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Joint Optimization of Trajectory and Resource Allocation for
Time-Constrained UAV-enabled Cognitive Radio Networks

Yu Pan, Xinyu Da, Hang Hu, Member, IEEE, Yangchao Huang, Miao Zhang, Member, IEEE, Kanapathippillai
Cumanan, Senior Member, IEEE, and Octavia A. Dobre, Fellow, IEEE

Abstract—Unmanned aerial vehicle (UAV)-enabled communi-
cation has emerged as an irreplaceable technology in military,
disaster relief and emergency scenarios. This correspondence
investigates the average throughput in a UAV-enabled cognitive
radio network, where the UAV is regarded as a dedicated
secondary user to enhance the network coverage and spectral
efficiency. Based on the probabilistic line-of-sight channel, we
exploit the joint design of UAV trajectory and resource allocation
to maximize the average throughput under the constraints of co-
channel interference and completion time. The original problem
is a mixed integer non-convex problem which is generally NP-
hard. We first decompose the primal problem into a bilevel
programming problem, and then propose an efficient high-
quality algorithm based on the particle swarm optimization
approach. The optimized trajectory reveals the trade-off between
throughput and co-channel interference. Numerical results verify
the superiority of the proposed algorithm as compared to other
benchmark schemes.

Index Terms—Cognitive radio network, unmanned aerial ve-
hicle (UAV) communication, trajectory design, throughput max-
imization.

I. INTRODUCTION

NMANNED aerial vehicle (UAV)-enabled communica-

tion is considered as a promising technique to signifi-
cantly improve the coverage and the performance of terrestrial
communication networks. Due to their flexibility, UAVs can
be deployed in many wireless communication scenarios, such
as disaster relief and emergency communications [1]. Fur-
thermore, UAVs are capable of providing reliable services in
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conventional communication systems. For example, they can
support wireless services for users who are out of terrestrial
network coverage [2].

Unfortunately, the spectrum scarcity problem of the UAV
appears to be increasingly acute and urgent, which can be
attributed to the current static spectrum allocation strategy
[3] and the coexistence with other wireless devices (WDs).
Thus, the cognitive radio (CR) technology, with the aim of
addressing this challenge by dynamically sharing the spectrum
resources, has been introduced to alleviate this problem. CR
enables efficient dynamic spectrum access by allowing the
UAVs to share the licensed spectrum bands without degrading
the communication level of the primary network. Further-
more, the UAV-enabled CR communication networks have the
additional advantages of strong line-of-sight (LoS) link and
flexibility to deploy sensing nodes, when compared with the
conventional CR networks.

Different UAV trajectory designs were investigated in the
literature. One of the challenging issues is the limited on-
board energy of UAVs [4], so the flying trajectory of the UAV
was optimized to minimize the energy consumption, while
satisfying the target throughput requirements of the ground
nodes in [5]. To fully utilize the advantages of the UAV-
enabled multicasting simultaneous wireless information and
power transfer, the work in [6] jointly optimized the trajectory
and transmit power to maximize the minimum achievable
rate under the harvested energy constraints. A worst-case
secrecy rate maximization problem was studied in [7] by
jointly designing the three-dimensional (3D) trajectory and
the time allocation under energy constraints. For throughput
optimization, a joint trajectory and power control design was
proposed in [8] under the constraints of flying speed, altitude,
and collision avoidance. The problem was solved through
employing the successive convex approximation with the first-
order Taylor approximation in both [6] and [8]. However, the
interference leakage to the primary receivers (PRs) and the
probabilistic LoS channel were not taken into account, which
introduce challenging problems in practice [9]. Thus, the above
results on trajectory optimization cannot be applied to the
UAV-enabled CR communication networks.

In our previous work [10], [11], throughput maximization
was considered by jointly optimizing the sensing performance,
the power allocation, and the UAV positions based on a circu-
lar trajectory. In [12], the robust trajectory and beamforming
design were investigated in a downlink cognitive multiple-
input single-output (MISO) UAV network. Since the aforemen-
tioned work only assumed the simplified LoS channel, which
is inappropriate in urban communication scenario. The authors



in [13] considered a more practically accurate angle-dependent
Rician fading channel, where the UAV was employed to
harvest sensing-data from distributed sensors.

Motivated by the aforementioned work in the literature, we
investigate the throughput performance of a UAV-enabled CR
network under a number of constraints. In particular, the con-
tributions of our work can be summarized as follows: 1) We
extend the communication system based on the probabilistic
LoS channel, which approximates the occurrence of LoS and
non-LoS (NLoS) channel as a logistic function, while most
of the existing works have adopted the channel dominated by
the LoS component; 2) The impact of the UAV’s trajectory
planning and resource allocation on efficient spectrum sharing
is investigated, which reveals some insights for the trade-off
between the UAV’s throughput and the interference leakage to
the PRs; 3) The corresponding optimization problem turns out
to be challenging, which is formulated as a mixed integer non-
convex problem. We transform the original problem into an
equivalent two-stage problem, and develop an optimal solution
with the particle swarm optimization algorithm based on
decomposition, by applying pre-programmed location (PPL-
PSO/D); 4) Numerical results confirm the accuracy of the
analytical results and validate the superiority of the proposed
algorithm.

II. SYSTEM MODEL
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Fig. 1. A UAV-enabled underlay CR communication network in highrise
urban environment.

Consider the downlink transmission in a UAV-enabled CR
communication network, where the UAV is dispatched as a
monitor to fly along the scheduled trajectory and transmit
monitoring data to the ground WDs. As illustrated in Fig.
1, the secondary network is composed of one UAV and M
ground WDs denoted by S and G,,, (m € M ={1,---,M}),
respectively. The primary network is composed of one primary
transmitter (PT) and K PRs (with uncertain region), denoted
by Pand Ry, (k € K = {1, -+, K'}), respectively. The locations
of the WDs and PT are assumed to be known to the UAV a
priori for its trajectory design [14]. Specifically, we adopt the
underlay mode in this CR network, such that the UAV can
access the licensed spectrum simultaneously with the primary
network while ensuring the required quality-of-service (QoS)
of PRs [15]. The goal of the scheme is to transmit as much

monitoring data as possible under the co-channel interference
constraint during a certain time period, so the fairness of all
WDs is sacrificed for performance improvement. The UAV is
equipped with global positioning system (GPS) and hence its
dynamic locations can be easily obtained.

The UAV is assumed to complete the flight within Ti.
seconds, which is equally divided into N time slots, and the
duration of each time slot is 7T seconds. In each n-th time
slot, the UAV’s projected location onto the horizontal plane
is denoted by Q[n] € R**! in a 3D Cartesian coordinate
system, where n € N = {1,-- - N}. Then, the distance
between the UAV and the m-th ground WD is given by

[n] = \/h% + ||Q[n] — g The horizontal locations of
the WDs are given by G = {g1,--- ,gn} ", with g,,, € R2¥L,
Two types of channel are distinguished in this system, namely
ground-to-ground (G2G) channel and air to ground (A2G)
channel. In order to capture practical scenarios, the A2G chan-
nel considers stochastic shadowing based on the probabilistic
LoS link, where the large-scale fading is modeled as a random
variable based on the occurrence probabilities of LoS and
NLoS links. The channel gain between node u and another
node v can be expressed as

hlﬂv = Juov (PLIJgS (duv)) ) (H
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where PL2%% and PLY™® denote the pathloss for LoS and
NLoS links, respectively. The parameter d,, is the distance
between node u and v, and g, is the normalized channel
vector with E[|gu,|°] = 1. Moreover, the small-scale fluctu-
ations are ignored in this paper, since the trajectory of UAV
is mainly designed in an off-line manner, and is not aimed to
cater to the small-scale fading that usually varies randomly as
well as more rapidly over space when compared to large-scale
channel power gains [15]. The average pathloss for LoS and
NLoS links are given by [16]:
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where {105 and énpos denote the average additional propa-
gation loss for LoS and NLoS links, respectively. f is the
carrier frequency and c is the speed of light. The probability
of the LoS link for the m-th WD in the n-th time slot is
given by p~°5[n], which generally depends on the propagation
environment and the elevation angle 6 between the UAV and
ground nodes. Therefore, p-°5[n] is expressed as

LoS 1
N = traeera = ©

where o and [ are constant values determined by the propa-
gation environment, and the elevation angle (in degrees) can
be calculated as

Om[n] = lﬂ_@ arcsin (h[n]> . (6)




Considering the UAV-WD scheduling, we employ a binary
variable A, [n] € {0, 1} to characterize the allocation strategy
in the n-th time slot: \,,[n] = 1 indicates that the m-th
WD is woken up to communicate with the UAV, otherwise,
Am[n] = 0. Since the UAV communicates with the ground
WDs under the time-division multiple access (TDMA) mode,
we can obtain

Vn e N. )

M
> Amln <1,

m=1

In each time slot, the transmission power allocated to the
UAV to be optimized is given by P[n], the transmission power
of the PT is given by Pp, and the received power at the PR can
be defined as Pp ‘hPR’ The protected boundary is defined
due to the uncertainty of the location information of PR, which
is denoted by L* and this can ensure the QoS of the primary
network. L* is determined by the signal- t0 -noise radlo (SNR)

threshold 7" of the PR, which satisfies Tl PRL > ~th (52

is the noise power at the PR). The deployment of the PRs is
generally random and unknown; hence, we assume that the
PR is located on the protected boundary such that its QoS can
be guaranteed. The constraint on the outage threshold is given

as
Pl (50 &+ 2345 [ )+

PP“LPR’

S Hout 9 (8)

where pLeS[n] is the probability of the LoS link between the
m-th UAV and the PR in the n-th time slot, and 6, is the
outage threshold.

III. PROBLEM FORMULATION AND PROPOSED SOLUTION
A. Problem Formulation

In this section, we formulate the design problem to maxi-
mize the average throughput of the UAV over all time slots.
Based on the system model in the previous section, the
expectation of the system throughput in the n-th time slot
can be derived as

E (R [n]) = m0E (R [nlli = 0) +mE (Rufnlli = 1), 9)

where i € Z = {0,1}, and ¢ = 1 represents the case that
the actual state of PT is present, otherwise ¢ = 0. 7y is the
probability of the existence of PT and my is the probability
of the absence of PT. The mathematical expectation of the
throughput between the UAV and the m-th WD denoted by
E (R[n]) is given by

E (Rin[n]) = ppy®[0) Ry [0] + p ] Ry 0],

where RY [n] and RN [n] are the throughput between the UAV
and the m-th WD in LoS and NLoS links, respectively, which
can be calculated as

(10)
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where the signal bandwidth is denoted by B. As the UAV’s
location and the probability of the LoS link are time-varying,
we consider the average throughput over all time slots, which
can be defined as

. XY N nE{R.n
A=Y % []Jé [}

n=1m=1
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In this correspondence, we jointly optimize the UAV-WD
scheduling \,;,[n], the transmission power allocation P[n],
and the UAV trajectory Q[n]. The objective is to maximize
the average throughput of the UAV under the constraints of
the completion time, maximum speed, and outage threshold.
Therefore, the original problem can be formulated as

P1 max (14a)
( ) Q[n],Am[n],P[n]
s. t. T S Tt0t7 (14b)
”Q[n + 1] - Q[n]” < Umax - Ts,
(14c)
Pp |AY
p ‘ 5 ’ > ,yth’ (14d)
(o
(7)a (8)a (146)

where Tiot is the maximum mission completion time, Q[0] =
Q1, Q[N + 1] = Qr, and Q; and Qr € R?*! represent the
UAV’s initial and final projected locations on the horizontal
plane.

B. A Two-stage PPL-PSO/D Algorithm to Solve Problem (P1)

Problem (P1) is a mixed integer non-convex optimization
problem, where the binary discrete variable A,,,[n] defined in
(7) and the discrete trajectory of the UAV (Q[n]) in (14c)
impose several non-convex constraints. Therefore, we utilize
the PPL-PSO/D algorithm to determine the optimal solution.
To make the problem tractable, we first convert it into a bilevel
problem, which first solves the UAV-WD scheduling problem.
The inner problem can be written as

Z/\

s.t. (14d), (14e).

(P2.1) max R[n n|E{R,[n]} (15a)

(15b)

As can be seen, the inner problem (P2.1) is a single-
variable integer problem, which can be easily solved through
exhaustive enumeration, and the solution is given by Ryax [n].
As the locations of the UAV are time-varying, the value of
Am[n] is also varying over time. The decomposition by (P2.1)
and (P2.2) enables the tractability of this optimization prob-
lem. Then, the outer problem to optimize the UAV trajectory
and power allocation can be defined as

Y. Rina
(P2.2) [ma;([ | Z (16a)
s.t. (14b), _(14(3). (16b)



The proposed iterative algorithm to solve this two-stage
problem is based on the PSO algorithm with pre-programmed
locations, which can obtain the approximated optimal trajec-
tory Q € RN,

The search space in problem (P2.1) is 2N-dimensional
and the generation matrix is given by X = {z}, z...z%}7T,
where A is the population size of the particle swarm and ¢
is the iteration times. Thus, ! € R'*2V corresponds to the
a-th particle’s location at the ¢-th iteration. Considering the
constraint (14c), we pre-programmes the particle location !,
as

2 (i) = %Ql(l) + %QF(U, 1= 2n+1
AiJ’,lQI(Q) + THQF(Q)a i =2n,

A7)
where g(i) = |42 ], with [(-)] denoting the floor operation.
The fitness value will be computed as Fé in each iteration,
which is determined by the average communication throughput
R and the penalty function g(a!) for constraint (14c). The
expression of F'(x) and g(x) are given as

F(z) =Y Rmaxn] + g(), (18)

N
g(x) =Y & max(0, Q[+ 1] — Q]| — vmaxTi), (19)
n=0
where the value of £ is assumed to be a large negative number.
For each swarm, the optimal particle location is updated as
g% with its fitness value denoted by y‘. Consequently, the
global optimum particle g* can be achieved, which provides
the maximum average throughput y*. Since the fitness value of
P1 remains monotone non-decreasing after each iteration, and
is upperbounded by a finite value, the proposed algorithm is
guaranteed to converge. The proposed PPL-PSO/D algorithm
also considers the inertia weight w as a variable to enhance
the algorithm performance. The details of the improved PPL-
PSO/D algorithm are provided in Algorithm 1, where ¥ and
® are two matrices with the elements randomly distributed
€ [0, 1], and ¢y« represents the maximum iteration number.

IV. NUMERICAL RESULTS

In this section, numerical results are provided to validate
the performance of our proposed algorithm. The channel
model has been described in Section II. The simulation pa-

rameters are set as follows: A = 1000, tpax = 2 x 10%,
B = 10° Hz [11], P = 30 dB, ¢?> = —78 dBm,
G = [-50,-300;50,150;100,0], N = 15, f = 2.44

GHz, and vpax = 18 m/s. In accordance to the Federal
Aviation Administration regulation, the altitude of the UAV
is h = 100 m. As for the general highrise urban environment,
the parameters are set as o = 25, § = 0.112, &1,,5 = 2.3 dB
and énros = 34 dB. Regarding the underlay mode of the CR
network, we adopt m; = 0.7, fyth = 5.5dB and 6,,; = —28
dB.

In Fig. 2, the optimal UAV’s trajectories with joint opti-
mization and separate optimization are presented. The separate
optimization indicates that the trajectory is first optimized
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Algorithm 1 : PLL-PSO/D algorithm for average throughput
maximization.

o . : T
1: Initialize the location matrix X = {z!, x}...z%} by

formula (17), y! =0, y* = max{y’;a=1,---, A}, and
t=20;

2: while ¢t < .« do

3: forn=1: N

4: w:1.47t0'ﬁ, c1 =2, cg=2;
5: vitl(n) = wol(n) + 1P (g, (n) — x!(n))

+co®' (qi(n) — xl,(n));

6 aiti(n) = @l (n) + vt (n);

7: fora=1:A4

8: Compute the fitness value of ¢ (n);

9: Update the optimal fitness value 3’ and the
global fitness value y*;

10: Update the optimal population particle g, and
the global particle g*;

11: end for

12: end for

13: t=t+1;

14: end while

without power allocation, and the differences between the
trajectories are analyzed as follows. Generally, the UAV can
achieve the maximum throughput when it flies above the WD,
so in all cases the UAV tends to fly towards the ground
WDs during its flight from @Q; to Qr. When the completion
time is not sufficient (e.g., Tiot = 35 s), it should first
satisfy the time constraint, and hence, it can only approach
slightly the WDs and accomplish the mission at the expense
of lower throughput. When longer completion time is allocated
(e.g., Tiot = 50 s), the UAV flies around WD3 at a slower
speed (nearly static) to achieve better channel gain. However,
for separate optimization in Fig. 2(b), the UAV will not fly
away from the primary network to alleviate the co-channel
interference. Consequently, the proposed joint optimization
algorithm achieves the optimum throughput under co-channel
interference and time constraints.

Fig. 3 shows the power allocation and communication
scheduling of the UAV while the location information of PRs
is uncertain. Obviously, in both Fig. 3(a) and Fig. 3(b), the
transmission power decreases more when it approaches WD
to guarantee the QoS of PRs. This is also the reason that the
UAV tends to fly closer to WD, rather than WD in the cases
with Tyt = 50 s and T}t = 45 s in Fig. 3(a). When the UAV
flies towards WDy, it will also approach the primary network.
The maximum transmission power of the UAV will be reduced
due to the constraint in (8), although the decreasing distance
improves the channel gain. The compromised trajectory in Fig.
3(a) reflects the trade-off between increasing the channel gain
and decreasing the power allocation. For separate optimization
in Fig. 3(b), as expected, the UAV directly flies over WDo,
with less power allocation and worse throughput performance.

Finally, Fig. 4 compares the proposed trajectory design with
several alternative benchmark schemes in terms of throughput
performance. Two baseline schemes are considered: i) the
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UAV performs successively hover-and-fly as in [14]; and ii) the
UAV trajectory is set to be a circular trajectory with a constant
speed, which is centered at the geometric mean of the users’
locations as in [17]. Since simulation results reveal that the
average throughput generally converges within 6000 iterations,
we set A = 1000 and t,.x = 6000. It is firstly observed
from Fig. 4 that the separate optimization cannot achieve a
similar performance as joint optimization. On the other hand,
the baseline (i) outperforms the separate optimization, which is
expected as it adaptively optimizes the hovering locations con-
sidering the power allocation. The baseline (ii) performs worst
and its throughput decreases with increasing T;.¢. The reason
for this is that increasing the radius also increases its distance
to WD and co-channel interference to PR, which is proved
impractical in this UAV-enabled CR network. As expected,
the proposed trajectory design significantly outperforms all
four benchmark schemes, and the comparison will provide
important insights to incorporate in the efficient system design.

V. CONCLUSION

In this correspondence, the principle of spectrum sharing
has been applied to the UAV-enabled communications, and
the average throughput with uncertain locations of PR has
been investigated. Under the constraint of severe interference
to co-channel terrestrial WDs, we have exploited the opti-
mal UAV trajectory, communication scheduling and power
allocation in the probabilistic LoS channel, and achieved the
performance improvement of the UAV secondary network. The
original non-convex throughput maximization problem has
been decomposed into a two-stage problem, and the proposed
PPL-PSO/D algorithm has efficiently achieved the trade-off
between maximizing the throughput and minimizing the co-
channel interference. Analytical and numerical results have
been provided to validate the superior performance of our
proposed design.
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