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Abstract—In this paper, we consider an energy efficient re-
source allocation technique for a hybrid time division multiple
access (TDMA) - non-orthogonal multiple access (NOMA) sys-
tem. In such a hybrid system, the available time for transmission
is divided into several sub-time slots, and a sub-time slot is
allocated to serve a group of users (i.e., cluster). Furthermore,
signals for the users in each cluster are transmitted based on the
NOMA approach. With NOMA, multiple users can be served
simultaneously through utilizing power domain multiplexing
at transmitter and successive interference cancellation (SIC)
at receiver. In this paper, to maximize the energy efficiency
(EE), we jointly allocate both the available time slots and the
available transmit power in the hybrid TDMA-NOMA system. In
particular, we formulate an EE maximization (EE-Max) problem
aiming to maximize the overall EE of the system with a per-user
minimum rate and transmit power constraints. However, this
joint optimization problem is non-convex in nature, and thus,
cannot be solved directly. Therefore, we develop an iterative al-
gorithm by approximating the original problem into a convex one
with sequential convex approximation (SCA) and a novel second-
order cone (SOC) approach. Simulation results demonstrate that
the performance of the proposed hybrid TDMA-NOMA system
with joint resource allocation outperforms the system with equal
time allocation in terms of the overall EE. Simulation results
further confirm that the proposed iterative approaches with SCA
and SOC techniques converge within a few number of iterations
while yielding the solution to the original non-convex problem.

Index Terms—Non-orthogonal multiple access (NOMA), time
division multiple access (TDMA), hybrid TDMA-NOMA, energy
efficiency, convex optimization.

I. INTRODUCTION

Non-orthogonal multiple access (NOMA) has been en-

visioned as a promising multiple access technique to sig-

nificantly improve the spectral efficiency, user fairness and

support massive connectivity for the fifth generation (5G) and

beyond wireless networks [1]. Different from the conventional
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orthogonal multiple access (OMA) technologies, such as time

division multiple access (TDMA) and orthogonal frequency

division multiple access (OFDMA), multiple users in downlink

NOMA simultaneously share the same radio resources, namely

time and frequency resources [2], [3]. At the transmitter, this

simultaneous resource sharing is carried out by exploiting

power domain multiplexing, which is referred to as a power-

domain superposition coding (SC) technique in the literature

[5], [6]. With this multiplexing technique, multiple signals

intended for the corresponding users are encoded with different

power levels and transmitted simultaneously. The successive

interference cancellation (SIC) technique is employed at the

receiver end to decode the signals transmitted to multiple

users. In the SIC technique, the signals with stronger channel

conditions are first decoded and subtracted from the multi-

plexed received signal prior to decoding their own signals [4],

[5], [7]. Furthermore, NOMA can accommodate much more

users than OMA by employing non-orthogonal resource allo-

cation, which addresses the dramatically increasing demand

for user access required for the Internet-of-Things in future

wireless networks [1], [2], [11].

The computational complexity of employing SIC in dense

networks grows exponentially with the number of users, while

the errors in successive decoding propagate and thus degrade

the decoding performance [1]. To address these SIC issues

and to exploit additional degrees of freedom, NOMA has

been recently combined with a wide range of multiple access

techniques. These include multiple-antenna [9], [10], [32], [35]

and conventional OMA techniques [18], [20]–[23]. In these

combined systems, power domain multiplexing is utilized

along with the other existing spatial and orthogonal domains

multiplexing to meet the demanding massive connectivity re-

quirements. In particular, these hybrid systems not only exploit

different multiplexing domains to enhance the performance,

but also facilitate practical implementation of NOMA in dense

networks [13], [26]. In hybrid OMA-NOMA systems, the

available OMA resources (i.e., time or frequency) are divided

into several sub-resource blocks, where each sub-resource

block corresponds to a set of multiple users via NOMA

technique [14], [26]. Due to the massive connectivity offered

by the hybrid OMA-NOMA systems [17], the corresponding

high power consumption, however, has become one of the

major issues that needs to be carefully addressed.

The power consumption of wireless networks is one of the

dominant factors that has a considerable impact in the design
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of future wireless communications systems. On one hand,

the excessive power consumption will cause an uncontrolled

increase of CO2 emission levels [24], [27], [28], which raises

different environmental issues including global and warming

natural disasters [25]. On the other hand, the accelerated

growth of the power consumption will be inherently reflected

on the overall costs of the wireless communication systems.

This, as a result, will impose additional financial pressures on

the service providers and consumers. Therefore, several energy

efficient approaches have been investigated to limit the un-

precedented growth in the power consumption. These solutions

include energy harvesting techniques [14], employing green

energy resources [25], and efficiently utilizing the available

power resources with the energy efficiency (EE) performance

metric [28]–[30]. The overall EE of the system, also referred as

global EE (GEE), is defined as the ratio between the achieved

sum-rate and the corresponding total power consumption [34].

The EE of a communication system with unit of bit-per-

joule can be defined as the number of bits transferred per

joule of energy consumption in the system [33]. Based on

this definition, GEE can be considered as a multi-objective

performance metric which simultaneously takes into account

the two conflicting performance metrics, namely the sum-rate

and the corresponding power consumption [31], [34].

Different EE designs have been considered for NOMA

transmissions, which include multiple-input single-output

(MISO)-NOMA and multiple-input multiple-output (MIMO)-

NOMA EE-based design. For example, in [37], two algorithms

are proposed for solving an EE maximization problem with the

downlink beamforming design for the MISO-NOMA system.

In [35], the EE design is investigated in a multi-cluster

multi-user MIMO-NOMA system with pre-defined quality-

of-service (QoS) requirements. In addition, some research

works for hybrid OMA-NOMA systems investigate different

resource allocation techniques [14], [18], [20]. For example,

in a hybrid OFDMA-NOMA system, an EE maximization

problem is considered in [18], in which the subchannel as-

signment and the power allocation algorithms were proposed

for the system. In [20], the max-min sum of downlink and

uplink transmit rates among all users joint resource allocation

problem of OFDMA-NOMA system is investigated. Specif-

ically, two scenarios are considered, perfect channel state

information (CSI) estimation and imperfect CSI estimation.

Then, an asymptotically optimal algorithm and a suboptimal

algorithm are proposed. The energy harvesting capabilities

of a hybrid TDMA-NOMA system are explored in [14], in

which several users are divided into different groups (i.e.,

clusters) and each cluster is assigned to the equal time slot

for transmission, aiming to minimize the transmit power under

minimum rate and minimum energy harvesting requirements

at each user. In particular, most of the works in the literature

assume equal time allocations between the clusters which

has several drawbacks. For example, it degrades the overall

performance of the system as different clusters have users with

diverse channel conditions. In particular, with such equal time

allocation, both clusters with stronger users and weaker users

will be assigned with the same time slot, which degrades the

overall performance.

To the best of our knowledge, previous works in the

literature have not considered a joint power and time resource

allocation for a hybrid TDMA-NOMA system, especially with

the GEE performance metric. Therefore, in this paper, we

address this issue by developing a power allocation technique

with opportunistic time assignment for a hybrid TDMA-

NOMA system. In particular, we formulate a joint GEE

maximization (GEE-Max) design for a downlink transmission

of hybrid TDMA-NOMA system. In particular, the overall EE

of a hybrid TDMA-NOMA system is maximized subject to

pre-defined users’ minimum rate requirements and the power

budget constraint at the base station (BS). We develop an

optimization framework that allocates the available transmit

power at the BS between the users and opportunistically

assigns the available time for transmission between the clus-

ters. However, the formulated GEE-Max optimization prob-

lem is non-convex in nature, and cannot be solved directly

using available standard optimization software. Hence, we

propose an iterative approach for solving the original GEE-

Max problem with a novel second-order cone (SOC) approach

and approximations. The main contributions of this work are

summarized as follows:

• Due to the several drawbacks associated with the equal

time allocations, we propose an opportunistic time alloca-

tion technique along with power allocations for a hybrid

TDMA-NOMA system. In particular, we develop a GEE-

Max framework to jointly design both the power levels

for users and time slot allocations for the clusters.

• Prior to solving the formulated GEE-Max problem, a

feasibility check is carried out as the GEE-Max problem

might turn out to be infeasible due to some constraints.

Next, we propose two iterative algorithms to solve the

feasible GEE-Max problem. In the first algorithm, a novel

SOC formulation along with sequential convex approx-

imations (SCA) [36] is utilized to solve the problem.

In the second algorithm, we employ the Dinkelbach’s

algorithm to determine the solution of the original GEE-

Max problem.

• We provide simulation results to demonstrate the supe-

rior performance of the proposed GEE-Max design with

opportunistic time allocations. Furthermore, simulation

results confirm that the proposed novel SOC approach

with the iterative SIC not only provides the solution to

the original GEE-Max optimization problem, but also

converges within a few number of iterations.

The remainder of the paper is organized as follows. Section

II introduces the model of a hybrid TDMA-NOMA system and

formulates the GEE-Max problem. In Section III, two iterative

algorithms, namely SCA and Dinkelbach’s algorithms are

proposed to solve the original GEE-Max problem. Section IV

provides simulation results to validate the performance of the

developed iterative approaches. Finally, Section V concludes

the paper.
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Fig. 1: A hybrid TDMA-NOMA multi-user SISO system.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a downlink transmission of a hybrid TDMA-

NOMA multi-user single-input single-output (SISO) system.

In this hybrid system, a single-antenna BS communicates with

K single-antenna users, as shown in Fig. 1. As such, the total

number of users is K, which are grouped into C clusters with

a time-slot ti, ∀i = 1, 2, ..., C, per cluster. Furthermore, uj,i

represents the jth user in the ith cluster. As shown in Fig.

2, we denote the available time for transmission by T . The

number of users in the ith cluster, Li, is denoted by Ki,

∀i ∈ C △

= {1, 2, ..., C}, satisfying K =
∑C

i=1 Ki. We assume

that signals are transmitted over a quasi-static flat Rayleigh

fading channel, where the channel coefficients remain constant

over each transmission block but vary independently between

different blocks.

The power assigned for uj,i is denoted as p2j,i, and thus,

define the total transmit power at the BS by Pt, such that Pt =∑C
i=1

∑Ki

j=1 p
2
j,i. The maximum transmit power available at

the BS is Pmax; then, the total transmit power constraint can

be mathematically expressed into the following constraint:

Pt =

C∑

i=1

Ki∑

j=1

p2j,i ≤ Pmax. (1)

As the power-domain NOMA technique is applied among

the users in the each cluster, the symbol transmitted from the

BS during ti can be written as

xi =

Ki∑

j=1

pj,ixj,i, (2)

where xj,i is the message intended to uj,i. Accordingly, at

user uj,i, the received signal is given by

rj,i = hj,ixi + nj,i, ∀i ∈ C, ∀j ∈ Ki
△

= {1, 2, ...,Ki}, (3)

where hj,i denotes the Rayleigh fading channel coefficient

between the BS and the uj,i, and nj,i ∼ CN (0, σ2
j,i) denotes

the additive white Gaussian noise (AWGN) at receiver. Note

that it is assumed that perfect CSI is available at the BS. The

corresponding channel gain is defined as |hj,i|2 = β
(dj,i/d0)κ
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Fig. 2: A time-slot is assigned to serve each cluster, while

the users in each cluster communicate with the BS based on

the power-domain NOMA.

[16], where dj,i and d0 are the distances between uj,i and

the BS, and a reference distance, respectively. Furthermore,

denote the signal attenuation at the reference distance, d0, by

β and the path loss exponent by κ. Without loss of generality,

the channel gains for the users at each cluster are assumed to

be ordered as

|h1,i|2 ≥ |h2,i|2 ≥ ...|hKi,i|2, ∀i ∈ C. (4)

Accordingly, the SIC process is implemented at stronger users,

i.e., users with higher channel strengths. In particular, the user

uj,i aims to cancel the interference from any other weaker

users from uj+1,i to uKi,i using SIC. It is assumed that SIC

is implemented perfectly without any errors. Therefore, the

signal-to-interference and noise ratio (SINR) at uj,i to decode

the message of weaker users ud,i, ∀d ∈ {j + 1, j + 2, ...,Ki}
can be defined as

SINRd
j,i =

|hj,i|2p2d,i
|hj,i|2

∑d−1
s=1 p

2
s,i + σ2

j,i

,

∀i ∈ C, ∀j ∈ Ki, ∀d ∈ {j + 1, j + 2, ...,Ki}. (5)

To successful perform the SIC process, the received SINR

levels of the users with weaker channel strengths should

be more than the users with stronger channel strengths [7],

[8]. This requirement can be only satisfied by imposing the

following constraint on the power allocation [38]:

p2K,i ≥ p2K−1,i ≥ ... ≥ p21,i, ∀i ∈ C. (6)

The necessary power constraints for efficient SIC can be given

by (6), which is referred to as the SIC constraint throughout

this paper; this has been widely adopted in several NOMA

downlink transmissions [26], [37]. Thus, the received signal
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at uj,i after employing SIC can be expressed as

rSIC
j,i = hj,ipj,ixj,i + hj,i

j−1∑

s=1

ps,ixs,i + nj,i, ∀i ∈ C, ∀j ∈ Ki.

(7)

Therefore, the SINR of uj,i can be given by [14], [15]

SINRj,i = min{SINR1
j,i, SINR2

j,i, ..., SINRj
j,i},

∀i ∈ C, ∀j ∈ Ki. (8)

Then, the achieved rate Rj,i at uj,i can be given by

Rj,i = Bti log2(1 + SINRj,i), ∀i ∈ C, ∀j ∈ Ki, (9)

where B is the available bandwidth of the channel. For nota-

tional simplicity, we assume that B = 1 throughout this paper.

It is worthy to note that grouping (i.e., clustering) strategy

plays a crucial role in the performance of the TDMA-NOMA

system. Therefore, the proposed user grouping strategy will

be discussed later in this paper.

B. Power Consumption Model

The total power consumption at the BS can be defined as

[18]

Ptotal =
1

ϵ
Pt + Ploss, (10)

where ϵ ∈ [0, 1] denotes the efficiency of the power amplifier.

Furthermore, Ploss represents the total power losses, and it

can be expressed as [18], [19]

Ploss = Pdyn + Psta, (11)

where Pdyn is the dynamic power consumption [34] and

Psta is the static power consumption required to maintain the

system.
As we have highlighted in the previous section, the GEE

can be defined as the ratio between the achieved sum-rate and
the corresponding power consumption [18], [35]. Considering
the hybrid TDMA-NOMA system, the overall EE, i.e., GEE,
can be given by

GEE =

∑C

i=1

∑Ki

j=1 Rj,i

Ptotal

. (12)

C. Problem Formulation

By taking into account the importance of energy efficient

resource allocation, we develop an GEE-Max optimization

design for the hybrid TDMA-NOMA system. In particular,

we aim to maximize the overall system EE, i.e., GEE, while

satisfying a set of relevant constraints.
Note that the GEE function presented in (12) is fractional

in nature; as such, maximizing GEE can be viewed as a
joint optimization of the achieved sum-rate (maximization) and
the corresponding power consumption (minimization). In this
paper, a GEE-Max design is proposed to maximize EE under a
set of constraints, including QoS requirements, as well as total
time and power constraints at the BS. With these constraints,

the GEE-Max optimization problem for the TDMA-NOMA
system can be formulated as follows:

(P1) : max
pj,i,ti

∑C

i=1

∑Ki

j=1 ti log2(1 + SINRj,i)

1
ϵ

∑C

i=1

∑Ki

j=1 p
2
j,i + Ploss

(13)

s.t.

C
∑

i=1

ti ≤ T, (14)

C
∑

i=1

Ki
∑

j=1

p
2
j,i ≤ P

max
, (15)

p
2
K,i ≥ p

2
K−1,i ≥ ... ≥ p

2
1,i, ∀i ∈ C, (16)

Rj,i ≥ R̄j,i, ∀i ∈ C, ∀j ∈ Ki, (17)

where R̄j,i is the minimum rate requirement associated with

the QoS constraint for user uj,i, and the constraint in (14)

ensures the maximum time constraint. Furthermore, the con-

straint in (16) is necessary for the successful application of

the SIC technique [37].

In particular, there are several challenges associated with

solving P1, which are summarized in the following discussion.

Firstly, unlike equal time allocation considered in previous

works in the literature including [14], the joint allocations

of the time and power resources introduce additional com-

plexity to solve the problem and evaluate the corresponding

design parameters. Secondly, as it can be seen in P1, the

objective function is not only non-convex, but also fractional.

This fractional non-convex nature of the objective function

introduces additional complexity in solving the optimization

problem. Thirdly, due to the constraints in (16) and (17),

the optimization problem P1 might turn out to be infeasible

when the minimum rate requirements cannot be achieved with

the available power budget at the BS. Hence, determining

the solution for P1 should take all these issues into account.

Note that this optimization problem is significantly different

from those solved in other related work, such as in [26], in

terms of both objective function and constraints. Therefore,

we provide a comprehensive algorithm to solve this problem

in the following section. Before presenting the detailed steps

of the proposed algorithm, we first provide a method in the

following subsection to validate the feasibility of the problem.

D. Feasibility Analysis of the GEE-Max Problem

Now, we analyse the feasibility issues of the GEE-Max

problem P1. Towards this end, we first shed some light on

the total time constraint in (14) with the following Lemma:

Lemma 1. The condition
∑C

i=1 ti = T is necessary for

achieving the maximum EE for the optimization problem P1.

Proof: This lemma is proven by contradiction. First, we

assume that
∑C

i=1 ti = T does not hold for an optimal solution

T
∗ = [t∗1, t

∗
2, ..., t

∗
C ], that is,

∑C
i=1 ti < T . Now, we construct

a new solution Tnew = [t∗1, t
∗
2 +

(
T ∗ −∑C

i=1 t
∗
i

)
, t∗3, ..., t

∗
C ]

[12]. Obviously, this new solution still satisfies the time

allocation constraint given in (14). Additionally, cluster L2 has

a larger throughput than that of solution T
∗ since Rj,i(T, pj,i)

is a strictly monotonically increasing function with respect to

ti, and clusters L1, L3, ..., LC achieve the same throughputs
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as that obtained with T
∗. Therefore, Tnew yields better

throughputs than T
∗. This contradicts the initial assumption

that T
∗ is optimal and therefore

∑C
i=1 ti = T should be

satisfied. This completes the proof of Lemma 1.

Based on Lemma 1, the time allocation constraint is trans-

formed to the following equality constraint to reduce the

feasible region of the original problem P1:

C∑

i=1

ti = T. (18)

Provided a solution set {pj,i∗, ti∗}, ∀i ∈ C, ∀j ∈ Ki is feasible,
then, the minimum rate constraint in (17) is automatically
fulfilled. Obviously, P1 turns out to be infeasible if the
corresponding minimum rate constraints cannot be met with
the total power constraint in (15). Therefore, we examine this
infeasibility issue through evaluating the required minimum
power to satisfy the corresponding QoS constraints, as fol-
lows:

(P-Min) : P
min = min

pj,i,ti

C
∑

i=1

Ki
∑

j=1

p
2
j,i (19)

s.t.

C
∑

i=1

ti = T, (20)

p
2
K,i ≥ p

2
K−1,i ≥ ... ≥ p

2
1,i,

∀i ∈ C, (21)

SINRj,i ≥ 2
R̄j,i
ti − 1,

∀i ∈ C, ∀j ∈ Ki, (22)

where Pmin is the minimum total transmit power that is
required to meet the user data rate requirements. We can
claim that the BS has insufficient power budget to achieve
the user data rate requirements when Pmin > Pmax. Under
this condition, the optimization problem P1 is classified as an
infeasible problem. To handle this infeasibility issue, we con-
sider an alternative resource allocation technique, namely sum-
rate maximization (SR-Max) problem. With this technique, we
investigate the maximum achievable sum-rate under available
power and SIC constraints. This problem can be formulated
as

(SR-Max) : max
pj,i,ti

C
∑

i=1

Ki
∑

j=1

Rj,i (23)

s.t.

C
∑

i=1

ti = T, (24)

p
2
K,i ≥ p

2
K−1,i ≥ ... ≥ p

2
1,i, ∀i ∈ C, (25)

C
∑

i=1

Ki
∑

j=1

p
2
j,i ≤ P

max
, ∀i ∈ C, ∀j ∈ Ki.

(26)

The solution of the optimization problem SR-Max can be

accessed using the SCA technique. In the following section,

we develop two algorithms to solve the original GEE-Max

problem P1.

III. PROPOSED METHODOLOGY

In this section, we provide two algorithms to solve the non-

convex optimization problem P1, which are based on the SCA

technique and Dinkelbach’s algorithm (DA). Note that the

solution of the original GEE-Max problem P1 depends on the

users that are selected for each cluster. Hence, it is necessary

to determine the grouping strategy in the considered hybrid

TDMA-NOMA system.

Obviously, the optimal user grouping sets can be determined

through an exhaustive search or combinatorial search algo-

rithms among all possible user sets. However, this exhaustive

search is impractical due to its computational complexity. Fur-

thermore, there are several factors that should be considered

when choosing a clustering algorithm, which are summarized

in the following discussion. Firstly, grouping users should

consider the objective function of the original design problem.

In particular, for a given hybrid TDMA-NOMA system, the

user clusters for the SR-Max design should be different from

those of the GEE-Max design. Secondly, it has been proven

in the literature that SIC is successfully implemented with

relatively small error when the gap between channel strengths

of the users is as high as possible [39]. This imposes that

users with diverse channel strengths should be grouped into

the same cluster. Considering the above key facts, and similar

to the grouping strategy proposed in [26] and [45], we employ

a clustering algorithm based on the difference between the

channel strengths of the users. In particular, users with higher

channel strengths’ gaps are grouped into the same cluster.

Clusters with only two users have been considered due to

practical implementation challenges, including high computa-

tional complexity and potential propagations in SIC. With this

restriction, the grouping sets of the hybrid TDMA-NOMA can

be presented as

({u1,1, u2,1}, {u1,2, u2,2}, ...{u1,C , u2,C}) ≡(
{u1, uK}, {u2, uK−1}, ...{uK

2
, uK

2 +1}
)
, (27)

where u1 is the strongest user, while uK is the weakest user

from all users in the considered system. With this grouping

strategy, we develop two algorithms in the following subsec-

tions to solve the non-convex optimization problem P1.

A. Sequential Convex Approximation (SCA) - based Approach

The SCA technique is a local optimization method for

evaluating the solutions of non-convex problems [43]. The key

idea behind this iterative approach is to approximate the non-

convex functions into convex ones, and then solve iteratively

the approximated convex optimization problems. It is worthy

to mention that SCA is heuristic; therefore, the solutions

generally depend on the initializations [43].

It is obvious that the optimization problem P1 is non-convex

due to both non-convex objective functions and constraints.

Thus, we deal this non-convexity issue through employing the

SCA technique. We start with an approximation of the non-

convex objective function. A slack variable γ is introduced

to approximate the objective function with a convex one.

With this slack variable, the optimization problem P1 can be



6

rewritten as,

(P2) : max
pj,i,ti,γ

γ (28)

s.t.

∑C
i=1

∑Ki

j=1 ti log2(1 + SINRj,i)

1
ϵ

∑C
i=1

∑Ki

j=1 p
2
j,i + Ploss

≥ √
γ,

(29)

C∑

i=1

ti = T, (30)

(15), (16), (17). (31)

Note that the objective function of the original optimiza-

tion problem P1 is replaced with the slack variable
√
γ by

using epigraph. However, the non-convex constraint in (29)

should be approximated by a convex constraints such that

problem P2 turns out to be a convex problem. To handle these

non-convexity issues, we exploit the SCA technique through

introducing additional slack variables. The details of these

approximations are provided in the following.

Firstly, by incorporating a positive slack variable z, the

constraint in (29) can equivalently be decomposed into the

following two constraints:

C∑

i=1

Ki∑

j=1

ti log2(1 + SINRj,i) ≥
√
γz, (32)

√
z ≥ 1

ϵ

C∑

i=1

Ki∑

j=1

p2j,i + Ploss. (33)

Now, we deal with the non-convexity of (32) by introducing

new slack variables αj,i and ϑj,i as follows:

(1 + SINRj,i) ≥ αj,i, ∀i ∈ C, ∀j ∈ Ki, ∀d ∈ {j + 1, ...,Ki},
(34a)

log2(1 + SINRj,i) ≥ ϑj,i, ∀i ∈ C, ∀j ∈ Ki, (34b)

αj,i ≥ 2ϑj,i , ∀i ∈ C, ∀j ∈ Ki, (34c)

C∑

i=1

Ki∑

j=1

tiϑj,i ≥
√
γz, ∀i ∈ C, ∀j ∈ Ki. (34d)

Note that the constraint in (34c) is convex while the rest of the

constraints in (34a), (34b), (34d) are not. To overcome these

non-convexity issues, we introduce another slack variable ηj,i,
such that the constraint in (34a) can be rewritten as

|hj,i|2p2d,i
|hj,i|2

∑d−1
s=1 p

2
s,i + σ2

j,i

≥
(αj,i − 1)η2j,i

η2j,i
,

∀i ∈ C, ∀j ∈ Ki, ∀d ∈ {j + 1, j + 2, ...,Ki}. (35)

Accordingly, the constraint in (35) can now be decomposed

into the following two constraints:

|hj,i|2p2d,i ≥ (αj,i − 1)η2j,i,

∀i∈C, ∀j∈Ki, ∀d∈{j + 1, j + 2, ...,Ki}, (36a)

|hj,i|2
d−1∑

s=1

p2s,i + σ2
j,i ≤ η2j,i,

∀i∈C, ∀j∈Ki, ∀d∈{j + 1, j + 2, ...,Ki}. (36b)

Then, based on the approximation of first-order Taylor series

expansion method, the constraint in (36a) can be represented

as

|hj,i|2
(
p2d,i

(t)
+ 2p

(t)
d,i(pd,i − p

(t)
d,i)

)
≥ η2j,i

(t)
(
α
(t)
j,i − 1

)

+2
(
α
(t)
j,i − 1

)
η
(t)
j,i

(
ηj,i − ηj,i

(t)
)
+ η2j,i

(t)
(
αj,i − αj,i

(t)
)
,

∀i ∈ C, ∀j ∈ Ki, ∀d ∈ {j + 1, j + 2, ...,Ki},
(37)

where p
(t)
d,i, ηj,i

(t) and α
(t)
j,i represent the approximations of

pd,i, ηj,i and αj,i at the tth iteration, respectively. Note that

both sides of (37) are linear in terms of the optimization

variables, i.e., pd,i, ηj,i, and αj,i. Furthermore, the constraint

in (36b) can be rewritten as the following SOC constraint:

∥|hj,i|p1,i, |hj,i|p2,i, ..., |hj,i|pd−1,i,σj,i∥ ≤ ηj,i,

∀i ∈ C, ∀j ∈ Ki, ∀d ∈ {j + 1, j + 2, ...,Ki}, (38)

where || · || denotes the Euclidean norm of a vector. With these

approximations, the constraint in (34a) can be rewritten as the

convex constraints in (37) and (38).

Now, we deal with the non-convexity issue of the constraint

in (34d). Similar to the previous approximations, we rewrite

the non-convex constraint in (34d) with a new slack variable

νj,i as

tiϑj,i ≥ νj,i, ∀i ∈ C, ∀j ∈ Ki, (39a)

C∑

i=1

Ki∑

j=1

νj,i ≥
√
γz, ∀i ∈ C, ∀j ∈ Ki. (39b)

To deal with the non-convexity issue of (39a), we add a non-

negative term t2i +ϑ2
j,i to both sides of inequality (39a) without

loss of generality. By taking the square root of both sides of

the inequality, the following SOC constraint can be defined:

ti + ϑj,i ≥
∥∥∥

2
√
νj,i

ti − ϑj,i

∥∥∥, ∀i ∈ C, ∀j ∈ Ki. (40a)

Furthermore, we approximate the left-side of (39b) with a

lower-bounded convex approximation using the first-order

Taylor series expansion. As such, (39b) can be reformulated

as

C∑

i=1

Ki∑

j=1

νj,i ≥
√
γ(t)z(t) +

1

2

√(
z(t)

γ(t)

)
(γ − γ(t))

+
1

2

√(
γ(t)

z(t)

)
(z − z(t)). (40b)

Similar to the previous approximations, the non-convexity

of the constraint in (33) can be dealt with by introducing a

new slack variable z̃,

√
z ≥ z̃, (41a)

z̃ ≥ 1

ϵ

C∑

i=1

Ki∑

j=1

p2j,i + Ploss. (41b)
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Now, we exploit a SOC relaxation to cast the non-convex

constraints in (41) with convex ones [36] as follows:

z + 1

2
≥

∣∣∣∣
∣∣∣∣
z−1
2

z̃

∣∣∣∣
∣∣∣∣ , (42a)

ϵ(z̃ − Ploss) + 1

2
≥

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

ϵ(z̃−Ploss)−1
2

p1,i
...
pK,i

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
, ∀i ∈ C. (42b)

Considering the aforementioned approximations, the constraint

in (29) can be equivalently rewritten as a set of the following

convex constraints: (34c), (37), (38), (40a), (40b), (42a) and

(42b). Accordingly, the minimum rate constraints can be

redefined as the following convex constraints:

νj,i ≥ R̄j,i, ∀i ∈ C, ∀j ∈ Ki. (43)

Next, the non-convexity issue of (16) can be handled by

approximating each non-convex term in the inequality by a

lower-bounded convex term using the first-order Taylor series

expansion. With this approximation, each term in (16) can be

equivalently written as

p2K,i ≥ p2K,i
(t)

+ 2pK,i
(t)(pK,i − pK,i

(t)), ∀i ∈ C. (44)

With the above relaxations, the original non-convex op-

timization problem P1 can be equivalently written as the

following approximated convex one:

(P3) : max
Γ

γ (45)

s.t. (34c), (37), (38), (40a), (40b), (42a), (42b),
(46)

(30), (15), (44), (43), (47)

where Γ comprises all the optimization variables, such that

Γ = {pj,i, ti, γ, αj,i, ϑj,i, ηj,i, z, z̃, νj,i}, ∀i ∈ C, ∀j ∈ Ki.

More specifically, the solution of P1 is obtained through itera-

tively solving the approximated convex optimization problem

P3 and updating initialized variables. In particular, the solution

of each iteration is fed into the optimization problem P3 to

update the corresponding initial parameter for the convergence

iteration. However, the initial parameters of the first iteration

have to be carefully selected to guarantee the success of

the iterative algorithm. In particular, for this iterative SCA

algorithm, selecting initial optimization parameters, Γ(0), has

a considerable impact on both efficiency of the solution and

convergence of the algorithm itself. Hence, the initialization

of variables should be carefully defined. These initial values

can be chosen by defining random power allocations p
(0)
j,i

that fulfill the constraints in the problem P-min. Then, the

corresponding slack variables are determined by substituting

these power allocations in (34), (37), (38), (40) and (42).

Consequently, the solutions obtained in each iteration are used

as initialized variables to solve the optimization problem P3 in

the subsequent iteration. Note that the objective function of the

optimization problem P3, i.e., γ, is a non-decreasing function

[41]. Therefore, a solution of the SCA algorithm can be

selected as a reasonable solution for the original optimization

TABLE I: GEE-Max Joint Resource Allocation Algorithm.

Algorithm 1: SCA method to solve GEE-Max Problem.

1: Group the users into clusters based on the grouping strategy
defined in (27)
2: Initialize: Set the parameters Γ(0)

3: Repeat
4: Solve the problem P3 in (45) - (47)

5: Update all parameters Γ(t)

6: Until |γ∗(t+1) − γ∗(t)| ≤ τ .

problem if the difference between two consecutive solutions is

less than a pre-defined threshold, τ . This stopping criteria of

the proposed iterative algorithm can be mathematically given

by |γ∗(t+1)−γ∗(t)| ≤ τ . We summarize the proposed iterative

SCA technique based algorithm to solve P1 in Algorithm 1.

It is worth pointing out that the convergence of the proposed

SCA-based approach to solve the GEE-Max problem has been

carefully investigated in [44], where it has been stated that

the SCA guarantees at least a local optimal solution, and in

most cases, a global optimal solution. On the other hand, we

discuss now the required aspects to guarantee the convergence

of the SCA technique in Algorithm 1. Firstly, we initialize

the iterative algorithm with appropriate initial parameters Γ(0),

which ensures the feasibility of the problem at each iteration.

It can be realized that the solutions returned at the iteration

t are also feasible solutions for the problem at the successive

iteration t + 1. This implies that Algorithm 1 yields a non-

decreasing sequence of the objective values, i.e., γ(t+1) > γ(t).

In addition, the total transmit power at BS is limited by an

upper bound of Pmax, which confirms that γ will converge to

the solution with a finite number of iterations.

B. Dinkelbach’s algorithm (DA) - based Approach

In this subsection, we develop an alternative approach

based on DA to solve the original GEE-Max problem. This

approach not only validates the solution obtained through the

SCA algorithm, but also provides an alternative technique to

deal with the fractional nature of the objective function in

the original optimization problem P1. With DA, a new non-

negative variable λ is introduced to parametrize the fractional

objective function into a non-fractional one [40]. Based on the
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variable λ, the problem P1 can be defined as follows:

(P4) : max
pj,i,ti

C∑

i=1

Ki∑

j=1

ti log2(1 + SINRj,i)

− λ


1

ϵ

C∑

i=1

Ki∑

j=1

p2j,i + Ploss


 (48)

s.t.

C∑

i=1

t
(t)
i = T, (49)

C∑

i=1

Ki∑

j=1

p2j,i
(t) ≤ Pmax, (50)

p2K,i
(t) ≥ p2K−1,i

(t) ≥ ... ≥ p21,i
(t)
, ∀i ∈ C,

(51)

R
(t)
j,i ≥ R̄j,i, ∀i ∈ C, ∀j ∈ Ki, (52)

Obviously, the objective function is convex with respect to

λ. Then, the following theorem presents the solution to the

problem P4.

Theorem 1. The optimal objective value of P4 equals to zero,

i.e.,

C∑

i=1

Ki∑

j=1

t∗i log2(1 + SINR∗
j,i)

− λ∗


1

ϵ

C∑

i=1

Ki∑

j=1

p∗j,i
2 + Ploss


 = 0, (53)

where {t∗i , p∗j,i, λ∗}, ∀i, ∀j denote the corresponding optimal

solutions for P4.

With Theorem 1, the solution of the original fractional

problem P1 (i.e., {t∗i , p∗j,i}, ∀i, ∀j) can be determined by

solving the non-fractional optimization problem P4, where

the optimal objective value of P4 is zero [40]. The proof of

Theorem 1 can be found in [40].

According to Theorem 1, the fractional objective function

can now be transformed into a subtractive form, and thus,

obtaining the variables pj,i, ti that maximize the GEE in the

original problem P1 is equivalent to solving the parameterized

optimization problem P4. Therefore, we first initialize the

parameter λ with zero, then use the convex approximation

techniques to solve the parameterized optimization problem

P4 [40]. Then, we update λ in the tth iteration as follows:

λ(t) =

∑C
i=1

∑Ki

j=1 t
(t−1)
i log2(1 + SINR

(t−1)
j,i )

1
ϵ

∑C
i=1

∑Ki

j=1 p
2
j,i

(t−1)
+ Ploss

. (54)

In particular, the variables t(t), p
(t)
j,i in the tth iteration can be

found by solving the following optimization problem:

(P5) : max
p
(t)
j,i

,t
(t)
i

C∑

i=1

Ki∑

j=1

t
(t)
i log2(1 + SINR

(t)
j,i )

− λ(t−1)


1

ϵ

C∑

i=1

Ki∑

j=1

p2j,i
(t)

+ Ploss




(55)

s.t. (49), (50), (51), (52). (56)

Now, we highlight the following observations by comparing

the optimization problems P1 and P5. Firstly, note that the

parametrization carried out using DA deals with the fractional

nature of the objective function, as seen in P5. However, it

can be shown that the first part of the objective function in

P5 still remains non-convex because the optimization variables

are coupled. Secondly, we can use the convex approximations

implemented in P3 to deal with the non-convex constraints in

P5.

Considering the above, we deal with the non-convexity issue

of the objective function of P5 by using the same approach that

has been developed to approximate the constraints in problem

P3, such as the SCA technique, through introducing a set of

slack variables as follows:

ti log2(1 + SINRj,i) ≥ yj,i, ∀i ∈ C, ∀j ∈ Ki, (57a)

(1 + SINRd
j,i) ≥ βj,i, ∀i ∈ C, ∀j ∈ Ki, ∀d ∈ {j + 1, ...,Ki},

(57b)

log2(1 + SINRj,i) ≥ χj,i, ∀i ∈ C, ∀j ∈ Ki, (57c)

βj,i ≥ 2χj,i , ∀i ∈ C, ∀j ∈ Ki, (57d)

tiχj,i ≥ yj,i, ∀i ∈ C, ∀j ∈ Ki. (57e)

The constraint in (57b) can be equivalently rewritten as the

following set of convex constraints:

|hj,i|2
(
p2d,i

(t)
+ 2p

(t)
d,i(pd,i − p

(t)
d,i)

)
≥ θ2j,i

(t)
(
β
(t)
j,i − 1

)

+2
(
β
(t)
j,i − 1

)
θ
(t)
j,i

(
θj,i − θj,i

(t)
)
+ θ2j,i

(t)
(
βj,i − βj,i

(t)
)
,

∀i ∈ C, ∀j ∈ Ki, ∀d ∈ {j + 1, j + 2, ...,Ki},
(58a)

∥|hj,i|p1,i, |hj,i|p2,i, ..., |hj,i|pd−1,i, σj,i∥ ≤ θj,i,

∀i ∈ C, ∀j ∈ Ki, ∀d ∈ {j + 1, j + 2, ...,Ki}, (58b)

where θj,i, ∀i ∈ C, ∀j ∈ Ki, are newly introduced variables.

As can be seen, the constraints in (57e) are jointly convex

with respect to the involved variables where the right side is

an affine function and the left side is a quadratic-over-affine

function [41]. The inequality (57e) can be formulated into a

SOC constraint as follows:

ti + χj,i ≥
∥∥∥

2
√
yj,i

ti − χj,i

∥∥∥, ∀i ∈ C, ∀j ∈ Ki. (59)
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TABLE II: Dinkelbach’s Method to Solve GEE-Max

Problem.

Algorithm 2: Dinkelbach’s method to solve GEE-Max Problem.

1: Initialize: λ(0) to satisfy G(λ(0)) ≥ 0, iteration number t = 0 and

set the parameters Φ(0)

2: Repeat

3: Solve the problem P6 with Φ(t−1), then obtain the optimal Φ∗

4: Update Φ(t) = Φ∗

5: Until required accuracy is achieved

6: Update λ(t+1) according to (54), and set t← t+ 1
7: Until convergence.

It is obvious that
(

1
ϵ

∑C
i=1

∑Ki

j=1 p
2
j,i + Ploss

)
is a convex

function in terms of pj,i, ∀i ∈ C, ∀j ∈ Ki. Thus, the function

λ
(

1
ϵ

∑C
i=1

∑Ki

j=1 p
2
j,i + Ploss

)
is also a convex function of

pj,i, ∀i ∈ C, ∀j ∈ Ki as λ is a constant and consequently∑C
i=1

∑Ki

j=1 yj,i − λ
(

1
ϵ

∑C
i=1

∑Ki

j=1 p
2
j,i + Ploss

)
is a convex

function. From these observations, the original non-convex
optimization problem P1 can be approximated using the DA
as the following optimization problem:

(P6) : max
Φ(t)

C
∑

i=1

Ki
∑

j=1

y
(t)
j,i − λ

(t−1)

(

1

ϵ

C
∑

i=1

Ki
∑

j=1

p
2
j,i

(t)
+ Ploss

)

(60)

s.t. (49), (50), (51), (58a), (58b), (57d), (59), (61)

y
(t)
j,i ≥ R̄j,i, ∀i ∈ C, ∀j ∈ Ki, (62)

where Φ(t) = {p(t)j,i , t
(t)
i , θ

(t)
j,i , χ

(t)
j,i , y

(t)
j,i }, ∀i ∈ C, ∀j ∈ Ki.

With the solution of P6, we update the involved variables at

the successive iteration. This iterative process is carried out

until the algorithm converges. Algorithm 2 summarizes the

proposed iterative algorithm for solving the original problem

P1. In this DA-based iterative algorithm, we first initialize

the variables with λ(0) and Φ(0). Then, for current λ, the

optimal variables Φ∗ are determined by solving the problem

P6 until the required accuracy is achieved. The proof for

the convergence of the proposed algorithm is provided in

Appendix.

C. Complexity Analysis of the Proposed Schemes

In this subsection, we provide the analysis for the computa-

tional complexity of solving the original GEE-Max optimiza-

tion problem P1.

1) The complexity of the SCA based approach: With the

SCA-based approach, the solution of the original GEE-Max

optimization problem P1 is obtained through solving the

approximated optimization problem P3, iteratively. Therefore,

the complexity of solving P1 can be defined by quantifying the

complexity of solving the approximated P3 and the average

number of required iterations, where the interior-point method

is utilized to solve the SOCP with SOC and linear constraints

[46], [47]. In particular, the complexity of solving the SOCP

constraints at each iteration is given by O = (A2B) [46],

where A and B represent the number of optimization variables

and the dimensions of the SOC constraints, respectively. In

fact, as P3 is solved in a number of iterations, the overall

complexity of solving the original problem is upper bounded

by O
(
A2B log( 1τ )

)
, where τ is the required solution accuracy.

2) The complexity of the Dinkelbach’s algorithm (DA)

based approach: In the developed DA-based algorithm, the

original optimization problem is transformed into a stan-

dard SOCP problem for the given non-negative variable λ.

However, two iterative algorithms are deployed to determine

the solution in the DA based approach. Thus, the upper-

bound complexity of DA based approach can be defined

as O
(
A2B log( 1τ ) log(

1
ϖ )

)
, where ϖ represents the required

solution accuracy.

IV. SIMULATION RESULTS

In this section, we provide simulation results to demonstrate

the effectiveness of the proposed joint GEE-Max design for

the considered hybrid TDMA-NOMA system. Additionally,

the performance of the proposed schemes have been compared

with that of the other baseline designs, namely, SR-Max and P-

Min designs. In particular, we evaluate the performance of the

proposed GEE-Max design with opportunistic time allocations

against schemes with equal time allocations.

In the simulations, a hybrid TDMA-NOMA system is con-

sidered with 10 users. The users are assumed to be uniformly

distributed over a circle area with a radius of 10 meters around

the BS, where the minimum distance d0 is selected 1 meter (d0
= 1 m), where d0 is the reference distance. The corresponding

channel gain is |hj,i|2 = β
(dj,i/d0)κ

, where β = −30 dB and

κ = 2. The noise variance at each user σ2
j,i depends on the

noise power spectral density N0 and the channel bandwidth B,

which is expressed as σ2
j,i = N0B. In these simulations, N0

is assumed to be -70 dBm/Hz and the bandwidth B is set to 1

MHz. The power amplifier efficiency ϵ for both algorithms is

0.35 [33]. In addition, the stopping-criteria threshold for both

algorithms is set to 0.01 [37]. Furthermore, the CVX software

is used to solve the convex problems in these simulations [42].

Fig. 3 compares the EE of our proposed design with the

existing conventional designs in the literature, namely the

resource allocation techniques with P-Min and SR-Max in

hybrid TDMA-NOMA system. As seen in Fig. 3, the proposed

GEE-Max based design outperforms the conventional design

criteria of P-Min and SR-Max in terms of achieved EE. In

addition, the EE of the SR-Max based design is not mono-

tonically increasing with the available power and decreases

when the transmit power exceeds a certain available power

budget. This is due to the fact that this design fully uses all

the available power for maximizing the achievable sum rate

instead of maximizing the EE. In other words, maximizing the

achievable sum-rate does not always maximize the EE. We can

also observe that the P-Min based design achieves lower EE

than the proposed scheme. This is due to the fact that the P-

Min design seeks for the minimum power that is required to

achieve the minimum rate requirements.

Fig. 4 depicts the average EE versus transmit power for

different QoS requirements using the algorithms developed

through the SCA and DA techniques. We can observe that the

EE of both algorithms first increases until reaches a certain



10

2 4 6 8 10
0.00

0.25

0.50

0.75

1.00

E
n

e
rg

y
 e

ff
ic

ie
n

c
y
 (

M
b

it
s
/J

o
u

le
)

Pmax(W)

 GEE-Max

 SR-Max

 P-Min

Fig. 3: Energy efficiency of the hybrid TDMA-NOMA

system with different design criteria, R̄j,i = 5bits/s/Hz.
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Fig. 4: Energy efficiency of the proposed algorithm with

different QoS requirements.

value, and then it remains constant after a certain maximum

power Pmax. The EE performance with Rmin = 5 bits/s/Hz 1

is better than that with Rmin = 3 bits/s/Hz. This performance

difference can be justified through the following argument.

With higher Rmin, the increasing rate in the sum rate is higher

than the increasing rate in the total power consumption, which

results in an improvement of EE. Note that the performance

gap between these two algorithms is not significant in terms

of the achieved EE. By setting the stopping-criteria to zero

(i.e., λ(t+1) − λ(t) = 0), then both approaches should achieve

the same performance.

Next, Fig. 5 illustrates the achieved EE against different

1Note that Rmin and R̄j,i carry the same meaning

1 2 3 4 5 6 7 8 9 10
0.00

0.25

0.50

0.75

1.00

En
er

gy
 e

ffi
ci

en
cy

(M
bi

ts
/J

ou
le

)

Pmax(W)

 Equal time allocation
 DA approach
 SCA approach

Fig. 5: Energy efficiency of the proposed algorithm and

equal time allocation scheme with different transmit power,

R̄j,i = 3bits/s/Hz.

transmit power levels for the proposed scheme with oppor-

tunistic time allocation and the conventional schemes with

equal time allocation. As seen in Fig. 5, the achieved EE

of the GEE-Max design with opportunistic time allocation

outperforms that of the conventional equal time allocation.

This can be achieved by solving the GEE-Max problem using

either the SCA or the DA algorithm, as shown in Fig. 5. In

these algorithms, both time and power resources are utilized

efficiently to achieve the best EE for a given system.

Next, we compare the achieved per-user power allocations

and per-cluster time allocations in the hybrid TDMA-NOMA

schemes with the opportunistic time allocations versus that

of the conventional schemes with equal time allocation in

Table III and IV, respectively. For the sake of comparison,

we assume that both schemes use the same minimum data

rate requirements (R̄j,i = 2 bits/s/Hz). The achieved rate

of each user and the time allocations using the proposed

opportunistic time allocation are given for five different sets

of random channels. As seen in Table III, most users achieve

better rates in our proposed opportunistic time allocations

based hybrid TDMA-NOMA schemes when compared with

the conventional scheme with equal time allocations.

The convergence of SCA and DA-based EE maximization

algorithms is studied in Fig. 6 and Fig. 7, respectively. In

particular, five different sets of channels are considered to

evaluate the convergence. In these simulations, the maximum

transmit power Pmax is set to 10 W. As seen in Fig. 6, the

SCA-based algorithm converges to the optimal EE faster by

using the relaxation of constraints. The convergence of DA

follows the same procedure as for the convergence of the

SCA technique for each λ. In addition, the simulation results

confirm that both algorithms converge within a few number

of iterations.
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TABLE III: Power Allocations For Each User In The Hybrid TDMA-NOMA Through The Proposed Opportunistic Time

Allocations And The Conventional Equal Time One.

Channels p1,1 p2,1 p1,2 p2,2 p1,3 p2,3 p1,4 p2,4 p1,5 p2,5

Scheme
with oppor-
tunistic
time
allocations

Channel 1 9.407 2.000 8.678 2.000 7.443 2.000 2.461 2.000 2.000 2.000

Channel 2 1.2509 2.6832 1.2509 2.6832 1.2509 2.5327 1.2898 2.2687 1.3310 2.1908

Channel 3 0.8979 2.1111 0.8979 2.1111 0.8979 1.9323 0.8979 1.6852 0.8979 1.5376

Channel 4 1.1093 2.6235 1.1093 2.6235 1.1093 2.5285 1.1093 2.4644 1.1093 2.4644

Channel 5 0.8393 1.8862 0.8393 1.8433 0.8393 1.7023 0.8393 1.6952 1.0169 1.5410

Scheme
with equal
time
allocations

Channel 1 7.517 2.000 7.517 2.000 7.091 2.000 3.293 2.000 2.687 2.000

Channel 2 1.1546 3.2741 1.1546 2.8266 1.1546 2.1453 1.1546 1.9478 1.1855 1.8550

Channel 3 0.9145 2.6055 0.9145 2.3931 0.9145 1.8665 0.9145 1.3254 0.9145 1.2887

Channel 4 1.1637 3.1452 1.1637 2.9782 1.1637 2.3582 1.1637 2.1550 1.1637 2.1295

Channel 5 0.8568 2.2729 0.8568 1.9871 0.8568 1.5232 0.8568 1.4743 0.9514 1.3963

TABLE IV: Time Allocation And Achieved Minimum Throughout In The Hybrid TDMA-NOMA And The Conventional

Schemes.

Scheme with opportunistic time allocations Scheme with equal time allocations

Channels t1(s) t2(s) t3(s) t4(s) t5(s) EE t1(s) t2(s) t3(s) t4(s) t5(s) EE

(Mbits/Joule) (Mbits/Joule)

Channel 1 2.254 2.329 2.118 1.980 1.516 0.356 2 2 2 2 2 0.327

Channel 2 1.751 1.819 2.097 2.114 2.219 0.275 2 2 2 2 2 0.251

Channel 3 2.737 2.399 1.892 1.425 1.547 0.490 2 2 2 2 2 0.438

Channel 4 2.599 2.388 1.783 1.628 1.601 0.304 2 2 2 2 2 0.284

Channel 5 2.634 2.220 1.695 1.630 1.819 0.563 2 2 2 2 2 0.533
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Fig. 6: The convergence of the SCA algorithm for five

different sets of channels.

V. CONCLUSIONS

In this paper, we have studied the GEE-Max problem with

joint power-time resource allocation for a hybrid TDMA-

NOMA system. In particular, the users are grouped into a num-

ber of clusters, the available transmission time is divided into
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Fig. 7: The convergence of the DA for five different sets of

channels.

several time-slots, and the power-domain NOMA is exploited

to serve multiple users within each cluster. However, due to

the non-convexity of the formulated GEE-Max optimization

problem, we have proposed two different algorithms based on

the SCA and DA techniques, respectively. Simulation results
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have demonstrated the effectiveness of the proposed schemes.

In particular, the proposed hybrid TDMA-NOMA system with

opportunistic time allocation outperforms the conventional

resource allocations with equal time assignment in terms of

the required minimum transmit power and achieved sum rate.

In other words, the proposed schemes achieve better EE

than the conventional schemes with equal time allocations.

As evidenced by a large number of work in the literature,

reinforcement learning techniques might be exploited to im-

prove the computational complexity while meeting the delay

requirements. This is one of the promising research directions

that we would explore in the future in resource allocation

techniques for NOMA-based systems.

APPENDIX

In order to prove the convergence of the DA-based iterative

approach to the optimal solution, the following conditions can

be equivalently proven [40]:

• Firstly, we prove that λ(t+1) > λ(t) for all t.

Lemma 2. Let G(λ(t)) =

max{t∗
i
,p∗

j,i
}

{∑C
i=1

∑Ki

j=1 Rj,i(ti, pj,i)− λ(t)Ptotal(pj,i)
}

,

then G(λ) is a strictly monotonic decreasing function of

λ, i.e., if λ(t) < λ(t+1), then G(λ(t)) > G(λ(t+1)).
Proof: Let {t∗i , p∗j,i} be the optimal power allocation
and time slot assignment for the proposed schemes for
G(λ(t+1)). Then

G(λ(t+1)) = max
{t∗

i
,p∗

j,i
}

{

C
∑

i=1

Ki
∑

j=1

Rj,i(ti, pj,i)− λ
(t+1)

Ptotal(pj,i)

}

=

C
∑

i=1

Ki
∑

j=1

Rj,i(t
∗
i , p

∗
j,i)− λ

(t+1)
Ptotal(p

∗
j,i)

<

C
∑

i=1

Ki
∑

j=1

Rj,i(t
∗
i , p

∗
j,i)− λ

(t)
Ptotal(p

∗
j,i)

≤ max
ti,pj,i

{

C
∑

i=1

Ki
∑

j=1

Rj,i(ti, pj,i)− λ
(t)

Ptotal(pj,i)

}

= G(λ(t)). (63)

This completes the proof of Lemma 2.

Lemma 3. Let {ti, pj,i} be an arbitrary power al-

location and time slot assignment and λ(t+1) =∑C
i=1

∑Ki
j=1 Rj,i(p

(t+1)
j,i

,t
(t+1)
i

)

Ptotal(p
(t+1)
j,i

)
, then G(λ(t+1)) ≥ 0.

Proof: G(λ(t+1)) =

max{ti,pj,i}

{∑C
i=1

∑Ki

j=1 Rj,i(ti, pj,i)−λ(t+1)Ptotal(pj,i)
}

≥ ∑C
i=1

∑Ki

j=1 Rj,i(t
(t+1)
i , p

(t+1)
j,i ) −

λ(t+1)Ptotal(p
(t+1)
j,i ) = 0. Hence, G(λ(t+1)) ≥ 0.

This completes the proof of Lemma 3 and this lemma

implies that G(λ(t)) ≥ 0. By definition, we have

G(λ(t)) =

C∑

i=1

Ki∑

j=1

Rj,i(ti
(t), p

(t)
j,i )− λ(t)Ptotal(p

(t)
j,i )

= λ(t+1)Ptotal(p
(t)
j,i )− λ(t)Ptotal(p

(t)
j,i ) > 0.

(64)

Since Ptotal(p
(t)
j,i ) > 0, then λ(t+1) > λ(t).

• Secondly, we prove that limt→∞ λ(t) = λ∗, where λ∗ is

the maximum EE and we shall prove that the λ(t) equals

to λ∗ when iteration number t approaches to infinity. We

prove it by contradiction. Assume that limt→∞ λ(t) = λ∗

does not hold, that is, limt→∞ λ(t) = λ̃ < λ∗. Based on

this argument, G(λ̃) = 0. However, G(λ) is a strictly

monotonic decreasing function based on Lemma 2, and

therefore we obtain

0 = G(λ̃) > G(λ∗) = 0, (65)

which contradicts the initial assumption. Therefore, this

confirms that the Dinkelbach’s algorithm based method

converges to the optimal solution. ■
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