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A B S T R A C T   

Dialect variation spans different linguistic levels of analysis. Two examples include the typical phonetic real-
isations produced and the typical range of intonational choices made by individuals belonging to a given dialect 
group. Taking the modeling principles of a specific automatic accent recognition system, the work here char-
acterises and observes the variation that exists within these two levels of analysis among eight Arabic dialects. 
Using a method that has previously shown promising performance on English accent varieties, we first model the 
segmental level of analysis from recordings of Arabic speakers to capture the variation in the phonetic realisa-
tions of the vowels and consonants. In doing so, we show how powerful this model can be in distinguishing 
between Arabic dialects. This paper then shows how this modeling approach can be adapted to instead char-
acterise prosodic variation among these same dialects from the same speech recordings. This allows us to inspect 
the relative power of the segmental and prosodic levels of analysis in separating the Arabic dialects. This work 
opens up the possibility of using these modeling frameworks to study the extent and nature of phonetic and 
prosodic variation across speech corpora.   

1. Introduction 

Many recent approaches to automatic accent recognition have 
depended heavily on machine learning techniques, falling in line with 
trends across the breadth of speech technology (Najafian et al., 2018; 
Shon et al., 2018). Usually though, these approaches do not yield accent 
recognition rates that are comparable with the low error rates we see in 
related areas like automatic speaker recognition (Snyder et al., 2017). 
Additionally, these approaches demand enormous, and therefore often 
unattainable, datasets to develop working systems. One way of over-
coming the need for very large datasets in automatic accent recognition 
is to be selective in its development and inform the system of the specific 
features it should use to model speakers’ accents. The York 
ACCDIST-based automatic accent recognition system (Brown, 2015; 
Brown and Wormald, 2017) is an example of a system that takes this 
more targeted approach. Based on the ACCDIST metric (Huckvale, 2004, 
2007), Y-ACCDIST models encapsulate only a subset of features that are 
expected to represent a speaker’s production of the phoneme inventory. 
In doing so, Y-ACCDIST has a lowered reliance on machine learning 
techniques that would otherwise involve the extraction of many features 

from right across the speech sample, which would then be used to derive 
a subset that is estimated to comprise the most useful features for the 
task at hand. As implemented to date, Y-ACCDIST targets the phonetic 
realisations of the individual vowel and consonant segments in the 
language and compares one speaker’s set of realisations with the cor-
responding sets of other speakers. This comparison gauges which group 
of speakers (grouped by accent) the speaker is most similar to. The first 
experiments in this paper demonstrate the performance of this 
“segmental” version of the Y-ACCDIST system on speech recordings 
taken from speakers of eight Arabic dialects. These experiments simul-
taneously show its use as an automatic dialect classification system and 
as a way of observing variation among accents and dialects. 

While attempting to isolate the segmental level has its advantages (as 
it is the level of analysis that is expected to be most valuable to dialect 
classification), we are aware that there are other potentially useful 
features within the speech signal that this approach overlooks. There is 
growing evidence of accent- or dialect-specific intonation patterns in a 
number of languages. For example, computational analysis of data from 
the Intonational Variation in English (IViE) project in seven different 
British English varieties showed differences in the shape and 
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distribution of f0 contours across dialects (Grabe et al., 2007). A key 
contribution of this paper is to ascertain whether the modeling pro-
cedure in the standard segmental form of the Y-ACCDIST system can also 
be applied to the prosodic level of analysis. This will then enable us to 
compare the contribution of segmental and prosodic cues to a specific 
dialect classification task, while removing other potentially distracting 
information embedded within the speech signal. 

The dataset that has been used in the experiments presented in this 
work is the Intonational Variation in Arabic (IVAr) corpus (Hellmuth and 
Almbark, 2019). There are other, larger, speech corpora available that 
would allow for research to be conducted on different Arabic dialects. 
The Multi-Genre Broadcast (MGB-5) challenge dataset (Ali et. al., 2019) 
is one such example which consists of hundreds of hours of data from 17 
countries, a subset of which has been labelled for dialect group by 
human annotators. Despite MGB-5′s attractive size, there are a number 
of reasons why the IVAr corpus is better suited to the present study. 
Firstly, Ali et. al. (2019) concede that there will be labelling errors as a 
result of their dataset construction method. Much of the metadata is 
often led by the country of the YouTube channels, for example, from 
which the speech data have been identified. Dialect labels may therefore 
be estimations at times, bringing in noise to any dialect research. The 
IVAr corpus metadata, on the other hand, are extremely controlled and 
reliable, allowing us to draw more robust findings. Secondly, the speech 
samples in the MGB-5 dataset are generally too short. MGB-5 speech 
samples are categorised according to their durations: short (<5 s), me-
dium (5–20 s) and long (>20 s). This distribution of sample durations is 
insufficient for the methods implemented in the present study, where, 
ideally, we would be using at least one minute of speech per speaker. 
Thirdly, the IVAr corpus was collected in such a way that elicited speech 
for the purpose of prosodic research (i.e. a carefully selected and 
informed set of sentences and speech tasks that prompt intonation pat-
terns of interest). The present study would not be possible without such 
control in the data construction. Lastly, the IVAr corpus has already had 
a substantial amount of prosodic analysis conducted on it (Hellmuth, 
2018). This enables us to interpret the performance of the modeling 
procedure in the context of prosodic analysis that has been conducted 
using more traditional analytical methods. These kinds of analytical 
procedures have typically involved manual qualitative labelling of 
samples of data using a system of prosodic annotation such as the Tones 
and Break Indices (ToBI) system (Beckman and Elam, 1997; Beckman 
et al., 2005) or more recent systems proposed for use across languages 
(Hualde and Prieto, 2016), as well as quantitative approaches such as 
visualisation and statistical analysis of f0 contour shapes (Hellmuth, 
2018). 

Recently, a more innovative way of capturing prosodic variation has 
been proposed. Elvira-García et al. (2018) introduced the ProDis dia-
lectometric tool for measuring prosodic distances between linguistic 
varieties based on acoustic measurements. ProDis involves logging the 
correlations between the pitch contours of specified sentences produced 
by speakers, and then comparing these correlations among a speaker set 
representing a range of languages. This provides a dialectometric 
method that aims to reveal prosodic similarities and differences between 
linguistic varieties. The authors motivate their work by pointing out that 
efforts have been made to measure dialect and language differences by 
making phonological or lexical comparisons, but that we lack an 
equivalent that makes use of prosodic information. Their demonstration 
of using ProDis shows its application to a subset of AMPER (Atlas Mul-
timédia Prosodique de l’Espace Roman) (Contini and Romano, 2002), 
which is an international effort to capture data that represents a full 
range of Romance linguistic varieties. Within their work, they applied 
the ProDis tool to 7 dialects from across 5 Romance languages. Using 
ProDis, Elvira-García et al. (2018) were able to perform cluster analyses 
and associated data visualisations on these data, followed by some 
qualitative evaluation. For example, they produced a dendrogram of 

their ProDis data representations. One of their clusters was neatly made 
up of varieties that are largely spoken in Sardinia, and they were able to 
provide an accompanying example of the characteristic intonation 
contour shape of yes/no-questions produced by speakers of those 
varieties. 

Similarly, one version of the Y-ACCDIST system has been presented 
as another way to quantify differences among accent varieties, by 
measuring and modeling phonetic realisational differences of segments, 
demonstrated in Brown and Wormald (2017). Like Elvira-García et. al.’s 
study above, Brown and Wormald were able to draw observations from a 
dendrogram of Y-ACCDIST representations of different speakers in a 
speech dataset. In their work, they looked at the accent differences be-
tween Punjabi-English and Anglo-English speakers in Bradford and 
Leicester in England. One of the pertinent patterns to emerge was that 
there were some clusters that grouped the speakers according to the 
community centre they attended, which perhaps went beyond the types 
of grouping that the authors originally expected. As well as the cluster 
analyses, Brown and Wormald were also able to perform some feature 
selection analyses (using the Y-ACCDIST models as a framework of 
features) which indicated the vowels and consonants that were esti-
mated to separate the accent varieties in the dataset. This analysis 
pointed towards the GOAT vowel and /ɹ/ as features that discriminated 
these accent varieties, which corresponded with some of the more 
traditional acoustic analysis conducted in Wormald (2016). 

Another ACCDIST-based system was demonstrated to observe accent 
variation among a larger number of accents from across the British Isles 
in Ferragne and Pellegrino (2010), which also took advantage of the 
variation in phonetic realisations. In their study, Ferragne and Pelle-
grino took controlled wordlist data and created an ACCDIST-based 
model of the vowel systems of 261 speakers who represented 13 ac-
cents from the Accents of the British Isles (ABI) corpus (D’Arcy et al., 
2004). They also found that these models yielded linguistically expli-
cable patterns in visualisations of the data. For example, they found a 
very neat split in a cluster analysis between the Scottish, Irish and En-
glish accent varieties in the corpus. 

By implementing a Y-ACCDIST-based framework to model speakers’ 

intonational inventories, in this work we apply a similar modeling 
procedure to that presented in Elvira-García et al. (2018). However, by 
implementing a framework that has also been used to capture segmental 
phonetic realisational differences between different accent varieties, we 
can draw comparisons between how prosodic information and 
segmental information distinguish linguistic varieties under investiga-
tion. Additionally, by modeling numerous speakers per dialect group, 
we have an opportunity to train a dialect classification system on the 
prosodic information alone to be able to observe how much this single 
level of analysis could contribute to an accent or dialect classification 
task. Although the dataset used to demonstrate ProDis in Elvira-García 
et. al. was very large, the number of speakers per variety was very small 
(less than 5), and so did not provide the opportunity for an experiment of 
the kind presented here. 

Until the current work, Y-ACCDIST had only been tested on datasets of 
speech in English. We first demonstrate its performance in distinguishing 
between dialects of Arabic in its original segmental configuration (i.e. 
targeting the phonetic realisations of different segments), and we show 
results on both controlled read speech and spontaneous speech. We then 
move on to explore the Y-ACCDIST-based framework for modeling the 
prosodic variation among accents, allowing us to compare the different 
value that segmental and prosodic levels of speech analysis bring to the 
dialect recognition task. We also delve into the inner workings of the 
machine learning within the system to determine whether we can iden-
tify particularly useful features within the segmental and prosodic 
models that can discriminate the Arabic dialects. All the analysis tasks 
conducted for this study are interpreted in the context of the existing 
prosodic analysis conducted on these same data. 
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In summary, this paper addresses the following broad objectives:  

• to observe the Y-ACCDIST system’s recognition performance on 
Arabic dialect varieties and interpret the results in the context of 
existing linguistic analyses of the data;  

• to compare the performance of the Y-ACCDIST system on read 
speech and spontaneous speech on the same dialect classification 
task;  

• to transfer Y-ACCDIST’s modeling technique from the segmental 
level of analysis to the prosodic level and compare dialect classifi-
cation performance between these two levels of analysis. 

2. Arabic dialects 

2.1. Overview of Arabic dialects 

Arabic is one of the world’s largest languages, spoken as a native 
language by at least 300 million speakers (Owens, 2013), yet consisting 
of a diverse array of spoken vernaculars which vary from each other at 
all levels of linguistic analysis – from phonetics and phonology to 
morphosyntax and lexis (Retsö, 2013). There is a clear divide between 
western ‘maghreb’ dialects spoken in North Africa and eastern ‘mashreq’ 

dialects spoken elsewhere (Behnstedt and Woidich, 2013), such that 
human listeners can distinguish these two broad groups based solely on 
prosodic information (Barkat et al., 1999). A commonly used 
geographical approach to grouping Arabic dialects, based on shared 
linguistic features within groups, results in the following five-way 
grouping, from west to east (Versteegh, 2014): dialects of North Africa 
(including Morocco, Algeria, Libya and Tunisia); Egyptian dialects 
(including Egypt and Sudan); Levantine dialects (including Jordan, 
Lebanon, Syria and Palestine); Mesopotamian dialects (including Iraq); 
and dialects of the Gulf/Arabian Peninsula (including Saudi Arabia, 
Kuwait, Bahrain, Qatar, Oman and Yemen). This five-way split has been 
widely implemented in computational approaches to the Arabic dialect 
classification task (e.g. Biadsy et. al., 2009). Nevertheless, the degree of 
dialectal variation within each of these five groups is considerable, with 
additional important dialectal discontinuities due to historical contact 
and migration, social categories and lifestyle (with a common broad 
divide between dialects which are sedentary/urban versus nomadi-
c/rural in origin) as well as religious or sectarian affiliation (Behnstedt 
and Woidich, 2013). As a result of these cross-cutting factors contrib-
uting to dialectal variation, Arabic is frequently described as a ‘mosaic’ 

of dialects. ‘Successful’ dialect classification for Arabic would ideally be 
able to tackle different degrees of granularity, both between and within 
the broad regional groupings that are usually taken as targets. 

2.2. Automatic classification of Arabic dialects 

As indicated in the Introduction, many approaches to automatic di-
alect identification have depended heavily on machine learning ap-
proaches, usually inspired by the techniques tested for Language 
Identification (LID). These approaches have demanded vast quantities of 
data for training. Biadsy et al. (2009) applied a Phone Recognition fol-
lowed by Language Modeling (PRLM) approach to Arabic dialect clas-
sification, which was first introduced by Zissman (1996) for the purpose 
of LID. As the name suggests, PRLM starts by feeding a speech sample 
through a phone recognition system to establish an estimated sequence 
of phones in the sample. This estimated sequence is then compared 
against the phone sequences and distributions computed for the 
different linguistic varieties in the reference system (i.e. the training 
data). PRLM therefore depends on the different varieties we are dis-
tinguishing between to have phone sequences and distributions that are 
separable. For LID, this seems to achieve reasonable performance, but as 
the varieties we are distinguishing between become more and more 
similar (i.e. dialects and then accents), this approach is expected to 
become less effective. In their work, Biadsy et al. (2009) reported that 

the PRLM approach achieved 81.6% accuracy for an identification task 
involving speakers of five Arabic dialect groups (using the commonly 
used grouping described in Section 2.1 above). 

The PRLM approach is the more traditional one for this sort of task. 
Researchers have since applied classifiers based on neural networks to 
the problem of Arabic dialect recognition (Najafian et al., 2018; Shon, 
et. al., 2018). These works follow in the footsteps of developments in 
speaker recognition research, where a new method of modeling the 
variation among different speakers in the form of “embeddings” was 
proposed, in an effort to improve on the performance of i-vector-based 
systems (Snyder et al., 2017). Such methods demand vast amounts of 
training data (ideally, hundreds of speech samples per dialect group). 
Both of the studies mentioned above which apply the neural network 
based approach to Arabic dialect identification used the Multi-Genre 
Broadcast 3 (MGB-3) dataset, which offers 63.6 hours of training data 
across the five main Arabic dialect groups. Shon et al. (2018) achieved 
73% accuracy using a neural network based system, outperforming the 
i-vector systems they compared on the same task. 

In this paper, our experiments will be conducted on a corpus of 
speech recordings taken from 96 speakers spanning eight Arabic dialect 
categories. We therefore present ourselves with a dialect classification 
problem which has a fraction of the data to train a system on. In addi-
tion, we assume that this is a more difficult problem in that we have 
increased the level of similarity between dialects by having eight dialect 
categories, rather than five broader ones. The Y-ACCDIST-based method 
we are employing is much better suited to a dataset of this size and 
nature (as demonstrated in Brown (2016)). 

2.3. The IVAr corpus 

The core Intonational Variation in Arabic (IVAr) corpus contains 
recordings from 12 speakers each in eight spoken dialects of Arabic (96 
speakers in total), collected on location in North Africa and the Middle 
East (Hellmuth and Almbark, 2019).1 IVAr provides at least one dataset 
from each regional dialect group, with more than one dataset for the 
more linguistically diverse regional groups (Levantine/Gulf/North Af-
rica). The corpus thus provides for an eight-way dialect classification 
task, across the geographically defined dialects listed in Table 1. 

Use of IVAr allows us to demonstrate the dialect identification task at 
a more granular level than is typical in the field, since most other work 

Table 1 
Dialects represented in the Intonational Variation in Arabic Corpus.  

Code Dialect Recording 
location 

Regional group 

moca Moroccan Arabic 
(Casablanca) 

Casablanca, 
Morocco 

North Africa 

tuns Tunisian Arabic (Tunis) Tunis, Tunisia  
egca Egyptian Arabic (Cairo) Cairo, Egypt Egyptian 
joka Jordanian Arabic (Karak) Karak, Jordan Levantine 
syda Syrian Arabic (Damascus) Amman, Jordan  
irba Iraqi Arabic (Muslim 

Baghdadi) 
Amman, Jordan Mesopotamian 

kwur Kuwaiti Arabic (Urban) Kuwait City, 
Kuwait 

Gulf/Arabian 
Peninsula 

ombu Gulf Arabic (Buraimi) Buraimi, Oman   

1 The full corpus comprises 10 datasets across eight dialects; that is, for one of 
the eight dialects, Moroccan Arabic, there are two additional datasets: one with 
bilingual speakers of Moroccan Arabic and Tashlhiyt Berber aged 18–35 (mobi), 
and one with Moroccan Arabic speakers aged 40–60 (moco). These two addi-
tional datasets are not investigated in the present study. 
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on dialect identification for Arabic attempts at most a five-way regional 
classification (due, in turn, to the fact that most large Arabic corpora 
provide datasets defined at a regional level only). 

The corpus contains speech elicited in a range of speech styles, from 
scripted read speech to unscripted semi-spontaneous speech. The 
scripted materials were presented to participants printed in Arabic 
script, using the informal spelling conventions of each local dialect 
(rather than following the norms of standard Arabic); in this paper we 
use data elicited by means of a scripted dialogue (sd) performed as a role 
play between pairs of speakers and a monologue narrative folk tale (sto). 
The spontaneous speech data used in this paper comprise a monologue 
folk tale retold from memory (ret), an information-gap map task per-
formed in dialogue between pairs of speakers (map), and free conver-
sation between pairs of speakers (fco). Further information about the 
instruments used to elicit the data is available at ivar.york.ac.uk/. 

The participants in each location were recruited through a local 
fieldwork representative, typically through an educational institute such 
as a university or private language school. Participants’ ages ranged 
from 18 to 35 years. All recordings took place in the city in which par-
ticipants were resident, and recruitment was carefully monitored to 
ensure participants were speakers of the target dialect and had been 
raised in the target city. The only exception was speakers of Syrian and 
Iraqi Arabic, who were recruited in Amman, Jordan due to the pre-
vailing security situation in Syria and Iraq at the time of recording. 
Detailed participant metadata is provided with the published corpus. All 
participants received an information sheet in Arabic and provided 
informed written consent prior to recording. 

Participants were recorded in pairs using head-mounted Shure 
SM10A dynamic microphones directly to .wav format on a Marantz 
PMD660/620 digital recorder at 44.1 kHz 16 bit, with each speaker 
recorded to a separate stereo channel which can be split to analyse 
speakers separately. Recording sessions were run by a local fieldworker 
who was a native speaker of the same dialect. All of the tasks, scripted 
and unscripted, were performed in a single recording session, with the 
same interlocutor and under the same recording conditions. 

The spontaneous speech data were orthographically transcribed by 
native speaker research assistants using a romanised phonetically 
transparent transliteration system adapted for each dialect; these tran-
scriptions are available as part of the published corpus. For the read 
speech, the scripts used during data collection were transcribed into the 
same transliteration system, and are also made available with the 
corpus. For the present project we created a merged dictionary of all of 
the dialect-specific forms used in transcripts for read and spontaneous 
speech across all dialects; a native speaker of Arabic proficient in 
Modern Standard Arabic (MSA) created a transcription of each dialect- 
specific form using a common MSA phone set to create the merged 
dictionary. This was based on the accepted cognate sound in MSA of 
dialect-specific variants. For example, the name of the main character in 
the folk tale retold from memory is variously produced in the dialects as 
[ʒuħa], [dʒuħa] or [ɡuħa] 〈 احج 〉 and appears in the merged dictionary as 
pronounced in MSA i.e. as [ʒuħa]. We intend on publication of the 
present paper to make this merged dictionary available as an appendix 
to the main published IVAr corpus. 

As already discussed in the Introduction, larger speech datasets of 
Arabic dialects exist, such as MGB-3 and MGB-5. However, such datasets 
have not been collected in a way that allows us to explore the specific 
research questions in this paper that involve analysing prosodic varia-
tion as well as segmental variation. 

3. The Y-ACCDIST system 

Y-ACCDIST is a text-dependent system, which requires a transcrip-
tion to be processed alongside the audio sample we are classifying. 

However, a text-dependent system here is defined as one that requires a 
transcription, but the speech can be spontaneous (as discussed in Brown 
(2018)). In some works, text-dependent systems only refer to those 
where the spoken content of the test samples and the training samples 
match. This is one of the key features that separates Y-ACCDIST from 
other ACCDIST-based recognisers found in Huckvale (2004, 2007) and 
Hanani et al. (2013). The initial experiments will allow us to compare 
the performance of this approach on the IVAr dataset on both read 
speech (where the spoken content is matched across training and test 
data), and spontaneous speech (where the spoken content does not 
match across speech samples). 

3.1. System description 

For each speaker in the IVAr dataset, we take a speech sample and a 
transcription and pass them through a forced aligner (developed in- 
house using the Hidden Markov Model Toolkit (HTK) (Young et al., 
2009)) to estimate where each phone in the sequence is produced in the 
sample. Given a speech recording and a phonemic transcription of that 
recording, the aligner extracts acoustic features from across the speech 
sample and estimates where each phone is in the signal, i.e. producing 
an estimated time alignment of the phone sequence. Some forced 
aligners, particularly those that are widely available, have ready-trained 
acoustic models for a given language that may provide multiple options 
for a phonemic transcription of a given word. The specific phone labels 
attributed to a speech sample will therefore be partly determined by the 
acoustics of the segments in the speech sample, and how they compare 
against the pre-trained acoustic models of the forced aligner. For the 
present study, however, we created a bespoke lexicon containing all 
lexical items in the analysed data subset (described in Section 4.1), 
based on the phoneme inventory of Modern Standard Arabic (MSA). To 
achieve this, we generated a cross-dialectal lexicon from the 
dialect-specific transcripts made available with the IVAr corpus, which 
was manually edited by an Arabic speaker to replace dialect-specific 
phoneme labels with MSA phoneme labels; for example, a 
dialect-specific entry for the word ‘heart’ such as [galb] or [2alb] ap-
pears in the bespoke lexicon as [qalb]. We then used the IVAr dataset 
itself to train speaker-specific acoustic models for the MSA phoneme 
categories in the bespoke lexicon, which the aligner used to estimate 
where each phoneme is in the sample. We initialised the models by 
“flat-starting”; that is, we imposed evenly spaced notional phoneme 
boundaries on the speech samples as a starting point. We then repeat-
edly applied an Expectation-Maximization algorithm which iteratively 
adjusted the placement of these boundaries to more accurately segment 
the sample according to phone segments. More reliable boundaries 
should be reflected in the production of increasingly stable acoustic 
models during this process. Performing forced alignment in this way was 
possible because we had enough speech per speaker to do so. This allows 
us to impose just one set of MSA symbols on the range of different 
productions that different speakers may produce. This lays the founda-
tions for our method of dialect classification. 

Using these estimated time boundaries between phones in the 
sequence, a vector of Mel Frequency Cepstral Coefficients (MFCCs) 
(Davis and Mermelstein, 1980) was extracted at the midpoint to 
acoustically represent each phone. The MFCCs used in this work consist 
of 12 coefficients. Larger MFCC vectors have been trialled in past work 
(Brown, 2014), but 12 coefficients were shown to provide sufficient 
information. An average MFCC was calculated for each phoneme cate-
gory in MSA from these midpoint acoustic features. The result of this is 
that we have the phoneme inventory represented by average acoustic 
features (one per phoneme) for the speaker. By using midpoint features, 
this approach overlooks temporal differences that might exist between 
dialects. This is a factor to keep in mind when interpreting the results. 
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Using this set of averaged acoustic features, we calculated the 
Euclidean distance between all phoneme-pair combinations that are 
possible within the phoneme inventory. This was achieved by 
computing the Euclidean distances between all the possible pairs of 
average MFCC vectors that represent each phoneme. We can organise 
this in a matrix (for clarity, this is illustrated below in Fig. 1). 

The resulting set of Euclidean distances is expected to encapsulate 
the range of phonetic realisations that are associated with a speaker’s 
pronunciation system (or accent). This matrix of distances is our model 
of a speaker’s accent. Using British English accents as an example, 
typical speakers in Northern England will produce similarly realised 
vowels for FOOT and STRUT (both realised as [ʊ]), whereas typical 
speakers in the South of England will produce different vowel realisa-
tions (FOOT would be produced as [ʊ], while STRUT would be more 
likely to be produced as [ʌ]). A parallel example for Arabic would arise 
for consonants; an Arabic speaker from Egypt will typically realise the 
target sound 〈 〈 ق [q] in the same way as target 〈 〈 ء [ʔ], whereas an 
Arabic speaker from Morocco will more frequently produce these two 
target sounds ([q]~[ʔ]) as two separate categories. One of the Euclidean 
distances in the matrix is expected to reflect this accent-specific feature 
of the speaker. An entire matrix is therefore expected to contain 
numerous accent-specific features of this kind. Simultaneously, by 
computing intra-speaker distances in this way, we should eliminate 
other information embedded within the speech signal that does not 
necessarily assist in the accent classification task. For example, the 
distance between the FOOT and STRUT vowels for a typical Northern 
male speaker and a typical Northern female speaker should be equally 
small; similarly, the distance between targets [q]~[ʔ] will all be equally 
small for a typical Egyptian female speaker and a typical Egyptian male 
speaker. 

We performed the above procedure on the speech samples and 
transcriptions of all our training speakers. The resulting speaker-specific 
matrices are then fed as features into a Support Vector Machine (SVM) 
classifier (Vapnik, 1998). It is also possible to make use of Deep Neural 
Networks (DNNs) as classification mechanisms in these sorts of experi-
ments. However, DNNs are much more suited to extremely large data-
sets of thousands of data samples. SVMs also tend to require larger 
datasets, but they are not as “data-hungry” as DNNs. 

Within the SVM, which acts as multi-dimensional space, a one- 
against-the-rest rotation is implemented for classification. In turn, each 
accent group of training speakers becomes the ‘one’, while the speakers 
for all other accent categories are collapsed into a single group that form 
‘the rest’. An optimal hyperplane (i.e. a separating boundary within 
multidimensional space) is computed on each rotation to achieve the 

best separation between these two groups of speakers.2 To classify an 
unseen speaker, we form a matrix model for that speaker as described 
above, and this model is presented to the SVM on each rotation. The 
accent category of the unseen speaker is determined by the clearest 
margin it forms with the hyperplane in each of these rotations. 

4. Experiments 

A sequence of experiments was conducted in the commonly imple-
mented leave-one-out cross-validation setup, where each speaker became 
the test speaker, in turn, while the remaining speakers in the dataset 
were used to train the Y-ACCDIST system. This was in an effort to 
maximise the number of training speakers. 

4.1. Segmental modeling 

The above process was conducted for read speech recordings from 
the speakers (where speakers were asked to read the same scripted 
dialogue and story) and also spontaneous speech as a comparison of 
performance on the two modes of speech. As we pointed out above, a 
transcription must accompany the recordings. Most, but not all, 
speakers’ spontaneous speech samples were orthographically tran-
scribed when these experiments were performed. For these experiments, 
we have therefore used data for both read speech and spontaneous 
speech experiments from a subset of the speakers (reduced from 96 
speakers to 86 speakers). This results in an imbalance in the number of 
speakers for different dialect groups, though an even gender balance was 
retained within each group. Table 2 shows the number of speakers per 
dialect group in our analysed subset, along with the volume of data in 
minutes used in the experiment (with silences removed), by dialect, 
gender and speech style. 

Table 3 provides the means and standard deviations of the amount of 
speech (in seconds) per speaker used in model training and/or testing in 
this study. 

We present the overall results and their corresponding confusion 
matrices in the subsections below. 

4.1.1. Read speech 
The read speech data used for these experiments come from a 

scripted role-play dialogue which was designed to elicit a number of 
different sentence types, including declarative statements (dec), yes/no- 
questions (ynq), wh-questions (whq) and coordinated questions (coo, 
also known as alternative questions, of the form “is it X or Y?”). The 
sentences were designed to control the segmental content and prosodic 
structure of the last lexical item in each utterance, so that it contained 
mostly sonorant sounds (to facilitate pitch tracking) and the position of 
the stressed syllable was systematically varied over the last three syl-
lables of the word. A set of sample yes/no-questions elicited in one di-
alect (here, Jordanian Arabic) are provided in Table 4. 

For the story task participants read a monologue narrative folk-tale 
‘Guha and the banana seller’, adapted from a story in Abdel-Massih 
(2011) and adjusted to contain appropriate lexical and grammatical 
forms for each target dialect. The story is typically realised by speakers 
in 40–45 prosodic phrases or breath groups. As noted above all scripted 
material was presented in Arabic script using local spelling conventions. 

Although considerable effort went into making the reading material 

Fig. 1. A demonstration of how a speaker-specific matrix is calculated with the 
whole segmental inventory from [q] to phoneme n. The ‘0’/‘x’ symbols repre-
sent the Euclidean Distance for that pair. 

2 While SVMs can be very useful in classification problems, they are sus-
ceptible to ‘overfitting’, particularly on moderate-sized datasets. In these ex-
periments, while overfitting is a risk, we have used a linear kernel, and have 
also set the regularization parameter to tolerate some errors during training. 
The controlled nature of the dataset also mitigates against overfitting as it 
provides less “noise” and therefore fewer overfitting opportunities.  

3 A key for the symbols used can be found here: https://reshare.ukdataserv 
ice.ac.uk/852878/15/transliteration.pdf 
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as comparable as possible across dialects, the scripts read by speakers 
across dialects did not necessarily match word-for-word. This is because 
certain words are simply not shared across dialects so there is some 
lexical and grammatical variation across speech samples. We acknowl-
edge that this may have weighted the result to some extent in that a 
small number of the phones were produced in specific phonological 
environments and this varies according to dialect. However, we do not 
expect this to be the leading factor in determining accent as we are 
cutting out individual phonemes and taking acoustic values from the 
midpoints of these segments. 

Using the read speech data, the Y-ACCDIST system achieved 95.3% 
correct. The accompanying confusion matrix is presented in Table 5. 

The least successful result in this experiment was for the Syrian group 
of 6 speakers, 3 of whom were identified as Jordanian. We note that all 
of the Syrian speakers were resident in Jordan at time of recording. 

4.1.2. Spontaneous speech 
Using the spontaneous speech data for modeling, the Y-ACCDIST 

system achieves 77.9% correct (67/86). The accompanying confusion 
matrix is presented in Table 6. 

We should also note that for the spontaneous speech condition, 
speakers did not necessarily produce the same quantity of speech (du-
rations of speech per speaker generally ranged from 4 to 8 min), and so 
there is variability across the dataset in this respect. 

From the above two results, we can get an indication of the detriment 
to performance that content-mismatched data has. This is because the 
different phone tokens are produced in different environments which is 
likely to introduce an additional element of variability that is not present 
in the read speech condition. We should also bear in mind that there is a 
smaller number of speakers available for training the system for some 
dialect categories which is also likely to impact on the result. 

Table 2 
Number of speakers per accent category in the data subset, with total duration (rounded up to the nearest whole minute) of speech data used in training and/or testing 
(silences removed).    

Speakers Scripted data (mins) Unscripted data (mins) 
Dialect Group Code Female Male Female Male Total Female Male Total 
Egyptian (Cairo) egca 4 4 15 12 26 15 7 20 
Iraqi (Muslim Baghdadi) irba 6 6 15 13 28 21 15 36 
Jordanian (Karak) joka 6 6 15 15 30 21 17 37 
Kuwaiti (Urban) kwur 6 6 14 14 28 18 23 41 
Moroccan (Casablanca) moca 6 6 14 14 29 21 44 65 
Gulf (Buraimi, Oman) ombu 6 6 16 15 31 18 12 30 
Syrian (Damascus) syda 3 3 17 15 32 12 17 29 
Tunisian (Tunis) tuns 6 6 14 13 27 23 21 44  

Table 3 
Mean/standard deviation of speech in seconds per speaker in the data subset by 
speech task.   

Speech task Mean amount of 
speech per 
speaker 
(seconds) 

Standard 
deviation per 
speaker 
(seconds) 

Read Speech 
(scripted) 

Story 72.09 10.74  

Read sentences 73.36 9.64  
Total (read) 145.45 16.54     

Spontaneous 
Speech 
(unscripted) 

Free 
conversation 

77.28 46.72  

Map task 70.01 59.64  
Retold folk tale 65.11 17.26  
Total 
(spontaneous) 

212.41 102.48  

Table 4 
Sample set of yes/no questions (in joka) elicited using the scripted dialogue.  

Code Target sentence  
ynq1 ruħt l-nnaːdi l-’jamani Did you go to the Club Yemeni? 
ynq2 l-zawaːʒ l-madani raħ jku:n fi-l- 

mabna l-’baladi 
Will the civil wedding be in the municipal 
office? 

ynq3 ɡaːbalu baʕidˁ ʕan tˁariːɡ ’zeːna Did they meet each other through Zena? 
ynq4 jaʕni raħ tzuːr ʕuxutha la’jaːli Do you mean she will visit her sister 

Layali? 
ynq5 yaʕni tʕarrafit ʕaleː fi-l-matˁʕam 

illi fi-l-’moːl 
Do you mean she met him in the 
restaurant in the mall? 

ynq6 waːlid nabiːl raħ jku:n maw’ʒuːd Will Nabil’s father be present?  

Table 5 
Confusion matrix for Arabic dialect classification task using the segmental models on the full read speech dataset (scripted dialogue/story).   

Predicted Labels    
egca irba joka kwur moca ombu syda Tuns TOTAL 

True Labels egca 12 
(100%) 

0 0 0 0 0 0 0 12 

irba 0 11 
(91.7%) 

1 
(8.3%) 

0 0 0 0 0 12 

joka 0 0 8 
(100%) 

0 0 0 0 0 8 

kwur 0 0 0 12 
(100%) 

0 0 0 0 12 

moca 0 0 0 0 12 
(100%) 

0 0 0 12 

ombu 0 0 0 0 0 12 
(100%) 

0 0 12 

syda 0 0 3 
(50%) 

0 0 0 3 
(50%) 

0 6 

tuns 0 0 0 0 0 0 0 12 
(100%) 

12  
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4.2. Prosodic modeling 

As discussed above, the Y-ACCDIST-based approach has allowed us 
to isolate the segmental level of analysis and ignore other information 
embedded within the acoustic signal that might distract away from cues 
useful to the accent recognition task. In this part of the study, we aim to 
transfer the principles of the Y-ACCDIST modeling procedure to the 
prosodic level of analysis to see whether we can confirm previous pro-
sodic analysis of these same data, which indicated that there are pro-
sodic patterns that are typical of speakers of one or more Arabic dialects 
but different from patterns observed in a parallel context in one or more 
other dialects (Hellmuth 2018). 

4.2.1. Organisation of prosodic data 
The read speech data from the IVAr scripted dialogue include the 

sentence types presented in Table 7, elicited because these may be 
characterised by different prosodic patterns between sentence types 
within one dialect, and/or by different prosodic patterns between di-
alects within one sentence type. 

For this reason, it is only these sentences extracted from the scripted 
dialogue (sd) that are being used in these experiments that compare the 
prosodic Y-ACCDIST system with the segmental Y-ACCDIST system, 
with the read story (sto) data removed from the dataset. A set of results 
for each of these system configurations are therefore presented within 
this section, where each has been trained and tested on only the sen-
tences extracted from the scripted dialogue. 

4.2.2. Integration of prosodic data into the Y-ACCDIST system 
To provide the system with prosodic information, we calculated 

Euclidean distances between the f0 contours of all the possible pairs of 
read sentences available for each speaker. It is this collection of 
Euclidean distances between f0 contours that is expected to characterise 
the intonational patterns of a speaker. While it may not be immediately 
obvious what sorts of Euclidean distances are likely to occur between 
these f0 contours, it is expected that logging the similarities and dif-
ferences between f0 contours in this way will express any systematic 
similarities and differences in intonational patterns within and between 
dialects. For example, for Syrian speakers, who more frequently use a 
rising contour in declarative sentences than is observed in other Arabic 
dialects (Hellmuth, 2020), the f0 contour between a particular declar-
ative sentence X and a particular polar interrogative sentence Y might be 
reasonably expected to be more similar to one another than for a speaker 
of another dialect. 

We used the read portion of the corpus in which all speakers pro-
duced more or less the same sentences. F0 contours were extracted by 
marking out 50 equally distributed points throughout an utterance and 
extracting the f0 at those points in the signal. Of course, at the points in 
the signal where there is no voicing, extracting f0 was not possible. This 
therefore reduced these vectors down to a size which was slightly 
smaller than 50, and the same reduction was performed on the f0 vector 
that it was being compared against. The result of this was a Y-ACCDIST 
matrix that reflected the intonation realisations of the “prosodic contour 
inventory” that the dataset allowed. Like the default segmental config-
uration explained in Section 3.1, this modeling method has the advan-
tage of normalising against factors such as gender. By making intra- 
speaker calculations in this way, the model only characterises the 
shapes of a speaker’s f0 contours, and so, regardless of whether the 
speaker has a relatively high or low f0 range on average, any dialect- 
specific contour shapes should be expressed in the matrix. Fig. 2 pro-
vides an illustration of the prosodic modeling procedure that can be 
compared with the segmental modeling procedure. 

One key difference between these prosodic models and the segmental 
models is that there is no averaging of vectors in the construction of the 
matrices. While it is expected that intonation is affected by sentence type 
in Arabic, it is also affected by a range of other discourse factors, such as 
information structure (topic, givenness and focus) (Krifka 2008) as well 
as the interactional context (Walker 2014). The read speech sentences in 
the corpus were elicited at different points throughout a scripted dia-
logue, and thus appear in subtly different discourse contexts with 
varying information structure. This meant that it would be artificial to 
try to model an average f0 contour for each whole sentence type. We 
have therefore treated each individual sentence that was produced as a 
single category in the construction of the speaker-specific matrices. Each 
individual sentence was elicited in the same discourse context (i.e. po-
sition in the scripted dialogue) from each speaker in each dialect. 

Table 6 
Confusion matrix for Arabic dialect classification task using the segmental models on spontaneous speech.   

Predicted Labels    
egca irba joka kwur moca ombu syda tuns TOTAL 

True Labels egca 6 
(75%) 

0 0 0 1 
(12.5%) 

0 1 
(12.5%) 

0 8 

irba 1 8 
(66.7%) 

1 
(8.3%) 

2 
(16.7%) 

0 0 0 0 12 

joka 0 1 
(8.3%) 

8 
(66.7%) 

1 
(8.3%) 

0 1 
(8.3%) 

1 
(8.3%) 

0 12 

kwur 0 1 
(8.3%) 

0 9 
(75%) 

0 2 
(16.7%) 

0 0 12 

moca 0 0 0 0 12 
(100%) 

0 0 0 12 

ombu 0 0 1 
(8.3%) 

3 
(25%) 

0 8 
(66.7%) 

0 0 12 

syda 1 
(16.7%) 

0 1 
(16.7%) 

0 0 0 4 
(66.7%) 

0 6 

tuns 0 0 0 0 0 0 0 12 
(100%) 

12  

Table 7 
Sentence types elicited using the IVAr corpus role-play scripted dialogue.  

Code Sentence type  
dec declarative response to an open question (e.g. 

‘what’s new?’) 
whq wh-question question using wh-word such as who or 

what 
ynq yes/no-question polar question inviting a yes or no 

answer 
coo coordinated question (or 

alternative question) 
question between two alternatives (e.g. 
‘is it X or Y?’) 

inf information focus statement produced in response to a 
wh-question 

con contrastive focus statement produced in response to a 
yes/no-question 

idf identification focus statement produced in response to a 
coordinated question  
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Overall, this means that we are restricted to performing these experi-
ments on a dataset where speakers produce the same spoken content. We 
return to this point further below in the Discussion. 

Using these prosodic matrices to represent each speaker, we followed 
the same experimental procedure as for the segmental experiments 
described above to achieve a recognition rate and confusion matrix. The 
recognition rate we achieved in this configuration was 52.1% correct. 
The confusion matrix for this task is shown in Table 8. 

We can compare these results with the segmental system’s results 
that were produced using the same subset of read data, which was 
93.75% correct, and the confusion matrix for this is shown in Table 9. 

For the results from the prosodic system, although accuracy in the 
classification task varies considerably, all dialects are recognised by 
prosodic contour alone at above chance levels (if chance is 12.5% cor-
rect). The four ‘best’ recognised dialects are tuns (91%), kwur (75%), 
egca (67%) and moca (58%). The four ‘worst’ dialects are irba (50%) 
and ombu (42%), followed by syda and joka (both at 16%). These best 
and worst groupings resemble those observed in the segmental classi-
fication task on spontaneous speech data (Table 6): tuns and moca 
(100%), kwur and egca (75%), then irba, ombu, syda and joka (all on 
67%). 

5. Feature contributions to Arabic dialect classification 

One obvious area of interest is identifying the specific linguistic units 
(i.e. phonemes or sentences) that are contributing most to distinguishing 
between the dialect varieties. This section presents an attempt to access 
this information within the inner workings of the systems. It builds on a 
similar attempt to achieve this in Brown and Wormald (2017), which 
simply applied ANOVA to Y-ACCDIST models of different British English 
speakers to reveal which phoneme-pairs were estimated to distinguish 
between four accent varieties. The work here makes use of the machine 
learning mechanisms implemented in this study to help identify any 
linguistic units or categories which might be key features in separating 
the varieties. 

For both the segmental and prosodic systems, SVMs were used as the 
classification mechanism. SVMs assign different weights to the features 
of the models or representations they are learning. These weights help 
with the separation of the groups in the SVM which, in turn, should help 
to achieve better classification results. The weights can also be used for a 
feature selection process called Recursive Feature Elimination where they 
are used to rank the features by their weights, and then the weakest 
features are removed (either iteratively or as a specified amount, n). By 
removing features expected to be less useful to the task, it is thought that 
the classification performance of a system could be improved. One op-
tion is to run experiments that iteratively remove the weaker features, 
and observe what the effect is on classification performance. However, a 
more efficient, and perhaps more direct, way of accessing information 
about the estimated value of the different features in a feature set is to 
look at the full set of weights that the SVM has assigned. 

In the present case, the Euclidean distances that make up the Y- 
ACCDIST matrices are assigned different weights, according to those 
that are estimated to discriminate the different dialect groups among the 
training data. Because we have applied a linear kernel in the SVM in 
these experiments, it is possible to look more closely at the weights that 
the different Y-ACCDIST features are assigned by the SVM, and then use 
them to make estimations around which features are most useful to the 
task of discriminating Arabic dialects. This was carried out for both the 
segmental system and the prosodic system to assess whether this method 
allows us to pick out any particular phonemes or sentence types that are 
particularly useful in distinguishing between the dialects. We were keen 
to use as much data as possible in order to observe the most reliable 
indications of sociophonetic variation within this dataset, so we chose to 
include the read speech from both the scripted dialogue and story tasks 
in this analysis using the segmental system. 

Using the Y-ACCDIST modeling method, however, this process of 
drawing on SVM weights to observe individual feature contribution is 
not wholly straightforward. The speaker representations that we feed 

Fig. 2. A diagram to demonstrate how a matrix is formed using f0 contours, 
rather than acoustic feature vectors, with the set of sentence types in the IVAr 
dataset, from yes/no-question 1 to sentence n. The ‘0’/‘x’ symbols represent the 
Euclidean Distance for that pair. 

Table 8 
Confusion matrix of Y-ACCDIST’s performance on the IVAr dataset using the prosodic models on the read speech data subset (scripted dialogue only).   

Predicted Labels   
egca irba joka kwur moca ombu syda tuns 

True Labels egca 8 
(66.7%) 

2 
(16.7%) 

0 0 0 0 1 
(8.3%) 

1 
(8.3%) 

irba 1 
(8.3%) 

6 
(50%) 

3 
(25%) 

0 0 1 
(8.3%) 

1 
(8.3%) 

0 

joka 1 
(8.3%) 

1 
(8.3%) 

2 
(16.7%) 

3 
(25%) 

0 2 
(16.7%) 

2 
(16.7%) 

1 
(8.3%) 

kwur 0 0 1 
(8.3%) 

9 
(75%) 

1 
(8.3%) 

0 0 1 
(8.3%) 

moca 0 0 1 
(8.3%) 

1 
(8.3%) 

7 
(58.3%) 

2 
(16.7%) 

1 
(8.3%) 

0 

ombu 0 0 1 
(8.3%) 

0 3 
(25%) 

5 
(41.7%) 

2 
(16.7%) 

1 
(8.3%) 

syda 1 
(8.3%) 

1 
(8.3%) 

2 
(16.7%) 

0 2 
(16.7%) 

3 
(25%) 

2 
(16.7%) 

1 
(8.3%) 

tuns 0 0 0 0 0 0 1 
(8.3%) 

11 
(91.7%)  
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into the SVM are values that are computed between pairs of phonemes or 
pairs of sentence types (i.e. the values represented by “x” in Figs. 1 and 
2), rather than a single value mapping directly on to an individual 
phoneme or sentence type. While the modeling method has been shown 
to be very strong, these pairs are very difficult to disentangle to be able 
to observe the contribution of individual phonemes and sentence types. 
Clear and obvious patterns may therefore not emerge. Nevertheless, it is 
still of interest to see whether this method yields any insight into feature 
contributions and so we observe the values that we can in this section. 
To estimate feature contribution, we have accumulated all of the abso-
lute weight values assigned to all the pairs of features that a single 
feature belongs to, and we reflect these values in boxplots. 

5.1. Segmental feature contributions 

Fig. 3 shows this tentative measure of which phonemes appear to 
contribute the most weight to the task of distinguishing the eight dialect 
groups. 

The segments have been ordered according to the median, where we 
find those segments that are estimated to have the greatest contribution 

overall to the left, and the segments that are estimated to make the least 
contribution are positioned to the right. To reiterate, because of the 
pairwise nature of the modeling method, the visual evidence of an in-
dividual segment’s contribution to a classification task is somewhat 
diluted. We should also keep in mind that segments are represented by 
midpoints and so segments that differ in terms of temporal character-
istics (rather than quality characteristics) are less likely to emerge in this 
analysis. 

The highest ranked phoneme in the feature weights boxplot is (q) /q/ 
, matching systematic variation in the realisation of this sound across 
Arabic dialects (Al-Essa 2019). Similarly, the relatively high ranking of 
(j) /dʒ/ matches the status of that sound as a known locus of variation 
between dialects. For both these sounds, variation between dialects in 
their realisation is well-documented in the research literature, and they 
frequently appear as a variable in variationist sociolinguistic studies of 
individual dialects. 

In contrast, most of the other highly ranked sounds in Fig. 3, by 
feature weight value, are classes of sound which have received little 
attention in the research literature on Arabic sociolinguistic or dialectal 
variation. These include both fricatives, notably (sh) /ʃ/, (s) /s/ and (H) 

Table 9 
Confusion matrix of Y-ACCDIST’s performance on the IVAr dataset using the segmental models on the read speech data subset (scripted dialogue only; this is the same 
dataset that was used to build and train the prosodic system).   

Predicted Labels    
egca irba joka kwur moca ombu syda tuns TOTAL 

True Labels egca 12 
(100%) 

0 0 0 0 0 0 0 12 

irba 0 11 
(91.7%) 

0 0 0 0 1 
(8.3%) 

0 12 

joka 0 0 11 
(91.7%) 

1 
(8.3%) 

0 0 0 0 12 

kwur 0 0 0 11 
(91.7%) 

0 0 1 
(8.3%) 

0 12 

moca 0 0 0 0 12 
(100%) 

0 0 0 12 

ombu 0 0 0 0 0 12 
(100%) 

0 0 12 

syda 0 0 3 
(25%) 

0 0 0 9 
(75%) 

0 12 

tuns 0 0 0 0 0 0 0 12 
(100%) 

12  

Fig. 3. Boxplots to represent the distributions of feature weights associated with each phoneme segment.3  
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/ħ/, and vowels /a/ and /u/ (with /i/ not far behind). Variation across 
Arabic dialects in the gradient phonetic realisation of fricatives and 
vowels is under-researched and as a result not yet fully documented, but 
those few studies that exist are nevertheless consistent with the patterns 
seen here. For vowels, Alghamdi (1998) reports a complex pattern of 
differences in values of the first formant (reflecting vowel height) in data 
from Saudi, Egyptian and Sudanese speakers, for [a, a:, i, i:, u, u:]. 
Al-Tamimi and Ferragne (2005) similarly report a difference in the size 
of the i~a~u vowel space between Moroccan and Jordanian Arabic 
(with comparison also to French); furthermore, they show that Principal 
Component Analysis on a simple measure of vowel space size (using 
between-vowel-vectors for the first and second formants) yielded 88% 
correct classification of the three languages. For fricatives, Alsabhi et al. 
(2020) report a main effect of dialect in models of standard acoustic 
measures of overall spectral shape (centre of gravity and peak Hz) for /s/ 
and /sˁ/, in experimental data elicited alongside the IVAr corpus from 
the same speakers and dialect groups examined in the present study. 

In addition, we note that dialectal variation in realisation of (q) and 
(j) in Arabic can be characterised as sociolinguistically salient: the 
variation is above the level of awareness among speakers and may serve 
as a stereotype of particular dialects (Ateek and Rasinger, 2018). To our 
knowledge no studies have systematically investigated the relative so-
ciolinguistic salience of different linguistic features in Arabic dialects. 
However, these feature weights suggest that there may be gradient 
sociophonetic features related to fine-grained phonetic realisation of 
fricatives and/or vowels, which may be below the level of phonological 
awareness among speakers and thus not perceived as dialect stereotypes, 
but which nevertheless contribute to automatic dialect classification. 

We have already indicated that what can be drawn from the feature 
weights for this particular modeling method is rather limited. Having 
said this, there are patterns emerging that align with some expectations 
based on previous research, as well as patterns that have perhaps pre-
viously gone virtually unnoticed. The method has therefore focussed 
attention on potential features of interest and motivated future research 
objectives in relation to Arabic dialects. 

5.2. Prosodic feature contributions 

We also produced the equivalent boxplot visualisations for the pro-
sodic system models to determine whether any sentence types were 
particularly influential in distinguishing between the dialects. Our 
conclusion here is that there seems to be very little to report, as we found 
very flat and invariable distributions among the different features. This 
will in part be due to the particular modeling method (as we have 
already said, a pairwise modeling approach is not the best foundation for 
reporting the value of individual segments). This will also be due to the 
fact that these features are not particularly powerful dialect discrimi-
nators, as the classification results have already demonstrated. 

The combination of the lower classification result and the invariable 
boxplots indicates that we can expect to find a lot of variability among 
the intonation contours within the dialect groups. As noted earlier, 
however (Section 4.2.2) this is exactly what we would expect, since 
prosodic contour realisation varies not only according to semantic cat-
egories such as question versus statement, but also due to the informa-
tion structure and the wider discourse and interactional context. The 
lack of feature weight information thus supports the methodological 
choice to have Y-ACCDIST use individual sentences (realised at the same 
position in the dialogue sequence) as the unit of analysis. 

6. Comparison of visualisations of segmental and prosodic 
models 

It is also possible to compare visualisations of the two modeling 
methods for the IVAr speakers in the read speech scripted dialogue data 
subset. Having modeled the speakers in this data subset, we performed 
multi-dimensional scaling (MDS) on the data, once under the segmental 

configuration and once under the prosodic configuration. This allows us 
to observe any interesting clusters of speakers for each of the levels of 
analysis in isolation. These are presented in Figs. 4 and 5, respectively. 

Fig. 4 shows clear groupings for most of the individual dialect 
groups, showing that the segmental level of analysis is a good unifier of 
speakers of the same dialect. This is consistent with the very high clas-
sification result that this version of the system achieved. The clustering 
reflects both the geographical spread of dialects and their position in the 
Arabic dialect continuum. The clusters of speakers from Egypt, Iraq and 
the Levant (Jordan and Syria) overlap somewhat, towards the left of the 
plot, but corresponding to their more central geography and position in 
the middle of the dialect continuum. The Gulf dialects (Kuwait/Oman) 
are distinct from each other, matching their positions at extreme north 
and southern ends of the Gulf Arabic dialect group, but both equally 
separate and distinct from the central dialects. Similarly, the North Af-
rican dialects (Tunisia/Morocco) are clearly separated from each other, 
again matching their geographical and dialectal separation within the 
Maghreb group, but are both equally separate and distinct from the 
central dialects, and placed at a greater distance from the central group 
than the Gulf dialects, reflecting the clear east/west divide noted in 
Section 2.1. 

Fig. 5 for the prosodic model shows a less clear clustering of indi-
vidual dialect groups. The relatively tight cluster of Tunisian speakers 
just right of center of Fig. 5 perhaps aligns with the very high classifi-
cation rate achieved for Tunisian speakers in the prosodic experiments, 
and interestingly, the Egyptian speakers seem to form a somewhat more 
consistent cluster compared to the other dialect groups. Such a clus-
tering for these two dialects would be consistent with some of the more 
distinctive prosodic patterning in these dialects found in previous work 
by the second author, namely a distinctive rise-plateau contour in yes/ 
no-questions in Tunisian Arabic (Hellmuth, 2018) and overall higher 
frequency in the distribution of prosodic peaks in Egyptian Arabic 
compared to other dialects (Hellmuth 2007, 2020). 

7. Discussion 

This paper has demonstrated approaches to analysing dialect varia-
tion that take into account whole collections of features, rather than just 
focussing on a single feature and seeing how it varies across different 
dialects. These approaches are reliant on there being an “inventory” of 
categories for the models to work with. In the case of the segmental 
system, this is the phoneme inventory, and in the case of the prosodic 
system, we used a range of different sentences produced at different 
points in a scripted dialogue. These aggregate approaches therefore 
currently only offer a broad-brush account of the variation in a dialect 
dataset on either one of these levels of analysis, rather than a detailed 
account of exactly which feature is discriminating the different varieties. 

In the case of the prosodic version of the system, we have presented 
the modeling approach only for a subset of read speech data in which we 
could guarantee balance and control in the different sentence types that 
we used. The corpus was originally designed for prosodic research to be 
conducted on it and so other analysis on the prosodic variation in this 
dataset had already been done which opened up the opportunity to 
corroborate results or to even uncover surprising findings. Having tested 
the approach on these very controlled data and having discovered that it 
appears to have some value in capturing the variation and distinguishing 
between the dialects, it is natural to now consider how it could be 
transferred to spontaneous speech data. Given a dataset of spontaneous 
speech recordings that have been tagged for key features such as sen-
tence type and information structure, we could evaluate the prospect of 
using this approach on spontaneous recordings. In addition, it could be 
that a larger dataset than the one used in this work would be required to 
achieve a more stable representation of the specific variation that exists 
in Arabic prosody. 

There has been some other work that has actively sought to integrate 
prosody’s potential role in the automatic classification of Arabic 
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dialects. Biadsy and Hirschberg (2009) modeled spontaneous speech 
utterances using a combination of features relevant for intonation and 
rhythm. They captured a selection of pitch and rhythm values to 
represent whole utterances (e.g. capturing the variation in pitch and 
vocalic proportion of an utterance). These were termed more “global” 

measurements. They then went on to characterising utterances with 
“sequential prosodic features”, which logged various characteristics of 
the pitch and intensity contours of utterances. On a broad four-way 
Arabic dialect classification task, the “global” features alone achieved 
60% accuracy, whereas when more sophisticated sequential features 

were combined with them, they achieved 72% accuracy. Between 
Biadsy and Hirschberg’s study and the present one, there are many 
differences to do with the size and the dimensions of the datasets used, 
but it may be of interest in future to compare these two methods 
like-for-like. One key difference is that Biadsy and Hirschberg applied 
their prosodic modeling method to spontaneous speech, a natural next 
step for the Y-ACCDIST modeling method implemented in the present 
study. 

Although the Y-ACCDIST modeling approaches themselves are very 
adaptable and can feasibly be used on large datasets of speech 

Fig. 4. Multidimensional Scaling of the IVAr dataset based on segmental Y-ACCDIST modeling of speakers.  

Fig. 5. Multidimensional Scaling of the IVAr dataset based on prosodic Y-ACCDIST modeling of speakers.  
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recordings, there is some manual preprocessing of the data (i.e. either 
broad transcription or tagging) that is required before modeling, clas-
sification and visualisation can take place. It could be possible to over-
come this preprocessing by either automatically transcribing or tagging 
a corpus, but this will inevitably introduce errors. Work on this less 
labor-intensive version is currently ongoing. 

8. Conclusion 

In this paper we have focussed on automatically classifying speakers 
of Arabic into different dialect groups and considered the systems’ 

outputs in the context of an interest in the variation among Arabic di-
alects. We have demonstrated how these kinds of system can both 
reinforce what we know about a set of linguistic varieties, but also how it 
could possibly illuminate new questions to pursue around certain fea-
tures. Previous work has shown that we can do this on one level of 
analysis, but part of this work has demonstrated that sometimes per-
formance might be too high for us to learn about a set of dialects from 
the errors that a system makes. However, this paper has demonstrated 
that it is possible to transfer similar modeling principles that have been 
used for one level of analysis across to another. By isolating the 
segmental level of analysis and then the prosodic level in a similar 
modeling framework, we can observe the contribution of each level of 
analysis to distinguishing between the classification of a particular set of 
varieties. It is probably no surprise that the segmental level outperforms 
the prosodic level in a simple dialect classification task, but the prosodic 
version of the system showed a performance that sat well above the level 
we would expect if the system were working by chance. This difference 
in performance between the two levels of analysis is likely to be down to 
the fact that one forms models based on a full and well-established 
phoneme inventory and the other makes use of a (partly arbitrary) list 
of target sentences. The former is both more fine-grained and more 
controlled than the latter. 

In the context of Arabic dialects, we were able to corroborate some of 
the findings surrounding the prosodic system’s outputs with past pro-
sodic analyses conducted on the same data. The work here was also able 
to indicate that Arabic has a wealth of sociophonetic variation to 
discover at the segmental level, which is arguably under-explored in 
Arabic dialects. The detail of this segmental variation cannot be accu-
rately uncovered by the macro-level computational method imple-
mented in this work, but would require other more detailed methods to 
gain a richer understanding. 
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