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Integration of Aspergillus niger 
transcriptomic profile with metabolic model 
identifies potential targets to optimise citric acid 
production from lignocellulosic hydrolysate
Daniel J. Upton1* , Mehak Kaushal2, Caragh Whitehead1, Laura Faas1, Leonardo D. Gomez1, 
Simon J. McQueen-Mason1, Shireesh Srivastava2 and A. Jamie Wood1,3 

Abstract 

Background: Citric acid is typically produced industrially by Aspergillus niger-mediated fermentation of a sucrose-
based feedstock, such as molasses. The fungus Aspergillus niger has the potential to utilise lignocellulosic biomass, 
such as bagasse, for industrial-scale citric acid production, but realising this potential requires strain optimisation. 
Systems biology can accelerate strain engineering by systematic target identification, facilitated by methods for the 
integration of omics data into a high-quality metabolic model. In this work, we perform transcriptomic analysis to 
determine the temporal expression changes during fermentation of bagasse hydrolysate and develop an evolution-
ary algorithm to integrate the transcriptomic data with the available metabolic model to identify potential targets for 
strain engineering.

Results: The novel integrated procedure matures our understanding of suboptimal citric acid production and 
reveals potential targets for strain engineering, including targets consistent with the literature such as the up-regu-
lation of citrate export and pyruvate carboxylase as well as novel targets such as the down-regulation of inorganic 
diphosphatase.

Conclusions: In this study, we demonstrate the production of citric acid from lignocellulosic hydrolysate and show 
how transcriptomic data across multiple timepoints can be coupled with evolutionary and metabolic modelling to 
identify potential targets for further engineering to maximise productivity from a chosen feedstock. The in silico strat-
egies employed in this study can be applied to other biotechnological goals, assisting efforts to harness the potential 
of microorganisms for bio-based production of valuable chemicals.
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Background
For a century, the filamentous fungus Aspergillus niger 

has been used industrially for the production of cit-

ric acid; currently, production exceeds 2 million tonnes 

a year [1]. The ease of culture and its tolerance to typi-

cal industrial fermentation stresses make A. niger [2] a 

desirable organism for industrial applications. Beyond its 

established uses, A. niger also has potential to produce 

other valuable chemicals including succinic [3] and ita-

conic acid [4].

The commercial production of citric acid by A. niger 

fermentation is dependent on sucrose-based feed-

stocks, primarily molasses [5]. In this regard, A. niger is 
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underexploited as it is saprophytic in nature with an abil-

ity to assimilate at least 69 carbon sources and 30 nitro-

gen sources [6]. There is an increasing need to unlock this 

metabolic potential, so that A. niger can play a key role in 

harnessing the value of underutilised second-generation 

feedstocks for the bioeconomy [7]. One such feedstock 

is sugarcane bagasse, the main by-product of sugarcane 

processing and a potential source of lignocellulosic sug-

ars. Global sugarcane production was around 1900 mil-

lion tonnes in 2013 [8], generating around half a billion 

tonnes of bagasse. To achieve cost-competitive citric acid 

production from bagasse hydrolysate requires the opti-

misation of strains away from sucrose-based fermenta-

tion to bagasse hydrolysate as the fermentation medium.

Strain optimisation can be achieved either via cycles of 

random mutagenesis and selection or by targeted engi-

neering. The former is well demonstrated for citric acid 

production by A. niger [9], and although successful, its 

iterative nature makes it laborious and requires a suit-

able selection and evolution strategy to be available or 

designed. Rational strain engineering provides a faster 

strain development process that achieves the required 

genetic changes in a more stable manner. Optimising 

strains via targeted engineering is dependent on a meta-

bolic understanding of the target organism and an abil-

ity to accurately identify targets. The establishment of 

omics technologies has enabled researchers to develop a 

more comprehensive understanding of the target organ-

ism; however, this can be challenging given the volume 

of data from omics analyses. One core systems biology 

method, constraint-based metabolic modelling, has now 

developed an extraordinary number of differing methods 

to address this challenge and integrate omics data with 

metabolic models [10–16].

In this study, we highlight the potential of bagasse as 

a feedstock for citric acid production, examining the 

performance of A. niger for the fermentation of bagasse 

hydrolysate to citric acid. Using fermentative time series 

data, we adapted our dynamic model [17] to capture the 

dynamics of bagasse hydrolysate fermentation. We show 

that the performance of the strain in this study is subop-

timal and investigate further using transcriptome analy-

sis at key fermentation timepoints. By employing a novel 

method involving an evolutionary algorithm guided by 

transcriptome data, we identify targets to achieve opti-

mal citric acid productivity from bagasse hydrolysate.

Results
Fermenting sugarcane bagasse hydrolysate to produce 

citric acid

To evaluate the fermentation of sugarcane bagasse hydro-

lysate for the production of citric acid, we obtained fer-

mentative time series data on citric and biomass output 

as well as glucose, xylose, and phosphate input. From 

a hydrolysate containing 120  g/L total sugars consist-

ing of glucose (80 g/L) and xylose (40 g/L), 50 g/L citric 

acid was produced in 6  days (Fig.  1). Glucose was fully 

consumed by day 5 at which point xylose consumption 

increased significantly with full consumption of sugars 

by day 7, indicating a sequential uptake mechanism. We 

observed similar characteristics to citric acid fermen-

tations performed previously [17] with the onset of cit-

ric acid production coinciding with the full depletion of 

external phosphate and a switch to phosphate-limited 

growth.

Simulating the fermentation of sugarcane bagasse 

hydrolysate to citric acid by dynamic modelling

To capture the dynamics of sugarcane bagasse hydro-

lysate fermentation in silico, we adapted our dynamic 

modelling framework [17] to reflect mixed glucose/xylose 

fermentations. The adapted model simulates the sequen-

tial uptake of glucose and xylose and with adjustments 

made to kinetic parameters (see Methods) gives close 

fits to the in vivo fermentation data (Fig. 1). The model 

estimated that citric acid titres could reach a maximum 

of 85 g/L, almost twofold higher than what we observed 

in  vivo (Fig.  1). By imposing a constraint on citric acid 

output in silico, the model was able to reflect in vivo cit-

ric acid production (Fig. 1), suggesting the strain we used 

is suboptimal and highlighting the need for strain optimi-

sation to realise optimal productivity.

Transcriptomic analysis at selected timepoints 

to investigate the fermentation of sugarcane bagasse 

hydrolysate to citric acid

To extend our investigation, we performed transcrip-

tomic analysis at three key fermentation timepoints 

(Fig. 1). The first timepoint (T1) was taken, while external 

phosphate was still present before the onset of citric acid 

production and phosphate-limited growth. The other two 

timepoints (T2 and T3) were taken during citric acid pro-

duction; the first of these (T2), while glucose was being 

consumed and the second (T3) during the main xylose 

consumption phase after glucose was fully consumed. 

Differential expression analysis revealed a greater degree 

of similarity between the two citric acid producing time-

points (T2 and T3) than for comparisons between these 

and the non-citric acid producing timepoint (T1) (Fig. 2).

To enable us to identify potential in  vivo constraints 

that limit citric acid production, we associated transcripts 

with the reactions in the metabolic model and deter-

mined expression at a reaction-level. The most differen-

tially expressed transcripts with reaction associations 

are shown in Tables  1, 2, 3. With reaction-level expres-

sion determined, we constructed metabolic schematics to 
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visualise the changes in the transcriptome and their reac-

tion-level effects for a given comparison (Fig. 3).

In comparing T1 with T2, the scale of change is clear 

when transitioning to citric acid production with wide-

spread differential expression events observed across 

metabolism (Fig.  3A). In particular, reactions involved 

in biomass production were down-regulated, while cit-

rate export was up-regulated together with the down-

regulation of TCA cycle reactions involved in citrate 

catabolism. Unexpectedly, pyruvate carboxylase whose 

activity is important to citric acid production [18] was 

down-regulated, suggesting this step as a point of con-

straint in vivo.

The expression changes are less extensive when tran-

sitioning from glucose to xylose consumption and 

appear to be directed at the change in substrate use 

(Fig. 3B). These include up-regulation of xylose import 

and xylulose kinase as well as phosphoketolase and ace-

tate kinase that appear to activate an alternative xylose 

catabolic pathway, which may be associated with up-

regulation of the glyoxylate shunt through an increased 

supply of acetyl-CoA. We also observed further 

Fig. 1 Time series of sugarcane bagasse hydrolysate fermentation with dynamic modelling. Green dots correspond to in vivo fermentation data. 
Purple dashed vertical lines indicate timepoints chosen for transcriptome analysis. Purple triangles correspond to data from cultures used for 
transcriptome sampling. Solid brown lines represent in silico data from a simulation with citric output constrained to fit the in vivo data. A Change 
in biomass dry weight (g/L) over time. B Change in external phosphate concentration (g/L) over time. C Change in external citric acid concentration 
(g/L) over time. Dashed brown line represents in silico data from a simulation with unconstrained citric output. D Change in external glucose 
concentration (g/L) over time. E Change in external xylose concentration (g/L) over time. Individual data-points are shown
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up-regulation of citrate export, yet the rate of citric 

acid production in silico is around 2.3 times higher 

at T2 than T3 when citric output is unconstrained 

(Table  4). The lower citrate exporter expression at T2 

with respect to T3 may indicate citrate export as a 

point of constraint in vivo.

Investigating suboptimal citric acid production 

by transcriptome‑guided in silico evolution

To develop a metabolic understanding of suboptimal cit-

ric acid production, we developed an evolutionary algo-

rithm to perform in silico evolution of the model with 

the aim of reflecting non-optimised strains. We focused 

on T2 as citric output is around 2.6 times higher at T2 

when unconstrained (Table  4) than when constrained 

(Table 5) to fit in vivo data, whereas citric output at T3 is 

virtually the same. The objective was to identify changes 

to flux bounds that constrain citric output to the value 

that closely fits in vivo data while maintaining the same 

carbon input and biomass output. To achieve this, we 

adapted an evolutionary algorithm [19] to evolve the 

model to more accurately reflect the in  vivo metabolic 

state that is associated with constrained citric produc-

tion. As many solutions may exist to this, we used the 

transcriptomic data to guide the in silico evolution to 

limit solutions to those that are more likely to resemble 

the one indicated by the transcriptome. This constrained 

the evolutionary algorithm to alter flux bounds only on 

reactions where there is a significant differential expres-

sion, with such cases implying transcriptional regulation 

over the reaction’s activity. We compared and analysed 

the solutions from eight independent runs of the evolu-

tionary algorithm to suggest targets for increasing citric 

acid productivity (Fig. 4). In total, we found 91 reactions 

suggested for targeted intervention of their activity; 65 

for down-regulation and 26 for up-regulation (Table  6). 

Together, the list of targets provides high coverage of 

all potential targets that could bring about optimal cit-

ric acid production. Some of the targets were expected 

and consistent with the literature for example the 

Fig. 2 Volcano plots showing the differential expression between 
selected timepoints. Green dots indicate transcripts that are 
up-regulated. Red dots indicate transcripts that are down-regulated. 
Grey dots indicate transcripts that are not significantly differentially 
expressed. A q value (adjusted p value) threshold of 0.01 was applied 
to determine statistical significance. The x-axis corresponds to log2FC 
between selected timepoints. The y-axis corresponds to − log10 of 
the q value (adjusted p value). Data-points corresponding to the most 
significantly differentially expressed transcripts (q value < 1E−40 and 
ranked by log2FC) with reaction associations in iDU1327 are circled. 
A Differential expression analysis between T1 and T2. The transcripts 
and their associated reactions that correspond to circled data-points 
are given in Table 1. B Differential expression analysis between T1 and 
T3. The transcripts and their associated reactions that correspond 
to circled data-points are given in Table 2. C Differential expression 
analysis between T2 and T3. The transcripts and their associated 
reactions that correspond to circled data-points are given in Table 3

◂
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up-regulation of citrate export and pyruvate carboxylase, 

while other targets were novel such as the down-regula-

tion of inorganic diphosphatase.  

Discussion
In our in vivo fermentation experiments with sugarcane 

bagasse hydrolysate, we observed a promising yield of cit-

ric acid; up to 50 g/L in 6 days from 80 g/L glucose and 

40 g/L xylose. In our simulations, however, up to 85 g/L 

citric acid could be produced. By our analysis of the tran-

scriptome at key timepoints and with our in silico toolkit, 

we have determined what may underlie the suboptimal 

citric acid production. The exhaustive list of targets all 

involve a common feature: an aim to minimise carbon 

loss as  CO2 and maximise citric output.

One example of a target that is associated with mini-

mising carbon loss via  CO2 is the down-regulation of 

inorganic diphosphatase. Forcing flux of this reac-

tion alone was able to decrease citric output to the 

target value, suggesting that a high level of inorganic 

diphosphatase activity may negatively affect citric acid 

production. The reaction catalysed by inorganic diphos-

phatase acts to dissipate energy, thereby supporting a 

high carbon input flux with carbon output predomi-

nantly to  CO2. This finding also relates to our previ-

ous work [17] on the relationship between phosphate 

levels and citric acid production. Decreased activity of 

inorganic diphosphatase may limit internal phosphate 

levels and enhance citric acid production. The majority 

of our targets for down-regulation are associated with 

anabolic pathways involved in the synthesis of biomass 

components. As the production of biomass becomes 

restricted by phosphate availability during citric acid 

production, any excess in anabolic flux would result in 

futile pathways. Comparison of the biomass output flux 

values between T2 and T3 reveals that the growth rate 

is ≈30-fold higher at T2, yet the fold changes in expres-

sion of anabolic reactions are significantly less than the 

fold change in growth rate, suggesting that the expres-

sion of these reactions is not excessive at T2.

Table 1 Most significantly differentially expressed transcripts between timepoints T1 and T2 with reaction associations in iDU1327

Transcripts shown have q value < 1E−40 and are ranked by log2FC

Transcript ID Effect Log2FC Associated reactions in iDU1327 Names of associated reactions

Aspni_transcript.chr_202G213.1 Down-regulated − 9.7 R462; R463; N1; R464 Catalase

Aspni_transcript.chr_202G683.1 Down-regulated − 8.9 R623 5-Oxo-L-proline amidohydrolase (ATP-
hydrolysing)

Aspni_transcript.chr_401G28.1 Down-regulated − 8.1 R258; R259 Glucose oxidase

Aspni_transcript.chr_701G586.1 Down-regulated − 6.4 R1227 Sulphite reductase

Aspni_transcript.chr_202G195.1 Down-regulated − 6.1 R462; R463; N1; R464 Catalase

Aspni_transcript.chr_101G17.1 Down-regulated − 5.5 R332; R333; R334 Alpha-galactosidase

Aspni_transcript.chr_304G54.1 Down-regulated − 5 R74; R511 Formate oxidase; Phosphoglycerate dehy-
drogenase

Aspni_transcript.chr_302G484.1 Down-regulated − 4.8 R305; R335; NR2 Fructan beta-fructosidase; Invertase; 
Stachyose fructohydrolase

Aspni_transcript.chr_301G287.1 Down-regulated − 4.5 R477; R485; R1246 Argininosuccinate synthase; 
L-alanine:tRNA(Ala) ligase

Aspni_transcript.chr_101G512.1 Down-regulated − 4.4 R417; R418 Chitinase

Aspni_transcript.chr_604G19.1 Up-regulated 10.8 R89; R90; R95; R96; R97; R98 Propanoate:CoA ligase (AMP-forming); 
Propionyl-CoA synthetase

Aspni_transcript.chr_402G104.3 Up-regulated 8.4 R377 Salicylate hydroxylase

Aspni_transcript.chr_202G947.1 Up-regulated 8.4 R35 Citrate synthase

Aspni_transcript.chr_601G472.1 Up-regulated 8.1 R398 4-Carboxymuconolactone decarboxylase

Aspni_transcript.chr_604G21.1 Up-regulated 8 R124; R131 Dihydrofolate synthase; Tetrahydrofolylpo-
lyglutamate synthase

Aspni_transcript.chr_601G138.1 Up-regulated 7.4 R490 Acetylglutamate kinase

Aspni_transcript.chr_601G143.1 Up-regulated 7.2 R1187 Trans, trans-farnesyl-
diphosphate:isopentenyl-diphosphate 
farnesyltranstransferase

Aspni_transcript.chr_402G104.6 Up-regulated 7.1 R377 Salicylate hydroxylase

Aspni_transcript.chr_503G231.2 Up-regulated 7 R411 Glucosamine-6-phosphate deaminase

Aspni_transcript.chr_603G120.1 Up-regulated 6.9 R791; R796; R801; R806; R811; R816; R821; 
R826; R831; R837; R842; R847; R852; R857; 
R862; R867; R872

3-Oxoacyl-[acyl-carrier-protein] reductase
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Among our targets are expected changes in metabolism 

including the up-regulation of citrate export and pyru-

vate carboxylase, both of which have significantly lower 

expression at T2 with respect to T3. The flux through 

these steps would be higher at T2 than T3 in the case of 

optimal citric acid production, suggesting that expression 

should also be higher at T2 contrary to what we see in 

this study. The citrate exporter has been overexpressed 

previously which resulted in a fivefold increase in citric 

acid production [20], and pyruvate carboxylase has been 

overexpressed for increasing production of malic acid 

[21].

The importance of energy metabolism to citric acid 

production is highlighted by the frequent targeting of 

oxidative phosphorylation reactions. These reactions 

were down-regulated from T1 to T2 by around 2–2.6-

fold, and constraining the flux of these reactions in line 

with the transcriptome data led to a drop in citric pro-

duction. This may seem counter-intuitive as the addi-

tion of oxidative phosphorylation inhibitors has been 

shown to increase citric acid production; however, nega-

tive effects were observed when the activity of oxidative 

phosphorylation was too low [22]. This is consistent with 

our study, which shows that over-constraint of oxidative 

phosphorylation decreases citric output.

The objective of our study was to identify targets for 

increasing citric acid production by integrating tran-

scriptome data with metabolic modelling. Many efforts 

have been made to integrate transcriptome data with 

metabolic models, with early examples including the 

GIMME algorithm [10], E-Flux [11], and iMAT [13], 

and more recently SPOT [15]. A disadvantage of these 

approaches was their use of absolute expression data that 

may not correlate closely with reaction activity. An alter-

native is to use differential expression data that indicate 

which reactions are subject to transcriptional regulation, 

such as MADE where differential expression data are 

used to determine binary expression states [14]. Other 

methods include PROM that requires a regulatory net-

work [12] and LBFBA that relies on flux data to param-

eterise linear reaction-specific functions to determine 

flux bounds from expression data [16]. Our approach 

infers from differential expression data the metabolic fac-

tors that underpin suboptimal citric acid production in 

Table 2 Most significantly differentially expressed transcripts between timepoints T1 and T3 with reaction associations in iDU1327

Transcripts shown have q value < 1E−40 and are ranked by log2FC

Transcript ID Effect Log2FC Associated reactions in iDU1327 Names of associated reactions

Aspni_transcript.chr_601G340.1 Down-regulated − 11.5 R544; R554 Dihydroxy acid dehydratase

Aspni_transcript.chr_202G213.1 Down-regulated − 10.7 R462; R463; N1; R464 Catalase

Aspni_transcript.chr_202G683.1 Down-regulated − 10.7 R623 5-Oxo-L-proline amidohydrolase (ATP-
hydrolysing)

Aspni_transcript.chr_102G681.1 Down-regulated − 10.6 R462; R463; N1; R464 Catalase

Aspni_transcript.chr_401G28.1 Down-regulated − 9.3 R258; R259 Glucose oxidase

Aspni_transcript.chr_801G200.1 Down-regulated − 8.8 R790; R795; R800; R805; R810; R815; R820; 
R825; R830; R836; R841; R846; R851; R856; 
R861; R866; R871

3-Oxoacyl-[acyl-carrier-protein] synthase

Aspni_transcript.chr_701G586.1 Down-regulated − 7.4 R1227 Sulphite reductase

Aspni_transcript.chr_603G16.1 Down-regulated − 6.9 R451 ATP synthase

Aspni_transcript.chr_302G588.1 Down-regulated − 6.9 R719 Uracil phosphoribosyltransferase

Aspni_transcript.chr_202G195.1 Down-regulated − 6.5 R462; R463; N1; R464 Catalase

Aspni_transcript.chr_402G104.3 Up-regulated 9.5 R377 Salicylate hydroxylase

Aspni_transcript.chr_601G472.1 Up-regulated 9.4 R398 4-Carboxymuconolactone decarboxylase

Aspni_transcript.chr_202G1357.1 Up-regulated 8.3 R362; R618; R619; R785; R1244; NR28; 
NR37

Benzonitrilase; Nitrilase; Formamide hydro-
lyase; Phenylacetonitrile aminohydrolase

Aspni_transcript.chr_601G138.1 Up-regulated 8 R490 Acetylglutamate kinase

Aspni_transcript.chr_402G104.6 Up-regulated 7.7 R377 Salicylate hydroxylase

Aspni_transcript.chr_601G80.1 Up-regulated 7.6 R65; R66 Oxalate decarboxylase

Aspni_transcript.chr_601G143.1 Up-regulated 7.6 R1187 Trans,trans-farnesyl-
diphosphate:isopentenyl-diphosphate 
farnesyltranstransferase

Aspni_transcript.chr_401G532.1 Up-regulated 7.5 R378; R402; R404; R615; NR23 Amine oxidase

Aspni_transcript.chr_503G231.2 Up-regulated 7.4 R411 Glucosamine-6-phosphate deaminase

Aspni_transcript.chr_304G666.1 Up-regulated 7.2 R211; R1115 Glycerol 3-phosphate dehydrogenase 
(NAD + dependent)
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Aspergillus, and is tailored to applications where there is 

a defined metabolic goal. Its basis is an evolutionary algo-

rithm with changes to flux bounds guided by differential 

expression data. Its limitation is that it outputs a set of 

possible solutions rather than a unique solution.

Conclusions
In this study, we demonstrate the production of citric 

acid from lignocellulosic hydrolysate by an engineered 

variant of A. niger ATCC1015. By performing in silico 

simulations using a dynamic model, we show how tran-

scriptomic data across multiple timepoints can be cou-

pled with evolutionary and metabolic modelling to 

inform targeted engineering strategies aimed at maxim-

ising productivity from a chosen feedstock. The same in 

silico strategies employed here can be applied to other 

biotechnological goals, assisting efforts to harness the 

potential of microorganisms for bio-based production of 

valuable chemicals.

Methods
Preparation of sugarcane bagasse hydrolysate

Sugarcane bagasse was obtained from Natems Sugar Pvt. 

Ltd. (India) and dried at 50  °C overnight to reach con-

stant weight. Bagasse was milled using a knife mill with 

a 1 mm sieve prior to pre-treatment. Pre-treatment was 

Table 3 Most significantly differentially expressed transcripts between timepoints T2 and T3 with reaction associations in iDU1327

Transcripts shown have q value < 1E−40 and are ranked by log2FC

Transcript ID Effect Log2FC Associated reactions in iDU1327 Names of associated reactions

Aspni_transcript.chr_302G588.1 Down-regulated − 8.9 R719 Uracil phosphoribosyltransferase

Aspni_transcript.chr_302G590.1 Down-regulated − 7.3 R173 GTP 7,8–8,9-dihydrolase (diphosphate-
forming)

Aspni_transcript.chr_401G344.1 Down-regulated − 4.8 R1176 3-Hydroxy-3-methylglutaryl coenzyme A 
synthase

Aspni_transcript.chr_202G1142.1 Down-regulated − 4.6 R193; R198 Alcohol dehydrogenase

Aspni_transcript.chr_802G171.1 Down-regulated − 4.4 R228; R230; R791; R796; R801; R806; R811; 
R816; R821; R826; R831; R837; R842; R847; 
R852; R857; R862; R867; R872

L-Xylulose reductase;3-Oxoacyl-[acyl-
carrier-protein] reductase

Aspni_transcript.chr_603G16.1 Down-regulated − 4.1 R451 ATP synthase

Aspni_transcript.chr_102G146.1 Down-regulated − 3.7 R791; R796; R801; R806; R811; R816; R821; 
R826; R831; R837; R842; R847; R852; R857; 
R862; R867; R872

3-Oxoacyl-[acyl-carrier-protein] reductase

Aspni_transcript.chr_101G224.1 Down-regulated − 3.3 R322 alpha-amylase

Aspni_transcript.chr_304G378.1 Down-regulated − 3.2 R791; R796; R801; R806; R811; R816; R821; 
R826; R831; R837; R842; R847; R852; R857; 
R862; R867; R872

3-Oxoacyl-[acyl-carrier-protein] reductase

Aspni_transcript.chr_801G344.1 Down-regulated − 3 R182; R188; R265; R1207; NR14; NR26 Riboflavin-5-phosphate phosphohydrolase; 
Thiamin monophosphate phosphohydro-
lase; Phosphatidate phosphatase; 4-Nitro-
phenyl phosphate phosphohydrolase; 
Glycerone phosphate phosphohydrolase

Aspni_transcript.chr_304G666.1 Up-regulated 4.8 R211; R1115 Glycerol 3-phosphate dehydrogenase 
(NAD + dependent)

Aspni_transcript.chr_101G504.1 Up-regulated 4.7 R71; R75; R516 S-(hydroxymethyl)glutathione dehydro-
genase; Formaldehyde dehydrogenase; 
Threonine dehydrogenase

Aspni_transcript.chr_602G271.2 Up-regulated 4.7 R107; R108 Succinate-semialdehyde dehydrogenase

Aspni_transcript.chr_501G182.1 Up-regulated 4.6 R106; R611 4-Aminobutyrate transaminase

Aspni_transcript.chr_102G293.1 Up-regulated 4.5 R107; R108 Succinate-semialdehyde dehydrogenase

Aspni_transcript.chr_202G964.1 Up-regulated 3.8 R153; R479; R604 Adenosyl:methionine-8-amino-7-oxon-
onanoate aminotransferase; Ornithine 
transaminase

Aspni_transcript.chr_101G108.1 Up-regulated 3.7 R378; R402; R404; R615; NR23 Amine oxidase

Aspni_transcript.chr_402G585.2 Up-regulated 3.7 R33; R34 Phosphoketolase

Aspni_transcript.chr_202G803.1 Up-regulated 3.6 R103; R104 Methylmalonate-semialdehyde dehydro-
genase

Aspni_transcript.chr_402G613.1 Up-regulated 3.1 R78 Pyruvate decarboxylase
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A

B

Fig. 3 Metabolic schematics showing the key changes in the transcriptome from T1 to T2 (A) and from T2 to T3 (B) and their reaction-level effects. 
Green upward and red downward arrows indicate significantly up- and down-regulated reactions, respectively (q value < 0.01 and log2FC > 0.7). The 
arrow width is directly proportional to the log2FC value. The full names of abbreviated metabolites are given in the iDU1327 model (see Additional 
file 1). Reactions included are shown in simplified form with only key reactants and products
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performed in a 2  L vessel (Parr Instrument Company, 

Moline, IL, US): 100  g milled bagasse was added to the 

vessel and mixed with 900 mL 0.4 M NaOH to homoge-

neity. The vessel was heated to 140  °C and maintained 

at 140  °C for 45  min, and then cooled on ice until the 

temperature dropped to 60  °C. The contents of the ves-

sel were transferred to a fruit press after pre-treatment. 

Pre-treated bagasse was pressed to remove the pre-

treatment liquor and rinsed twice in 500  mL acidified 

 dH2O. The acidified  dH2O was prepared by adding 100 µl 

concentrated  H2SO4 to 1.2  L  dH2O. After rinsing, pre-

treated bagasse was adjusted to pH 5–6 by the addition 

of concentrated  H2SO4. The pre-treated bagasse was then 

transferred to Weck jars and autoclaved (121 °C 15 min) 

followed by storage at 4  °C until use. The pre-treated 

bagasse was subjected to enzymatic hydrolysis in 1 L 

shake flasks: Pre-treated bagasse was added to the flask at 

the equivalent of 50 g dry weight and autoclaved. Under 

aseptic conditions, 10 mL 1 M MES buffer pH 5.5 (filter 

sterile) and 24.5 mL enzyme solution (filter sterile) were 

added, followed by sterile  dH2O up to a final volume of 

400  mL. Enzyme solution was prepared by mixing 20  g 

Cellic CTec3 (Novozymes) with 20 g 25 mM MES buffer 

pH 5.5. Flasks were incubated at 50  °C with shaking at 

160 rpm for 48 h. After hydrolysis, the hydrolysate slurry 

was centrifuged at 4600  rpm for 20  min in a Multifuge 

3 SR benchtop centrifuge (Heraeus, Germany). The clear 

supernatant was filtered through Whatman glass micro-

fibre filters GF/F (GE Healthcare UK Ltd., UK) using a 

vacuum pump and then filter sterilised into a sterile glass 

bottle using a Stericap™ PLUS filter (Merck Millipore). 

The filter sterile hydrolysate was stored at 4 °C.

Shake flask fermentation experiments with time‑course 

sampling

Fermentation experiments were performed in 250  mL 

baffled shake flasks (Bellco Glass Inc.; Vineland, NJ, USA) 

at a working volume of 30 mL. Bagasse hydrolysate was 

supplemented with 3  g/L  NaNO3 and 10  mM uridine. 

Spores from the A. niger strain ATCC1015 ΔpyrG Δoah 

Δgox [17] were added at 1 ×  106 spores/mL. Spores were 

harvested from potato dextrose agar slants supplemented 

with 10 mM uridine. The slants were incubated at 37 °C 

for 3 days and spores were harvested using sterile cotton 

wool buds. Spores were suspended in saline Tween (0.1% 

Tween 80, 9 g/L NaCl) and centrifuged at 2500 rpm for 

5 min. Spores were then washed 3 times in saline Tween 

prior to being used to inoculate cultures. Cultures were 

incubated at 30  °C with shaking at 250  rpm for 8  days. 

500  µl homogeneous samples were taken twice daily 

6  h apart. The supernatant and the biomass were sepa-

rated by centrifugation at 20238 g for 3 min and stored 

Table 4 Input/output fluxes in iDU1327 at selected timepoints without constraint on citric output

Input/output reaction T1 flux (mmol  gDW−1  h−1) T2 flux (mmol  gDW−1  h−1) T3 flux (mmol 
 gDW−1  h−1)

Glucose (DGLCe <==>) − 1.2552 − 0.4392 0.0

Xylose (XYLe <==>) − 0.0718 − 0.0647 − 0.1936

External phosphate (PIe <==>) − 0.1455 0.0 0.0

Internal phosphate (PI <==>) 0.1339 − 0.0019 − 0.00005

Biomass 0.1207  (h−1) 0.0195  (h−1) 0.0006  (h−1)

Citric acid (CIT-e <==>) 0.0 0.3159 0.135

Carbon dioxide  (CO2e <==>) 3.3671 0.3311 0.137

Oxygen  (O2e <==>) − 1.9835 − 0.581 − 0.3331

Table 5 Input/output fluxes in iDU1327 at selected timepoints with citric output constrained in line with in vivo data

Input/output reaction T1 flux (mmol  gDW−1  h−1) T2 flux (mmol  gDW−1  h−1) T3 flux 
(mmol  gDW−1  h−1)

Glucose (DGLCe <==>) − 1.2552 − 0.4392 0.0

Xylose (XYLe <==>) − 0.0718 − 0.0647 − 0.1936

External phosphate (PIe <==>) − 0.1455 0.0 0.0

Internal phosphate (PI <==>) 0.1339 − 0.0019 − 0.00005

Biomass 0.1207  (h−1) 0.0195  (h−1) 0.0006  (h−1)

Citric acid (CIT-e <==>) 0.0 0.12 0.12

Carbon dioxide  (CO2e <==>) 3.3671 1.5066 0.2268

Oxygen  (O2e <==>) − 1.9835 − 1.4626 − 0.4004
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at − 20 °C to prevent any changes to metabolite concen-

trations in the supernatant and any changes to biomass 

dry weight.

Extracellular metabolite and biomass dry weight analysis

Glucose, xylose, and citric acid were determined enzy-

matically using the K-GLUC, K-XYLOSE, and K-CITR 

kits, respectively (Megazyme International Ireland 

Ltd., Wicklow, Ireland). Phosphate was determined 

using an assay kit (ab65622; Abcam, Cambridge, UK). 

Biomass dry weight was determined by washing bio-

mass samples in pre-dried, pre-weighed 1.5 mL Eppen-

dorf tubes 7 times in 1 mL  dH2O, followed by drying at 

70 °C to constant weight. Between each of the washing 

steps, the biomass samples were centrifuged at 20238 g 

Fig. 4 Plot giving a comparative view of the target suggestions from 8 independent runs of the evolutionary algorithm. Each of the eight grey 
circles corresponds to the results of one replicate run, and dots on these circles indicate which reactions were targeted in the given run. The IDs 
of the reactions targeted are shown on the outside (see Table 6 for corresponding reactions). Green and red dots indicate targets for up- and 
down-regulation, respectively. The sectors indicate the areas of metabolism that were targeted
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Table 6 Suggested targets for increasing citric acid output based on results from the evolutionary algorithm (primarily ranked by 
frequency and then by citric %increase)

Reaction  IDa Name Equation Target Frequencyb Citric 
%increasec

R1447 Citrate exporter CIT-e ↔ CIT Up-regulate 8 163

R442 Diphosphatase PPI +  H2O → 2*PI + H Down-regulate 8 163

R209 Glycerol 3-phosphate dehydrogenase (FAD 
dependent)

GL3P + FADm → T3P2 + FADH2m Down-regulate 7 170

R634 Phosphoribosyl amino imidazolesuccino-
carbozamide synthetase

ASP + ATP + CAIR ↔ 2*H + PI + ADP + SAI-
CAR 

Down-regulate 7 163

R80 Acetate kinase ATP + AC ↔ ADP + ACTP Down-regulate 7 163

R188 Thiamin monophosphate phosphohy-
drolase

THMP +  H2O → THM + PI Down-regulate 7 163

R443 Diphosphatase PPIm +  H2O → 2*PIm + Hm Down-regulate 7 163

R1122 ATP:ethanolamine O-phosphotransferase ATP + ETHLA → ADP + PEA + H Down-regulate 7 163

R22 Pyruvate carboxylase ATP + PYR +  H2O +  CO2 → ADP + PI + OA 
+ 2*H

Up-regulate 6 171

R636 IMP cyclohydrolase AICAR + FTHF ↔ THF + PRFICA Down-regulate 6 169

R398 4-Carboxymuconolactone decarboxylase 4CMUCL + 2*H → OAEL +  CO2 Down-regulate 6 163

R20 Phosphopyruvate hydratase 2PG ↔ PEP +  H2O Down-regulate 6 163

NR18 Acetyl-CoA:carnitine O-acetyltransferase ACCOAm + CARm ↔ COAm + ALCARm Down-regulate 6 163

R23 Pyruvate carboxylase ATPm + PYRm +  H2Om +  CO2m → ADPm + P
Im + OAm + 2*Hm

Up-regulate 6 163

NR20 Acetyl-CoA:carnitine O-acetyltransferase ACCOA + CAR ↔ COA + ALCAR Down-regulate 6 163

R29 Ribose-5-phosphate isomerase R5P ↔ RL5P Down-regulate 6 163

R765 Nicotinate phosphoribosyltransferase NICA + PRPP → NAMN + PPI Down-regulate 6 162

R240 Phosphoglucomutase R5P ↔ R1P Down-regulate 6 162

R685 Allantoicase ATT +  H2O ↔ UGC + UREA Down-regulate 6 161

R644 Nucleoside-diphosphate kinase ATP + DADP ↔ ADP + DATP Down-regulate 6 161

R764 Nicotinamidase NICD +  H2O ↔ NICA + NH3 Down-regulate 5 164

R397 3-Carboxy-cis,cis-muconate cycloisomer-
ase

3CMUCO ↔ 4CMUCL Down-regulate 5 163

R415 UDP-N-acetylglucosamine pyrophos-
phorylase

UTP + NAGA1P ↔ PPI + UDPNAG Down-regulate 5 163

R512 Phosphoserine transaminase PHP + GLU → AKG + 3PSER Down-regulate 5 163

R607 Proline dehydrogenase NADm + PROm → 2*Hm + NADHm + P5Cm Down-regulate 5 163

R684 Allantoinase ATN +  H2O ↔ ATT Down-regulate 5 163

R707 Nucleoside-diphosphate kinase DUDP + ATP ↔ DUTP + ADP Down-regulate 5 163

R74 Formate oxidase FOR +  O2 + H →  H2O2 +  CO2 Down-regulate 5 163

R637 IMP cyclohydrolase PRFICA ↔  H2O + IMP Down-regulate 5 163

R699 Nucleoside-diphosphate kinase CTP + ADP ↔ CDP + ATP Down-regulate 5 162

R630 Phosphoribosylglycinamide formyltrans-
ferase

FTHF + GAR → H + THF + FGAR Down-regulate 5 161

R719 Uracil phosphoribosyltransferase URA + PRPP → UMP + PPI + H Down-regulate 5 160

R730 Cytosine deaminase CYTS +  H2O + H → URA +  NH3 Down-regulate 5 147

R306 Ketohexokinase ATP + FRU → ADP + F1P + H Down-regulate 4 163

R648 Nucleoside-diphosphate kinase ATP + GDP ↔ ADP + GTP Down-regulate 4 163

R605 Pyrroline-5-carboxylate reductase 2*H + NADPH + P5C ↔ PRO + NADP Down-regulate 4 163

R244 Ribulokinase ATP + RL → ADP + RL5P + H Down-regulate 4 163

R139 5-Formyltetrahydrofolate deformylase FTHF +  H2O → FOR + THF + H Down-regulate 4 162

R511 Phosphoglycerate dehydrogenase NAD + 3PG ↔ H + NADH + PHP Down-regulate 4 162

R16 Triosephosphate isomerase T3P2 ↔ T3P1 Down-regulate 4 144

R27 Phosphogluconate dehydrogenase D6PGC + NADP → RL5P +  CO2 + NADPH Up-regulate 4 111
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Table 6 (continued)

Reaction  IDa Name Equation Target Frequencyb Citric 
%increasec

R54 Malate synthase ACCOAp + H2Op + GLXp → MALp + COAp 
+ Hp

Up-regulate 4 104

R450 Cytochrome c oxidase 2*FEROm + 0.5*O2m + 6*Hm → 2*FERIm +  H

2Om + 4*Ho
Up-regulate 4 91

R658 Purine nucleoside hydrolase ADN +  H2O → AD + RIB Down-regulate 3 163

R257 D-arabinitol 2-dehydrogenase(NAD +) AOL + NAD → RL + NADH + H Down-regulate 3 163

R1215 D-Glyceraldehyde:NAD + oxidoreductase G + NADH + 2*H ↔ GLYAL + NAD +  H2O Down-regulate 3 163

R1233 3’—5’ Bisphosphate nucleotidase PAP +  H2O → AMP + PI Down-regulate 3 162

R674 Purine nucleosidase GSN +  H2O → GN + RIB Down-regulate 3 162

R769 NAD synthetase ATP + DMNAD + GLN +  H2O ↔ AMP + PPI + 
NAD + GLU + 2*H

Down-regulate 3 162

R266 Gluconokinase GLCNT + ATP → D6PGC + ADP + H Down-regulate 3 131

R413 N-acetylglucosamine-6-phosphate 
deacetylase

NAGA6P +  H2O → GA6P + AC Down-regulate 3 126

R458 ADP/ATP translocase ADP + PI + ATPm + H2Om → ADPm + PIm + 
ATP +  H2O

Up-regulate 3 111

R720 dUTP pyrophosphatase DUTP +  H2O → PPI + DUMP + 2*H Down-regulate 2 163

R675 Guanine aminohydrolase GN +  H2O ↔ XAN +  NH3 Down-regulate 2 163

R1242 Urea carboxylase UREA + ATP +  H2O +  CO2 ↔ ADP + PI + URE
AC + 2*H

Down-regulate 2 163

R189 ATP:thiamine diphosphotransferase ATP + THM → AMP + THDP + 2*H Down-regulate 2 163

R1214 Glycerate 3-kinase ATP + G → ADP + 3PG + H Down-regulate 2 162

R86 Lactoylglutathione lyase RGT + MTHGXL ↔ LGT Down-regulate 2 144

R716 Uridine kinase URI + GTP → UMP + GDP + H Down-regulate 2 134

R588 Chorismate mutase CHOR → PHEN Down-regulate 2 130

R695 Nucleoside-diphosphate kinase UDP + ATP ↔ UTP + ADP Down-regulate 2 127

R446 Respiratory-chain NADH dehydrogenase NADH + Qm + 5*Hm → NAD + QH2m + 4
*Ho

Up-regulate 2 107

R479 Ornithine transaminase ORN + AKG → GLUGSAL + GLU Up-regulate 2 93

R514 Glycine hydroxymethyltransferase THF + SER ↔  H2O + GLY + METTHF Up-regulate 2 90

R713 ADP-ribose pyrophosphatase ADPR +  H2O → AMP + R5P + 2*H Down-regulate 2 90

R451 ATP synthase ADPm + PIm + 4.5454*Ho → ATPm +  H2Om 
+ 4.5454*Hm

Up-regulate 2 67

R76 Pyruvate dehydrogenase PYRm + NADm + COAm → ACCOAm + NAD
Hm +  CO2m + Hm

Up-regulate 2 65

R105 Glutamate decarboxylase GLUm + Hm → GABAm +  CO2m Down-regulate 1 173

R515 Threonine aldolase GLY + ACAL ↔ THR Down-regulate 1 163

R370 Kynurenine formamidase FKYN +  H2O → FOR + KYN + H Down-regulate 1 154

R1243 Allophanate hydrolase UREAC +  H2O → 2*NH3 + 2*CO2 Down-regulate 1 153

R200 Aldehyde dehydrogenase (NADP+) ACALm + NADPm +  H2Om → ACm + NAD-
PHm + 2*Hm

Down-regulate 1 133

R135 Methylenetetrahydrofolate dehydrogenase 
(NADP +)

METHFm + NADPHm ↔ METTHFm + NADPm Up-regulate 1 116

R784 5’-Nucleotidase NAMN +  H2O → NAR + PI Up-regulate 1 115

R728 Cytidine deaminase CYTD +  H2O → URI +  NH3 Down-regulate 1 114

R211 Glycerol 3-phosphate dehydrogenase 
(NAD+ dependent)

H + T3P2 + NADH → GL3P + NAD Up-regulate 1 113

R337 Phenylacetaldehyde dehydrogenase PHAL + NADP +  H2O ↔ PHAC + NADPH + 
2*H

Down-regulate 1 113

R205 Glycerol dehydrogenase H + GLYAL + NADPH → GL + NADP Down-regulate 1 112

R53 Isocitrate lyase ICITp → SUCCp + GLXp Up-regulate 1 111
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for 3  min to pellet the biomass, and the supernatant 

was aspirated without disruption of the biomass pellet.

Dynamic modelling to simulate the fermentation 

of bagasse hydrolysate to citric acid

Dynamic modelling was done as described previously 

[17] with some modifications. In brief, the FBA cal-

culations were performed using bespoke Java code 

which implements the GLPK toolkit (GNU). dFBA 

routines were written directly into the Java code 

with the differential equations representing trans-

port reactions solved by simple time-stepping (Euler 

method) with small values for the time-step. The 

iDU1756 model [19] was used, and deletions of the 

pyrG, gox, and oah genes were simulated by setting 

the flux bounds of their corresponding reactions 

to zero. Nitrate was used as the nitrogen input and 

uridine input was enabled. The sequential uptake of 

glucose and xylose was modelled by disabling xylose 

transport-mediated uptake at external glucose con-

centrations above 5 mM; the threshold of 5 mM was 

applied as this gave the best fit to the in  vivo data. 

The kinetic parameters applied in the model are given 

in Table 7. The dFBA start time was adjusted to 10 h 

after inoculation.

Sampling for transcriptome analysis and isolation of RNA 

for RNA‑Seq

Cultures were setup as described previously. For the 

timepoints T1, T2, and T3, cultures were harvested in 

biological triplicates at 21, 72, and 132  h, respectively. 

Cultures were harvested as follows: The flask contents 

were filtered through a double layer of Miracloth to sepa-

rate the mycelia from the culture liquid. The mycelia were 

washed 2 times in chilled 100 mM Tris.HCl buffer pH 7.5 

(≈150  mL per wash) and then 3 times in chilled  dH2O 

(≈150  mL per wash). Washed mycelia were squeeze-

dried in Miracloth and transferred to 50 mL Falcon tubes 

on ice and then flash frozen in liquid nitrogen followed 

by storage at − 80  °C. Samples were freeze-dried over-

night prior to use for RNA isolation and stored at − 80 °C 

thereafter. RNA was extracted and purified: For each 

sample, 5 mg freeze-dried mycelia were added to a pre-

cooled 2  mL Eppendorf tube with two 3  mm tungsten 

carbide beads. The tubes were dipped in liquid nitrogen 

and kept on ice. Freeze-dried mycelia were ground using 

a TissueLyser set to 30 Hz for 30 s four times. 1 mL TRI-

zol reagent was added to each sample of ground mycelia 

followed by agitation using a TissueLyser set to 30 Hz for 

30 s four times. RNA was extracted by the TRIzol method 

(Thermo Fisher Scientific) according to the manufac-

turer’s instructions. RNA pellets were air-dried at 37  °C 

Table 6 (continued)

Reaction  IDa Name Equation Target Frequencyb Citric 
%increasec

R445 Respiratory-chain NADH dehydrogenase NADHm + Qm + 5*Hm → NADm + QH2m 
+ 4*Ho

Up-regulate 1 103

R28 Ribulose-phosphate 3-epimerase RL5P ↔ XUL5P Up-regulate 1 100

R40 Isocitrate dehydrogenase (NADP+) ICIT + NADP → AKG + CO2 + NADPH Up-regulate 1 96

R39 Isocitrate dehydrogenase (NAD+) ICITm + NADm → AKGm + CO2m + NADHm Up-regulate 1 96

R725 5’-Nucleotidase UMP +  H2O → PI + URI Up-regulate 1 95

R137 Methylenetetrahydrofolate dehydrogenase 
(NAD+)

METTHF + NAD → METHF + NADH Up-regulate 1 92

R38 Isocitrate dehydrogenase (NADP+) ICITm + NADPm → AKGm +  CO2m + NAD-
PHm

Up-regulate 1 63

R477 Argininosuccinate synthase ASP + ATP + CITR → 2*H + AMP + PPI + ARG-
SUCC 

Up-regulate 1 53

R238 Dihydroxyacetone synthase XUL5P + FALD ↔ T3P1 + GLYN Up-regulate 1 53

R376 4-Hydroxyphenylpyruvate dioxygenase 4HPP +  O2 → HOMOGEN +  CO2 Down-regulate N/A 150

R78 Pyruvate decarboxylase H + PYR → ACAL +  CO2 Up-regulate N/A 80

R199 Aldehyde dehydrogenase (NAD+) ACALm + NADm + H2Om → ACm + NADH
m + 2*Hm

Down-regulate N/A 57

a The ID of the reaction in the iDU1327 metabolic model (see Additional file 1)

b The number of runs of in silico evolution the target occurred in. Where the frequency is marked as N/A, the target occurred in a subsequent run with mutations 

disallowed on previously targeted reactions

c The percentage increase in citric acid output flux at T2 when the flux bounds of the reaction are set to their original unconstrained values while retaining the 

constrained flux bounds of the other reactions in the solution. If the given reaction is present in multiple solutions, the highest percentage increase is given
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for 10 min and solubilised in 200 µl RNase-free water at 

60  °C for 15  min. RNA samples were stored at − 80  °C. 

RNA samples were further purified using the TURBO 

DNA-free™ kit (Thermo Fisher Scientific) according to 

the manufacturer’s instructions. RNA samples were sent 

to the University of York Technology Facility for RNA-

Seq library preparation by poly(A) purification, and 

libraries were sequenced at the University of Leeds Next 

Generation Sequencing Facility using an Illumina HiSeq 

3000 platform with 2 × 150 bp sequencing.

Bioinformatics processing of RNA‑Seq data

The tools used to construct the reference transcriptome 

were HISAT2 [23], StringTie [24], Mikado [25], Portcul-

lis [26], and TransDecoder [27]. The latest version (v 4.0) 

of the A. niger ATCC1015 genome annotation [28] avail-

able from the Joint Genome Institute was used. The mito-

chondrial transcripts determined for the A. niger strain 

N909 [29] were included in the reference transcriptome. 

The tools used to perform quantification and differential 

expression analysis were Salmon [30], Wasabi [31], and 

Sleuth [32]. Figure 5 shows the workflow followed to pro-

cess the RNA-Seq data.

Functional annotation of transcripts and generation 

of transcript–reaction associations for the iDU1327 model

The gene–protein–reaction associations in the iDU1756 

model [19] were replaced with transcript–reaction associa-

tions in the model iDU1327 (see Additional file 1), deter-

mined by a comprehensive functional annotation process 

that employed a multitude of tools (Table 8). Mapping files 

(Table 9) and the KEGG database [53] were used to map 

the output from each tool to gene ontology (GO) molecular 

functions, EC numbers, and KEGG reactions. A consensus 

functional annotation was built, and KEGG reactions were 

included if associated with an EC number in the consensus. 

Figure 6 shows the workflow followed to construct the con-

sensus functional annotation.

Mapping transcript expression to a reaction‑level

The transcript expression data were mapped to a reac-

tion-level following the transcript–reaction associations 

in iDU1327 and according to the following rules: In the 

case of an OR relationship, the expression of associated 

transcripts was summed. In the case of an AND relation-

ship, the minimum expression of associated transcripts 

was taken. Reactions with expression below the cut-off 

(TPM < 1) were switched off.

Transcriptome‑guided in silico evolution of constrained 

citric production

The in silico evolution of constrained citric production was 

performed using an evolutionary algorithm implemented 

in Java [19] with changes made to the fitness function and 

mutation operator as detailed below:

(i) Fitness function

The fitness was calculated with respect to T2 by a least-

squares fitting procedure

(1)F = −log10
∑

(

ft − fa
)2
,

Table 7 Kinetic parameters applied in dynamic modelling of sugarcane bagasse hydrolysate fermentation

a These values are the same as in the dynamic modelling reported previously [17]

b [GLC] is the concentration of external glucose in mM

c [XYL] is the concentration of external xylose in mM

d Citric acid output rate constraint was only applied 32 h after the start time

Parameter Description Value

vPe,max (mmol  gDW−1  h−1) External phosphate maximum input rate 0.15

KPe (mM) External phosphate Michaelis constant 0.0333a

vP,max (mmol  gDW−1  h−1) Internal phosphate maximum input rate 0.06

KP (mM) Internal phosphate Michaelis constant 20

vG1 (mmol  gDW−1  h−1) External glucose passive uptake rate 0.0027 ×  [GLC]b

vG2,max (mmol  gDW−1  h−1) External glucose transport-mediated uptake maximum rate 0.08

KG2 (mM) External glucose transport-mediated uptake Michaelis constant 0.26a

Ki2 (mM) External glucose transport-mediated uptake citrate inhibition constant 933a

vX1 (mmol  gDW−1  h−1) External xylose passive uptake rate 0.00027 ×  [XYL]c

vX2,max (mmol  gDW−1  h−1) External xylose transport-mediated uptake maximum rate 0.18

KX2 (mM) External xylose transport-mediated uptake Michaelis constant 3.33a

vCIT (mmol  gDW−1  h−1) Citric acid output rate  constraintd 0.12a
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where F is the fitness, ft is the target flux, and fa is the 

actual flux.

The fluxes included were those for five exchange reac-

tions (internal phosphate, glucose, xylose, biomass, and 

citric acid). The target citric output flux was set to 0.12 in 

line with in vivo data, and the other target fluxes were set 

to their original values.

(ii) Mutation operator

Flux bounds were subjected to change by the mutation 

operator, informed by differential expression events (fold 

change ≥ 2) at both T1 to T2 and T2 to T3, and resulted 

in flux either being constrained (down-regulation), forced 

(up-regulation), or unchanged (no differential expres-

sion). Mutations were permitted to alter flux bounds 

within the multiplicative bounds determined by the fold 

change in expression and fluxes at T1 and T3, with the 

effect of imposing a limit on the extent of flux constraint 

and a minimum value for forcing flux. Mutations were 

not allowed to force flux on reactions without a clear 

direction of flux or beyond the maximum allowable flux. 

For initial mutations, the flux bound was set randomly 

between the minimum flux forced and the maximum 

allowable flux if forcing flux or between the original flux 

and the limit of flux constraint if constraining flux. For 

subsequent mutations, the flux bound was mutated from 

the existing mutated flux bound. Mutations constrain-

ing flux were applied to both lower and upper bounds for 

reversible reactions. Mutations were performed by add-

ing a small value to the flux bound determined by the 

double Laplace function. The location parameter, µ , was 

set to zero, and the scale parameter, b , was set according 

to

where b is the scale parameter, and B is the flux bound 

that the mutation is applied to.

(iii) Driving evolution of multiple solutions

A fitness threshold of 6 was applied to identify evolved 

solutions, and these were analysed to identify their key 

reactions. This threshold was chosen as at this fitness 

value the fluxes of selected exchange reactions are suf-

ficiently close to their target values. Each mutated flux 

bound was evaluated for its contribution to the fitness by 

complementation with the original flux bound, and the 

reaction corresponding to the mutation with the greatest 

contribution to fitness was identified as the key reaction. 

Flux bounds of the key reaction were then reset to the 

original across the population and blocked from mutat-

ing again. The in silico evolution was run for 150,000 

(2)
b = 0.01|B|, |B| > 0

b = 0.001, |B| = 0,

Raw RNA-Seq data

Alignment to genome 

using HISAT2

Aspni7 genomic contigs

Aligned reads

(one set per sample)

Aspni7 genome 

annotation

Assembly of aligned 

reads using StringTie

(per sample)

Single set of transcripts

(novel + Aspni7)

Exclusion of transcripts 

from same gene locus and 

same ORF as primary

Reference 

transcriptome

A. niger N909 

mitochondrial transcripts

9 sets of transcripts

(one per sample)

(novel + Aspni7)

Merging, splitting, and 

filtering of transcripts 

into single set by Mikado

Aspni7 genome 

annotation

Homology data from BLASTX 

search against Swissprot database 

(E-value threshold: 1E-6)

ORF prediction by 

TransDecoder

High-quality splice 

junctions determined by 

Portcullis

Decoy-aware reference 

transcriptome

A. niger N909 

mitochondrial genome
Aspni7 genomic contigs

Quantification using 

Salmon

Raw RNA-Seq data

Transcript-level 

differential expression 

analysis using Sleuth

Fig. 5 Schematic showing RNA-Seq analysis workflow

Table 8 Tools used in functional annotation of transcripts

Name of tool References %Transcripts 
annotated

KEGG Automatic Annotation Server (KAAS) [33] 32.6

InterProScan [34] 71.1

Blast2GO [35] 56.1

Batch CD-Search against COG database [36–38] 45.9

Batch CD-Search against PFAM database [36, 37, 39] 68.6

Batch CD-Search against SMART database [36, 37, 40] 22.1

Batch CD-Search against TIGR database [36, 37, 41] 30.3

ScanProsite [42] 35.8

BLASTP search against BRENDA database 
(thresholds: 60% identify, E-value 1E-6)

[43, 44] 24.1

HAMAP-Scan [45] 2.6

GOFEAT (threshold: E-value 1E-5) [46] 66.9

EFICAz2.5 [47] 19.4

TransAAP [48] 6.8
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generations, a duration sufficient to allow for the evolu-

tion of multiple solutions.

Processing solutions from in silico evolution to suggest 

targets for strain optimisation

Solutions from in silico evolution were subjected to opti-

misation and simplification. Mutated flux bounds were 

evaluated for their contribution to the solution fitness 

by resetting them to the original flux bounds, and the 

mutations were removed if the solution fitness remained 

over a threshold of 6. Additionally, the mutations on a 

reaction’s flux bounds were optimised by making small 

adjustments. Processed solutions were analysed to rank 

their mutations by contribution to the solution fitness, 

by individually complementing the mutated flux bounds 

on each reaction with the original flux bounds. Key 

Table 9 Mapping files used in functional annotation of transcripts

Name of mapping file Source Date References

ec2go http:// curre nt. geneo ntolo gy. org/ ontol ogy/ exter nal2go/ ec2go 2020/06/01 [49]

pfam2go http:// geneo ntolo gy. org/ exter nal2go/ pfam2 go 2020/04/18 [50]

prosite2go http:// curre nt. geneo ntolo gy. org/ ontol ogy/ exter nal2go/ prosi te2go 2020/04/18 [50]

smart2go http:// curre nt. geneo ntolo gy. org/ ontol ogy/ exter nal2go/ smart 2go 2020/04/18 [50]

hamap2go http:// curre nt. geneo ntolo gy. org/ ontol ogy/ exter nal2go/ hamap 2go 2020/04/18 [51]

rhea2kegg_reaction.tsv https:// ftp. expasy. org/ datab ases/ rhea/ tsv/ rhea2 kegg_ react ion. tsv 2020/07/10 [52]

TIGRFAMS_GO_LINK ftp:// ftp. jcvi. org/ pub/ data/ TIGRF AMs/ 2014/09/17 [41]

TIGRFAMs Complete Listing http:// tigrf ams. jcvi. org/ cgi- bin/ Listi ng. cgi 2014/09/17 [41]

ko2cog.xl https:// www. genome. jp/ kegg/ files/ ko2cog. xl 2020/07/02 [53]

ko2go.xl https:// www. genome. jp/ kegg/ files/ ko2go. xl 2020/07/02 [53]

ko2tc.xl https:// www. genome. jp/ kegg/ files/ ko2tc. xl 2020/07/10 [53]

Fig. 6 Schematic showing workflow followed to construct consensus functional annotation

http://current.geneontology.org/ontology/external2go/ec2go
http://geneontology.org/external2go/pfam2go
http://current.geneontology.org/ontology/external2go/prosite2go
http://current.geneontology.org/ontology/external2go/smart2go
http://current.geneontology.org/ontology/external2go/hamap2go
https://ftp.expasy.org/databases/rhea/tsv/rhea2kegg_reaction.tsv
ftp://ftp.jcvi.org/pub/data/TIGRFAMs/
http://tigrfams.jcvi.org/cgi-bin/Listing.cgi
https://www.genome.jp/kegg/files/ko2cog.xl
https://www.genome.jp/kegg/files/ko2go.xl
https://www.genome.jp/kegg/files/ko2tc.xl
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reactions were identified by proceeding down the ranked 

list and successively removing mutations until citric acid 

output flux increased close to its original unconstrained 

value. For this purpose, a revised fitness was computed 

by substituting the target citric acid output flux of 0.12 

with the original unconstrained value, and a threshold of 

3.5 was applied for the revised fitness to identify the set 

of key reactions that when returned to their original flux 

bounds result in optimal citric production. This threshold 

was chosen as at this fitness value the fluxes of selected 

exchange reactions are sufficiently close to values that 

reflect optimal citric production. A set of key reactions 

was obtained from each processed solution, and from 

these target suggestions were sourced. A threshold of 

50% increase in citric acid output flux at T2 was applied 

to identify prominent suggested targets that have signifi-

cant effect in silico.
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