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Abstract

Methods are developed for checking and completing systems of bivariate and multivariate Kendall’s tau concordance

measures in applications where only partial information about dependencies between variables is available. The

concept of a concordance signature of a multivariate continuous distribution is introduced; this is the vector of con-

cordance probabilities for margins of all orders. It is shown that every attainable concordance signature is equal to

the concordance signature of a unique mixture of the extremal copulas, that is the copulas with extremal correlation

matrices consisting exclusively of 1’s and −1’s. A method of estimating an attainable concordance signature from

data is derived and shown to correspond to using standard estimates of Kendall’s tau in the absence of ties. The set

of attainable Kendall rank correlation matrices of multivariate continuous distributions is proved to be identical to

the set of convex combinations of extremal correlation matrices, a set known as the cut polytope. A methodology

for testing the attainability of concordance signatures using linear optimization and convex analysis is provided. The

elliptical copulas are shown to yield a strict subset of the attainable concordance signatures as well as a strict subset

of the attainable Kendall rank correlation matrices; the Student t copula is seen to converge to a mixture of extremal

copulas sharing its concordance signature with all elliptical distributions that have the same correlation matrix. A

characterization of the attainable signatures of equiconcordant copulas is given.

Keywords: Attainable correlations, Concordance, Copulas, Cut-polytope, Elliptical distributions, Exchangeable

distributions, Extremal distributions, Kendall’s rank correlation, Multivariate Bernoulli distributions.

1. Introduction

In many real-world applications of statistics a modeler is required to impute missing information on the depen-

dencies between variables, typically in the form of correlations. This problem is particularly common in finance

and insurance where data on certain risks are often sparse or non-existent. Some financial institutions use copulas

parameterized in part by expert-elicited correlations to build joint models of key risks affecting their solvency and

profitability (Embrechts et al., 2002; Shaw et al., 2011). For example, a large insurer analyzing excess risk due

to the Covid-19 pandemic might consider the interplay between mortality risk, business interruption risk, financial

investment risk and trade credit insurance risk. While dependencies between these risks may be significant and non-

negligible, they are also difficult to quantify. In the related area of asset management a model for the dependencies

between asset returns is essential for optimizing a portfolio. However many assets have no track record and plausible

values must be entered if they are to be included in the analysis. Assessing dependence in the absence of data is also

relevant in causal inference when unmeasured confounders are present (Stokes et al., 2020).

Imputing missing information on dependence is a challenging problem because of the complex relationships be-

tween different pairs or subgroups of variables. The general problem of determining the compatibility of lower-

dimensional margins of higher-dimensional distributions has only been partially resolved (see Joe, 1996, 1997, among

others). In this paper, we investigate the related problem of compatibility of correlation measures for subgroups of

variables. Even for the classical linear correlation of Pearson, the set of attainable correlation matrices has not been

fully characterized. Because Pearson’s correlation depends on the marginal distributions, the set of attainable matri-

ces is generally much more complicated than the elliptope of positive semi-definite correlation matrices investigated,
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for example, by Huber and Marić (2015, 2019), unless attention is restricted to special choices of margins such as

the normal (Embrechts et al., 2002). Recently, Hofert and Koike (2019) described the set of attainable Blomqvist’s

beta matrices, while Embrechts et al. (2016) found conditions characterizing matrices of tail dependence coefficients.

Devroye and Letac (2015) and Wang et al. (2019) consider the set of attainable Spearman rank correlation matrices;

this coincides with the elliptope of linear d × d correlation matrices when d 6 9 but not when d > 12, while the case

where d ∈ {10, 11} remains to be settled.

In this paper, we provide a complete solution to the attainability and compatibility problem when dependence

is measured by the widely-used Kendall’s tau rank correlation (Joe, 1990; Kendall, 1938; Kruskal, 1958) which

parametrizes many popular dependence models. In order to take into account bivariate and higher-order associations

between subsets of variables, we quantify the dependence of a multivariate random vector using a vector-valued mea-

sure that we call the concordance signature, which underlies all bivariate and multivariate Kendall’s tau coefficients;

this concept is made precise in Section 2.

A note on our use of the terms attainability and compatibility may be helpful at this point. We use attainable

when we talk about a logically coherent collective entity that could belong to a probability distribution, such as a

concordance signature or a Kendall’s tau matrix. We use compatible when we talk about the relationship between

sub-components of an attainable entity, such as Kendall’s tau rank correlations for different pairs of variables. We also

refer to attainable signatures as being compatible with probability distributions.

Our main result is to fully characterize the set of attainable concordance signatures of continuous multivariate

distributions. As a by-product, we prove the conjecture of Hofert and Koike (2019) that the set of attainable Kendall

rank correlation matrices is identical to the set of convex combinations of the extremal correlation matrices, i.e., the

correlation matrices consisting exclusively of 1’s and −1’s; this set is also known as the cut polytope (Laurent and

Poljak, 1995). As we show, this characterization follows from the links between concordance signatures, multivariate

Bernoulli distributions, and extremal mixture copulas, i.e., mixtures of the 2d−1 possible copulas with extremal corre-

lation matrices (Tiit, 1996). We explain why the set of attainable Kendall correlation matrices is identical to the set of

attainable correlation matrices for multivariate Bernoulli random vectors with symmetric margins as derived by Huber

and Marić (2015, 2019).

The methodology we propose has a number of important applications. First, it allows us to determine whether a set

of estimated or expert-elicited Kendall correlations (bivariate or multivariate) is compatible with a valid multivariate

distribution. If it is, we then propose a method of determining the set in which any remaining unmeasured Kendall

correlations must lie using standard techniques from linear optimization and convex analysis. To illustrate, suppose,

for example, we have Bitcoin, Etherium and Litecoin in our portfolio and we invest in a new cryptocurrency ‘X4coin’.

Based on return data for Bitcoin, Etherium and Litecoin in 2017, the attainable Kendall rank correlations between

the as yet unobserved X4coin and the other three currencies can be shown to lie in the three-dimensional polytope

in the left panel of Figure 1. As soon as we form an opinion on the rank correlation between X4coin and one of

the cryptocurrencies, this further restricts the set of possible rank correlations between X4coin and the other two

currencies, as shown in the right panel of Figure 1; full details are given later in Example 3.

We also prove that sample concordance signatures based on classical estimators of Kendall’s tau are themselves

concordance signatures of valid multivariate distributions. Our finding that the concordance signature of a multivariate

distribution with continuous margins is always equal to the concordance signature of a unique mixture of the extremal

copulas then offers a powerful technique in Monte Carlo simulation or risk analyses. It allows us to draw realizations

from a model with identical concordance signature to that estimated from the data but with an extreme form of

tail dependence.

Finally, our methodology allows us to take a closer look at the dependence structure inherent in different classes of

distributions. We show that the concordance signatures of the family of elliptical copulas form a strict subset of the set

of all possible attainable concordance signatures. The surprising consequence is the existence of Kendall correlation

matrices that do not correspond to any elliptically distributed random vector; this behavior provides a contrast with

Pearson correlation matrices, each of which is the correlation matrix of at least one elliptical distribution. Moreover,

we show that the d-dimensional Student t copula with correlation matrix P ∈ Rd×d and degree-of-freedom parameter

ν > 0 converges pointwise to a mixture of extremal copulas which shares its concordance signature as ν→ 0. We also

investigate the concordance signatures of exchangeable and equiconconcordant distributions.
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Figure 1: Left panel: set of attainable Kendall rank correlations for X4coin paired with three other cryptocurrencies in Example 3. Right panel: set

of attainable Kendall’s tau values for (X4coin, Etherium) and (X4coin, Litecoin) when the (X4coin, Bitcoin) value is fixed at 0.598.

2. Concordance signatures

Throughout this paper, we use bold symbols such as x = (x1, . . . , xd) to denote vectors in R
d and understand

expressions such as x + y as componentwise operations; similarly x 6 y implies that all components are ordered.

Let X = (X1, . . . , Xd) denote a generic random vector with continuous margins F1, . . . , Fd. As is well known,

the unique copula C of X is the distribution function of the random vector U = (U1, . . . ,Ud) where Ui = Fi(Xi) for

i = 1, . . . , d (Joe, 1997; Nelsen, 2006).

For any subset I ⊆ D = {1, . . . , d} with I , ∅ we write XI and UI to denote sub-vectors of X and U, and CI for the

copula of XI , i.e., the distribution function of UI . The multivariate probability of concordance of XI is defined as

κI = P
({XI 6 X∗I } ∪ {X∗I 6 XI}

)
, (1)

where X∗ is a random vector independent of X but with the same distribution. Note that (1) implies κ{i} = 1 for a

singleton and we adopt the convention κ∅ = 1.

For subsets with cardinality |I| > 2, the concordance probabilities quantify the association between the compo-

nents of XI . Indeed κI is related to Kendall’s tau τI (Kendall, 1938; Kruskal, 1958) when |I| = 2 and to its multivariate

analogue (Genest et al., 2011; Joe, 1990) when |I| > 2 via the formula

(2|I|−1 − 1)τI = 2|I|−1κI − 1 . (2)

Moreover, following Nelsen (2006), κI depends only on the copula CI of XI according to

κI = 2P
(
XI 6 X∗I

)
= 2P

(
UI 6 U∗I

)
= 2

∫

[0,1]|I|
CI(u)dCI(u). (3)

Without loss of generality, we can thus refer to κI as the concordance probability of the copula CI of XI and use the

notation κI = κ(CI) = κ(XI) = κ(UI) interchangeably.

To summarize the various dependencies inherent in the vector X, we can collect the values κI for all subsets I ∈
P(D), where P(D) denotes the power set ofD. This motivates calling the vector (κI : I ∈ P(D)) the full concordance

signature of X. Sub-vectors of the full concordance signature are known as partial concordance signatures. From

Proposition 1 in Genest et al. (2011), which is based on the exclusion-inclusion principle, we can deduce that for any

set I ⊆ D of odd cardinality,

κI = 1 +
∑

A⊂I,16|A|<|I|
(−1)|A|P(UA 6 U∗A) = 1 − |I|

2
+

∑

A⊂I,26|A|<|I|
(−1)|A|

κA

2
. (4)
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Thus the full concordance signature can be deduced from the concordance probabilities for subsets of D of even

cardinality. We formalize ideas in the following definition.

Definition 1. A label set is any collection S of subsets of D such that ∅ ∈ S . The vector κS (C) = (κ(CI) : I ∈ S ) is

called the partial concordance signature of the copula C for the label set S . By convention, the elements of S are taken

in lexicographical order. When the label set is the even power set E(D) = {I : I ⊆ D, |I| even} (containing the empty

set ∅ by convention) the partial concordance signature is called the even concordance signature of C and is denoted

κ(C). When the label set is P(D) the partial concordance signature is called the full concordance signature of C and

is denoted κ̃(C).

3. Extremal mixture copulas

Our main tools for the study of concordance signatures are mixtures of so-called extremal copulas and their

relationship with multivariate Bernoulli distributions. In this section we develop the necessary notation and theory.

An extremal copula C with index set J ⊆ D is the distribution function of the random vector U = (U1, . . . ,Ud)

where for j ∈ D, U j
d

= U if j ∈ J, U j
d

= 1 − U if j ∈ J∁, and U is a standard uniform random variable. For all

u ∈ [0, 1]d it has the explicit form

C(u) = (min
j∈J

u j +min
j∈J∁

u j − 1)+ , (5)

where for any x ∈ R, x+ = max(x, 0) denotes the positive part of x and we employ the convention min j∈∅ u j = 1.

In dimension d > 2 there are 2d−1 extremal copulas and we enumerate them in the following way. For k ∈
{1, . . . , 2d−1} let sk = (sk,1, . . . , sk,d) be the vector consisting of the digits of k − 1 when represented as a d-digit binary

number. For example, when d = 4 we have exactly eight extremal copulas corresponding to the vectors

s1 = (0, 0, 0, 0), s2 = (0, 0, 0, 1), s3 = (0, 0, 1, 0), s4 = (0, 0, 1, 1),

s5 = (0, 1, 0, 0), s6 = (0, 1, 0, 1), s7 = (0, 1, 1, 0), s8 = (0, 1, 1, 1).

For each k ∈ {1, . . . , 2d−1}, sk = (sk,1, . . . , sk,d) and 1 − sk = (1 − sk,1, . . . , 1 − sk,d) are opposite vertices of the unit

hypercube connected by one of its 2d−1 main diagonals, 1 being the vector of ones. The kth extremal copula in

dimension d, denoted C(k), spreads its probability mass uniformly along the latter diagonal joining sk and 1 − sk. Its

index set Jk ⊆ D = {1, . . . , d} is defined as the set of indices corresponding to zeros in sk; that is, j ∈ Jk if sk, j = 0

and j ∈ J∁
k

if sk, j = 1. For the 4-dimensional example above we have J1 = {1, 2, 3, 4}, J∁
1
= ∅, J2 = {1, 2, 3}, J∁

2
= {4}

and so on. Note also that J1 = D so that C(1)(u) = min(u1, . . . , ud) is the comonotonicity or Fréchet–Hoeffding upper

bound copula.

Extremal copulas owe their name to the fact that their correlation matrices are extremal correlation matrices, that

is, matrices consisting exclusively of 1’s and −1’s. Indeed, for any k ∈ {1, . . . , 2d−1}, we find that the matrix of pairwise

Kendall’s tau values for the kth extremal copula C(k) is P(k) = (2sk − 1)(2sk − 1)⊤. This matrix is simultaneously the

matrix of pairwise Pearson and Spearman correlations of C(k).

Definition 2. An extremal mixture copula is a copula of the form C∗ =
∑2d−1

k=1 wkC
(k), where for all k ∈ {1, . . . , 2d−1},

C(k) is the kth extremal copula, wk > 0, and
∑2d−1

k=1 wk = 1.

The following proposition shows how the extremal mixture copulas are related to multivariate Bernoulli distribu-

tions; the proof is given in Appendix A.

Proposition 1. Let U be a standard uniform random variable and B a d-dimensional multivariate Bernoulli vector

independent of U. Then the distribution function of the vector

UB + (1 − U)(1 − B) (6)

is an extremal mixture with weights given, for each k ∈ {1, . . . , 2d−1}, by

wk = P(B = sk) + P(B = 1 − sk), (7)

4



where sk is the vector consisting of the digits of k − 1 when represented as a d-digit binary number. Conversely, any

extremal mixture copula C∗ =
∑2d−1

k=1 wkC
(k) is the distribution function of a random vector of the form (6), where U is

independent of B and (7) holds for all k ∈ {1, . . . , 2d−1}.

The class of Bernoulli distributions satisfying (7) is infinite since the mass wk can be split between the events

{B = sk} and {B = 1 − sk} in an arbitrary way. It is important for the arguments used in this paper to single out a

representative and we do this by setting B = Y, where Y is radially symmetric about 0.5. This means that Y
d
= 1 − Y

and implies that, for each k ∈ {1, . . . , 2d−1},

P(Y = sk) = P(Y = 1 − sk) = 0.5wk. (8)

Such distributions are also known as palindromic Bernoulli distributions (Marchetti and Wermuth, 2016) and they are

fully parameterized by the 2d−1 probabilities P(Y = sk) = 0.5wk, k ∈ {1, . . . , 2d−1}. This means that there is a bijective

mapping between the extremal mixture copulas and the radially symmetric multivariate Bernoulli distributions in

dimension d. A number of constraints apply to radially symmetric Bernoulli random vectors. Apart from the fact that

P(Yi = 1) = 0.5 for all i, we will make use of the following insight, proved in Appendix A.

Proposition 2. (i) The radially symmetric Bernoulli distribution of a vector Y in dimension d is uniquely deter-

mined by the vector of probabilities pY = (pI : I ∈ E(D) \ ∅), where pI = P(YI = 1) and E(D) is the even power

set as in Definition 1.

(ii) The vector pY in (i) is the shortest vector of the form (pI : I ∈ S \ ∅) for a label set S ⊂ P(D) which uniquely

determines the distribution of Y for all radially symmetric Bernoulli random vectors Y.

We close this section by noting that the independence between U and Y in the stochastic representation U
d

=

UY + (1 − U)(1 − Y) of an extremal mixture copula cannot be dispensed with. An example of a copula that violates

this condition is provided in Appendix A and reveals an interesting contrast between the extremal copulas and the

mixtures of extremal copulas. While a necessary and sufficient condition for a vector U to be distributed according

to an extremal copula is that its bivariate margins should be extremal copulas (Tiit, 1996), the analogous statement

does not hold for extremal mixture copulas. Although it is necessary that the bivariate margins of an extremal mixture

copula are extremal mixture copulas, the example shows that this is not sufficient. An additional condition is required,

as detailed in the next proposition which is proved in Appendix A.

Proposition 3. The distribution of a random vector U = (U1, . . . ,Ud) is a mixture of extremal copulas if and only if

its bivariate marginal distributions are mixtures of extremal copulas and for all u ∈ [0, 1],

P

(
U1 6 u | ✶{U j=U1}, j , 1

)
= u . (9)

4. Characterization of Concordance Signatures

In this section we characterize concordance signatures of arbitrary copulas in dimension d. To do so, we first cal-

culate concordance signatures of extremal mixture copulas and investigate their properties. For any k ∈ {1, . . . , 2d−1}
let C(k) be an extremal copula with index set Jk as specified in Section 3. For I ⊆ D we introduce the notation

aI,k =


1 if I ⊆ Jk or I ⊆ J∁

k
,

0 otherwise,
(10)

noting that a{i},k = 1 and a∅,k = 1 for all k and i. Then we have the following result.

Proposition 4. (i) For any k ∈ {1, . . . , 2d−1} and I ∈ P(D), κ(C
(k)

I
) = aI,k.

(ii) If C is an extremal mixture copula of the form
∑2d−1

k=1 wkC
(k) then, for any I ⊆ D,

κ(CI) =

2d−1∑

k=1

wkκ
(
C

(k)

I

)
=

2d−1∑

k=1

wkaI,k . (11)
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Proof. To show (i), it suffices to consider sets with |I| > 2. For k ∈ {1, . . . , 2d−1}, let X(k) = (X
(k)

1
, . . . , X

(k)

d
) be a

random vector with continuous margins and copula C(k). Then the sets {X(k)

j
: j ∈ Jk} and {X(k)

j
: j ∈ J∁

k
} are sets of

comonotonic random variables which are concordant with probability 1, while any pair (X
(k)

i
, X

(k)

j
) such that i ∈ Jk and

j ∈ J∁
k

, or vice versa, is a pair of countermonotonic random variables and hence discordant with probability 1.

To establish (ii), note again that (11) holds trivially for sets I which are singletons or the empty set. For sets such

that |I| > 2 we can use (3) to write

κ(C) = 2

∫

[0,1]d

C(u)dC(u) = 2

2d−1∑

j=1

2d−1∑

k=1

w jwk

∫

[0,1]d

C( j)(u)dC(k)(u) .

Introducing independent random vectors U( j) ∼ C( j) and Ũ(k) ∼ C(k) for j ∈ {1, . . . , 2d−1} and k ∈ {1, . . . , 2d−1} we

calculate that

∫

[0,1]d

C( j)(u)dC(k)(u) = P

(
U( j)
6 Ũ(k)

)
=



1
2

if j = k = 1,
1
4

if j = 1 or k = 1 but j , k,

0 if j , 1 and k , 1.

Hence we can verify that κ(C) = 2(w2
1
/2) + 4w1{(w2/4) + · · · + (w2d−1/4)} = w2

1
+ w1(1 − w1) = w1, which is the

weight on C(1) = M, the d-dimensional comonotonicity copula. If U is distributed according to C then the vector UI

is distributed according to a mixture of extremal copulas in dimension |I| and it follows that κ(UI) = κ(CI) = w̃1 where

w̃1 is the weight attached to the case where UI is a comonotonic random vector. This is given by

w̃1 =

2d−1∑

k=1

wkaI,k =

2d−1∑

k=1

wkκ
(
C

(k)

I

)
,

where the second equality follows from part (i).

Remark 1. It may be noted that the extremal copulas C(k) are the only copulas that give rise to extremal concordance

signatures, that is concordance signatures consisting only of zeros and ones as in part (i) of Proposition 4. This

follows from the fact that two variables are comonotonic if and only if the bivariate concordance probability is one

and countermonotonic if and only if the bivariate concordance probability is zero (Embrechts et al., 2002); thus a

copula with an extremal signature must have bivariate margins that are extremal copulas. Tiit (1996) showed that, if

the bivariate margins of a copula are extremal copulas, then the copula is an extremal copula.

From Proposition 4 we see that for any label set S and any k ∈ {1, . . . , 2d−1}, the partial concordance signature

of C(k) is κS (C(k)) = (aI,k : I ∈ S ). We also see that the partial concordance signature of an extremal mixture copula

C =
∑d

k=1 wkC
(k) is a convex combination of partial signatures of extremal copulas with the same weights, so that

κS (C) =
∑d

k=1 wkκS (C(k)). The following two key properties of the even concordance signature of an extremal mixture

link back to the Bernoulli representation in Proposition 1; the proof relying on Proposition 2 is given in Appendix A.

Proposition 5. Let ak = (aI,k : I ∈ E(D)), for k ∈ {1, . . . , 2d−1}, and let κ(C) =
∑2d−1

k=1 wk ak be the even concordance

signature of the extremal mixture C =
∑d

k=1 wkC
(k).

(i) κ(C) uniquely determines C. Moreover, it is the minimal partial concordance signature of C which uniquely

determines C in all cases.

(ii) The vectors ak, k ∈ {1, . . . , 2d−1} are linearly independent.

Proof. For part (i) recall that a random vector U ∼ C has the stochastic representation U
d

= UY+ (1−U)(1−Y) where

Y is a random vector with a radially symmetric Bernoulli distribution. For any set I ∈ E(D) \ ∅ the components of

UY + (1−U)(1− Y) are concordant if and only if YI = 1 or YI = 0. It follows from the radial symmetry property that

κI(C) = 2P(YI = 1). By Proposition 2 the vector (P(YI = 1) : I ∈ E(D)\∅) is the minimal vector of event probabilities

6



that pins down the law of Y in all cases and hence, by equation (8), the weights wk = 2P(Y = sk) in the representation

C =
∑2d−1

k=1 wkC
(k). If another extremal mixture copula C̃ shares the same values for the concordance probabilities of

even order, then the weights must be identical.

For part (ii) suppose, on the contrary, that the vectors ak are linearly dependent, that is, there exist scalars µk,

k ∈ {1, . . . , 2d−1} such that µk , 0 for at least one k and

2d−1∑

k=1

µk ak = 0. (12)

To prove the result, we need to show that this assumption leads to a contradiction. We select a copula C such that

C =
∑2d−1

k=1 wkC
(k) and wk > 0 for all k. Because the first component of ak is 1 for all k, we have that

∑2d−1

k=1 µk = 0.

Hence, there exists at least one k∗ such that µk∗ > 0. From (12) we have that for each α ∈ R,
∑2d−1

k=1 (wk−αµk)ak = κ(C).

Let α∗ = min((wk/µk) : µk > 0). Clearly, α∗ > 0 because the set over which the minimum is taken contains at

least wk∗/µk∗ and because wk > 0 for all k. Now define w∗ = w − α∗µ. These weights are non-negative and sum up

to one, while w∗ , w. This implies that κ(C) =
∑2d−1

k=1 wk ak =
∑2d−1

k=1 w∗
k
ak but this is not possible because the mixture

weights are unique by part (i).

Proposition 5 shows that the set of attainable even concordance signatures of d-dimensional extremal mixture

copulas is the convex hull

K =



2d−1∑

k=1

wk ak : wk > 0, k = 1, . . . , 2d−1,

2d−1∑

k=1

wk = 1



and implies in particular that K is a convex polytope with vertices ak, k ∈ {1, . . . , 2d−1}. Similarly the set of full

concordance signatures of extremal mixtures is the convex hull of ãk = (aI,k : I ∈ P(D)), k ∈ {1, . . . , 2d−1}.
We are now ready for the main result of this paper which shows that these sets are also the sets of attainable

even and full concordance signatures for any d-dimensional copula, and hence of any random vector with continuous

margins.

Theorem 1. Let C be a d-dimensional copula and κ(C) = (κI : I ∈ E(D)) its even concordance signature. Then

there exists a unique extremal mixture copula C∗ =
∑2d−1

k=1 wkC
(k) such that κ(C) = κ(C∗) . The weights wk, which are

non-negative and add up to 1, are the unique solution to the system of 2d−1 linear equations given by

κ(C) =

2d−1∑

k=1

wk ak (13)

where ak = (aI,k : I ∈ E(D)) for k ∈ {1, . . . , 2d−1}.

Proof. For a vector U ∼ C we can write, for any I ∈ P(D) with |I| > 1,

κI = κ(CI) = 2P
(
UI < U∗I

)
= P

(
UI < U∗I

)
+ P

(
UI > U∗I

)
= P

(
sign(U∗I − UI) = 1

)
+ P

(
sign(U∗I − UI) = −1

)
,

where U∗ is an independent copy of U. If we define the random vectors V = sign(U∗ −U) and Y = (1/2)(V + 1), then

the concordance probabilities of C are given by

κI = P(YI = 0) + P(YI = 1) (14)

so that the concordance signature of C is determined by the distribution of Y, which is a radially symmetric Bernoulli

distribution. The radial symmetry follows from the fact that V
d
= −V so it must be the case that 2Y − 1

d
= 1 − 2Y or,

equivalently, Y
d
= 1 − Y.

From (14) we can conclude that, for every I ∈ P(D),

κI =

2d−1∑

k=1

(
P(Y = sk) + P(Y = 1 − sk)

)
✶{I⊆Jk or I⊆J∁

k
} =

2d−1∑

k=1

wkaI,k = κI(C
∗),

7



where we have used the fact that the union of all the disjoint events {Y = sk} and {Y = 1 − sk} forms a partition of

{0, 1}d in the first equality, the notation (10) and (8) in the second and (11) in the final equality. Thus the weights wk

specifying the extremal mixture copula are precisely the probabilities that specify the law of the radially symmetric

Bernoulli vector Y through wk = 2P(Y = sk) and the uniqueness of the set of weights follows from the uniqueness of

the law of Y. The sufficiency of solving the linear equation system (13) to determine the weights wk and the existence

of a unique solution follow from Proposition 5, in particular the fact that (13) is a system of 2d−1 equations with 2d−1

unknowns and the vectors ak are linearly independent.

The implication of Theorem 1 is that we can find the mixture weights w for a given concordance signature using

simple linear algebra. To see this, let κ = κ(C) denote the even concordance signature of a d-dimensional copula C

and let Ad be the 2d−1×2d−1 matrix with columns ak. Proposition 5 implies that Ad is of full rank, and hence invertible.

The linear equation system (13) can be written in the form κ = Adw and must have a unique solution which can be

found by calculating w = A−1
d
κ. Theorem 1 further guarantees that w > 0 and that its components sum up to 1. For

example, when d = 4 we would have

κ︷        ︸︸        ︷

1

κ{1,2}
κ{1,3}
κ{1,4}
κ{2,3}
κ{2,4}
κ{3,4}
κ{1,2,3,4}



=

A4︷                                    ︸︸                                    ︷

1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 0 0 0 0 1 1

1 0 1 0 0 1 0 1

1 0 0 1 1 0 0 1

1 0 0 0 0 0 0 0



w (15)

The fact that the even concordance signature is required to determine the weights of the extremal mixture copula in

all possible cases allows us to view the even concordance signature of a copula as the minimal complete concordance

signature. Indeed, the fact that Ad is of full rank has the following interesting corollary, namely that a formula such as

(4) can only hold for sets of odd cardinality.

Corollary 1. When I is a set of even cardinality there is no linear formula valid for all copulas relating κI to concor-

dance probabilities of order |I′| 6 |I|.

Proof. If the statement were not true, the rows of the matrix Ad would be linearly dependent, contradicting the

assertion that Ad is of full rank.

Remark 2. The implications of Corollary 1 can be extended. In view of (2) an analogous result could be stated for the

multivariate Kendall’s tau coefficients: when |I| is odd, a linear formula relating τI to the values for lower-dimensional

subsets exists (see Proposition 1 in Genest et al. (2011)) but no such formula exists when |I| is even. Moreover, as we

will discuss in Section 7, the concordance probabilities of elliptical copulas are equal to twice the orthant probabilities

of Gaussian distributions centred at the origin: thus if Z ∼ N(0,Σ) is a Gaussian random vector, recursive linear

formulas exist for the orthant probabilities P(ZI > 0) when |I| is odd but not when |I| is even.

5. Concordance signature estimation

Consider a random sample X1, . . . , Xn from a distribution with copula C and continuous margins F1, . . . , Fd. In

this section, we explain how the full concordance signature κ̃(C) can be estimated intrinsically, i.e., in such a way that

the estimated signature is attainable. We do this under the assumption that there are no ties in the data; this is not

restrictive because the continuity of the margins ensures the absence of ties with probability 1.

For any I with |I| > 2, empirical estimators of κI = κ(CI) can be derived from empirical estimators of τI = τ(CI)

using (2). When d = 2 and I = {k, ℓ} for some distinct k, ℓ ∈ {1, . . . , d}, the classical estimator of τI going back

to Kendall (1938) and Hoeffding (1947) is

τI,n = −1 +
4

n(n − 1)

∑

i, j

✶{Xik6X jk ,Xiℓ6X jℓ} .
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This is a special case of the estimator of τI for |I| > 2 proposed and investigated by Genest et al. (2011), which is

given by

τI,n =
1

2|I|−1 − 1

{
−1 +

2|I|

n(n − 1)

∑

i, j

∏

k∈I
✶{Xik6X jk}

}
.

Plugging this estimator into (2) yields an empirical estimator of κI of the form

κI,n =
2

n(n − 1)

∑

i, j

∏

k∈I
✶{Xik6X jk}.

From the theory of U-statistics (Hoeffding, 1948), we know that the empirical concordance signature κ̃n = (κI,n : I ∈
P(D)) satisfies

√
n(κ̃n − κ̃)  N(0,Σ) as n → ∞, where κ̃ = κ̃(C), Σ is the covariance matrix of the random vector

with components CI(UI)+ C̄I(UI) and C̄I is the survival function of CI . The following result shows that the empirical

concordance signature κ̃n is in fact the concordance signature of a d-dimensional copula.

Theorem 2. Assuming that n > 2 and there are no ties in the sample, there exists a unique d-dimensional extremal

mixture copula Cn such that κ̃n = κ̃(Cn).

Proof. Let Yi j =
(

sign(Xi − X j) + 1
)
/2 for i , j and set

ŵk =
2

n(n − 1)

∑

i< j

(
✶{Yi j=sk} + ✶{Yi j=1−sk}

)
. (16)

These empirical weights are estimators of wk = P(Y = sk)+P(Y = 1− sk), the weights of the extremal mixture which

has the same concordance signature as C. Because the sample is assumed to have no ties, the weights ŵk are clearly

positive and sum to 1. Thus they describe a mixture of extremal copulas, say Cn. To establish the result, it suffices to

show that for any I ∈ P(D) with |I| > 2, κI,n = κ(Cn,I), where Cn,I is the margin of Cn corresponding to the index set

I. This can be seen as follows. First,

κ(Cn,I) =

2d−1∑

k=1

ŵkaI,k =

2d−1∑

k=1

2

n(n − 1)

∑

i< j

(
✶{Yi j=sk} + ✶{Yi j=1−sk}

)
aI,k

=
2

n(n − 1)

∑

i< j

2d−1∑

k=1

(
✶{Yi j=sk} + ✶{Yi j=1−sk}

)
✶{I⊆Jk or I⊆J∁

k
}.

Second, use the fact that
∑

i< j

(
✶{Yi j,I=0} + ✶{Yi j,I=1}

)
=

∑

i< j

(
✶{Xi,I<X j,I } + ✶{Xi,I>X j,I }

)
=

∑

i, j

✶{Xi,I<X j,I } =
∑

i, j

∏

k∈I
✶{Xik<X jk},

where the last expression is κI,n × n(n − 1)/2 since there are no ties in the sample.

Remark 3. While the probability of ties in a sample from a distribution with continuous margins is zero, rounding

effects may lead to occasional ties in practice. In this case it may be that some of the vectors Yi j have components

equal to 0.5. Let us suppose that Yi j has k such values for k ∈ {1, . . . , d}. A possible approach to incorporating

this information in the estimator is to replace Yi j by the 2k vectors that have zeros and one in the same positions as

Yi j, each weighted by 2−k, and to generalize (16) to be a weighted sum of indicators. For example, the observation

Yi j = (1, 0, 0.5, 0.5) would be replaced by (1, 0, 1, 1), (1, 0, 1, 0), (1, 0, 0, 1) and (1, 0, 0, 0), each weighted by 1/4. This

would still deliver estimates ŵk that are positive and sum to one and thus yield a proper concordance signature.

6. Applications

Theorem 1 allows us to test whether a vector of putative concordance probabilities κS = (κI : I ∈ S ) with label set

S could be a partial concordance signature of some copula C. We now present a number of applications of this result.

Let us first say that the vector κS is attainable if there exists a d-dimensional copula C such that κS = κS (C).
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6.1. Kendall rank correlation matrices

We first turn to the characterization of matrices of pairwise Kendall’s taus, also termed Kendall rank correlation

matrices, which are widely used to summarize pairwise associations in a random vector. In view of (2), this can be

achieved using Theorem 1 by considering the label set S = {∅, {1, 2}, . . . , {1, d}, . . . , {d − 1, d}}.
For a random vector X we denote the Kendall rank correlation matrix and the linear correlation matrix by Pτ(X)

and Pρ(X) respectively. First note that Kendall rank correlation matrices are correlation matrices, i.e., positive semi-

definite matrices with ones on the diagonal and all elements in [−1, 1]. This is because if U is a random vector

distributed as a copula C, then Pτ(U) = Pρ(sign(U − U∗)), where U∗ is an independent copy U∗.
In Theorem 3 below we provide an answer to the attainability question for Kendall rank correlation matrices using

Theorem 1 and the following corollary. Recall from Section 3 that the Kendall rank correlation matrix, which is also

the linear correlation matrix of the kth extremal copula, is given by P(k) = (2sk − 1)(2sk − 1)⊤.

Corollary 2. Let U be distributed according to the mixture of extremal copulas given by C∗ =
∑2d−1

k=1 wkC
(k). Then

Pτ(U) = Pρ(U) =

2d−1∑

k=1

wkP(k) . (17)

Proof. Proposition 4 and (2) imply Pτ(U) =
∑2d−1

k=1 wkPτ(U
(k)); the equality Pρ(U) =

∑2d−1

k=1 wkPρ(U
(k)) was proved

by Tiit (1996). Hence (17) follows from the equality of linear and Kendall correlations for extremal copulas.

Theorem 3. The d × d correlation matrix P is a Kendall rank correlation matrix if and only if P can be represented

as a convex combination of the extremal correlation matrices in dimension d, that is,

P =

2d−1∑

k=1

wkP(k) . (18)

Proof. If P is of the form (18) then it is the Kendall’s tau matrix of the extremal mixture copula C∗ =
∑2d−1

k=1 wkC
(k)

by Corollary 2. If P is the Kendall’s τ matrix of an arbitrary copula C then, by Theorem 1, it is also the Kendall’s

tau matrix of the extremal mixture copula with the same concordance signature and must take the form (17) by

Corollary 2.

The set of convex combinations of extremal correlation matrices is known as the cut polytope. Laurent and Poljak

(1995) showed that the cut polytope is a strict subset of the so-called elliptope of correlation matrices in dimensions

d > 3; see also Section 3.3 of Hofert and Koike (2019). For example, the positive-definite correlation matrix

1

12


12 −5 −5

−5 12 −5

−5 −5 12



is in the elliptope but not in the cut polytope. Therefore it cannot be a matrix of Kendall’s tau values. If τ = −5/12

and we set κ = (1 + τ)/2 and κ = (1, κ, κ, κ), there is no solution to the equation A3w = κ on the 4-dimensional unit

simplex and a representation of the form (18) is impossible.

Huber and Marić (2019) have shown that the cut polytope is also the set of attainable linear correlation matrices for

multivariate distributions with symmetric Bernoulli margins. This can be deduced from Theorem 1 and Proposition 1

using the following lemma.

Lemma 1. Let U = UB + (1 − U)(1 − B), where B is a Bernoulli vector with symmetric margins and U is a uniform

random variable independent of B. Then Pτ (U) = Pρ(B).

Proof. First note that Pτ (U) = Pρ (U) by Proposition 1 and Corollary 2. By writing

UU⊤ = U2BB⊤ + (1 − U)2(1 − B)(1 − B)⊤ + U(1 − U)
(
B(1 − B)⊤ + (1 − B)B⊤

)

= (2U − 1)2BB⊤ + (2U − 1)(1 − U)
(
B1⊤ + 1B⊤

)
+ (1 − U)211⊤
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and using the fact that E(Bi) = 0.5 for all i ∈ {1, . . . , d}, we find that

cov(U) =
1

3

(
E(BB⊤) − 1

2
E(B1⊤ + 1B⊤) + 11⊤

)
− 1

4
11⊤ =

1

3
E(BB⊤) − 1

12
11⊤ .

Since var(Ui) = 1/12 and var(Bi) = 1/4 for all i ∈ {1, . . . , d} we conclude that Pρ (U) = 4E(BB⊤) − 11⊤ = Pρ(B).

This completes the proof.

Proposition 6. The set of Kendall rank correlation matrices of copulas is identical to the set of linear correlation

matrices of Bernoulli random vectors with symmetric margins.

Proof. If Pτ(U) is a Kendall rank correlation matrix then, by Theorem 1, it is identical to the Kendall rank correlation

matrix of a random vector U∗ with distribution given by the extremal mixture copula with the same concordance

signature as U. It follows from Proposition 1 that U∗ has the stochastic representation U∗
d

= UY+(1−U)(1−Y) where,

without loss of generality, Y has a radially symmetric Bernoulli distribution (with symmetric margins). Lemma 1 gives

Pτ(U) = Pτ(U
∗) = Pρ(Y).

Conversely if Pρ(B) is the correlation matrix of a Bernoulli random vector B with symmetric margins (not neces-

sarily radially symmetric) then, by Proposition 1, we can take an independent uniform random variable U and con-

struct a random vector U∗ = UB+(1−U)(1−B) with an extremal mixture copula. Lemma 1 gives Pρ(B) = Pτ(U
∗).

Remark 4. It is clear from the proof that the set of linear correlation matrices of Bernoulli random vectors with

symmetric margins is equal to the set of linear correlation matrices of radially symmetric Bernoulli random vectors.

This insight also appears in Theorem 1 of Huber and Marić (2019).

6.2. Attainability of concordance signatures

We now turn to the problem of determining whether a putative partial concordance signature is attainable, and, if

it is, of calculating the set in which the remaining unmeasured concordance probabilities must lie.

We begin with a simple example that illustrates what happens in four dimensions when all pairwise Kendall rank

correlations are equal and form a so-called equicorrelation matrix.

Example 1. Let C be a copula in dimension d = 4 with Kendall rank correlation matrix Pτ(C) equal to the equicor-

relation matrix with off-diagonal element 2κ2 − 1; in other words the bivariate concordance probabilities κ{i, j} for all

pairs of random variables are equal to κ2. The even concordance signature is then κ(C) = (1, κ2, κ2, κ2, κ2, κ2, κ2, κ4)

where κ4 = κ{1,2,3,4}. It is easy to verify that the linear system given in (15) is solved by the weight vector

w = (κ4,w1(κ2, κ4),w1(κ2, κ4),w2(κ2, κ4),w1(κ2, κ4),w2(κ2, κ4),w2(κ2, κ4),w1(κ2, κ4)) ,

where w1(κ2, κ4) = (3κ2 − 1)/2 − κ4 and w2(κ2, κ4) = 1 − 2κ2 + κ4. Since the weights must satisfy 0 6 wi(κ2, κ4) 6 1,

the concordance probabilities must satisfy κ2 ∈ [1/3, 1] and κ4 ∈ [max(2κ2 − 1, 0), (3κ2 − 1)/2]. The left panel of

Figure 2 shows the set of attainable values for τ2 = 2κ2−1 and τ4 = (8κ4−1)/7. It is notable that the mere fact that the

bivariate concordance probabilities are equal limits the range of attainable correlations significantly. In principle, for

any copula, the pair (τ2, τ4) must always lie in the rectangle [−1, 1]× [−1/7, 1] shown in the plot. However, in the case

of equicorrelation, the attainable set is considerably smaller. We provide some more general results on equiconcordant

copulas (copulas for which κI = κĨ when |I| = |Ĩ|) in Section 8.

In general, attainability and compatibility problems can be solved by linear programming. To see how this is

achieved, consider a label set S ⊂ E(D) strictly contained in the even power set and suppose we want to test whether

the vector κS = (κI : I ∈ S ) with label set S is attainable. Let A
(1)

d
be the |S | × 2d−1 matrix consisting of the rows of

Ad that correspond to S ; let A
(2)

d
be the matrix formed of the remaining rows of Ad. Consider the set of weight vectors

{w : A
(1)

d
w = κS , w > 0} and note that every element of the set satisfies the sum condition on the weights, since S is

a label set containing ∅ and the first row of A
(1)

d
consists of ones. If κS is an attainable partial concordance signature

then this set of weight vectors is non-empty and forms a convex polytope, that is, a set of the form


m∑

i=1

µiwi,

m∑

i=1

µi = 1, µi > 0, i = 1, . . . ,m

 . (19)
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In this case it is possible to use the method of Avis and Fukuda (1992) to find the vertices w1, . . . ,wm of the polytope.

The set of attainable even concordance signatures containing the partial signature κS is then given by the convex hull

of the points κi = Adwi, i ∈ {1, . . . ,m}, while the set of attainable unspecified elements of the concordance signature

is given by the convex hull of the points

{κ(2)

i
= A

(2)

d
wi, i = 1, . . . ,m}. (20)

As the dimension increases and the discrepancy between the length of κS and the length of an even signature

increases, the vertex enumeration algorithm can become computationally infeasible. In such cases we may be content

to simply test κS for attainability by finding a single even concordance signature that contains κS . To do so, we can

attempt to solve the optimization problem

min ‖A(2)

d
w‖ : A

(1)

d
w = κS , w > 0 (21)

where ‖ · ‖ denotes the Euclidean norm. This is a standard minimization problem with both equality and inequality

constraints. The putative partial concordance signature κS is attainable if a solution exists and the solution to the opti-

mization problem will be the weight vector which gives the (collectively) smallest values for the missing concordance

probabilities. To get the (collectively) largest values we could solve

min ‖A(2)

d
w − 1‖ : A

(1)

d
w = κS , w > 0. (22)

Note also that if we are only concerned with finding the smallest or largest missing values for certain missing concor-

dance probabilities, then we can drop rows of A
(2)

d
.

Example 2. For d = 5 let a partial concordance signature be given by κ{i, j} = 2/3 for all pairs of variables and

κ{1,2,3,4} = κ{1,2,3,5} = 0.4. To complete the concordance signature, three further concordance probabilities are required:

κ{1,2,4,5}, κ{1,3,4,5} and κ{2,3,4,5}. Using the method of Avis and Fukuda (1992) the set of possible weight vectors is non-

empty and has nine vertices; thus the specified partial signature is attainable. The set of attainable values for the

missing values forms a polytope in 3d which is shown in Figure 2.
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Figure 2: Left panel: set of attainable values of (τ2, τ4) in Example 1. Right panel: Convex polytope of attainable fourth order concordance

probabilities in Example 2.

6.3. Data illustration

We now return to the motivating example at the beginning of the paper. Using real data on cryptocurrency returns

we illustrate the use of the signature estimation method and we show how missing rank correlation values may be

inferred from existing values.
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Example 3. We take the multivariate time series of cryptocurrency prices (in US dollars) for Bitcoin, Ethereum,

Litecoin and Ripple. From these data we compute the daily log-returns for the calendar year 2017, giving us 365

4-dimensional data points. The estimated even concordance signature is

κn = (1, 0.639, 0.666, 0.598, 0.681, 0.630, 0.661, 0.364)

while the weight vector describing the extremal mixture copula C satisfying κ(C) = κn is

w = (0.364, 0.129, 0.069, 0.077, 0.098, 0.075, 0.066, 0.122),

where all figures are given to 3 decimal places. The Kendall rank correlations of the copula C will exactly match the

estimated values from the data.

Suppose we are not interested in Ripple but rather in a new cryptocurrency X4coin for which we have no data.

We want to estimate the correlations between X4coin and the first three cryptocurrencies. By computing the convex

hull of the set of points in (20), and converting the concordance probabilities to Kendall’s tau values, we obtain the

polytope shown in the left panel of Figure 1.

Suppose that we now decide that a plausible value for τ{1,4} is 0.598, which is actually the estimated rank cor-

relation between Bitcoin and Ripple implied by the estimated concordance signature above. Then the remaining

two values must lie in the convex set shown in the right panel of Figure 1, which is a section of the 3-dimensional

set, shown as a cut in the left panel. This is certainly the case for the estimated values of the Etherium-Ripple and

Litecoin-Ripple rank correlations which are shown as a point within the set.

7. Concordance signatures of elliptical copulas

The concordance signature is identical for the copulas of all continuous elliptical distributions with the same

correlation matrix P. This follows because the individual probabilities of concordance are identical for all such

copulas. This is proved in Genest et al. (2011, Section 2.1) in the context of an analysis of multivariate Kendall’s tau

coefficients.

Let X have an elliptical distribution centred at the origin with dispersion matrix equal to the correlation matrix P

and assume that P(X = 0) = 0. If X∗ is an independent copy of X, then the concordance probabilities (1) are given by

κI = 2P
(
XI < X∗

I

)
= 2P

(
XI − X∗

I
< 0

)
. The random vector XI − X∗

I
also has an elliptical distribution centred at the

origin. Using the stochastic representation for elliptical distributions (Fang et al., 1990; McNeil et al., 2015) we can

write XI − X∗
I

d

= R1AS and XI
d

= R2AS where S is a random vector uniformly distributed on the unit sphere, A is a

matrix such that AA⊤ = P and R1 and R2 are positive scalar random variables, both independent of S. It follows that

κI = 2P
(
XI − X∗I < 0

)
= 2P

(
(R1AS)I < 0

)
= 2P

(
(R2AS)I < 0

)
= 2P(XI < 0). (23)

From this calculation, we see that the positive scalar random variable R2 plays no role, so that the concordance

probabilities κI are the same for any elliptical random vector with the same dispersion matrix P = AA⊤. Moreover,

they are equal to twice the orthant probabilities for a centred elliptical distribution with dispersion matrix P. In

practice it is easiest to calculate the orthant probabilities of a multivariate normal distribution X ∼ N(0, P) and this is

the approach we take in our examples; see Appendix B for an illustration involving a 6 × 6 correlation matrix.

Every linear correlation matrix can be the correlation matrix of a multivariate elliptical (or multivariate normal)

distribution. We now show by means of a counterexample that an analogous statement is not true of Kendall rank

correlation matrices.

Example 4. The positive-definite correlation matrix

Pτ =



1 −0.19 −0.29 0.49

−0.19 1 −0.34 0.30

−0.29 −0.34 1 −0.79

0.49 0.30 −0.79 1


(24)
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is a Kendall rank correlation matrix but is not the Kendall rank correlation matrix of an elliptical distribution. The

elements of this matrix are attainable values for the Kendall’s tau coefficients τ{i, j} if the corresponding concordance

probabilities κ{i, j} = (1 + τ{i, j})/2 are attainable. Using the methods of the previous section we can verify that

κ = (κ∅, κ{1,2}, κ{1,3}, κ{1,4}, κ{2,3}, κ{2,4}, κ{3,4})

is an attainable partial concordance signature. Solving the linear programming problem (21) gives the weight vector

w1 = (0.04, 0.005, 0.36, 0, 0.0625, 0.2475, 0.2825, 0.0025)

corresponding to the minimum attainable fourth order concordance probability of 0.04. Solving the linear program-

ming problem (22) gives the weight vector

w2 = (0.0425, 0.0025, 0.3575, 0.0025, 0.06, 0.25, 0.285, 0)

corresponding to the maximum attainable fourth order concordance probability of 0.0425. In this case w1 and w2 are

precisely the two vertices of the polytope of attainable weights given by the set (19), which takes the form of a line

segment connecting w1 and w2. Any weight vector in this set will give the Kendall rank correlation matrix Pτ.

Now let us assume that Pτ in (24) corresponds to an elliptical copula. Lindskog et al. (2003) and Fang and Fang

(2002) have shown that the Kendall rank correlation matrix of an elliptical copula with correlation matrix P is given

by the componentwise transformation Pτ = 2π−1 arcsin(P). It must be the case that P = sin(πPτ/2) is the correlation

matrix of the elliptical copula. However, by calculating the eigenvalues we find that P is not positive semi-definite,

which is a contradiction.

We now turn to the copula of the multivariate Student t distribution Ct
ν,P

with degree of freedom parameter ν and

correlation matrix parameter P. It is unusual to consider this copula for degrees of freedom ν < 1, but as it turns out,

the Student t copula converges to an extremal mixture as ν→ 0. The proof of the following remarkable property relies

on some limiting results for the univariate and multivariate t distribution which are collected in Appendix C.

Theorem 4. As ν → 0 the d-dimensional t copula Ct
ν,P

converges pointwise to the unique extremal mixture copula

that shares its concordance signature.

Proof. Let the function hν(w, s) be defined by

hν(w, s) = Fν
(
G−1

d,ν(w)As
)
, w ∈ (0, 1), s = (s1, . . . , sd), s⊤s = 1,

where Fν is the distribution function of a t distribution with ν degrees of freedom, Gd,ν is the distribution function

of the radial component of a d-dimensional multivariate t distribution with ν degrees of freedom and A is a d × d

matrix such that AA⊤ = P; such a matrix can be constructed for any positive semi-definite P. Let S = (S 1, . . . , S d) be

uniformly distributed on the unit sphere and let W be an independent uniform random variable. Then X = G−1
d,ν

(W)AS

has a multivariate t distribution and U = hν(W,S) has joint distribution function Ct
ν.P

. We want to show that the joint

distribution function of hν(W,S) converges to the joint distribution function of an extremal mixture as ν→ 0.

We first argue that the random vector given by AS satisfies P
(
(AS) j = 0

)
= 0. Let a j denote the jth row of A. If

a j = 0 then the jth row and column of P would consist of zeros implying that the jth margin of the multivariate t

distribution of X was degenerate; this case can be discounted because the t copula with such a matrix P is not defined.

Suppose therefore that P(a⊤
j
S = 0) > 0 for a j , 0. If R is the radial random variable corresponding to the multivariate

normal, then P(a⊤
j
RS = 0) = P(a⊤

j
Z = 0) > 0, where Z is a vector of d independent standard normal variables.

However a⊤
j
Z is univariate normal with variance a⊤

j
a j > 0 and cannot have an atom of mass at zero.

We can therefore define the set A = {s : s⊤s = 1, (As) j , 0, j = 1, . . . , d} such that P(S ∈ A) = 1. Given that

S = s ∈ A, then

{U j 6 u j} =
{

W 6 Gd,ν

(
F−1
ν (u j)

(As) j

)}
if (As) > 0,

{U j 6 u j} =
{

W > Gd,ν

(
F−1
ν (u j)

(As) j

)}
if (As) < 0,

14



and hence the conditional distribution function of U given S = s has the form

P(U1 6 u1, . . . ,Ud 6 ud |S = s) = P

(
max
j<IAs

{
Gd,ν

(
F−1
ν (u j)

(As) j

)}
6 W 6 min

j∈IAs

{
Gd,ν

(
F−1
ν (u j)

(As) j

)})

=

(
min
j∈IAs

{
Gd,ν

(
F−1
ν (u j)

(As) j

)}
−max

j<IAs

{
Gd,ν

(
F−1
ν (u j)

(As) j

)})+
,

where IAs is the set of indices j for which (As) j > 0. Writing, for any u ∈ (0, 1)d,

Ct
ν.P(u) = P(U1 6 u1, . . . ,Ud 6 ud) =

∫
P(U1 6 u1, . . . ,Ud 6 ud |S = s)dFS(s),

we can use Proposition 8 in Appendix C and Lebesgue’s Dominated Convergence Theorem to conclude that Ct
ν.P

(u)

converges, as ν→ 0, to

C(u) =

∫ (
min
j∈IAs

(2u j − 1)+ −max
j<IAs

(1 − 2u j)
+

)+
dFS(s). (25)

We now show that this limit is a mixture of extremal copulas. To this end, consider the random vector
(

sign(AS)+1
)
/2.

This has the same distribution as the multivariate Bernoulli random vector Y whose distribution is defined by the

probabilities pI = P(YI = 1) = P
(
(AS) j > 0, j ∈ I

)
for I ⊆ D; the random vectors

(
sign(AS) + 1

)
/2 and Y differ

only on the null set where components of AS are zero. Moreover, the distribution of Y is radially symmetric since the

spherical symmetry of S implies AS
d

= −AS which in turn implies Y
d

= 1 − Y. The limiting distribution (25) may be

written in the form

C(u) =
∑

y∈{0,1}d

(
min
j:y j=1

(2u j − 1)+ − max
j:y j=0

(1 − 2u j)
+

)+
P(Y = y)

and using the index set notation defined in Section 3 this may also be written as

C(u) =

2d−1∑

k=1

min
j∈Jk

(2u j − 1)+ −max
j∈J∁

k

(1 − 2u j)
+


+

P(Y = sk) +

2d−1∑

k=1

min
j∈J∁

k

(2u j − 1)+ −max
j∈Jk

(1 − 2u j)
+


+

P(Y = 1 − sk) .

Setting P(Y = sk) = P(Y = 1 − sk) = 0.5wk as in Section 3 we obtain C(u) =
∑2d−1

k=1 wkCk(u), where

2Ck(u) =

min
j∈Jk

(2u j − 1)+ −max
j∈J∁

k

(1 − 2u j)
+


+

+

min
j∈J∁

k

(2u j − 1)+ −max
j∈Jk

(1 − 2u j)
+


+

and we need to check that Ck is in fact the kth extremal copula C(k) given by (5). To do so, we have to distinguish the

four cases below:

(i) Suppose that there is at least one j ∈ Jk and at least one j ∈ J∁
k

such that u j 6 0.5. Then Ck(u) = 0 = C(k)(u).

(ii) Suppose that for all j ∈ Jk, u j > 0.5 and there exists at least one j ∈ J∁
k

such that u j 6 0.5. Then 2Ck(u) equals

min
j∈Jk

(2u j − 1) −max
j∈J∁

k

(1 − 2u j)


+

= 2

min
j∈Jk

u j +min
j∈J∁

k

u j − 1


+

= 2C(k)(u).

(iii) The case when for all j ∈ J∁
k

, u j > 0.5 and there exists at least one j ∈ Jk such that u j 6 0.5 is analogous to

case (ii) and is omitted.

(iv) Suppose that for all j ∈ D, u j > 0.5. Then

2Ck(u) = min
j∈Jk

(2u j − 1) +min
j∈J∁

k

(2u j − 1) = 2

min
j∈Jk

u j +min
j∈J∁

k

u j − 1

 = 2C(k)(u).
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Figure 3: Scatterplot of data with distribution Ct
ν,P

when ν = 0.03 and P is the 3 × 3 matrix with elements ρ12 = 0.2, ρ13 = 0.5 and ρ23 = 0.8.

Table 1: Probabilities associated with diagonals of unit cube for copula in Figure 3.

Diagonal Probability

(0, 0, 0)↔ (1, 1, 1) 51.3%

(0, 0, 1)↔ (1, 1, 0) 5.1%

(0, 1, 0)↔ (1, 0, 1) 15.4%

(0, 1, 1)↔ (1, 0, 0) 28.2%

Finally, we need to verify that the concordance signature of the limiting mixture of extremal copulas is the same as

the concordance signature of Ct
ν,P

for any ν > 0. If κI denotes a concordance probability for the t copula, we need to

show that κI =
∑2d−1

k=1 wkaI,k, which is the corresponding concordance probability for the limit. Recall that the vector

X = G−1
d,ν

(W)AS has a multivariate t distribution. Equation (23) implies that

κI = 2P
(
G−1

d,ν(W)(AS)I < 0
)
= 2P

(
(AS)I < 0

)
= 2P(YI = 0) = 2P(YI = 1) =

2d−1∑

k=1

wkaI,k,

where the final step uses the reasoning employed in the proof of Theorem 1.

Figure 3 shows a scatterplot of the copula Ct
ν,P

when ν = 0.03 and P = (ρi j) is the 3 × 3 matrix with elements

ρ12 = 0.2, ρ13 = 0.5 and ρ23 = 0.8. Clearly the points are distributed very close to the four diagonals of the unit cube.

The limiting weights attached to extremal copulas associated with each diagonal are given in Table 1.

Remark 5. The proof holds even when the matrix P is not of full rank. However, because in such cases the copula

is distributed on a strict subspace of the unit hypercube [0, 1]d, the limiting extremal mixture copula has zero mass on

certain diagonals of the hypercube. Suppose, for example, that rows i and j of the matrix A satisfying AA⊤ = P are

identical. Then the components Yi and Y j of the vector Y defined in the proof are identical, i.e., they are both 0 or both

1. For any vector sk such that sk,i , sk, j it must be the case that wk = P(Y = sk) + P(Y = 1 − sk) = 0 and so the kth

diagonal would have zero mass.
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8. Concordance signatures of equiconcordant copulas

As we saw in Example 1, the constraint that certain concordance probabilities are equal further restricts the set

of attainable signatures. We close this paper by investigating this phenomenon in greater detail. To this end, let

Π(u) represent a permutation of the vector u = (u1, . . . , ud) and recall that a copula C is said to be exchangeable if

C(Π(u)) = C(u) for all u ∈ [0, 1]d and any permutation Π. A weaker notion of symmetry based on concordance

signatures is the following:

Definition 3. A copula C is equiconcordant if its even concordance signature κ(C) = {κI : I ∈ E(D)} has the property

that κI = κĨ whenever |I| = |Ĩ|.

Every exchangeable copula C is equiconcordant but not every equiconcordant copula is exchangeable. However,

as we will show, the notions are equivalent for the class of extremal mixture copulas.

To develop the necessary arguments we introduce some further notation for extremal copulas building on the

notation of Section 3. Let ηk = max(|Jk |, |J∁k |) define the comonotonic number of the extremal copula C(k) or, in

other words, the size of the larger of the two groups of comonotonic random variables described by C(k). If we

order the distinct values of ηk from largest to smallest we obtain a vector (h1, . . . , hm(d)) = (d, d − 1, . . . , ⌈d/2⌉) with

m(d) = 1 + ⌊d/2⌋ elements, where ⌊·⌋ and ⌈·⌉ are the floor and ceiling functions respectively.

Each value hi can be associated with a multiplicity, which is the number of extremal copulas with comonotonic

number hi. Provided d , 2hi, the multiplicity is the number of ways of choosing the hi members of the larger

comonotonic group from a set of d variables and is therefore µi =
(

d

hi

)
. When d = 2hi the binomial coefficient double

counts the number of extremal copulas with comonotonic number hi; for example the extremal copula for which the

first hi variables are comonotonic is identical to the extremal copula for which the last hi variables are comonotonic.

Thus, in this case, the mutiplicity is given by µi =
1
2

(
d

hi

)
.

To understand the notation it is helpful to consider a concrete case. When d = 4 we have η1 = 4, η2 = η3 = η5 =

η8 = 3 and η4 = η6 = η7 = 2; thus in this case the 8 extremal copulas can be split into m(4) = 3 groups according to

comonotonic number and we find (h1, h2, h3) = (4, 3, 2) and (µ1, µ2, µ3) = (1, 4, 3).

We also need to consider the behaviour of extremal copulas under permutations of the arguments. Clearly, the first

extremal copula C(1) is exchangeable, but the others are not. For example, under the permutationΠ(u) = (u3, u4, u1, u2)

we find that

C(2)(Π(u)) = (min(u3, u4, u1) + u2 − 1)+ = (min
j∈J5

u j +min
j∈J∁

5

u j − 1)+ = C(5)(u).

and, more generally, C(2) → C(5) → C(2), C(3) → C(8) → C(3), C(4) → C(4), C(6) → C(6) and C(7) → C(7). It is

clear that every extremal copula is mapped either to itself or to another extremal copula with the same comonotonic

number. For other permutations the mapping may differ and extremal copulas may form cycles of length greater than

two, but they will always be mapped to copulas with the same comonotonic number.

Proposition 7. Let C∗ =
∑2d−1

k=1 wkC
(k) be an extremal mixture copula. The following statements are equivalent:

1. C∗ is exchangeable.

2. C∗ is equiconcordant.

3. For all k, l ∈ {1, . . . , 2d−1} the weights satisfy wk = wl whenever ηk = ηl.

Proof. We show that 1 ⇒ 2 ⇒ 3 ⇒ 1. The first of these implications is immediate. If I and Ĩ are two subsets of D
with the same cardinality then exchangeability implies C∗

I
= C∗

Ĩ
and therefore κI = κ(C

∗
I
) = κ(C∗

Ĩ
) = κĨ .

2⇒ 3. We use an inductive argument based on comonotonic number hi for i ∈ {1, . . . ,m(d)}. Observe first that for

i = 1 the set I = D is the single subset of D with cardinality |I| = d = h1 and in this case κI = w1, the weight on the

first extremal copula C(1), which is the only extremal copula with comonotonic number h1. Now suppose that wk = wl

whenever ηk = ηl = h j for all j ∈ {1, . . . , i} and i < m(d). We want to show that wk = wl whenever ηk = ηl = hi+1.

Consider the subsets I such that |I| = hi+1. For each of these subsets we have a formula for the concordance probability

of the form κ(C∗
I
) =

∑2d−1

k=1 wkaI,k by Proposition 4 and if aI,k = 1 it must be the case that ηk > hi+1 by (10). For each

distinct subset I there is an equal number of copulas C(k) with aI,k = 1 and ηk = h j for each j ∈ {1, . . . , i} and,
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by assumption, the weights on copulas with the same comonotonic number are equal. If hi+1 , d/2 there are µi+1

extremal copulas C(k) with ηk = hi+1 and µi+1 sets I with |I| = hi+1 and for each distinct set I there is a distinct extremal

copula C(k) such that aI,k = 1. If hi+1 = d/2 there are µi+1 extremal copulas with ηk = hi+1 and 2µi+1 sets I with

|I| = hi+1; in this case each distinct set I is weighted on a single extremal copula but for each C(k) there are two sets I

with aI,k = 1. In either case, the equality of the concordance probabilities for the sets I implies that the weights wk are

identical for all copulas with ηk = hi+1.

3⇒ 1. For a permutation Π let the function lΠ(k) give the identity of the extremal copula to which C(k) is mapped

under Π and recall that this copula has the same comonotonic number as C(k). Then, for all u ∈ [0, 1]d,

C∗(Π(u)) =

2d−1∑

k=1

wkC
(k)(Π(u)) =

2d−1∑

k=1

wkC
(lΠ(k))(u) =

2d−1∑

k=1

wlΠ(k)C
(lΠ(k))(u)

where the final step follows because wk = wl whenever ηk = ηl. To complete the proof we need to show that the

function lΠ is simply a permutation of the indices k = 1, . . . , 2d−1 implying that C∗(Π(u)) = C∗(u). To see this assume

that lπ(k1) = lΠ(k2) for k1 , k2 so that, for any u ∈ [0, 1]d,

C(k1)(Π(u)) = Cl(k1)(u) = Cl(k2)(u) = C(k2)(Π(u)).

If Π−1 denotes the inverse permutation satisfying Π(Π−1(u)) = u, then this would imply that

C(k1)(u) = Cl(k1)(Π−1(u)) = Cl(k2)(Π−1(u)) = C(k2)(u)

contradicting the assumption that k1 , k2.

This result allows us to conclude that for any equiconcordant copula C, the extremal mixture copula C∗ sharing its

signature with C is exchangeable. Moreover, we can infer that the set of attainable even equiconcordance signatures

takes the form 

2d−1∑

k=1

wk ak : wk > 0,

2d−1∑

k=1

wk = 1,wk = wl if ηk = ηl,∀k, l ∈ {1, . . . , 2d−1}



and we can write this in a simplifed way as


m(d)∑

i=1

vibi : vi > 0,

m(d)∑

i=1

vi = 1

 , bi =
1

µi

2d−1∑

k=1

ak✶{ηk=hi}

where we note that the vectors bi are obtained by averaging the vectors ak corresponding to extremal copulas with

the same comonotonic number and are linearly independent (because the vectors ak are linearly independent). The

weights vi now express the total weight assigned to all copulas with the same comonotonic number. The set of

attainable equiconcordance signatures is clearly also a convex polytope with vertices given by the vectors b1, . . . , bm(d).

The 2d−1 ×m(d) matrix with columns bi has identical rows corresponding to sets I and Ĩ with identical cardinality.

Duplicate rows can simply be dropped to retain exactly m(d) rows corresponding to each distinct even cardinality in

the set E = {0, 2, . . . , 2⌊d/2⌋}. This results in an invertible square matrix Bd. Let us write the elements of the even

concordance signature corresponding to each distinct cardinality as k = (κi : i ∈ E) and refer to k as the skeletal

signature of an equiconcordant copula. We can then consider the linear equation system k = Bdv to solve attainability

and compatibility problems for skeletal signatures.

For example, the equation system for d = 7 is

k︷ ︸︸ ︷

1

κ2
κ4
κ6


=

B7︷                   ︸︸                   ︷

1 1 1 1

1 5
7

11
21

15
35

1 3
7

3
21

1
35

1 1
7

0 0



v︷ ︸︸ ︷

v1

v2

v3

v4



18



Figure 4: The tetrahedron is the set of attainable skeletal concordance signatures of equiconcordant copulas when d = 7. The curve and associated

points within the tetrahedron show the attainable skeletal signatures of exchangeable elliptical copulas.

and the columns of B7 form the 4 vertices of the convex polytope of attainable vectors for the skeletal signature; upon

removal of the 1’s in the first component these describe an irregular tetrahedron inside the unit cube [0, 1]3 as shown

in Figure 4.

In higher dimensions it quickly becomes computationally infeasible to calculate the matrix Bd by collapsing the

2d−1 × 2d−1 matrix Ad. We end by giving a general formula for the elements of the matrix Bd using combinatorial

arguments.

Theorem 5. The elements of the matrix Bd satisfy Bd(1, j) = 1 for j ∈ {1, . . . ,m(d)} and

Bd(i, j) =

(
d − li
h j − li

)
+

(
d − li

d − h j − li

)

(
d

h j

) , i ∈ {2, . . . ,m(d)}, j ∈ {1, . . . ,m(d)},

where li = 2(i − 1), h j is the jth distinct value of the comonotonic number in reverse order from largest to smallest

and, by convention,
(

n

p

)
= 0 if p < 0.

Proof. Obviously the first row of Bd consists of ones corresponding to the sum constraint on the weights so let i > 1.

To begin with, we exclude the case where d is even and h j = d/2. In all other cases the denominator of the fraction

above is the multiplicity µ j of the comonotonic number h j. Let I ⊆ D be any subset with cardinality |I| = li. The

numerator is the number of columns of the matrix Ad that correspond to extremal copulas with comonotonic number

h j and which have a one in the row corresponding to I.

Without loss of generality let us consider the set I consisting of the first li elements of D. In this case we need to

simply count the number of extremal copulas C(k) with comonotonic number h j for which the vectors sk that we use

to code the extremal copulas have zeros in the first li entries. Now there are two possibilities: either the comonotonic

number of the extremal copula C(k) equals the numbers of zeros in the vector sk or the number of ones. In the first

case, if there are zeros in the first li positions of sk there are
(

d−li
h j−li

)
ways of assigning the remaining zeros to the other

positions. In the second case case there are
(

d−li
d−h j−li

)
ways of assigning the remaining zeros to the other positions. If

either h j − li < 0 or d − h j − li < 0 then the corresponding binomial coefficients are simply zero.

In the case where d is even and h j = d/2 the denominator is twice the multiplicity µ j of the comonotonic number

h j. In this case there are exactly the same number of zeros and ones in the µ j vectors sk coding extremal copulas with

comonotonic number h j and so there are
(

d−li
h j−li

)
ways of assigning the remaining zeros to the other positions. However,

since
(

d−li
h j−li

)
=

(
d−li

d−h j−li

)
when h j = d/2, we can use the same general formula.
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Software

The methods and examples in this paper are documented as vignettes in the R package KendallSignature at

https://github.com/ajmcneil/KendallSignature.
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Appendix A. Additional material on extremal mixture copulas

Proof of Proposition 1. Let U be of the form (6) where U and B are independent. For any u ∈ [0, 1],

P(U 6 u) =
∑

b∈{0,1}d
P(max

j:b j=0
(1 − v j) 6 U 6 min

j:b j=1
v j|B = b)P(B = b)

=
∑

b∈{0,1}d

(
min
j:b j=1

v j + min
j:b j=0

v j − 1

)+
P(B = b)

=

2d−1∑

k=1

min
j∈Jk

v j +min
j∈J∁

k

v j − 1


+ (

P(B = sk) + P(B = 1 − sk)
)
.

where in the final step we have used the fact that the set of possible outcomes of the Bernoulli vector B can be written

as the disjoint union

{0, 1}d =
2d−1⋃

k=1

{sk, 1 − sk}. (A.1)

From (5), one can see that the distribution function of U is indeed an extremal mixture with weights as given in (7).

Conversely, given an extremal mixture copula of the form C∗ =
∑2d−1

k=1 wkC
(k), it suffices to consider any Bernoulli

vector B independent of U with the property that wk = P(B = sk) + P(B = 1 − sk); this is possible because the events

{B = sk} and {B = 1 − sk} are disjoint and their union forms a partition of {0, 1}d by (A.1). We can then retrace the

steps of the argument in reverse to establish the representation (6).

Proof of Proposition 2. For part (i), note that all probabilities of the form pI = P(YI = 1) for sets I with odd

cardinality are fully determined by the equivalent probabilities for lower-dimensional sets of even cardinality. This

follows from the fact that

pI = E


∏

i∈I
Yi

 = E


∏

i∈I
(1 − Yi)

 = 1 +
∑

A⊆I,|A|>1

(−1)|A|E


∏

i∈A
Yi

 .

When I is odd, we then have

2pI = 1 +
∑

A⊂I,16|A|<|I|
(−1)|A|pA = 1 − 1

2
|I| +

∑

A⊂I,26|A|<|I|
(−1)|A|pA, (A.2)

where the last equality follows from the fact that pA = 0.5 whenever |A| = 1. For example,

p{1,2,3} = E

(
(1 − Y1)(1 − Y2)(1 − Y3)

)
=

1

2

(
p{1,2} + p{1,3} + p{2,3}

) − 1

4
.

The conclusion follows since the vector of joint event probabilities (pI : I ∈ P(D) \ ∅) uniquely specifies the distribu-

tion of a Bernoulli random vector.
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For part (ii) observe that the vector pY has length equal to

⌊d/2⌋∑

j=1

(
d

2 j

)
= 2d−1 − 1.

Radially symmetric multivariate Bernoulli distributions in dimension d have 2d−1 − 1 free parameters, with one being

deducted for the sum constraint 2
∑2d−1

k=1 P(Y = sk) = 1. Thus the vector pY is the minimal vector of its kind that is

required to fully specify the distribution of Y for all radially symmetric Bernoulli random vectors Y.

Example 5. Let the joint distribution of (U,Y1,Y2,Y3) be specified by

P(U 6 u,Y1 = y1,Y2 = y2,Y3 = y3) =
1

8

(
u + (−1)(y1+y2+y3) θu(1 − u)

4

)

for u ∈ [0, 1] and yi ∈ {0, 1}, i ∈ {1, 2, 3}. Note that this is an increasing function in u for any fixed (y1, y2, y3) and

defines a valid distribution. It may be easily verified, by summing over the outcomes for the Yi variables, that the

marginal distribution of U is standard uniform, while letting u → 1 shows that the random vector Y = (Y1,Y2,Y3)

consists of iid Bernoulli variables with success probability 0.5 (and is radially symmetric). It may also be verified

that the marginal distributions P(U 6 u,Yi = yi) = 0.5u so that the pairs (U,Yi) are independent for all i, while the

marginal distributions P(U 6 u,Yi = yi,Y j = y j) = 0.25u so that (U,Yi,Y j) are mutually independent for all i , j.

Now consider the vector U = UY + (1−U)(1−Y). Since the pairs (U,Yi) are independent it is easy to see that the

components Ui = UYi + (1 − U)(1 − Yi) are uniform, implying that the distribution of U is a copula. Since the triples

(U,Yi,Y j) are mutually independent, the bivariate margins of U are extremal mixtures by Proposition 1. To calculate

the copula C of U we observe that, for u = (u1, u2, u3),

C(u1, u2, u3) =

4∑

i=1

(
P(U 6 u,Y = sk) + P(U 6 u,Y = 1 − sk)

)
= 2

4∑

i=1

P(U 6 u,Y = sk).

The final equality follows because our model has the property that (U,Y1,Y2,Y3)
d

= (1−U, 1−Y1, 1−Y2, 1−Y3). This

implies that (U,Y) = (UY + (1 − U)(1 − Y),Y)
d

= (U, 1 − Y). The copula C has 4 distinct terms, each associated with

a diagonal of the unit cube:

4C(u1, u2, u3) = min(u1, u2, u3) +
θ

4
min(u1, u2, u3) max(1 − u1, 1 − u2, 1 − u3)

+ ✶{min(u1,u2)+u3−1>0}
(

min(u1, u2) − θ
4

min(u1, u2) max(1 − u1, 1 − u2) − 1 + u3 +
θ

4
u3(1 − u3)

)

+ ✶{min(u1,u3)+u2−1>0}
(

min(u1, u3) − θ
4

min(u1, u3) max(1 − u1, 1 − u3) − 1 + u2 +
θ

4
u2(1 − u2)

)

+ ✶{min(u2,u3)+u1−1>0}
(

min(u2, u3) − θ
4

min(u2, u3) max(1 − u2, 1 − u3) − 1 + u1 +
θ

4
u1(1 − u1)

)
.

However, unless θ = 0, C is not of the form (5) and is not an extremal mixture copula.

Proof of Proposition 3. If U follows an extremal mixture copula then, by Proposition 1, it has the stochastic

representation U
d

= UB + (1 − U)(1 − B) for some Bernoulli random vector B and it is clear that all the bivariate

margins have the same structure. From the independence of U and B we obtain

P

(
U1 6 u | ✶{U j=U1}, j , 1

)
= P

(
U 6 u | ✶{B2=B1}, . . . ,✶{Bd=B1}

)
= P(U 6 u) = u.

Conversely, let us suppose that all the bivariate margins of U are mixtures of extremal copulas. This implies that

almost surely, U takes values in the set

⋂

i, j

{u ∈ [0, 1]d : u j = ui or u j = 1 − ui},
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which simplifies to the union E of the 2d−1 main diagonals of the unit hypercube, viz.

E =
2d−1⋃

k=1

{u ∈ [0, 1]d : u j = u
(1−sk, j)

1
(1 − u1)sk, j , j , 1}.

Let Ek = {U j = U
(1−sk, j)

1
(1 − U1)sk, j , j , 1} represent the event that U lies on the kth diagonal and set wk = P(Ek). By

the law of total probability, we get

C(u) =

2d−1∑

k=1

wkP(U1 6 u1, . . . ,Ud 6 ud | Ek) =

2d−1∑

k=1

wkP(U1 ∈ [max
j∈J∁

k

(1 − u j),min
j∈Jk

u j] | Ek).

On the diagonals of the hypercube, {U ∈ E}∩{✶{U j=U1} = 1− sk, j, j , 1} = Ek, so that wk = P{✶{U j=U1} = 1− sk, j, j , 1}
and conditioning on the event Ek is identical to conditioning on the event {✶{U j=U1} = 1 − sk, j, j , 1}. We thus obtain

that

C(u) =

2d−1∑

k=1

wkP(U1 ∈ [max
j∈J∁

k

u j,min
j∈Jk

u j] | ✶{U j=U1} = 1 − sk, j, j , 1) =

2d−1∑

k=1

wkC
(k)(u)

where the last equality follows from (9) and (5). This shows that C is indeed a mixture of extremal copulas as

claimed.

Appendix B. Additional material on elliptical distributions

The concordance probabilities for a continuous elliptical distribution the 6 × 6 correlation matrix

P =
1

16



16 1 2 3 4 5

1 16 6 7 8 9

2 6 16 10 11 12

3 7 10 16 13 14

4 8 11 13 16 15

5 9 12 14 15 16



(B.1)

are given in Table B.2, along with the weights of the unique mixture of extremal copulas sharing the same concordance

signature.

Appendix C. Some limiting properties of the univariate and multivariate Student distribution as ν → 0

Appendix C.1. Univariate Student t distribution

Let Fν, F−1
ν and fν denote the df, inverse df and density of a univariate t distribution with ν degrees of freedom.

The df satisfies

Fν(x) − 0.5 =
xΓ( ν+1

2
)

√
πνΓ( ν

2
)

2F1

(
1

2
,
ν + 1

2
;

3

2
;− x2

ν

)
, x ∈ R, ν > 0, (C.1)

where 2F1 denotes the hypergeometric function and Γ the gamma function. We will show that, for fixed u , 0.5, the

quantile function F−1
ν (u) is unbounded as a function of ν as ν→ 0. To that end we first prove the following lemma.

Lemma 2. limν→0 Fν(x) = 0.5 for all x ∈ R.

Proof. The lemma is trivially true for x = 0 so we consider x , 0. Making the substitution y = x/
√
ν in (C.1) gives

2Fν(
√
νy) − 1

ν
=

2yΓ( ν+1
2

)
√
πνΓ( ν

2
)

2F1

(
1

2
,
ν + 1

2
;

3

2
;−y2

)
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Table B.2: Results for the correlation matrix P in (B.1).

k S k wk I κI

1 {0, 0, 0, 0, 0, 0} 0.2627 ∅ 1.0000

2 {0, 0, 0, 0, 0, 1} 0.0009 {1, 2} 0.5199

3 {0, 0, 0, 0, 1, 0} 0.0131 {1, 3} 0.5399

4 {0, 0, 0, 0, 1, 1} 0.0037 {1, 4} 0.5600

5 {0, 0, 0, 1, 0, 0} 0.0304 {1, 5} 0.5804

6 {0, 0, 0, 1, 0, 1} 0.0037 {1, 6} 0.6012

7 {0, 0, 0, 1, 1, 0} 0.0088 {2, 3} 0.6224

8 {0, 0, 0, 1, 1, 1} 0.0179 {2, 4} 0.6441

9 {0, 0, 1, 0, 0, 0} 0.0579 {2, 5} 0.6667

10 {0, 0, 1, 0, 0, 1} 0.0029 {2, 6} 0.6902

11 {0, 0, 1, 0, 1, 0} 0.0100 {3, 4} 0.7149

12 {0, 0, 1, 0, 1, 1} 0.0108 {3, 5} 0.7413

13 {0, 0, 1, 1, 0, 0} 0.0165 {3, 6} 0.7699

14 {0, 0, 1, 1, 0, 1} 0.0085 {4, 5} 0.8019

15 {0, 0, 1, 1, 1, 0} 0.0063 {4, 6} 0.8391

16 {0, 0, 1, 1, 1, 1} 0.0659 {5, 6} 0.8869

17 {0, 1, 0, 0, 0, 0} 0.1037 {1, 2, 3, 4} 0.2804

18 {0, 1, 0, 0, 0, 1} 0.0029 {1, 2, 3, 5} 0.2977

19 {0, 1, 0, 0, 1, 0} 0.0114 {1, 2, 3, 6} 0.3150

20 {0, 1, 0, 0, 1, 1} 0.0091 {1, 2, 4, 5} 0.3244

21 {0, 1, 0, 1, 0, 0} 0.0193 {1, 2, 4, 6} 0.3437

22 {0, 1, 0, 1, 0, 1} 0.0073 {1, 2, 5, 6} 0.3675

23 {0, 1, 0, 1, 1, 0} 0.0062 {1, 3, 4, 5} 0.3702

24 {0, 1, 0, 1, 1, 1} 0.0390 {1, 3, 4, 6} 0.3909

25 {0, 1, 1, 0, 0, 0} 0.0338 {1, 3, 5, 6} 0.4161

26 {0, 1, 1, 0, 0, 1} 0.0064 {1, 4, 5, 6} 0.4581

27 {0, 1, 1, 0, 1, 0} 0.0076 {2, 3, 4, 5} 0.4503

28 {0, 1, 1, 0, 1, 1} 0.0232 {2, 3, 4, 6} 0.4725

29 {0, 1, 1, 1, 0, 0} 0.0100 {2, 3, 5, 6} 0.4993

30 {0, 1, 1, 1, 0, 1} 0.0136 {2, 4, 5, 6} 0.5427

31 {0, 1, 1, 1, 1, 0} 0.0036 {3, 4, 5, 6} 0.6153

32 {0, 1, 1, 1, 1, 1} 0.1831 {1, 2, 3, 4, 5, 6} 0.2627

and we can use the limits (Abramowitz and Stegun, 1965)

lim
ν→0

y 2F1

(
1

2
,
ν + 1

2
;

3

2
;−y2

)
= y 2F1

(
1

2
,

1

2
;

3

2
;−y2

)
= ln

(
y +

√
1 + y2

)

lim
ν→0

2Γ( ν+1
2

)
√
πνΓ( ν

2
)
= lim
ν→0

Γ( ν+1
2

)
√
π

1
ν
2
Γ( ν

2
)
= lim
ν→0

Γ( ν+1
2

)
√
π

1

Γ( ν+2
2

)
= 1

to conclude that

lim
ν→0

2Fν(
√
νy) − 1

ν
= ln

(
y +

√
1 + y2

)
= sign(y) ln

(
|y| +

√
1 + y2

)
.

Reversing the earlier substitution and setting x =
√
νy now gives

lim
ν→0

2Fν(x) − 1

ν sign(x)
(
ln

(|x| +
√
ν + x2

) − 0.5 ln ν
) = 1.

The result follows from the fact that the denominator tends to 0 as ν→ 0.

Lemma 3.

lim
ν→0

F−1
ν (u) =



−∞ if u < 0.5,

0 if u = 0.5,

∞ if u > 0.5.

Proof. The case u = 0 is obvious, since F−1
ν (0.5) = 0 for all ν > 0. To show that limν→0 F−1

ν (u) = −∞ for u < 0.5,

we need to show that, for all k < 0, there exists δ such that ν < δ ⇒ F−1
ν (u) 6 k. Suppose we fix an arbitrary k < 0.

Since Fν(k)→ 0.5 as ν→ 0, there exists δ > 0 such that ν < δ implies that Fν(k) > u, since u < 0.5. But then, for any

ν < δ, it follows that k ∈ {x : Fν(x) > u} and hence F−1
ν (u) = inf{x : Fν(x) > u} 6 k.
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Analogously, to show that limν→0 F−1
ν (u) = ∞ for u > 0.5, we need to show that, for all k > 0, there exists δ such

that ν < δ⇒ F−1
ν (u) > k. Suppose we fix an arbitrary k > 0. Since Fν(k)→ 0.5 as ν→ 0, there exists δ > 0 such that

ν < δ implies that Fν(k) < u, since u > 0.5. But then, for any ν < δ, it follows that k < {x : Fν(x) > u}. Since Fν(x) is

a non-decreasing function of x, any y < k also satisfies y < {x : Fν(x) > u}. Hence F−1
ν (u) = inf{x : Fν(x) > u} > k.

Appendix C.2. Multivariate Student t distribution

If the random vector X has a d-dimensional multivariate t distribution with ν degrees of freedom, then it has the

stochastic representation X
d

= µ + RAS where S is a uniform random vector on the d-dimensional unit sphere, R is

an independent, positive, scalar random variable such that R2/d ∼ F(d, ν) (a Fisher–Snedecor F distribution), µ is a

location vector and A is a matrix; see Section 6.3 in McNeil et al. (2015). Let Gd,ν denote the df of the radial random

variable R and gd,ν the corresponding density; the latter is given by

gd,ν(r) =
2

r

(
1 +
ν

r2

)− d
2

(
1 +

r2

ν

)− ν
2 Γ

(
ν+d

2

)

Γ
(

d
2

)
Γ
(
ν
2

) . (C.2)

The following limiting result is key to our analysis of the limiting behaviour of the t copula as ν→ 0. Note that the

limiting function on the right-hand side is either the df of a random variable that is uniformly distributed on [0.5, 1] or

the survival function of a random variable that is uniformly distributed on [0, 0.5], depending on the sign of λ.

Proposition 8. For a constant λ , 0 and any u ∈ [0, 1],

lim
ν→0

Gd,ν

(
F−1
ν (u)

λ

)
=


(2u − 1)+ if λ > 0,

(1 − 2u)+ if λ < 0.
(C.3)

Proof. When λ > 0, Fd,ν(u) = Gd,ν

(
λ−1F−1

ν (u)
)

is a distribution function supported on [0.5, 1]. Similarly, when λ < 0,

Fd,ν(u) = 1 −Gd,ν

(
λ−1F−1

ν (u)
)

is a distribution function supported on [0, 0.5]. The density of Fd,ν is given by

fd,ν(u) = gd,ν

(
|F−1
ν (u)|
|λ|

)
1

|λ|
1

fν
(
F−1
ν (u)

)

where u ∈ [0.5, 1) when λ > 0 and u ∈ (0, 0.5] when λ < 0.

Note that, when u = 0.5, F−1
ν (u) = 0 for all ν and (C.3) clearly holds; we thus restrict our analysis of the density

to the case where u , 0.5. Using the notation xν,u = F−1
ν (u) and the expression (C.2) we have that

fd,ν(u) = gd,ν

(
|xν,u|
|λ|

)
1

|λ|
1

fν
(
xν,u

)

=
2

|xν,u|

(
1 +
λ2ν

x2
ν,u

)− d
2
1 +

x2
ν,u

λ2ν


− ν

2 Γ
(
ν+d

2

)

Γ
(

d
2

)
Γ
(
ν
2

)
√
νπΓ

(
ν
2

)

Γ
(
ν+1

2

)
1 +

x2
ν,u

ν


ν+1

2

= 2

√
ν + x2

ν,u

|xν,u|

(
1 +
λ2ν

x2
ν,u

)− d
2
1 +

x2
ν,u

λ2ν


− ν

2
1 +

x2
ν,u

ν


ν
2 Γ

(
ν+d

2

)

Γ
(

d
2

)
√
π

Γ
(
ν+1

2

)

= 2

√
ν + x2

ν,u

|xν,u|︸      ︷︷      ︸
1

(
1 +
λ2ν

x2
ν,u

)− d
2

︸         ︷︷         ︸
2


λ2

(
ν + x2

ν,u

)

λ2ν + x2
ν,u



ν
2

︸             ︷︷             ︸
3

Γ
(
ν+d

2

)

Γ
(

d
2

)
︸  ︷︷  ︸

4

√
π

Γ
(
ν+1

2

)
︸  ︷︷  ︸

5

.

The limit as ν → 0 of each of the five terms above is 1. For terms 1, 2, 4 and 5, this is obvious from the properties of

the gamma function and the fact that |xν,u| → ∞ for u , 0.5 (Lemma 3 above). For term 3 note that the term within
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the outer brackets converges to λ2 and hence the assertion follows. The density in the limit thus satisfies

lim
ν→0

fd,ν(u) =


2 × ✶{0.56u<1} λ > 0

2 × ✶{0<u60.5} λ < 0.

From Scheffé’s Theorem we conclude that the limiting distribution of Fd,ν is uniform on either [0, 0.5] or [0.5, 1],

depending on the sign of λ. Hence if λ > 0, Fd,ν(u) → (2u − 1)+ as ν → 0, and if λ < 0, Fd,ν(u) → 1 − (1 − 2u)+ as

ν→ 0. In either case (C.3) holds.
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