as an

intermediate value in (6).

4.2 Static Mixed Criticality (SMC)

In this section, we extend the analysis presented in section 4.1

to cater for the Static Mixed Criticality (SMC) scheme [11]. The

only difference in the schedulability analysis for SMC compared

to NMC is that with SMC, LO-criticality tasks are only required

(as per R1) to be schedulable when all tasks comply with their LO-

criticality stand-alone execution time parameters. As a consequence,

the response time analysis is modified as follows. Equation (1) is

replaced by (7), the only change being the replacement of Cj (Lj )

by Cj (min(Li , Lj )).

Ri (Li ) = Ci (Li ) +
∑

j ∈Γx∧j ∈hp(i)

⌈

Ri (Li )

Tj

⌉

Cj (min(Li , Lj ))

+

∑

r ∈H

I ri (Ri (Li )) (7)

Similarly, equation (6) is replaced by (8), the only change being the

replacement of Rj (Lj ) by Rj (min(Li , Lj )).

Eri (Ri (Li ),y) =
∑

j ∈Γy

⌈

Ri (Li ) + Rj (min(Li , Lj )

Tj

⌉

Y rj (8)

The analysis for SMC thus comprises: (i) a fully composable

context-independent test for HI -criticality tasks, defined by (7),

(2), (3), and (4), which is effectively the same as that for NMC; (ii)

a deadline based context-dependent test for LO-criticality tasks,

defined by (7), (2), (3), and (5); and (iii) a response time based context-

dependent test for LO-criticality tasks, defined by (7), (2), (3), and

(8). Note, the latter test requires that the value of Rj (LO) is similarly

computed for each HI -criticality task, for use as an intermediate

value in (8).

Three SMC schedulability tests are evaluated in Section 5:

• CpFPPS-m-fc-SMC: Uses the context-independent test,

comprising (7), (2), (3), and (4), for all tasks.

• CpFPPS-m-D-SMC: Uses the context-independent test,

comprising (7), (2), (3), and (4), for HI -criticality tasks, and

the deadline based context-dependent test, comprising (7),

(2), (3), and (5), for LO-criticality tasks.

• CpFPPS-m-R-SMC: Uses the context-independent test,

comprising (7), (2), (3), and (4), for HI -criticality tasks, and

5
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the response time based context-dependent test, comprising

(7), (2), (3), and (8), for LO-criticality tasks, and to compute

the LO-criticality response times for HI -criticality tasks,

used as an intermediate value in (8).

4.3 Original Adaptive Mixed Criticality (AMC)

In this section, we extend the analysis presented in section 4.2 to

cater for the original Adaptive Mixed Criticality (AMC)

scheme [12]. The only difference in the schedulability analysis for

AMC compared to SMC is that with AMC, LO-criticality tasks no

longer release new jobs in abnormal mode. The analysis of

LO-criticality response times, Ri (LO), for both HI - and

LO-criticality tasks is therefore the same as for SMC. The response

time Ri (HI ) for a HI -criticality task τi is derived as follows, using

context-independent analysis:

Ri (HI ) = Ci (HI ) +
∑

r ∈H

(m − 1)X r
i +

∑

j ∈Γx∧j ∈hpH(i)

⌈

Ri (HI )

Tj

⌉

(

Cj (HI ) +
∑

r ∈H

(m − 1)X r
j

)

+

∑

k ∈Γx∧k ∈hpL(i)

⌈

R∗i (LO)

Tj

⌉

(

Ck (LO) +
∑

r ∈H

(m − 1)X r
k

)

(9)

where hpH(i) is the set of HI -criticality tasks with priorities higher

than that of task τi , and similarly hpL(i) is the set of LO-criticality

tasks with priorities higher than that of task τi . Further, R
∗
i (LO)

is the context independent LO-criticality response time of task τi
given by:

R∗i (LO) = Ci (LO) +
∑

r ∈H

(m − 1)X r
i +

∑

k ∈Γx∧k ∈hp(i)

⌈

R∗i (LO)

Tj

⌉

(

Ck (LO) +
∑

r ∈H

(m − 1)X r
k

)

(10)

Here, (9) and (10) represent the standard analysis equations for the

AMC-rtb schedulability test [12] adapted to use inflated execution

time budgets, e.g.Cj (HI )+
∑

r ∈H (m−1)X r
j andCk (LO)+

∑

r ∈H (m−

1)X r
k
, in place of the original execution time budgets Cj (HI ) and

Ck (LO).

Previous work on AMC [12] assumes that abnormal mode is

entered when some job of a HI -criticality task τk executes for

Ck (LO) without completing. However, this criterion is not enough

when cross-core contention and interference is considered, rather

an inflated execution time budget ofCk (LO)+
∑

r ∈H (m−1)X r
k
must

be used instead. Given that both LO- andHI -criticality tasks may be

subject to cross-core contention and interference,R∗i (LO) represents

the longest possible time interval from the release of a job of task τi
until either: (i) the job has completed, or (ii) abnormalmode has been

entered. Hence, the interval in (9) during which LO-criticality jobs

need to be considered is limited to R∗i (LO), rather than Ri (LO). Use

of the intermediate value,R∗i (LO), is necessary to ensure compliance

with requirement R2 for robust timing assurance of HI -criticality

tasks, including when the behavior of other tasks is such that they

do not comply with their resource sensitivity and resource stress

parameters.

Three AMC schedulability tests are evaluated in Section 5:

• CpFPPS-m-fc-AMC: Uses the context-independent test,

comprising (9) and (10), for HI -criticality tasks, and the

context-independent test, comprising (7), (2), (3), and (4), for

LO-criticality tasks.

• CpFPPS-m-D-AMC: Uses the context-independent test,

comprising (9) and (10), for HI -criticality tasks, and the

deadline based context-dependent test, comprising (7), (2),

(3), and (5), for LO-criticality tasks.

• CpFPPS-m-R-AMC: Uses the context-independent test,

comprising (9) and (10), for HI -criticality tasks, and the

response time based context-dependent test, comprising (7),

(2), (3), and (8), for LO-criticality tasks, and to compute the

LO-criticality response times for HI -criticality tasks, used

as an intermediate value in (8).

Since the AMC scheme for partitioned multi-core systems

implements independent transitions from normal to abnormal

mode on each core, it is interesting to consider how the resource

sensitivity and resource stress parameters of tasks impact the

mode change behavior. A mode change takes place when a job of a

HI -criticality task exceeds its LO-criticality budget

Bk (LO) = Ck (LO) +
∑

r ∈H (m − 1)X r
k
. This can only happen if the

task’s stand-alone execution exceeds Ck (LO), since the additional

budget terms account for the impact of the worst-case resource

stress on all resources from any arbitrary tasks on the otherm − 1

cores. In practice, if at runtime the resource stress is below the

worst case assumed, then the HI -criticality task’s stand-alone

execution could exceed Ck (LO), effectively taking up the slack,

without triggering a mode change. This would not however impact

the schedulability of any other tasks. The resource sensitivity

values, X r
k
, for a HI -criticality task affect its own budget and hence

indirectly affect when it may cause a mode change. By contrast,

using resource stress values, Y rj , enables less pessimistic

schedulability analysis for LO-criticality tasks, however, these

values do not impact the timing guarantees afforded to

HI -criticality tasks.

4.4 Modified Adaptive Mixed Criticality
(AMCR)

In this section, we adapt the analysis presented in section 4.3 to

cater for the modified AMC scheme introduced by Bate et al. in [17].

The AMCR family of schemes differ from the original AMC scheme

in terms of the criterion used to trigger a change to degraded mode

duringwhich jobs of LO-criticality tasks are no longer released. Two

different AMCR schemes were presented in [17], here we consider

the simpler scheme that returns to normal mode on an idle instant.

In the context of this work, i.e. partitioned scheduling on a

multi-core system with cross-core interference modelled via

resource sensitivity and resource stress, the AMCR scheme

operates as follows. AMCR requires that the RTOS transitions a

core to degraded mode whenever a job of a HI -criticality task τi
running on that core reaches, without completing its execution, an

elapsed time equal to its LO-criticality response time Ri (LO), as

measured from the start of the priority level-i busy period during

which it was released. The RTOS transitions the core back to

normal mode on an idle instant for that core. (The efficient

implementation of this scheme is discussed in [17]).

6
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Given how the LO-criticality response time Ri (LO) of each

HI -criticality task τi is derived and calculated, it follows that

under AMCR, while all tasks on all cores exhibit normal behavior

(i.e comply with their LO-criticality execution time Cj (LO),

resource sensitivity X r
j , and resource stress Y rj parameters), no job

of a HI -criticality task can cause a transition to degraded mode.

Hence AMCR can ensure that LO-criticality tasks meet their

timing assurance requirement R1 (see Section 1) using the same

analysis as the standard AMC scheme.

The following analysis for AMCR meets the more robust timing

assurance required for HI -criticality tasks.

Ri (HI ) = Ci (HI ) +
∑

r ∈H

(m − 1)X r
i +

∑

j ∈Γx∧j ∈hpH(i)

⌈

Ri (HI )

Tj

⌉

(

Cj (HI ) +
∑

r ∈H

(m − 1)X r
j

)

+

∑

k ∈Γx∧k ∈hpL(i)

⌈

Ri (LO)

Tj

⌉

(

Ck (LO) +
∑

r ∈H

(m − 1)X r
k

)

(11)

Observe that the only difference between the analysis for

HI -criticality tasks under the original AMC scheme, given by (9),

and that for AMCR, given by (11), is that R∗i (LO), given by (10), is

replaced by Ri (LO), given by (7). Further, Ri (LO) may be

computed using context-dependent analysis, improving the

precision of the schedulability test.

Under AMCR, once an elapsed time of Ri (LO) has passed since

the start of the priority level-i busy period in which a job of

HI -criticality task τi was released and the job has not completed,

then the RTOS ensures that degraded mode is entered. This

prevents any further releases of higher priority LO-criticality tasks

on that core, until after τi completes. Whatever caused Ri (LO) to

be exceeded, for example a job of a higher priority HI -criticality

task τj on the same core exceeding its LO-criticality budget

Bj (LO) = Cj (LO) +
∑

r ∈H (m − 1)X r
j or a LO-criticality task on

another core misbehaving and causing more resource stress than

expected, does not matter as far as the analysis is concerned. This

is the case because (11) accounts for the maximum number of job

releases of each LO-criticality task τk up to Ri (LO) at their

LO-criticality budget Bk (LO) = Ck (LO) +
∑

r ∈H (m − 1)X r
k
, and

the maximum number of job releases of each HI -criticality task τj
up to Ri (HI ) at their HI -criticality budget

Bj (HI ) = Cj (HI ) +
∑

r ∈H (m − 1)X r
j , hence the robust timing

guarantee R2 (see Section 1) required by HI -criticality task τi
holds.

Three AMCR schedulability tests are evaluated in Section 5:

• CpFPPS-m-fc-AMCR: Uses the context-independent test,

comprising (11) for HI -criticality tasks, and the

context-independent test, comprising (7), (2), (3), and (4), for

LO-criticality tasks and to provide the LO-criticality

response times used in (11). Note, this is effectively the

same schedulability test as the fully-composable test for the

original AMC scheme.

• CpFPPS-m-D-AMCR: Uses the context-dependent test,

comprising (11), for HI -criticality tasks, and the deadline

based context-dependent test, comprising (7), (2), (3), and

(5), for LO-criticality tasks and to provide the LO-criticality

response times used in (11).

• CpFPPS-m-R-AMCR: Uses the context-dependent test,

comprising (11), for HI -criticality tasks, and the response

time based context-dependent test, comprising (7), (2), (3),

and (8), for LO-criticality tasks, and to compute the

LO-criticality response times used in (8) and in (11).

We note that although the value of Ri (LO) used in (11) can be

computed via context-dependent analysis (as in the -D and -R

tests above), this does not mean that the schedulability guarantees

afforded to HI -criticality tasks by (11) are dependent on the

behavior of other tasks. The subtlety is that under AMCR, the

RTOS enforces the transition to degraded mode at Ri (LO)

irrespective of the behavior or misbehavior of the other tasks,

hence ensuring that the robust timing requirement R2 (see Section

1) required by HI -criticality tasks holds.

4.5 Dominance Relations

A schedulability test S is said to dominate another test Z , for a

given task model and scheduling algorithm, if every task set that is

deemed schedulable according to test Z is also deemed schedulable

by test S , and there exists some task sets that are schedulable

according to test S , but not according to test Z .

Comparing the definitions of Eri (Ri (Li ),y) given by (5), (6), and

(8), it is evident that each of the CpFPPS-m-R-MCS tests deems

schedulable all task sets that are schedulable according to the

corresponding CpFPPS-m-D-MCS test. This is the case, since in

any schedulable system, the response time of a task is no greater

than its deadline (Rj (Lj ) ≤ D j ), and hence the Eri (Ri (Li ),y) term

for the former tests, given by (6) or (8), is less than or equal to the

equivalent term, given by (5), for the latter tests. Further, it is easy

to see that there exists task sets that are schedulable according to

the former tests, but not according to the corresponding latter tests

due to a larger contention contribution emanating from the larger

Eri (Ri (Li ),y) term. Hence, each CpFPPS-m-R-MCS test

dominates the corresponding CpFPPS-m-D-MCS test. Similarly,

comparing the definitions of Eri (Ri (Li ),y) given by (5) and (4) it is

evident that each of the CpFPPS-m-D-MCS tests dominates the

corresponding CpFPPS-m-fc-MCS test.

Since dominance is transitive, we have: CpFPPS-m-R-MCS →

CpFPPS-m-D-MCS → CpFPPS-m-fc-MCS, where S → Z

indicates that test S dominates test Z , and MCS is NMC, SMC,

AMC, or AMCR.

Comparing the response time equations (1), (7), (9) and (11), it

is also evident that:CpFPPS-m-X-AMCR→CpFPPS-m-X-AMC

→ CpFPPS-m-X-SMC → CpFPPS-m-X-NMC, where X is fc, D,

or R.

4.6 Complexity

The standard response time analysis [8, 45] for partitioned fixed

priority preemptive scheduling, not considering cross-core

contention, has pseudo-polynomial complexity: O(mn2Dmax ) [31],

wherem is the number of cores, n is the number of tasks on each

core, and Dmax is the longest deadline of any task. The

schedulability tests presented in this paper for mixed criticality

systems under the MRSS task model inherit their complexity from

7
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the schedulability tests for single criticality systems under the

same model [30, 31]. Hence, the -fc, -D, and -R tests have

complexity of O(m |H |n2Dmax ), O(m2 |H |n2Dmax ), and

O(m3 |H |n3Dmax ) respectively, where |H | is the number of

resources. This represents an increase in complexity of |H |,m |H |,

and m2 |H |n over the equivalent tests that do not consider

cross-core contention.

Given the high performance of the standard response time tests

for fixed priority preemptive scheduling [32], in practice, all of the

tests presented in this paper scale well to realistic system sizes. As

a consequence, utilizing the highest performing -R tests is often

preferable, unless a fully composable -fc test is deemed necessary

due to design and development requirements. However, as shown

in [30, 31], the -D tests are compatible with Audsley’s Optimal

Priority Assignment algorithm [7], whereas the -R tests are not.

Thus, in some cases it may be advantageous to trade off using the

technically inferior -D tests in order reap the performance benefits

of optimal priority assignment.

5 EVALUATION

In this section, we present an empirical evaluation of the

schedulability tests introduced in Section 4 for mixed-criticality

task sets executing on a multi-core system, assuming a single

hardware resource shared between all cores. (Note, multiple shared

hardware resources resulting in the same total interference would

have the same impact on schedulability, due to the summation over

resources in (1)). Experiments were performed for 2 and 4 cores3.

5.1 Task Set Parameter Generation

The task set parameters used in the experiments follow the

approach taken for the MRSS task model [30, 31] and for mixed

criticality systems [41], with the Dirichlet-Rescale (DRS)

algorithm [41] (open source Python software [40]) used to provide

an unbiased distribution of utilization values that sum to the target

utilization required subject to a set of individual constraints. The

values selected for task resource sensitivity and task resource

stress are grounded in the results obtained from the

proof-of-concept case study detailed in [30, 31].

• The number of tasks per core was fixed, default n = 10. The

number of HI -criticality tasks n(HI ) was set to n ·CP where

CP is the Criticality Proportion (default CP = 0.2), with the

remaining tasks of LO-criticality.

• Task utilizations were generated using the DRS algorithm.

First, HI -criticality utilization valuesUi (HI ) were generated

for the n(HI ) HI -criticality tasks, such that the total

HI -criticality utilization of those tasks summed to

U (HI ) = CP · CF · U , where CF is the Criticality Factor

(default CF = 2.0) characterizing the multiplier between

LO-criticality and HI -criticality utilization, and U is the

overall target utilization required. Second, LO-criticality

utilization valuesUi (LO) were generated for all of the tasks,

such that the total LO-criticality utilization of all tasks

summed to U (LO) = U . For LO-criticality tasks, each

3The analysis scales to more than 4 cores; however, we limited consideration to this
range, since 4 cores represents a typical cluster size beyond which sharing hardware
resources can become a significant performance bottleneck.

Ui (LO) value was constrained to be in the range [0.0, 1.0],

while for HI -criticality tasks, each Uj (LO) value was

constrained to be in the range [0.0,Uj (HI )].

• Task periods Ti were generated according to a log-uniform

distribution [33] with a factor of 100 difference between the

minimum and maximum possible period. This represents a

spread of task periods from 10ms to 1 second, as found in

many real-time applications.

• Task deadlines Di were set equal to their periods Ti .

• The stand-alone LO-criticality execution times all tasks

were given by Ci (LO) = Ui (LO) · Ti , and the stand-alone

HI -criticality execution times of HI -criticality tasks by

Cj (HI ) = Uj (HI ) ·Tj .

• Task resource sensitivity values X r
i were determined as

follows. The DRS algorithm was used to generate task

resource sensitivity utilization values V r
i , such that the total

resource sensitivity utilization was given by the Sensitivity

Factor SF (default SF = 0.25) times the target utilization

(i.e.
∑

∀i ∈Γx V
r
i = U · SF ), and each individual task resource

sensitivity utilization was upper bounded by the

corresponding task LO-criticality utilization,

i.e. V r
i ≤ Ui (LO). Each task resource sensitivity value was

then given by X r
i = V

r
i ·Ti .

• Task resource stress values Y ri were set to a fixed proportion

of the corresponding resource sensitivity value Y ri = X r
i ·RF ,

where RF is the Stress Factor (default RF = 0.5).

5.2 Experiments

The experiments considered systems with 2 or 4 cores, with a

different task set, generated according to the same parameters,

assigned to each core. The per core target utilizationU , shown on

the x-axis of the graphs, was varied from 0.025 to 0.975. For each

utilization value examined, 1000 task sets were generated for each

core considered (100 in the case of experiments using the weighted

schedulability measure [14]). In the experiments, a system was

deemed schedulable if and only if the different task sets assigned to

each of its cores were schedulable, i.e. if all of the tasks in the system

were schedulable. The experiments investigated the performance

of schedulability tests for the following schemes:

• Upper Bound High and Low (UBHL) [12]: This test checks

if all of the tasks are schedulable in normal mode and if all

of the HI -criticality tasks are schedulable in abnormal mode

ignoring the LO-criticality tasks. This equates to the test for

a hypothetical clairvoyant scheme discussed in [22]. (Black

lines on the graphs).

• Modified Adaptive Mixed Criticality (AMCR) [17]: See

section 4.4. (Red lines on the graphs).

• Original Adaptive Mixed Criticality (AMC) [12]: See section

4.3. (Blue lines on the graphs).

• Static Mixed Criticality (SMC) [11]: See section 4.2. (Green

lines on the graphs).

• No Mixed Criticality (NMC): See section 4.1. (Orange lines

on the graphs).

In each case, four variants of the tests were considered, the first

three corresponding to the context-independent -fc (dotted lines)

and context-dependent -D (dashed lines) and -R (solid lines)
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methods of accounting for cross-core contention and interference,

and the fourth, for comparison purposes only, assuming no such

interference -no (thin dot-dash lines).

Deadline Monotonic Priority Ordering [52] was used to assign

priorities, since the context-dependent -R tests are not compatible

with Audsley’s Optimal Priority Assignment algorithm [7], as

shown in [30, 31].

5.3 Results

The figures illustrating the results are best viewed in color.

In the first experiment, we compared the performance of the

various schedulability tests using the default parameters given in

Section 5.1. The Success Ratio, i.e. the percentage of systems

generated that were deemed schedulable, is shown for each of the

tests in Figure 1 for 2 cores, and in Figure 4 for 4 cores. The

relative performance of the various tests follows the dominance

relations discussed in Section 4.5. Observe, that for equivalent

tests, overall schedulability is reduced in the case of 4 cores

compared to 2 cores. This is due to the increased cross-core

contention and interference with more cores. Note, even when no

cross-core contention is considered (i.e. the thin dot-dash lines)

then schedulability is still reduced with 4 cores. This is because the

task sets on two extra cores must also be schedulable for the

overall system to be deemed schedulable.

Considering the four mixed criticality schemes, AMCR and AMC

substantially outperform both SMC and NMC, with SMC providing

only a small improvement over NMC. The reason for this is that

the robust timing guarantee R2 required by HI -criticality tasks

means that the schedulability of those tasks in abnormal mode is

the predominant factor in overall system schedulability. AMCR and

AMC enhance the schedulability of HI -criticality tasks in abnormal

mode by suspending releases of LO-criticality jobs, hence providing

a performance gain compared to both SMC and NMC, which both

continue to release jobs of LO-criticality tasks, impinging on HI -

criticality task schedulability. The small improvement that SMC

brings over NMC derives from the fact that LO-criticality tasks do

not have to be schedulable in abnormal mode.

In the second set of experiments, we used the weighted

schedulability measure [14] to assess schedulability test

performance while varying an additional parameter. In these

experiments, the other parameters were set to the default values

given in Section 5.1. In all of the weighted schedulability

experiments the relative performance of the different tests follows

the pattern illustrated in the first experiment, as dictated by the

dominance relationships.

The results of varying the Sensitivity Factor SF , from 0.05 to

0.95 in steps of 0.05, are shown in Figure 2. Recall that the

Sensitivity Factor determines the ratio of the total resource

sensitivity utilization to the total LO-criticality task utilization. As

expected, increasing the Sensitivity Factor, and hence the amount

of interference that tasks can be subject to due to cross-core

contention, results in a rapid decline in the weighted

schedulability measure for all of the tests that take cross-core

contention into account.

The results of varying the Stress Factor RF , from 0 to 1.8 in

steps of 0.1, are shown in Figure 5. Recall that the Stress Factor

determines the ratio of the resource stress for each task to its

resource sensitivity. Here, interference effective saturates once the

Stress Factor reaches 1.0. By then, the total resource stress Eri (t,y),

given by (5) or (6), emanating from each additional core tends to

exceed the total resource sensitivity Sri (t, x), given by (3). Hence,

the context-dependent -R and -D tests reduce to exactly the same

performance as the context-independent -fc test.

Observe that in Figure 2, the -R, -D, and -fc tests have very

similar performance when combined with SMC or NMC. The

reason for this is that since LO-criticality jobs continue to be

released in abnormal mode, overall schedulability depends

predominantly on the schedulability of the HI -criticality tasks in

that mode, hence the form of analysis used for LO-criticality tasks

has little bearing on the overall results. This is not the case with

AMC, AMCR, or the UBHL bound, where modest gains are

apparent when using the -R or -D tests for all tasks in normal

mode. The same behavior is evident in Figure 5, however, in that

case as the resource Stress Factor is reduced, the impact of

contention on LO-criticality tasks decreases, and the performance

advantage obtained using the context-dependent -R and -D tests

increases.

In Figure 5, when the resource Stress Factor is zero, the UBHL

bound combined with the context-dependent -R and -D tests

provides almost the same performance as the no contention case

(-no). This is because the HI -criticality tasks considered alone are

easily schedulable in abnormal mode, and hence system

schedulability according to the UBHL bound is predominantly

influenced by schedulability in normal mode. This is not the case

with AMC, since although LO-criticality tasks are prevented from

releasing further jobs in abnormal mode, job releases prior to that

point still impinge upon HI -criticality task schedulability in

abnormal mode. AMCR shows a significant advantage over AMC

when the resource Stress Factor is small. This is because the

difference between Ri (LO) used in (11) and R∗i (LO) used in (10) is

amplified in this case, resulting in fewer jobs of LO-criticality tasks

impinging upon HI -criticality task schedulability under AMCR.

The results of varying the Criticality Proportion CP , from 0.0 to

1.0 in steps of 0.1, are shown in Figure 3.With noHI -criticality tasks,

UBHL, AMCR, AMC, SMC, and NMC all reduce to the same (-no,

-R, -D, or -fc) schedulability test and hence the same performance.

At the other extreme, when there are only HI -criticality tasks and

since these tasks require the robust timing guarantees afforded by

a context-independent test, the set of -R, -D, and -fc tests for each

scheme all reduce to the same performance. Additionally, since

there are only HI -criticality tasks, all of the schemes reduce to

exactly the same schedulability test, and so all of the lines for tests

where cross-core contention is considered meet at a single point.

In Figure 3, the performance of the SMC and NMC tests

improves as a final HI -criticality task is added and there are no

longer any LO-criticality tasks present. This stems from the way in

which HI - and LO-criticality utilization values are generated. The

total HI -criticality utilization of the HI -criticality tasks is precisely

controlled by the task set generation process, as is the total

LO-criticality utilization over all of the tasks. However, the

LO-criticality utilization of a single LO-criticality task is not. With

SMC and NMC, schedulability effectively depends on the total

utilization in abnormal mode, i.e. the sum of the LO-criticality
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Figure 1: Success Ratio: Varying task set utilization, 2 cores.

Figure 2: Weighted Schedulability: Varying Resource

Sensitivity, 2 cores.

Figure 3: Weighted Schedulability: Varying the Criticality

Proportion, 2 cores.

Figure 4: Success Ratio: Varying task set utilization, 4 cores.

Figure 5: Weighted Schedulability: Varying Resource Stress,

2 cores.

Figure 6: Weighted Schedulability: Varying the Criticality

Factor, 2 cores.
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utilization of the LO-criticality tasks and the HI -criticality

utilization of the HI -criticality tasks, and this can be worse when

almost but not all of the tasks are of HI -criticality.

In Figure 3 with the UBHL bound, weighted schedulability

remains roughly constant until the proportion of HI -criticality

tasks exceeds 50%. This is because the default Criticality Factor is

2.0, hence when more than 50% of the tasks are HI -criticality, the

increased utilization of HI -criticality tasks in abnormal mode

becomes the dominant factor influencing schedulability. Before

then, the total LO-criticality utilization is the dominant factor and

that does not vary with the Criticality Proportion.

The results of varying the Criticality Factor CF , from 1.0 to 4.0

in steps of 0.2, are shown in Figure 6. Observe that schedulability

according to AMCR, AMC, SMC, and NMC, progressively

decreasesas the Criticality Factor increases, so increasing the

utilization of HI -criticality tasks in abnormal mode. This trend is

not evident with the UBHL bound, as the default Criticality

Proportion of HI -criticality tasks is 0.2, and hence even with

CF = 4.0 the increased utilization of HI -criticality tasks in

abnormal mode is still not the dominant factor influencing system

schedulability, rather the total LO-criticality utilization is the

dominant factor and that does not vary with the Criticality Factor.

Overall, the results for the modified AMCR scheme provide a

useful improvement over their counterparts for the original AMC

scheme, shifting the schedulability guarantees closer to the

hypothetical UBHL upper bound that ignores the effects of the

mode change transition. As expected, both AMCR and AMC

significantly outperform SMC and NMC.

6 CONCLUSIONS

The main contributions of this paper are as follows: (i) The

integration of mixed criticality concepts into the MRSS [30, 31]

multi-core system model that characterizes cross-core contention

and interference via task resource stress and sensitivity. (ii)

Consideration of the different levels of assurance needed in mixed

criticality systems, specifically the need to provide HI -criticality

tasks with robust timing guarantees. (iii) Derivation of

schedulability analysis for four mixed criticality scheduling

schemes (NMC, SMC, AMC, and AMCR), accounting for resource

contention and interference on a partitioned multi-core processor,

providing appropriate timing guarantees for both HI - and

LO-criticality tasks.

The key observations are as follows. Firstly, as expected, the

significant performance advantages that the AMCR and AMC

schemes hold over the simple SMC and NMC schemes are retained

when cross-core contention and interference is included via a

mixed criticality multi-core resource stress and sensitivity model.

Secondly, utilizing more precise context-dependent schedulability

tests to bound the interference on LO-criticality tasks results in

useful performance improvements, while still ensuring that

HI -criticality tasks are provided with robust timing guarantees.

Finally, it is interesting to note that while the AMCR and AMC

schemes have identical performance in terms of schedulability

when cross-core contention is not considered, once such

interference is included, then the AMCR scheme dominates AMC.
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