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A B S T R A C T   

A major limitation of dietary toxicity studies on rodents is that food consumption often differs between treat-
ments. The control treatment serves as a reference of how animals would have grown if not for the toxicant in 
their diet, but this comparison unavoidably conflates the effects of toxicity and feeding rate on body weight over 
time. A key advantage of toxicity models based on dynamic energy budget theory (DEB) is that chemical stress 
and food consumption are separate model inputs, so their effects on growth rate can be separated. To reduce data 
requirements, DEB convention is to derive a simplified feeding input, f, from food availability; its value ranges 
from zero (starvation) to one (food available ad libitum). Observed food consumption in dietary toxicity studies 
shows that, even in the control treatment, rats limit their food consumption, contradicting DEB assumptions 
regarding feeding rate. Relatively little work has focused on addressing this mismatch, but accurately modelling 
the effects of food intake on growth rate is essential for the effects of toxicity to be isolated. This can provide 
greater insight into the results of chronic toxicity studies and allows accurate extrapolation of toxic effects from 
laboratory data. Here we trial a new method for calculating f, based on the observed relationships between food 
consumption and body size in laboratory rats. We compare model results with those of the conventional DEB 
method and a previous effort to calculate f using observed food consumption data. Our results showed that the 
new method improved model accuracy while modelled reserve dynamics closely followed observed body fat 
percentage over time. The new method assumes that digestive efficiency increases with body size. Verifying this 
relationship through data collection would strengthen the basis of DEB theory and support the case for its use in 
ecological risk assessment.   

1. Introduction 

Mechanistic effects models (MEMs) aim to simulate the mechanisms 
by which chemicals affect individuals, populations and communities 
(Grimm and Martin, 2013). This is an appealing prospect with great 
potential for use in ecological risk assessment (ERA) of chemicals such as 
pesticides (Forbes et al., 2009; Forbes and Calow, 2012). Simulating 
underlying processes confers several advantages over traditional anal-
ysis of data from laboratory-based toxicity studies and extrapolations to 
field scenarios based on summary statistics. Mechanistic modelling en-
ables the prediction of toxic effects in untested, ecologically relevant 
conditions. This can add ecological realism to extrapolations and 
potentially even reduce animal testing requirements (Jager et al., 2006). 

Accounting for the mismatch in exposure between laboratory and 
field is a key obstacle to long term risk assessment of pesticides for 
mammals (Fischer, 2005). For example, in chronic toxicity testing of 
pesticides, rats are exposed to a constant concentration of test compound 
in their diet for up to two years (OECD, 2018a, 2018b, 2001). Such 
constant exposure is unrealistic in the field as pesticides are not applied 
at a constant rate all year round. This disparity can be addressed using 
toxicokinetic-toxicodynamic (TK-TD) models (Jager et al., 2006). These 
are a class of MEMs that work at the individual level, predicting an in-
ternal measure of chemical concentration over time (toxicokinetics) and 
the stress this places on an organism (toxicodynamics). As such, the 
effects on a given endpoint resulting from realistic, time varied exposure 
can be predicted (Nyman et al., 2012). 

Abbreviations: ERA, Ecological Risk Assessment; MEM, Mechanistic Effect Model; TKTD, Toxicokinetic-Toxicodynamic; DEB, Dynamic Energy Budget; RMSE, Root 
Mean Square Error; SD, Standard Deviation; SE, Standard Error. 
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The use of TK-TD modelling has now been recommended for certain 
regulatory purposes, such as predicting survival of aquatic organisms 
(EFSA, 2018). However, for birds and mammals sublethal effects are 
most relevant at realistic exposure levels, as no mortality associated with 
pesticide use is accepted under European regulations (EFSA, 2009). The 
‘DEBtox’ or ‘DEB-TKTD’ modelling framework (Kooijman and Bedaux, 
1996a, 1996b; Sherborne et al., 2020), combining TK-TD modelling 
with the Dynamic Energy Budget (DEB) theory (Kooijman, 2009) pro-
vides a means of predicting sublethal toxic effects. DEB is an established 
metabolic theory, mathematically describing the processes of energy 
acquisition and allocation to predict endpoints such as body size and 
reproductive output. DEB has been applied to a wide range of taxa, with 
parameters available in the Add My Pet (AmP) library (Marques et al., 
2018). The majority of DEB-TKTD studies thus far have focused on in-
vertebrates (Ashauer and Jager, 2018) and more recently fish (Zimmer 
et al., 2018; Sadoul et al., 2018), with very few studies concerning 
terrestrial vertebrates (Martin et al., 2019; Desforges et al., 2017). 

A particular advantage of DEB-TKTD modelling is the ability to 
separate the effects of feeding rate and direct toxic action on growth 
rate. This is particularly important in dietary toxicity studies, where 
ingested dose is directly related to feeding rate. This property is rela-
tively unexplored but, in fact, it is crucial for TD models to accurately 
reflect toxicity and therefore to be of use for extrapolation to novel 
scenarios. Temporal and inter-treatment variability in feeding rate is a 
crucial driver of observed growth so any observed effects on body 
weight cannot simply be attributed to toxic action. Moreover, the extent 
to which a compound induces feeding avoidance may increase or 
decrease the risk posed to wildlife, depending on whether animals would 
have a choice of food items in the field scenario (Thompson, 2007). A 
previous study (Martin et al., 2019) developed methods to account for 
variability in feeding while modelling the effects of dietary toxicity on 
growth of domestic laboratory rats (Rattus norvegicus). However, some 
important issues with these methods were identified as areas for 
improvement in future. 

In DEB theory, feeding rate is assumed to be limited by surface area 
(e.g. area of feeding appendages in filter feeders), which is proportional 
to body mass to the power 2/3. Where data are available, observed area 
specific feeding rate is divided by a maximum value so that it can be 
entered into the model as a dimensionless parameter ranging from zero 
to one (Jager et al., 2013; Kooijman, 2009). In Martin et al. (2019), we 
generated model inputs by scaling weekly area specific feeding rate in 
each treatment relative the maximum observed rate within each dataset. 
While this was a logical approach, two major issues became apparent. 

The first issue was that, in rats, area specific feeding rate decreases as 
animals grow (Laaksonen et al., 2013; Martin et al., 2019). As such, the 
scaled feeding rate entered into the model dropped well below one in the 
latter stages of growth. This meant that, according to model equations, 
animals could have grown to many times their maximum observed body 
weight if they had continued to feed at the maximum observed rate 
throughout their lifetime. While this was a theoretical rather than a 
practical issue, it must be addressed for models to realistically represent 
the processes involved in growth. 

The second issue arose because area specific feeding rate was 
calculated relative to observed (rather than predicted) body size. This 
meant that when predictions differed from observed data, this could 
result in a positive feedback loop or ‘snowball effect’. For example, if a 
rat with area of 40 cm2 ate 20 g food/day at time t this would be a 
feeding rate 0.5 g/cm2/day. However, if predicted surface area at time t 
were larger than that observed, say 50 cm2, then 0.5 g/cm2/day would 
equate to 25 g/day. Therefore, the modelled growth rate in the next time 
step would correspond to 25% higher food consumption than was 
observed, exacerbating the problem with each time step. 

Here we investigate the potential of new methods to solve these is-
sues and the implications for DEB theory. As suggested in Martin et al. 
(2019), we look to mathematically describe the relationship between 
feeding rate and body size in rats over the entire growth period and use 

this as a reference for scaling observed area specific feeding rate. We 
assess the resulting models from three standpoints: accuracy - how 
closely fitted models agreed with observed growth curves; generality – 

how well independent data are predicted without additional fitting; 
biological realism – how realistically the models simulate the processes 
underlying growth. We use a model based on the DEBkiss modelling 
framework (Jager et al., 2013) - a simplified version of DEB, following 
the same fundamental principles but with fewer parameters. It was 
desirable to prioritise model simplicity in this study. Firstly, because 
eliminating complex reserve dynamics from the model meant that the 
effects of different feeding inputs on model predictions could be more 
easily analysed. Data from studies in which no reproduction took place 
were also chosen for this reason. Additionally, the lack of user-friendly 
modelling tools was recently identified as a barrier preventing the use 
of DEB-TKTD models by regulators (EFSA, 2018) which has prompted 
renewed interest in DEBkiss (Jager, 2020). 

2. Methods 

2.1. Data 

All data used here were made available from existing regulatory 
studies (Syngenta, unpublished) required under 94/79/EC (European 
Commission, 1994), investigating chronic toxicity of 
acibenzolar-S-methyl, prosulfuron and thiamethoxam in Sprague Daw-
ley laboratory rats (Rattus norvegicus) (Palm, 1975). 

Chronic toxicity studies lasting two years were carried out according 
to OECD guidelines (OECD, 2018a, 2018b, 2001). Animals were kept in 
standard conditions with food and water available ad libitum. Each study 
comprised a control group and at least three dose groups with individual 
observations of body weight (g) initially at weekly intervals (later ob-
servations were up to five weeks apart). Food consumption (g(food) ×
day−1) was recorded alongside body weight either individually or per 
cage (2–5 individuals), providing the average per animal per day. 
Sample size was initially 80 animals per treatment per sex and only data 
for unmated animals were included in this study. Raw data used in this 
study are included in the Supporting Information. 

2.2. Calibration dataset 

The control group from the two-year dietary toxicity study of 
acibenzolar-S-methyl was selected as the calibration data in this study, 
as it was intermediate in terms of total food consumption for both sexes. 
This dataset, henceforth referred to as group A, comprised observations 
of an initial 80 animals of each sex at 37 timepoints over 104 weeks (a 
total of 2659 observations for males and 2678 for females). Animals in 
this study were fed a diet of Nafag 890 pelleted food. 

2.3. Independent datasets 

Independent datasets B and C were the control groups from the two- 
year dietary toxicity studies of prosulfuron and thiamethoxam respec-
tively. Initial sample size in both datasets was 80 animals of each sex. 
Animals in group B were fed a diet of Rodent Chow #5002 pellets and 
observations took place at 37 timepoints over 104 weeks. Animals in 
group C were fed a diet of Nafag 890 pelleted food and observations took 
place at 36 timepoints over 103 weeks. Nafag 890 and Rodent Chow 
#5002 are similar in protein (18–20%), fat (3–4.5%) and energy content 
(12–14 kJ/g) although Nafag 890 is substantially higher in fibre (Ruhlen 
et al., 2011; Leonhardt and Langhans, 2002; Silberbauer et al., 2000). 

2.4. Theoretical basis of the bioenergetic model 

To simulate rat growth, we used a slightly modified version of the 
DEBkiss modelling framework (Jager et al., 2013). The model in this 
study employs the most basic rules for starvation and the storage of 
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assimilates. The reason for this choice was to determine how accurately 
growth can be predicted using simple equations, if feeding data are used 
to produce accurate and high-resolution model inputs. 

All DEB (Kooijman, 2009) models are based on the principle that 
certain processes are limited by volume or surface area and that an 
animal’s length, surface area and volume scale such that Volume∝ 

Length3 and Surface Area∝Volume2/3
∝Length2, provided body shape re-

mains the same (isomorphic growth). In DEBkiss (Jager et al., 2013), an 
animal’s total wet weight, Ww, is divided into structural (bones, muscle, 
organs etc.) weight, WV, and stored assimilates known as the repro-
duction buffer, WR. DEBkiss was developed with invertebrates in mind 
and so the reproduction buffer is generally meant to provide mass for 
egg production. This function is clearly not applicable to viviparous 
mammals for which the cost of producing gametes is low. For female 
placental mammals, such as rats, the costs of reproduction occur during 
pregnancy and lactation. Data show that these costs are not paid for with 
an already accumulated buffer but are instead met in real-time, through 
increased food consumption (Bernard and Hohn, 1989; Morgan and 
Winick, 1981; Fontaine, 2012; Shirley, 1984). Therefore, we used an 
altered interpretation of the model equations, postulating that assimi-
lates are stored simply to cover any maintenance costs that cannot be 
met by feeding in future. As such, it is more intuitive to think of WR 
simply as mass of ‘reserve’ and it will be referred to as such throughout. 
But for the notation and units, this implementation is very similar to the 
‘DEBlipid’ model developed by Martin et al. (2017) and that of Desforges 
et al. (2017). Here, reserve simply refers to stored assimilates, primarily 
in the form of body fat, and so its definition differs from that given in full 
DEB models (Kooijman, 2009). DEBkiss assumes that juvenile animals 
allocate all available resources to growth and maturation, and so WR = 0 
until the onset of puberty. From this point on a portion of assimilates are 
stored for reproductive investment (Jager et al., 2013). We make the 
same assumption, with the distinction that assimilates are stored to 
cover the costs of reproduction or maintenance as needed. 

Wet weight is more practical to measure than structural volume, V. 
Assuming that average wet tissue density, dw (g × cm−3), is equal to that 
of water, that is dw = 1 (Lika et al., 2011), means that in juvenile animals 
V = Ww/1 g × cm−3. Rather than any specific measure of length, such as 
nose to tail, the volumetric length, L, is defined as V1/3 and surface area, 
a, is equal to L2 or V2/3. It is also helpful to estimate the density of 
structure, dV (g × cm−3), allowing conversion between dry weight and 
volume such that WV = V × dV and Ww = dwWV/dV + WR. Multiple 
studies have estimated average tissue water content of R. norvegicus as 
between 64% and 74% (Reinoso et al., 1997) suggesting that 0.3 is a 
realistic value of dV for this species. 

2.5. Model notation 

J Flux or rate. 
y Yield or efficiency. 
d Density. 
X Food. 
A Assimilates. 
M Maintenance. 
R Reserve. 
W Weight or mass. 
V Structural volume. 
a Surface area. 
L Volumetric length. 
w Wet tissue. 
m Maximum. 

2.6. Growth model 

Assimilation of nutrients from food into the body occurs across 
membranes and so this process is assumed to be mediated by surface 

area. Assimilation flux, JA, is defined as 
JA = fJa

AmV
2

3 (1)  

where Ja
Am is the maximum surface area specific assimilation rate (g(as-

similates) × cm(L)−2 × d−1) and V is volume. The parameter f is ‘scaled 
functional response’ to food availability (Jager et al., 2013; Kooijman 
et al., 2008) or ‘scaled feeding rate’ depending on how it is calculated. 
The distinction between these two terms is detailed later. 

Maintenance flux, JM, is given as 
JM = JV

MV (2)  

Where JV
M is the mass specific maintenance rate (g(assimilates) × cm(L)−3 

× d−1). Endotherms are also subject to surface area specific mainte-
nance costs, accounting for heat loss to the environment. However as 
long as the ambient temperature is within the thermoneutral zone of a 
species (Kingma et al., 2014) these are assumed to be zero (Lika et al., 
2011). Laboratory guidelines require rodents to be kept at 22 ± 3 ◦C, as 
this was considered to be within the thermoneutral zone of the rat (Poole 
and Stephenson, 1977). More recent research has suggested that this 
temperature range is too low (Le and Brown, 2008) but for simplicity we 
assumed that heat loss could be omitted. 

It is assumed that a certain proportion of assimilates are allocated to 
structural maintenance and growth and this is denoted κ 

(dimensionless). 
IfκJA > JM, that is, assimilation is sufficient for growth and reserve 

storage 
dWV

dt
= yVA(κJA − JM) (3)  

dWR

dt
= (1− κ)JA (4)  

Where yVA (g(structure) × g(assimilates)−1) is the yield of structure over as-
similates, (i.e. the efficiency with which assimilates can be converted 
into structure). Puberty is estimated to begin in rats at 5–7 weeks of age 
(Rakel and Gergs, 2018) which is also the age of the study animals at the 
start of observation. As such, we assumed that WR = 0 initially and 
begins to accumulate immediately. Like the full DEB model, our model 
implementation divides wet weight into structure and reserve (although 
reserve is more narrowly defined in this case). However, the model 
equations used are unaltered from DEBkiss and follow the simple 
assumption that any assimilates not required for maintenance, or allo-
cated to growth, are stored. This system is represented in Fig. 1. 

At any constant value of f, growth ceases when JA = JM. This is the 
point at which the ultimate structural volume, V∞, is reached, which can 

Fig. 1. A graphical representation of the growth model when assimilation is 
sufficient for growth. The value of κ determines the proportion of resources 
assimilated from food allocated to maintenance and growth or stored as reserve. 
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be calculated as (κfJa
Am/Jv

M
)3. The theoretical maximum structural vol-

ume, Vm, is reached when JA = JM and f = 1 such that Vm =
(

κJa
Am/JV

M
)3. 

At all times dWw
dt = dw

dV
dWV

dt + dWR
dt but dWV

dt and dWV
dt depend on the value of 

f. 
If κJA < JM < JA, that is, overall assimilation flux JA is sufficient for 

homeostasis but not growth then 
dWV

dt
= 0 (5)  

dWR

dt
= JA − JM (6) 

Maintenance is prioritised above growth, with the 1 - κ branch uti-
lised to pay maintenance costs and any remainder stored as reserve. Eqs. 
5 and 6 also describe change in body mass when JA < JM and WR > 0. In 
this scenario, the animal is starving, and WV is maintained by utilising 
reserve. Both dWR

dt and dWw
dt become negative as the reserve decreases. 

If JA < JM and WR = 0, that is, reserve has been used up and 
assimilation is insufficient to meet maintenance costs 
dWV

dt
= (JA − JM)

/

yAV (7)  

dWR

dt
= 0 (8)  

where yAV (g(assimilates) × g(structure)−1) is the yield of assimilates over 
structure (i.e. the efficiency with which assimilates can be extracted 
from structure). Therefore, structural weight is lost until it can be sus-
tained by feeding. 

In order to minimise the number of free parameters, the values of 
several parameters were fixed. The parameters yAV and yVA were both 
assigned their default value of 0.80 (Jager et al., 2013). The parameter κ 

is generally estimated using data for body size and reproduction over 
time (Kooijman et al., 2008). This was not possible with our calibration 
dataset, as the animals did not reproduce. Length data, which would 
have allowed differentiation between growth and weight gain as fat, 
were also unavailable. Since κ could not be estimated, we used the value 
of 0.9472, taken from the most recent AmP entry for R. norvegicus (Rakel 
and Gergs, 2018). 

The maximum surface area specific assimilation rate, Ja
Am and vol-

ume specific maintenance rate, JV
M, were fitted to data. The value of f was 

calculated from data or food availability. Various approaches to this 
calculation, and their theoretical implications, are now summarised. 

2.6.1. Method 1: f = scaled functional response to food availability 
The approach used most commonly in DEB literature is to calculate 

the value of f based on food availability because, in most cases, detailed 
feeding data are unavailable. This approach uses the Holling Type II 
functional response 
f = X/(X +H) (9)  

where X denotes the density of food in the environment (g(food) × m−2) 
and H (g(food) × m−2) is the half-saturation food density at which food 
consumption rate, JX (g(food) × day−1) is half of its maximum. When food 
is available ad libitum, X = ∞ and therefore f = 1 (Van der Meer, 2006; 
Kooijman et al., 2008; Jager et al., 2013). Using food availability as a 
proxy for observations of food consumption in this way relies on the 
assumption that, when provided with as much food as they can eat, 
animals eat as much as they can. 

In other studies, f has been fixed to one during calibration and then 
estimated for independent data (Sadoul et al., 2018). This approach was 
not followed in this study as it is based on observed growth rather than 
feeding data, so the mechanistic basis is unclear. An alternative would 
be to compare overall average area specific feeding rate in the 

independent dataset to that of the calibration dataset and adjust f 
accordingly. However, this would not test whether food availability is a 
suitable proxy for feeding observations. Since feeding availability was 
always ad libitum in all datasets included in this study, f was fixed at 1 for 
all datasets in this study. 

2.6.2. Methods 2 & 3: from scaled functional response to scaled feeding 
rate 

The rate at which an animal can consume food depends on body size 
and so JX has no fixed upper limit. Instead, it is assumed that feeding rate 
is limited by surface area so 
JX = fJa

XmL2 (10)  

where Ja
Xm (g(food) × cm(L)−2 × day−1) is the maximum area specific 

feeding rate for a species and L is the animal’s volumetric length (cm) 
(Jager et al., 2013). 
Ja

Xm = Ja
Am

/

yAX (11)  

where yAX is the yield of assimilates from food or digestive efficiency 
(g(assimilates) × g(food)−1) and Ja

Am is the maximum surface area specific 
assimilation rate (g(assimilates) × cm(L)−2 × d−1). Since yAX ≤ 1, Ja

Xm pro-
vides the upper limit when fitting Ja

Am. 
Dividing Eq. 10 by L2gives 

Ja
X = fJa

Xm (12)  

where Ja
X is area specific feeding rate (g(food) × cm(L)−2 × day−1). Solving 

for f gives 
f = Ja

X

/

Ja
Xm (13) 

So, where Ja
X can be calculated from observed data, it is more 

appropriate to calculate f using Eq. 13 and define it as ‘scaled feeding 
rate’ rather than scaled functional response. In Methods 2 and 3, Ja

X is 
calculated for each observation interval by dividing observed of daily 
food consumption by the associated observation of wet weight, Ww, 
raised to the power of 2/3. Strictly speaking, calculations of Ja

X should be 
based on structural surface area, a or V2/3. However, since V is not 
quantifiable from observed data, Ww was used instead. While both 
Methods 2 and 3 use Eq. 13, they differ in how Ja

Xm is calculated. 

2.6.3. Method 2: Ja

Xm 
= maximum observed area specific feeding rate 

In this approach, previously employed in Martin et al. (2019), Ja
Xm is 

defined as the maximum individual observed area specific feeding rate 
within a dataset (separated by sex). In group A, Ja

Xm was 0.822 g × cm−2 

× day−1 for males and 0.715 g × cm−2 × day−1 for females. These 
values were used for all datasets. Identifying Ja

Xm in this way guarantees 
that scaled f values do not exceed one for the calibration data set. It is 
possible, though unlikely, for f to exceed one when using (mean) inde-
pendent data. 

2.6.4. Method 3: Ja

Xm 
= predicted Ja

X 
at a given body size, maximum food 

availability 
In this method, observed daily food consumption, JX (g(food) 

× day−1), and area specific feeding rate, Ja
X (g(food) × cm(L)−2 × day−1) 

with food available ad libitum, were described empirically as functions of 
surface area (calculated as (Ww/dw)2/3). Visual inspection showed that, 
rather than continually increasing as animals grew, JX roughly followed 
a sigmoid pattern when plotted against surface area. The generalised 
logistic function (Richards, 1959) was selected as a flexible sigmoid 
curve which could meet the necessary conditions to model JX as a 
function of body size. It was specified that the curve must pass through 
the origin, as an animal with zero mass would be unable to consume any 
food. 

One expression of the generalised logistic formula to describe JX in 
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terms of surface area, a, is 

JX = G+
U − G

1 + e−B(a−M)
(14)  

Where G is the lower asymptote (g(food) × day−1), U is the upper 
asymptote (g(food) × day−1), M is inflection point (cm2) and B is the 
growth rate (cm−2). The simplest way (minimum number of parameters) 
in which this can be adjusted to pass through the origin is as a sym-
metrical curve with its inflection point at (0,0). This can be done by 
stipulating that G =−U and M = 0 such that 

JX =
2U

1 + e−B(a)
− U (15) 

With only two free parameters, U and B, this function was then fitted 
to mean JX (at each unique value of a) in the calibration dataset (Fig. 2). 
The coefficient of determination, R2, was then calculated. This showed 
that, for males, 82% of variation in mean JX was explained by the fitted 
function of surface area. For females, this figure was 38%. In order to 
eliminate values of JX that were insufficient to meet maintenance costs, 
any data collected after mean body size had peaked (day 539 for males, 
day 686 for females) were excluded. Area specific feeding rate, Ja

X, was 
then simply modelled as 
Ja

X = JX

/

a (16) 
This explained 98% of variability in mean area specific feeding rate 

for males and females (Fig. 2 iii-iv). Modelled Ja
X, as a function of a, was 

then used as the reference for scaling observed Ja
X, meaning that Ja

Xm was 
redefined as predicted area specific feeding rate at a given body size, at 
maximum food availability (Eq. 16). 

Redefining Ja
Xm has several important theoretical implications. 

Because Ja
Xm is no longer a true maximum, the scaled feeding rate, f, may 

exceed one. Consequently, Ja
Am no longer represents an absolute 

maximum either and is redefined as the area specific assimilation rate 
predicted at maximum food availability. Furthermore, its upper limit 
must be the lowest predicted Ja

Xm within the observed range of body size 
(Eq. 11). Crucially, as per Eq. 11, if Ja

Am remains fixed but Ja
Xm decreases 

as animals grow, then digestive efficiency, yAX, must increase with 

body size. 

2.7. Addressing the ‘snowball effect’ in Methods 2 and 3 

To avoid the feedback loop described in the introduction (Martin 
et al., 2019), Ja

X was calculated in real time from observed food con-
sumption, JX (g × day −1), and modelled surface area, a (cm2). Surface 
area, a, at time t was defined as modelled (Ww/dw)2/3 (in order to be 
consistent with how Ja

X was calculated from data). Mean observed food 
consumption, JX, at time t was then divided by a, to yield Ja

X for the next 
time step. In Method 2, Ja

X was simply divided by the fixed value of Ja
Xm to 

give a value of f at time t. In Method 3, Ja
Xm was calculated by entering 

modelled a at time t into Eqs. 15 and 16 before using Eq. 13 to yield f. 
This meant that growth rate was modelled based on observed food 
consumption rather than observed area specific feeding rate over time. 

2.8. Model assessment 

Initially, the growth model was fitted to wet weight data from the 
calibration dataset A using each method of f calculation. To reduce the 
impact of heteroscedasticity, the square root transformation was used 
during fitting. The accuracy of the model fits was then assessed in a 
variety of ways. Overall goodness of fit was measured with the coeffi-
cient of determination, R2, and the root mean square error, RMSE. 
Additionally, the proportion of observations predicted to within one 
standard deviation of the mean was calculated. 

Next, the models were used to predict independent datasets B and C, 
without recalibration, to assess the generality of the model parameters 
derived using each method. Again, predictions were assessed using R2, 
RMSE and the proportion of observations predicted to within one 
standard deviation of the mean. 

The biological realism of each method was then assessed through 
comparison of the theoretical maximum volume, Vm, and modelled 
reserve, WR, to relevant literature data. Finally, the impact of real time f 
calculation to avoid positive feedback was assessed with a worked 
example. 

Fig. 2. Plots i) & ii) show observed (circles) and modelled (line) daily food consumption JX vs surface area, a, of males and females respectively. Raw data are plotted 
in light grey while mean values are plotted in black. Method 3 uses the formula JX = 2U

1+e−B(a) − U, fitted to mean data to model food consumption per day. For males 
U= 26.03 and B= 0.07693 while for females U= 17.72 and B= 0.1096. Plots iii) & iv) show observed (circles) and modelled (line) area specific feeding rate Ja

X vs 
surface area, a, of males and females respectively. Raw data are plotted in light grey while mean values are plotted in black. Models plot the fitted formula for JX 
divided by surface area, a. 
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2.9. Model implementation 

All models were implemented in Matlab (ver. R2020a). Growth 
models were developed with the BYOM (Jager, 2019) flexible model 
platform (ver. 4.1). All fitted parameter values were derived using the 
Nelder Mead simplex algorithm to maximise the likelihood function, 
given the observed data (Pan and Fang, 2002). Likelihood profiling was 
also used to check that initial fits were not local optima (Kreutz et al., 
2013). 

3. Results 

3.1. Calibrated growth curves 

The growth curve was fitted to mean wet weight, Ww, observed over 
two years in group A, using each of the three methods for determining 
the scaled feeding rate, f (Fig. 3). Fitted parameter values as well as 
various measures to assess goodness of fit are given in Table 1. Goodness 
of fit measures only relate to total body weight, Ww, as this was the only 
model variable monitored in the dietary toxicity studies which provided 
data for this investigation. For illustrative purposes, the breakdown of 
modelled Ww into reserve and structure is shown on plots. Modelled 
reserve dynamics are assessed with respect to literature data in the 
Biological Realism subsection. 

In Method 1, f = 1 for the duration of the study. This meant that a 
smooth curve was produced and stored reserve, WR, rose continuously. 
Consequently, this method produced the weakest fits to mean body 
weight, Ww, over time. For both sexes, this method produced the lowest 
R2, the highest RMSE and modelled the fewest observations to within 
1 sd. of the mean. 

Method 2 defined Ja
Xm as the highest observed area specific feeding 

rate in group A. Good fits were calculated for mean Ww over time (R2 >
0.96). Modelled growth rate fluctuated in response to variation in food 
intake over time and became negative toward the end of the study 
period, matching observations. The overall shape of the curve was 
similar for males and females, with signs that the error, though small, 
was systematic. Modelled growth rate lagged behind that observed until 
modelled body weight overtook observations after around 60–75 days. 
This persisted until modelled body weight fell below observations once 
again after 350–400 days (Fig. 3 iii-iv). 

In Method 3, Ja
Xm was calculated as a function of surface area, a. The 

calculated fits to mean data were slightly better, for all measures, than 
those of Method 2. Modelled growth rate was highly responsive to 
fluctuations in f, becoming negative as area specific feeding rate drop-
ped in the late stages. For both sexes, modelled body weights were very 
close to observed data for most of the observation period, with signifi-
cant deviations only occurring late in the study. Maximum modelled Ww 
was only 2% higher than the maximum observed body weight in males 
and 6% higher for females. 

3.2. Summary analysis of food consumption and body weight data 

Based on mean observed body weight and food consumption at each 
timepoint, summary analyses were conducted to highlight broad dif-
ferences between the data sets (see supporting table S4). For both males 
and females, total food consumption was highest in group B, interme-
diate in group A and lowest in group C. Males and females in group A 
had the lowest starting weight but were intermediate in terms of 
maximum body weight and final body weight, with the highest weight 
gain (final weight minus initial weight) over two years. Weight gain, 

Fig. 3. Plots showing models (solid line) fitted to observed mean body weight of group A male and female rats over 2 years (circles). The shaded area under the 
model curves shows structure (dark grey) and reserve (light grey) while dashed lines represent observed mean ± SD. The results of Method 1 are shown in plots i-ii, 
Method 2 in plots iii-iv, and Method 3 in plot v-vi. 
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maximum weight and final weight were lowest for males and females in 
group C. 

3.3. Feeding rate predictions 

As part of Method 3, the generalised logistic curve was fitted to mean 
observed daily feeding rate, JX (g × day−1), as a function of surface area, 
a, (cm2) of male and female rats in group A. This produced R2 values of 
0.82 and 0.37 respectively. Dividing fitted JX by a to predict, mean area 
specific feeding rate at maximum food availability, Ja

X, produced R2 

values of 0.98 for males and females. 
To assess the uniformity of the relationship between Ja

X and a across 
study groups, the predictions of the calibrated curves were compared to 
independent datasets B and C. For males, variation in mean Ja

X was well 
predicted by surface area with R2 values of 0.90 for group B and 0.95 for 
group C. Observed Ja

X in group B agreed closely with predictions at 
medium body sizes but exceeded predictions at large sizes and showed a 
decrease at low body size that was not evident in the calibration data. 
Observed Ja

X in group C showed a similar shape to the predicted curve 
but was generally slightly lower. The relationship was less consistent for 
females though, R2 was 0.68 for group B and 0.95 for group C. Observed 
Ja

X in group B was higher than predicted, particularly at larger body 
sizes. As was the case for males, Ja

X in group C was slightly lower than 
predicted for most body sizes. 

The relationship between Ja
X and a appears less uniform among fe-

male rats. However, deviations from predicted Ja
X may be reflected by a 

predictable increase or decrease in growth rate. These results are shown 
in supporting Fig. S37. 

3.4. Growth curve validation 

The calibrated growth models were used to predict independent 
datasets B and C. The accuracy of the predictions produced by each 
method was assessed by calculating R2, RMSE and the percentage of 
observations predicted to within one standard deviation (Table 2). 

Method 1 produced virtually identical curves for all datasets (sup-
porting Figs. S7-S10 & S25-S28). This is because initial weight was the 
only model input that differed from the calibration data. This method 
produced the poorest predictions of mean body weight over time for 
males in both independent datasets and for females in group C. For fe-
males in group B, Method 1 produced the highest proportion (86.11%) 
of predictions within one standard deviation of the observed mean. 
However, had the model continued to run, modelled body weight would 
have continued to increase, as reserve accumulated indefinitely. 

Method 2 (supporting Figs. S11-S13 & S29-S32) produced the most 
accurate predictions (highest R2 and lowest MRSE) of mean growth rate 
for males and females in group B. Body weight of both sexes in group C 
was overpredicted for all but the early stages of observation. Despite 
this, Method 2 did produce the most accurate predictions for females in 
this dataset. 

Method 3 predicted growth of males in group B only slightly less 
accurately than Method 2, and was the most accurate for males in group 

C. In both cases, model predictions closely followed the observations 
until the later stages of observation. This was also the case for females in 
group C, for which this method produced the second most accurate 
predictions. However, growth of females in group B was poorly pre-
dicted. Modelled body weight was well above that observed for almost 
all of the observation period. These predictions are shown in Fig. 4. 

3.5. Biological realism 

Although goodness of fit to observed Ww (the only model endpoint 
measured in toxicity studies) quantifies model accuracy, it gives no in-
formation as to the biological realism of the model itself. In order to 
address this question, literature data were utilised to assess other model 
variables. No data are available for WR, as this represents stored as-
similates from food. This would include not only stored lipids but also 
carbohydrates stored as glycogen, and fat-soluble vitamins. Neverthe-
less, observed body fat percentage of ad libitum fed rats is a useful, if not 
ideal, comparator, as it would be expected to follow very similar tem-
poral patterns. 

Data from Tekus et al. (2018) provide reference values of body fat 
percentage of rats at various ages up to two years. While the study used 
only male Wistar (rather than Sprague Dawley) rats, other studies 
indicate that body fat percentage is similar across the two strains (Reed 
et al., 2011) and between male and female Sprague Dawley rats (Rojas 
et al., 2018). Fig. 5 shows literature data plotted against calibrated 
model simulations (group A) of WR as a percentage of modelled Ww. 

Method 1 assumes that f = 1 at all times where food is available ad 
libitum, leading to constant accumulation of reserve. For both sexes, 
modelled WR was over 50% of modelled Ww after 2 years, over five times 
the value reported at that age and more than double the maximum re-
ported percentage body fat. Using Method 2, the observed decline in 
body fat in the late life stages was reflected by model simulations. WR 

Table 1 
Fitted parameter values, selected observed and modelled endpoints, and goodness of fit measures for each method of calculating the scaled feeding rate, f.  

Sex Males Females 
Observed max. Ww (g)  839.0 486.2 
Method 1 2 3 1 2 3 
Ja

AM (g × cm−2 × d−1)  0.2310 0.1186 0.1919 0.1764 0.07970 0.1317 
JV

M (g × cm−3 × d−1)  0.02791 0.004798 0.02181 0.02557 0.004315 0.01762 
Modelled max. Ww (g)  1006.6 779.6 854.9 559.4 459.8 515.6 
R2 0.857 0.970 0.985 0.900 0.967 0.973 
RMSE 79.52 36.54 25.83 33.21 19.33 17.53 
% Ww observations modelled to within 1 SD  61.11 86.11 91.67 66.67 86.11 91.67  

Table 2 
Selected measures of the accuracy of each method when used to predict inde-
pendent data.  

Sex Male 
Dataset B C 
Method 1 2 3 1 2 3 
R2 0.7753 0.9621 0.9452 0.0875 0.7430 0.8623 
RMSE 86.16 35.38 42.54 137.8 73.15 53.54 
% observations 

predicted to 
± 1 sd. 

36.11 86.11 80.56 34.29 60 80.00 

Sex Female 
Dataset B C 
Method 1 2 3 1 2 3 
R2 0.8830 0.9254 0.2824 0.5537 0.8029 0.6229 
RMSE 40.27 32.15 99.72 54.40 36.15 50.01 
% observations 

predicted to 
± 1 sd. 

86.11 75.00 16.67 71.43 71.43 74.29  
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peaked at 10.46% of modelled Ww of males and 11.15% for females, 
only about half of the value reported by Tekus et al. (2018). 

With Method 3, model simulations were relatively consistent with 
observations. For both sexes, WR as a percentage of Ww matched 
observed body fat percentage at 26 weeks of age before reaching a peak 
between the ages of 78 and 104 weeks and declining thereafter. Peak WR 
percentage was 29.71% for males and 27.54%, slightly exceeding the 
highest mean body fat percentage + standard error (27.33%) reported 
by Tekus et al. (2018). 

The maximum volume of structure, Vm, is a theoretical maximum 
calculated from model parameters as (κJa

Am/Jv
M
)3. Multiplying Vm by 

the density of wet tissue, dw, (assumed to be 1 g × cm−3 (Lika et al., 
2011)) gives the maximum wet weight of structure, WVmw. Peak lean 
weight would serve as a sensible proxy for comparison but is not 
measured in toxicity studies. Instead, we can assume that the weights of 
structure and reserve peak simultaneously, meaning that WVmw can be 
estimated from data as 
WVmw = max.observed body weight

× (1−max.observed proportion body fat) (17) 
Using the relevant values from group A (used in calibration) and 

Tekus et al., gives 839.04 g × 0.783 = 656.97 g for males and 486.21 g 
× 0.783 = 380.70 g for females. 

Modelled WVmw was lowest when using Method 1, for both sexes its 
value was 73% of that estimated from data. Method 2 meanwhile pro-
duced very high values of WVmw, almost 20 times the estimated value for 
males and over 14 times the estimate for females. The values of WVwm 
given by Method 3 were 579.1 g for males and 356.5 g for females, 88% 
and 93% of the respective estimates for each sex. This was also the only 
method for which WVmw was not a strict maximum, as f could exceed 
one. The highest modelled wet weights of structure using this method 
were closer still at 601.0 g for males and 373.6 g for females. These 
results are summarised in supporting table S5. 

3.6. Impact of real time f calculations 

In this study, the value of f was calculated in real time to ensure that 
it reflected the quantity of food consumed rather than the observed area 

specific feeding rate at a given time point. This only applied to Methods 
2 & 3, as Method 1 was based on food availability only. A worked 
example was conducted (included in Supporting Information) which 
demonstrated the effect of this new approach on growth rate pre-
dictions. This showed that calculating f in real time worked effectively to 
curtail the ‘snowball effect’ identified in Martin et al. (2019) and that 
this would otherwise have been a major issue for Method 2. 

4. Discussion 

DEB models are designed to function without the need for detailed 
feeding data (Kooijman, 2009; Jager et al., 2013). However, this pre-
sents the question of what to do with such data when they are available. 
The conventional approach to deriving feeding inputs in DEB models 
does not reflect temporal or intertreatment variability in feeding rate, 
only food availability. In a previous study (Martin et al., 2019), we 
developed a method to derive feeding inputs directly from feeding data, 
but this approach had problems of its own. In this study, a novel method 
was developed, with the aim of addressing all the issues previously 
identified. We used a simple model based on DEBkiss to assess three 
approaches, for their impact on model accuracy, generality and realism. 

4.1. Accuracy and generality 

Model accuracy was assessed by fitting the models to growth data for 
Group A. Method 3 produced the most accurate fits to calibration data 
for both males and females. Method 2 was only slightly less accurate. 
However, errors appeared more systematic in nature when using 
Method 2, following a similar pattern over time for both males and fe-
males. Method 1 was the least accurate, producing a smooth curve 
which did not respond to temporal variability in area specific feeding 
rate. 

Model generality was then assessed by using the models to predict 
independent growth data (Groups B and C) without recalibration. 
Method 2 performed best in terms of model generality, despite system-
atic errors still being apparent. Without recalibration, body weight over 
time was predicted most accurately using this method for females in 
both independent datasets and for males in group B. Method 1 was again 
least accurate for all but one dataset. Using this method, the only model 

Fig. 4. Plots showing predicted (solid line) and mean observed body weight of rats over 2 years (circles), using Method 3 to calculate the scaled feeding rate, f. The 
shaded area under the model curves shows structure (dark grey) and reserve (light grey) while dashed lines represent observed mean ± SD. The results for males and 
females in group B are shown in plots i-ii respectively while the results for males and females in group C are shown in plots iii-iv respectively. 
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input to change between datasets was initial body weight which has 
minimal effects on predictions. The resulting model outputs for Method 
1 were essentially different sections of the same curve for all datasets. 
While body weight of group B females was predicted relatively well, this 
result was coincidental as this dataset was quite different to that used in 
the calibration. 

Predictions using Method 3 were most accurate for group C males 
and a close second for males in group B. Results were mixed for females 
however, this method was second most accurate for group C females but 
the least accurate for those in group B. It is notable that observed feeding 
patterns in this dataset were most different from predictions of Ja

Xm and 
that animals were fed on a different diet to those in groups A and C. 
While predictions of total body weight of group B females were poor, it is 
notable that predicted structural weight followed observed wet weight 
very closely (Fig. 4). This suggests that the profile of the scaled feeding 
rate, f, over time was accurate, if not the values themselves. 

4.2. Addressing the ‘snowball effect’ 

Real time calculation of f works effectively to stop the ‘snowball ef-
fect’ that occurred in a previous study. Our worked example (see Sup-
porting Information) showed that this step made a large difference to 
predicted ΔWw when using Method 2. This calls into question some of 
the findings of Martin et al. (2019), in which feeding inputs were 
calculated before the models were run. In that study the relative con-
tributions of feeding and toxicity toward observed effects on body 
weight over time were estimated. In most cases, positive feedback be-
tween predicted body size and predicted growth rate would have meant 
that the effects of feeding avoidance were understated. Though Method 
3 mitigated the problem, it should still be considered good practice in 
future studies to calculate f as the model runs, especially when pre-
dicting independent data. 

Fig. 5. Plots showing mean ± SE body fat percentage (left hand axis) recorded in rats of various ages by Tekus et al. (2018), Reed et al. (2011) and Rojas et al. 
(2018), and calibrated model simulations of WR as a percentage of Ww over time (right hand axis) for male (plot i) and female rats (plot ii). * denotes that data were 
available for male animals only. 
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4.3. Biological realism 

Method 1, that is suggested by DEB literature (Kooijman et al., 2008; 
Van der Meer, 2006; Jager et al., 2013), assumes that f = 1 when food is 
freely available. In our growth model, this meant that WVmw was 
approached quickly with ΔWR becoming linear ad infinitum. Modelled 
WR reached over 50% of Ww after 2 years, more than twice the 
maximum reported percentage body fat in the literature. 

It should be mentioned that our model did not include the maturity 
maintenance parameter, this represents the costs of maintaining sexual 
maturity and is taken from the 1- κ branch of the model. However, these 
costs are assumed to be proportional to structural weight at puberty and 
so do not increase with body size beyond that point (Jager et al., 2013). 
Therefore, maturity maintenance would have only slightly mitigated the 
issue of constant reserve accumulation. A potential solution would be to 
implement the full DEB model which uses a more complex equation to 
model reserve dynamics. This includes an additional parameter, the 
maximum reserve density (J(reserve) × cm−3 (structure)), which provides a 
limit on reserve accumulation. However, despite using the same simple 
equations, constant reserve accumulation was not an issue with Methods 
2 and 3. It may then be the case that, rather than representing a real 
biological limit, the maximum reserve density simply serves to 
compensate for the oversimplicity of the feeding input. 

However, the major issue with Method 1 is that rats provided with 
food ad libitum do not feed at the maximum area specific rate, as is 
assumed (see supporting Fig. S38). Kooijman (2009) acknowledged 
previously that rats do not conform to DEB feeding assumptions and 
instead modelled growth data from Hubert et al. (2000) by linking daily 
food consumption to the probability of enzymes binding to substrate. 
However, this method assumed that rats ate a fixed amount of food per 
day regardless of size (this is how data were summarised in the original 
paper) despite substantial temporal variability being evident. Rats 
regulate their feeding significantly as they grow (Laaksonen et al., 2013; 
Martin et al., 2019; Hubert et al., 2000), food consumption initially 
increases with body size before plateauing and declining in old age. In 
fact, data in this study and others (Hubert et al., 2000; Tekus et al., 
2018) show that weight loss occurs as rats approach two years of age. 
These patterns cannot possibly be modelled based on constant ad libitum 
food availability (Eq. 9). Therefore, f ‡ 1 and/or digestive efficiency, yAX, 
and maximum area specific feeding rate, Ja

Xm, are not fixed values. 
While reproduction was not modelled in this study, it also seems 

logical that the value of f must vary with feeding data in order to 
accurately model body weight change during pregnancy and lactation. 
Placental mammals do not constantly amass a buffer in preparation for 
reproduction, as DEB theory generally assumes. Instead, studies show 
that females of diverse taxa dramatically increase their feeding rate 
(both in absolute terms and relative to their body size) to meet their 
energetic needs during pregnancy and lactation (Shirley, 1984; Morgan 
and Winick, 1981; Fontaine, 2012). This is a strategy termed ‘income 
breeding’. Not all mammals follow this strategy though, with numerous 
mammal species in highly seasonal environments following a ‘capital 
breeding’ strategy whereby reserves are stored prior to reproduction 
(Stephens et al., 2009). 

DEB theory suggests that the placenta increases a pregnant female’s 
surface area so that f = 1 corresponds to higher absolute food con-
sumption (Kooijman, 2009). However, the food consumption of female 
rats peaks after the placenta has been expelled. During lactation, it 
reaches around 35 g × day −1 (Shirley, 1984; Morgan and Winick, 
1981), almost double the upper asymptote when the logistic function 
was fitted to observed feeding for females in this study. Without using 
feeding data, such patterns cannot possibly be simulated. 

In Method 2, previously employed in Martin et al. (2019), f is a dy-
namic input calculated based on observed area specific feeding rate over 
time. However, as before, the values of yAX and Ja

Xm remain fixed as 
animals grow. Using this method, WR relative to Ww was substantially 
lower than body fat percentages reported in the literature (Reed et al., 

2011; Rojas et al., 2018; Tekus et al., 2018) although observed patterns 
in fat storage over time were reflected by the model (Fig. 5). As previ-
ously noted, the observed negative relationship between body size and 
area specific feeding rate leads to f values that decline to well below one. 
Fitted parameter values must compensate for this and as a result, Vm is 
extremely high. The parameter values in this study meant that, in the-
ory, male rats could grow to almost 13 kg if they fed at a sufficiently high 
rate. This suggests that this method is fundamentally flawed, as such 
sizes are far beyond the highest observations in the literature (Hubert 
et al., 2000; Rojas et al., 2018). 

Method 3 attempts to address issues with both the previous methods 
by positing that the values of yAX and Ja

Xm vary as functions of body size 
and allowing f to fluctuate and exceed one. This attempt seems to have 
been largely successful. Using this method, modelled percentage body 
weight given by WR was closest to observed body fat percentage for both 
sexes at all but one timepoint. Moreover, the modelled maximum wet 
weight of structure, WVmw, was only slightly lower than estimated peak 
lean weight in the calibration dataset. 

4.4. Data limitations 

Conventionally, DEB parameter estimations uses data for growth 
alongside reproduction data (Kooijman et al., 2008). This was not 
possible as our datasets did not include reproduction. However, for this 
study a combination of body weight and body length data would have 
been more informative, since our model assumes that the 1- κ fraction of 
assimilates is not specifically allocated to reproduction (an assumption 
that is consistent with observations (Morgan and Winick, 1981)). Length 
data would have allowed differentiation between weight gain due to 
structural growth or fat storage, allowing the division of total mass into 
reserve and structure. Unfortunately, length is not measured in standard 
dietary toxicity studies on rats (OECD, 1998, 2008, 2018b). 

The lack of length measurements had two consequences. The first 
was that the parameter κ could not be estimated. In light of this, we used 
a value taken from the AmP library (Rakel and Gergs, 2018). It could be 
argued that this was not an appropriate choice, as differences in model 
equations and assumptions mean that κ performs a different function in 
the full DEB model. This issue is discussed in detail in the Supporting 
Information. However, we believe that this value at least provided a 
useful approximation in the absence of other options and was certainly 
preferable to the DEBkiss default - which would be more suitable for egg 
laying invertebrates with high reproductive investment. The over pre-
diction of body fat percentage by Method 1 and to a lesser extent Method 
3, suggest that, if anything, κ = 0.9472 was too low. Given that its 
maximum value is 1, there was little scope for any increase to affect 
results in a major way. 

The second consequence of only having weight data was that our 
calculations of Ja

X relied on the assumption that a = (Ww/dw)2/3. 
Although the model could distinguish between reserve and structure, 
the same assumption was still necessary when calculating f in Methods 2 
& 3 (so as to be consistent with calculations using data). While this was 
not ideal, this would have very little impact on results. In Method 2, Ja

Xm 
was more than double observed Ja

X at larger body sizes (supporting fig. 
S38). Any discrepancy between Ww/dw and V would be relatively minor 
in comparison, so the resulting f values and overall decreasing trend 
would only be slightly affected. Using Method 3, the effect would be 
smaller still. Modelled JX (Fig. 2i & ii) begins to plateau at about 40 cm2 

(equivalent to 253 g body weight) in male rats, and at about 30 cm2 

(equivalent to 164 g body weight) in females. This means that from only 
a few weeks into the study period - when animals are assumed to have 
little reserve accumulated - the same level food of consumption (g(food) 
× day−1) was expected regardless of body size. Therefore, correcting for 
differences between Ww/dw and V would not have any impact on the 
value of f for almost all of the observation period. 
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4.5. What issues remain? 

Conventionally, digestive efficiency, yAX, is treated as a primary 
(fixed) parameter (Jager et al., 2013; Kooijman et al., 2008) but Method 
3 changes this, such that this value increases with body size. This is 
highly plausible; several literature studies report increases in digestive 
efficiency associated with body size in a range of species (Smith, 1995; 
Illius and Gordon, 1992; Hansson and Jaarola, 1989; Demment and 
Vansoest, 1985). This occurs because increased gut capacity of larger 
animals allows the same volume of food to attain a greater surface area, 
while increased gut length leads to increased retention time for the 
extraction of nutrients. 

In lieu of digestive efficiency data for rats, the generalised logistic 
model was fitted to food consumption data. This relationship relies on 
the assumption that growing rats, supplied with food ad libitum, 
consume enough food for area specific assimilation to equal Ja

Am and for 
structural volume to reach Vm. This appeared to be most true of male 
animals, with growth predictions being more accurate than for females. 
This would be consistent with the behavioural ecology of the species. 
Whereas females do not compete for mates and tend not to migrate, 
heavier males fare better in competition for dominance with unfamiliar 
individuals so there is selective pressure to grow as large as possible 
(Macdonald et al., 1999). 

However, predictions with Method 3 were not always accurate for 
males either. Generally, predictions matched data well up until around 
day 500 but substantial deviations from data did occur thereafter. One 
possible explanation is that predicted Ja

Xm was too low at large body sizes 
making even small deviations from predictions proportionally larger 
than they should have been. This would exaggerate fluctuations in f and 
therefore ΔWw in the later stages of growth. Another possibility though, 
is that this occurred because the model allowed structural growth in 
older animals despite skeletal growth in rats generally ceasing after 
around 6 months; a process that appears related to age rather than body 
size (Roach et al., 2003). This certainly contributed to higher assimila-
tion and reserve accumulation late on. 

This issue is particularly important when considering upregulated 
feeding during, or before, reproduction. In its current form, the model 
would permit structural growth when the additional assimilates should 
be allocated to foetal growth, milk production or increased energy 
storage in females or increased activity (maintenance costs) for intra-
sexual competition and defence of mates, in the case of males (Stephens 
et al., 2009). DEB theory actually suggests that the costs of foetal growth 
should be added to the mother’s maintenance costs rather than being 
paid from the 1-κ branch (Kooijman, 2009). For income breeders, such a 
model design might be enough to circumvent any problem since main-
tenance takes precedence over growth. However, a solution that would 
also apply to capital breeders would be to remove kappa from the model 
once growth has ceased. During growth, kappa plays the important role 
of determining the proportion of available assimilates that are stored or 
allocated to growth. When growth is complete however, allocation rules 
could be changed so that any assimilates that are not required for 
maintenance are simply be stored. The point at which this change to 
model rules is implemented would need to be based on species knowl-
edge. Additionally, this would need to be implemented in such a way 
that regrowth after starvation could still occur. 

A relatively minor issue is our lack of knowledge around weight loss 
and starvation in rats. Based on the data in this study and the literature, 
it appears to be typical for rats to reduce feeding and lose weight as body 
fat as they approach two years of age (Hubert et al., 2000; Tekus et al., 
2018). This weight loss was overestimated by the model for males in 
group A. A possible reason is that reduced feeding elicits compensatory 
physiological or behavioural responses not included in the model’s 
starvation rules. For example reduced body temperature has been 
documented as a response to short-term starvation in rats (Sakurada 
et al., 2000), which would correspond to a reduction in maintenance 

rate, JV
M. Finding the data needed to refine the starvation rules proposed 

by DEBkiss represents a challenge though. While some studies have 
restricted food availability (Hubert et al., 2000), enforcing longer term 
starvation leading to weight loss would be unethical due to the suffering 
this would cause. 

In order to address the remaining issues, the clear solution is to 
simply measure digestive efficiency of standard laboratory diets (Batzli 
and Cole, 1979; Veloso and Bozinovic, 1993) alongside food consump-
tion and body weight in growing rats. This would allow the relationship 
between Ja

Xm and body size to be determined mechanistically and for Eq. 
11 to be solved, providing the value of the maximum assimilation rate 
Ja

Am. Inevitably, empirical relationships can only provide an imperfect 
representation of reality. Indeed, at extreme body sizes (>1.577 kg for 
males and >1.567 kg for females) our parameters mean that Ja

Xm < Ja
Am 

and therefore yAX > 1. This is a physical impossibility as assimilates 
from food cannot exceed the mass of the food itself. The strong perfor-
mance of Method 2 in predicting independent data suggests that the 
reality may sit between Methods 2 and 3. It appears likely that Ja

Xm does 
decrease as animals grow, though less dramatically than Method 3 
predicts. Likewise, f likely falls as animals grow, but less markedly than 
suggested by Method 2. 

5. Conclusions 

DEBkiss (Jager et al., 2013) inevitably made some compromises in 
order to simplify the DEB framework. However, our results suggest that 
it is the calculation used to derive feeding inputs in all versions of DEB 
(Kooijman et al., 2008), which represents an over-simplification. This 
was designed to circumvent the need for detailed feeding data, which 
are rarely available (Kooijman, 2009; Van der Meer, 2006). However, 
observed patterns between the feeding rate and surface area of rats 
clearly contradict model assumptions and so changes are required. 

We have developed methods which extract more information from 
feeding data in order to broaden the applicability of models based on 
DEBkiss. With this approach we have produced accurate and biologi-
cally sound models that use simple equations to model growth and 
reserve dynamics. This removes the assumption of first order dynamics 
of reserve density, which is the most difficult aspect of the full DEB 
growth model (Van der Meer, 2006). Where feeding data are unavai-
lable, conventional methods by which constant or simple f inputs are 
assumed, may still be most suitable. However, we suggest that yAX and 
Ja

Xm are dynamic variables that vary with surface area and that, even if 
these relationships cannot be quantified for most species, DEB theory 
should reflect this. 

While the new method is a significant step in the right direction, 
relying on empirical relationships is not ideal and several issues remain 
that could be addressed by data collection. Models able to accurately 
predict how animals in dietary toxicity studies would have grown if fed a 
control diet are now within reach. Such models are a prerequisite for 
DEB-TKTD models that accurately reflect a compound’s toxicity. Equally 
though, they represent an exciting new tool with which to analyse 
toxicological data, avoiding the conflation of effects due to toxicity and 
differences in feeding rate. This will allow assessment of how feeding 
avoidance impacts upon the ecological risk posed by a chemical in a way 
that was not previously possible. 
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