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Abstract

Scanning transmission electron microscopy (STEM) has emerged as a uniquely powerful tool
for structural and functional imaging of materials on the atomic level. Driven by advances in
aberration correction, STEM now allows routine imaging of structures with single digit
picometer-level precision for localization of atomic units. This Primer focuses on the
opportunities emerging at the interface between STEM and machine learning (ML) methods.
We review the primary STEM imaging modalities including structural imaging, electron
energy loss spectroscopy and its momentum resolved modalities and 4D-STEM. We discuss
the quantification of STEM structural data as a necessary step towards meaningful ML
applications and its analysis in terms of relevant physics and chemistry. We show examples
emphasizing the new opportunities offered by structural STEM imaging in elucidating the
chemistry and physics of complex materials and how the latter connect to first-principle and
phase-field models to yield consistent interpretation of generative physics. We present the
critical infrastructural needs for the broad adoption of ML methods in the STEM community
including the storage of data and meta data allowing the reproduction of experiment. Finally,
we discuss the application of machine learning to automate experiment and enable novel
scanning modes.



[H1] Introduction

One of the most common methods of “seeing” atoms is scanning transmission electron
microscopy (STEM). In STEM, images are generated by scanning a small probe, formed by
focusing the electron beam, across a thin sample.! The probe is focused by the objective lens,
commonly combined with other lenses designed to reduce the aberrations of the probe-forming
optics. Scan coils, which generate a rapidly changing field, are used to scan the beam over the
sample. Any signal that varies with probe position can be detected and used to form an image.
A simple schematic of a STEM and various possible detector configurations is shown in Figure
1 (left). Some detector configurations can be used in parallel, which is advantageous because
it allows multiple, complementary signals to be directly compared, pixel by pixel, both for
imaging of simultaneous coherent and incoherent signals and for spectroscopic analysis such
as X-ray and light emission and electron energy loss spectroscopy (EELS). The detected
intensity is plotted on a monitor synchronized with beam scanning to form images. Because
the distribution of transmitted and/or scattered electrons in the detector plane depends on the
specimen thickness, composition and structure, the variation of detected intensity across the
image tells us how the projected thickness, composition, and/or structure of the sample changes
from point to point. The spatial resolution is effectively determined by the size of the electron
probe. Today, the development of aberration correction technology for electron optics allows
an electron probe to be routinely be narrowed to 50 pm or less full width half maximum
(FWHM), meaning that the spatial resolution of aberration-corrected STEM has become
smaller than the size of a hydrogen atom whose Bohr radius is approximately 53 pm. In a
STEM image, the image contrast and the information it contains about the specimen depends
on which region(s) of the detector plane we record from and how we detect the electrons by
the post-specimen detectors.

The most common STEM measurement is to detect the electrons scattered to high
angles (significantly beyond the probe-forming aperture radius) by a donut-shaped detector.
Called annular dark field (ADF) imaging, the images obtained by this method are incoherent —
essentially, all probed atoms contribute independently and additively to the total signal and
interference effects between signals arising from different atoms are suppressed. This feature
enables us to directly and robustly observe atomic columns and single atoms in materials and
devices. Moreover, since the integrated intensity of high-angle scattered electrons varies
approximately with the square of the atomic number Z of the atoms under the probe, Z-contrast
imaging can visualize the heavier element atoms in a crystalline lattice with high sensitivity.
In contrast, the signal from the lighter atoms in a crystalline lattice is generally much lower,
often making detection difficult. To increase the atomic signal and image light monolayer
materials such as graphene, the inner angle of the detector can be decreased. This commonly
used detection method is called annular bright-field (ABF) imaging. ABF mode uses a donut-
shaped detector positioned to collect electrons scattered inside the angular-range defined by
the incident probe (often referred to as the bright-field disk) and can directly visualize light
atoms even in the presence of heavy atoms. Since ADF, ABF, and other type of images can be
obtained simultaneously from exactly the same sample positions by using either many separate
segmented detectors or a pixel-type detector (see Fig 1 (left)), both structural and chemical
information at atomic dimensions can be obtained by STEM. When combining imaging with
spectroscopic techniques, STEM allows us to extract multiple and complementary forms of
information about a specimen from a very localized volume including its atomic dimensions.
For example, imaging can be combined with electron energy loss spectroscopy (EELS), where
each probe position records the energy spectrum of scattered electrons to measure inelastic
scattering inside the specimen, and energy-dispersive X-ray spectroscopy (EDS or EDX),
which measures X-rays emitted as a result of the electron probe interacting with the specimen,
to simultaneously obtain a wealth of material information from the same sample positions.



In recent years, additional imaging modes, such as differential phase contrast and 4D-
STEM as discussed below, have become available with advances in electron detectors,
especially pixelated and multi-segmented detectors, which allow spatially-resolved probing of
electric fields at atomic resolution and magnetic fields at nanoscale resolution.>* Pixelated
detectors allow a snapshot of electrons scattered through a range of angles for each probe
position. This enables the detector configuration, for example ABF, ADF or even various
multi-segmented configurations, to be selected after the data have been collected, with obvious
advantage of selecting the imaging mode optimal for the sample without the need to do
additional experimentation. They also permit special configurations to be selected such as for
ptychography.® Increasing detector speeds offer significant advantages for low-dose imaging
compared to conventional phase contrast imaging. Electric and magnetic field imaging also
benefits from fast pixelated detectors. Improvements in aberration-correction and spatial
coherence have led to increasingly large probe-forming apertures that enhance depth resolution
to the nanometer scale, allowing optical sectioning and yielding 2D views of the sample at
atomic resolution and at different depths.®!? In the future, optical sectioning by using even
larger probe-forming apertures could yield atomic resolution as a function of depth, albeit with
some interpretative complexity.!’"!> The more commonly-used tilt series tomography has
already achieved atomic resolution in all three dimensions'?, while combined approaches have
also been proposed.!*!'® Spectroscopy has also undergone a revolution in recent years with
improved monochromator and electron emitter designs increasing energy resolution to the
~meV level'” and allowing both phonon spectroscopy and direct measurement of sample
temperature.'®

The rapid advancement in STEM imaging and spectroscopy raises issues such as how
to explore multidimensional data sets using a human operator and what type of quantitative
information can be obtained from the measured data. Some questions include what materials-
specific information can be obtained from microscopy data and at what level of confidence, for
example when determining atomic coordinates from STEM or scattering potentials from 4D-
STEM; how the imaging system affects materials-specific measurements; and whether
materials-specific measurements can be improved with better knowledge of the system (such
as knowing the beam parameters, the resolution function, or fully modelling the imaging
system) and knowledge of a material’s phase, structure, and composition. Questions remain
about whether we can use materials-specific information with uncertainties determined by
incomplete knowledge of the imaging system or intrinsic limitations to infer physics and
chemistry. A common approach is the use of correlative models, where the variation of
observables is compared. Without an understanding of the physical mechanisms involved,
observed correlations do not necessarily indicate a causative relationship between the observed
parameters. An alternative approach is generative statistical models which model the joint
probability distribution between the observable variables and the target variables. The aim of
generative statistical models is the recovery of generative physics such as force fields,
exchange integrals, and other parameters. An example of a deep generative model is the
variational auto encoder (VAE) which will be discussed in detail below. The question also
remains as to whether correlative or causative materials-specific information can be used to
reconstruct materials behavior in a broad parameter space such as, for example, phase diagrams
via different temperatures and concentrations, and finally determine how the reliability of such
predictions depends on the position in the parameter space. Similarly, we can harness the data
stream from the microscope to engender real-time feedback, for example for automated
experimentation and nanometer- and atomic scale matter manipulation.

Machine learning (ML) is becoming integral to answering these questions. In Fig 1 we
illustrate a possible workflow for ML analysis of experimental data as it is acquired. The first



component is a local computer connected directly to the microscope acquisition computer,
often referred to as an edge computer. This computer downloads the data from the microscope
computer and carries out initial processing of the data to allow feature extraction and
quantification of the datasets, usually using pretrained models. This direct connection is
required because of the size of the datasets commonly acquired, especially 4D-STEM datasets.
The edge computer is also connected to the local network and via this the internet. This allows
access to web based resources such as online storage and Google Colab. However, the slower
bandwidth provided by even commercial internet connections will be a bottle bottleneck
preventing rapid retraining of models based on new datasets. The edge computer can also be
connected via the local network to high performance computing (HPC) facilities. Here the data
transfer will be rapid, but the calculations may be time consuming. These simulations may
include structure inversion to determine the scattering potential, structural relaxations using
density functional theory (DFT) or molecular dynamics (MD) or the determination of structural
changes associated with quantum phenomena. Finally, the edge computer can use the analysis
it made of the initial results to adjust the microscope parameters. This needs to be done rapidly
to avoid specimen drift and other microscope instabilities. This will require the development
of rapid algorithms and the ability to interact directly with the microscopes operating software.
Multivariate statistical methods have become a technique of choice for visualizing
multidimensional hyperspectral data sets.!?! Deep neural networks allow for robust image
analysis with significant benefits for automatic location and classification of defects.?>?* We
may soon see a self-driving microscope,* potentially integrated with synthesis and
computation to develop new materials. The microscope may even be able to place dopants into
predetermined locations for an ultimate atom-by-atom assembly of materials.*>*’ For some
common machine learning approaches, see Box 1.

In this primer, we first discuss the fundamental principles of imaging and spectroscopy
in STEM for structural imaging, EELS and its momentum-resolved modalities and 4D-STEM,
and highlight the need for ML methods as a way to analyze emerging multidimensional data
sets. A more detailed description of modern STEM theory and experimentation can be found
elsewhere.”® We then discuss the quantification of structural STEM data in terms of atomic
positions and the insights it yields into the physics and chemistry of materials. We emphasize
the novel opportunities enabled by the synergy of correlative ML methods and physics-based
ML and STEM as a way to link observations in STEM experiments to generative physical
models of materials behavior. Finally, we discuss the associated challenges and scientific
infrastructural needs of implementing ML with STEM before looking forward to the
requirements for open-source software and data sharing within the community to facilitate the
application of ML methods to STEM data.

[H1] Experimentation

In this section we briefly outline the major components of a STEM, with an emphasis
on the parts we believe are likely to be most relevant for machine learning.

[H2] STEM fundamentals

A STEM is closely related to both a conventional transmission microscope and a scanning
electron microscope. A beam of electrons is extracted from a source, also called a gun or a tip,
and accelerated by a high-voltage typically between 30 and 300 kV. To avoid the beam
colliding with gas molecules, the interior of the microscope has to be under high vacuum. Much
of the support equipment surrounding a modern STEM will be associated with maintaining the



vacuum, high-voltage and other power supplies. In a modern STEM, the ability to image single
atoms places extreme requirements on the cleanliness of the vacuum system and sample in a
similar way to conventional surface science methods?*>!. A dedicated sample holder is needed
to position and tilt the sample, which is inserted into the microscope through an airlock.

Electron lenses, typically round electromagnets that generate an intense field on the
beam axis, are used to shape the electron beam because electrons are charged particles affected
by electric and magnetic fields. As seen in Fig 1, a series of condenser lenses first shape and
demagnify the beam of electrons. The beam is then converged onto the sample by an objective
lens to form a probe. The final size of the probe is limited by diffraction and by the aberrations
of the electron lenses. The diffraction limit*> depends on the convergence angle of the probe
and the De Broglie wavelength of the electrons, which is determined by the accelerating
voltage. As in optics, a larger convergence angle (which is equivalent to a larger probe forming
aperture) corresponds to a finer resolution. However, unlike in conventional light optics where,
in principle, arbitrary lens shapes may be aberration-free, conventional round electron lenses
always have some aberrations®. These aberrations become worse at higher convergence
angles, which limits the largest aperture size that can be used. Reducing or eliminating these
aberrations via aberration correction has been an enduring challenge in electron microscopy
(see ** for a comprehensive history of aberration-correction). The first successful modern
aberration-correctors in STEM*>3¢ and in TEM*7** saw broad uptake during the early 2000s.*!-
43, The most relevant aspect of these correctors for the present Primer is that they depart from
rotational symmetry by using non-round lenses and consist of multiple elements, which makes
them complicated to use. The development of advanced computer controls to measure the
aberrations and optimize their conditions is therefore an essential part of the operation of these
systems®>. With careful optimization of the lens settings, the probe size at the sample can now
be about the size of an atom.

A series of projector lenses transfers the electrons that are transmitted through the
sample to various detectors or an EEL spectrometer. The intensity measured by the detectors,
which is equivalent to the number of electrons hitting the detectors, forms images as a function
of the probe position. This means that the image points are acquired in series over time and a
variety of detectors can be used to record different signals for each probe position. Note that
the STEM mode of operation is different from a conventional TEM where a larger sample area
is continuously illuminated by the beam and the projector lenses magnify the image of the
sample.

The electrons scattered out to high angles strongly depend on the atomic number Z of
the elements and the signal recorded on a high-angle annular dark field detector (HAADF) is
known as a Z-contrast image. The benefit of the HAADF mode is that it allows relatively simple
image interpretation to a good approximation. In many cases, the bright spots on a Z-contrast
image relate to the positions of the atoms and spot intensity relates to atomic number in an
intuitive way. Finding atomic positions therefore depends on locating local maxima and image
intensity provides clues as to the number of atoms or their atomic numbers. This simplicity is
particularly convenient for ML because initial testing can often be done with very simplified
models and training data can typically be classified by human operators.

A critical aspect of STEM experiments is sample preparation. The electron beam has a
mean free path for scattering measured in tens of nanometers for most materials, which requires
very thin specimens to produce high quality measurements in transmission modes. Samples
can be thinned using a variety of methods ranging from mechanical polishing to focused ion
beam (FIB) milling. The thinness of the sample causes most of the beam electrons to remain
near the optical axis and the electron interaction with the sample primarily changes the phase
of the beam. A small detector close to the axis gives a bright field (BF) image. One of the key
difficulties in BF imaging is that detectors record the intensity whereas most of the details of



the beam-sample interaction are contained in the phase. To obtain a phase contrast BF image,
a small amount of defocus is typically used to give an extra phase shift and cause the total
intensity at the detector to depend on the phase.?® An annular detector, typically with a bigger
diameter, yields an ABF image. The type and size of detector used will affect the information
contained in the image.

It is also possible to used segmented detectors to record finer angular ranges. A very
common example is the use of four or more segments arranged as pie slices on the unscattered
electron probe in order to measure beam shifts in differential phase contrast.***> A more recent
addition is the use of high-speed direct electron detectors to record a full image of the diffracted
electron beam and generate a four-dimensional dataset via 2D images of the probe scanned
over a 2D grid of probe positions, a technique often referred to as 4D-STEM.*¢

An additional reason for requiring thin specimens is to aid interpretation of even the
most basic imaging modes. This is because the probe electron undergoes multiple scattering,
commonly referred to a dynamical scattering in electron microscopy, as it propagates through
the specimen. This causes the probe to change shape depending on the local sample structure.
For example, a probe placed above an atomic column tends to travel down along the column,
a phenomenon often referred to as channeling. For modern high-resolution STEM, the distance
the probe channels down the column is crucially defendant on the atomic mass of the atoms in
the column, meaning different columns are illuminated to different extents. This can make
direct quantitative interpretation of images complicated for specimens of more than 10nm or
so depending on the accelerating voltage used.

[H2] Electron Energy Loss Spectroscopy

One of the key aspects of using an annular detector to form a STEM image is that only
a small fraction of the electrons are scattered to high-angles. The disadvantage is that ADF-
STEM can be an inefficient way to form an image; however, the benefit is that on-axis signals
can be collected simultaneously from the same position to provide complementary specimen
information. As the fast electrons in the beam go through the sample, they interact with and
exchange energy and momentum with the sample. These effects are separated into elastic
scattering, where the total kinetic energy is conserved, and inelastic scattering, where energy
is transferred to the sample in some other form. For example, if the fast beam electron excites
a sample electron to a higher-energy state, it loses a corresponding amount of energy, which
can be measured with EELS. An excellent introduction to EELS can be found in 7.

The first EEL spectrometers®® consisted of a magnetic prism followed by several
quadrupoles and were subsequently optimized*’. In an electron spectrometer, a magnetic field
is used to disperse the beam dependent on its kinetic energy. A position sensitive detector is
used to provide an EEL spectrum. This spectrum will have several peaks at energies that depend
on the elements in the sample, with shapes that depend on sample thickness and electronic
structure. Various complications in the interpretation arise because the beam electrons can
interact with the sample in a variety of ways, and perhaps multiple times, especially for thick
samples. Untangling these competing effects could be a promising area for ML techniques.

EELS in the STEM has emerged as a powerful analytical technique; the small electron
probe dimensions means that excitations associated with core-loss,*® plasmon®' and optical
transitions in materials can now be routinely interrogated, in some cases at single atom
resolution.”>* We typically divide the EEL spectrum into different regions depending on how
the fast beam electrons interact with the sample. The zero-loss peak contains electrons that
have not lost a measurable amount of energy. Interactions with the atomic vibrations of the
material lattice can excite phonons and such measurements are commonly referred to as
vibrational spectroscopy. Collective excitation of the sample electrons are referred to as



plasmons , which are closely related to the electrical and photonic properties of a material and
depend on material shape and size.>*>¢ Energy losses that correspond to excitations of core
electrons in the sample are referred to as core-loss and characterize the elements present at the
probe location. The detailed shape of the core-loss edges will depend on the characteristics of
the initial and final state of the sample electrons as well as many of the same thickness and
orientation effects that affect the imaging modes.

Recording a spectrum at each probe position gives a spectrum image, also referred to
as a hyperspectral data set.’”>® The strength of EELS in a STEM is that it provides information
on the local chemistry and electronic structure while the Z-contrast image simultaneously
provides a map of the atomic configuration. This concept can be extended to other imaging
modalities and combined with multiple signals. For example, when an excited sample electron
relaxes back to its ground state it will emit the excess energy as a photon, which can
simultaneously be analyzed with a cathodoluminescence or X-ray detector. A recent review
article contains a more comprehensive discussion of these and associated methods.>

One of the factors that limits the energy resolution in EELS experiments is that the
beam of electrons has a small but finite energy spread. Depending on the type of electron
source, the beam width will typically be between 0.3 and 1 eV. Peaks that are separated from
each other by less than this intrinsic energy spread cannot be easily resolved, which will mask
many physically interesting phenomena. In addition, there are extreme demands on the
performance of the microscope power supplies: we might want to measure energy losses of a
few meV for a beam energy of several tens (or hundreds) of keV, which corresponds to a
stability above 1 part per million. Perhaps even more importantly, the tails of the distribution
extend out over a far larger energy range, meaning that very weak signals are easily swamped
by the background.®® Solving the energy spread problem requires an electron monochromator.
In a monochromator, energy-dispersive elements disperse the beam before the sample and a
range of energies is selected using a slit or an aperture.®! This selection necessarily reduces the
amount of current available to form the probe. Since the slit used to select the energy has a
finite size and the monochromator may introduce aberrations, using an electron
monochromator typically degrades the spatial resolution. However, a new generation of
monochromated instruments has been carefully designed to allow high energy and high spatial
resolution while minimizing the loss of current. Just as for aberration-correctors, computer
control is usually essential to the operation of electron monochromators.%?

One of the most exciting aspect of these new monochromated STEMs to date is the
exploitation of modes such as aloof spectroscopy, where the beam passes near the sample
instead of through it%-%. Such modes might open new non-damaging analysis modes or be
used to provide data on sensitive biological or complex quantum states. Another surprising
example is electron energy gain spectroscopy,'® where the fast beam electron can gain energy
from the sample in a reversal of the normal energy-loss process. Such novel modes are likely
to allow access to new information streams about the local nanoscale properties of materials.
For example, comparing energy loss and energy gain probabilities can now be used to measure
the local temperature of materials in a parameter-free model.!®6.

[H2] Momentum Resolved EELS

STEM-EELS experiments are typically performed at small scattering angles with the
spectrometer entrance aperture positioned along the optical axis to exclude the collection of
electrons with a scattering angle 9 larger than the collection semi-angle .57 In the STEM
optical geometry where a converged probe is used, the probed signal is dominated by inelastic
scattering wave vectors parallel to the forward scattering direction g, and averaged with



contributions from other non-parallel wave vectors determined by the probe convergence semi-
angle a.%

In momentum or angular-resolved EELS measurements (q-EELS), the spectra are
acquired as a function of scattering angle or momentum vector ¢g. The measurements are
performed by displacing the collection aperture relative to the optical axis. This procedure is
shown schematically in Figure 2a. In practice, this is achieved by tilting the incident electron
beam by an angle, whose magnitude determines the effective displacement wave vector ¢’ of
the spectrometer entrance aperture with respect to the forward scattered direction. Orientation
dependence of core-loss edges from anisotropic materials can be determined by angle-resolved
inelastic scattering of fast electrons.%®%° Alternatively the effective displacement along ¢’ can
be achieved by shifting the relative position of the spectrometer entrance aperture using post-
specimen electronics.”®

Momentum-dependent experiments have been successfully implemented in the entire
range of the energy loss spectrum. High-loss q-EELS has been employed to probe the
anisotropy of chemical bonds®®%° and the detection of a magnetic dichroic signal.”! In the low-
loss energy range, the different g-space dispersion relations of the spectral peaks can be used
to probe the dielectric characteristics,’? plasmonic’® and excitonic dispersions’* and to identify
optically forbidden transitions.”> More recently, the introduction of improved monochromator
designs with energy resolutions of a few ~meV has allowed for momentum-resolved
vibrational EELS.%7¢

While extremely powerful, STEM q-EELS is not without challenges, the first being the
fundamental physical limit of momentum versus spatial resolution, with the momentum
resolution, Aq, being inversely proportional to the electron probe size as determined by the
beam convergence semi-angle a 7’. The large beam convergence angles used in STEM result
in broad, overlapping diffraction discs, limiting the g-space resolution of the spectral data.
Nevertheless, by careful choosing the experimental conditions, the momentum resolution®*’¢
can be balanced with the achievable spatial resolution as recently demonstrated by atomically
resolved STEM-EELS phonon spectroscopy experiments.®*>’* The second challenge lies in
the weak signals associated with vibrational EELS specifically and the rapidly decaying EELS
signal off the optical axis,”® which require lengthy experiments and the sacrifice of different
types of resolution (such as spatial, momentum, or energy resolution) in favor of signal
detection. The introduction of new rapid, high-efficiency direct electron detectors’® promises
to expand the range of q-EELs experiments in the future.

[H2] 4D-STEM

New faster and more sensitive detectors are becoming available in electron microscopy.
This is partly due to general advances in microelectronics devices and partly due to novel
developments such as direct electron detectors’’. Pixelated detectors can be used to acquire the
electron intensity depending on the scattering angle. Different areas can then be selected during
post-processing to effectively allow a variety of images to be constructed. In addition, pixelated
detectors can acquire multidimensional sets of data (see Fig 2b and Box 2), which can
potentially be used to reveal additional information about the structure and properties of
materials at higher resolutions.
In electron microscopy, the reciprocity theorem of Helmholtz suggests that swapping the
source and the detector should give the same image in the case of elastic scattering.®’. Applying
this principle to the STEM thus indicates that a small on-axis detector in STEM should give a
BF image equivalent to a conventional TEM image. However, in order to obtain a highly
coherent image, the collection angle must be very small and most of the electrons that have



interacted with and possibly damaged the sample will not be used, which is why BF-STEM
imaging has traditionally been regarded as inefficient due to the low signal to noise ratio.
Another way to look at coherence issue is to think of each part of the detector as forming an
image at a different tilt angle.®® Adding these slightly different images together, for instance by
using a larger detector, will tend to blur some of the fine details and limit spatial coherence®!.
However, all the transmitted electrons can be collected as a function of angle at a particular
probe position using a pixelated detector to obtain a nanodiffraction®?®’ pattern, also known as
an electron Ronchigram.®® In STEM, the electron Ronchigram provides several routes to
measure aberrations, which is important for aberration correction®>*”* and for measuring
spatial coherence, which is a resolution-limiting factor in aberration-corrected instruments and
important for quantitative interpretation of images.”**> Nanodiffraction patterns can be
collected at every probe position to generate a 4-dimensional (4D)-STEM dataset, also called
a scanning nanodiffraction dataset. Such operating modes potentially use all the transmitted
electrons to reconstruct an image and can be more efficient.”®®® 4D-STEM has become a
commonly adopted method with the commercial availability of high-quality detectors, with a
recent comprehensive review published in %°.

The strength of 4D imaging is the extra information available within the collected data.
First, as the electron beam transmits through the sample, it might be deflected by fields inside
the sample. This deflection can be differentially detected>**!% for differential phase contrast
with multiple detectors, potentially at atomic resolution,** and can be used to reconstruct the
measured fields.'®! Differential phase contrast contains details of the sample’s electrical and
magnetic fields, although how to untangle all of these subtle effects is not always clear,
particularly in the presence of dynamical scattering. Other information that can be obtained
includes polarization domains,'* strain fields,'®'%7 octahedral tilts,'*® and local symmetry.”
An ongoing question is how to maximize the amount of information that can be extracted.

One way to maximize information extraction uses ptychography, where the redundancy
in combining real-space and diffraction-space data can be used to solve for both the phase and
amplitude of the electron beam'® and permit more details of the sample to be reconstructed.
Modern ptychography solutions are typically iterative methods derived from the Gerchberg-
Saxton algorithm!!?, with seminal implementation found in>!!!"''>, The main issue with these
iterative methods is that they are still computationally intensive and have yet to incorporate the
full effect of dynamical scattering, which limits their applicability to strongly scattering
specimens with high-Z elements and/or thick specimens that are > a few nm. While one solution
is to simply apply more computer power to the problem, using artificial intelligence/machine
learning (AI/ML) techniques could present a better route.!'* Similarly, a significant amount of
3D information encoded in the electron Ronchigram and 4D datasets,!!>!'® could also be
extracted using AI/ML techniques. There are several other applications for ML in the context
of 4D imaging. Because only a small fraction of the beam electrons strongly interacts with the
sample, almost all signals tend to be noisy or blurred by instrumental effects, meaning that, for
example, even simple deconvolution or denoising procedures can be extremely useful.

Finally, there is a lot of scope for future development of 4D-STEM techniques. In
principle it might be possible to record an energy loss at every scattering angle at every probe
position combining q-EELS and 4D STEM information, or extend dimensionality further by
combining 4D-STEM with tomography. One problem is that current detectors are 2D, which
means that acquiring a higher dimensional dataset requires multiple scans of the same area. If
the sample is damaged by the beam, changes over time, drifts away, or contamination builds
up, repeating the same scan multiples times over the same area of the sample may not be
possible. Thus, using ML methods to infer a model that informs an automated experiment to
obtain a sub-set of this multidimensional data is one way to approach the multidimensional
information challenge.



[H2] Beam Engineering

While most efforts have concentrated on reducing probe size and increasing lateral and
depth resolution, a new frontier of STEM is in beam engineering or shaping as a way to address
emergent physical phenomena associated not usually observable using conventional imaging
techniques.''7'2* Owing to new electron-optical elements, the amplitude and phase profile of
the probe can be determined beyond the typical diffraction-, aberration- and coherence-limited
shape. The functional beams created by beam shaping can widen the range of quantities that
can be measured, determine the dynamical diffraction in the material,'?"'?> and enhance the
part of the electron scattering to be characterized.
Engineering of electron beam shape have evolved from the initial use of electron
holographybased on a nanofabricated thin slab of material, to magnetic phase plates'?* to new
applications based on electrostatic controllable phase modulators'?*12® that can be directly
positioned in the condenser diaphragm. Below and in Fig 2 we give some examples of
functional beams. A vortex beam, which is a doughnut-shaped beam with an azimuthal phase
gradient, is shown in Fig 2¢ with a rotation of 2x, although multiple integer rotations in the
phase are also possible. The presence of the vortex in the phase results in zero intensity at the
center of the probe. Vortex beams initially aimed to probe the spin state of atoms in magnetic
materials by elastic'?”!?® and inelastic scattering'>>'3°, and have also been used to form
holograms to measure the vertical magnetic field.!*” More recently, nearly linear contrast
images have been generated by matched illumination and detector interferometry (MIDI)-
STEM), which combines structured illumination based on modified zone plates phase with a
high-speed direct electron detector'®! (see Figure 2d). The image of the beam recorded on the
direct electron detector is post-processed with a mask matching the phase plate. Phase-shaped
electron beams have also been used to probe the symmetry of localized surface plasmon
resonances!*?, Appropriately tuned Gaussian-shaped beams'?' couple strongly with column
and propagate almost unperturbed in the crystal. As shown in Figure 2e, this is predicted to
produce contrast that does not oscillate as a function of specimen thickness and produce images
that are simpler to quantitatively interpret. Bessel beams or equivalently hollow cone
illumination can be used to increase the depth of focus of the beam”!!, to facilitate strain
analysis through nanodiffraction'**!3* or to improve the interpretability of low-loss EELS'?
by mimicking the idea of precession electron diffraction and combining beams of different
directions to minimize the effects of channeling (see Fig 2f). This produces a more complex
diffraction pattern that requires specialized post-processing and removes the need for expensive
microscope modifications.

Finally, one key challenge in STEM is to control both the initial and the final state of
the beam after scattering. For example, the HAADF-STEM detector has been used as a form
of filter'*® but more sophisticated filters allow for the direct measurements of new final states
without acquiring the full 4D-STEM, such as the measurement of orbital angular momentum
through an orbital angular momentum sorter.'?’. It is clear that the increasing complexity of
these new optical systems will require a more sophisticated control. For this reason, the
techniques such as convolutional neural networks'*® as well as more advanced approaches such
as Bayesian optimization'*® and reinforcement learning!’ will have an increasing role in the
control of the complex optical system and in the alignment of the microscope in general.

[H1] Results



Because modern electron cameras record data digitally, analysis of STEM experiments
is typically carried out using software programs or computational methods. The initial analysis
steps are to evaluate the quality of the experimental data and select one or more datasets for
inclusion in a study. For STEM images, the minimum data processing required is to scale the
image contrast and brightness and to crop around the features of interest. Quantitative
measurements may also be performed, for example measuring the position of atomic columns,
the length of atomic bonds, or comparing calibrated measurements signals to image simulations
to estimate local structure or composition.

Higher-dimension STEM datasets often require substantially more analysis and data
processing. Examples of 3D datasets include: time-series movies that may require drift
correction to remove sample motion; tomographic tilt series requiring software to reconstruct
3D sample volumes; or spectroscopic datasets such as EDS or EELS that are usually interpreted
from dictionaries of known signals or first principles calculations. 4D datasets such as qEELS
or 4D-STEM also require specialized software codes for very large datasets.

[H2] STEM Data Format and Analysis Programs

Modern STEM instruments are capable of producing large data streams from a variety
of measurement channels to deliver important specimen information. This data is most valuable
when analyzed in a quantitative, transparent, and reproducible manner. Most STEM datasets
are currently recorded in proprietary formats defined by the hardware vendors. Some progress
has been made towards saving data in open formats and defining standards for interoperability,
but there is a long way to go before all STEM experiments follow findable, accessible,
interoperable, and reusable (FAIR) data principles.'#!

Since STEM data is usually recorded on vendor software platforms, data analysis
typically starts there. These platforms include the Gatan Microscopy Suite (GMS) with Digital
Micrograph from Gatan, Velox from Thermo Fisher Scientific, Swift from NION, ESPRIT
from Bruker, etc. These acquisition and analysis programs all offer the ability to visualize data
as it is being recorded and are invaluable to provide feedback during experiments. They often
include complex analysis methods such as quantification of EDS experiments from reference
spectra. However, these vendor analysis platforms and methods are often closed source “black
box” methods where the underlying code cannot be read or modified with, to date, the Nion
Swift as the exception. Some of these platforms allow execution of external analysis scripts,
which in the case of Digital Micrograph has led to a vast number of user-developed analysis
methods. There is, however, no central listing of these methods and few have been vetted by
the community. Nevertheless, many papers are published each year containing STEM results
analyzed entirely on vendor software platforms.

To perform more complex analyses of STEM data, many users either write their own
software or use community-developed codes. One of the most popular programs for analyzing
imaging data is ImageJ, an open-source image processing program written in Java. Many
scientists have written ImageJ plugins to read proprietary STEM data formats and perform
various medium and atomic resolution corrections or measurements.'*>!%3 Another widely used
programming language for analysis of STEM data is MATLAB, which despite not being open
source does have a large library of user-created analysis tools either available on the central
File Exchange or on researcher websites. There are also free languages that are mostly
compatible with MATLAB such as Octave.

Recently, the Python programming language has started to overtake other choices for
the analysis of STEM data, in no small part because Python has become the de facto standard
for ML data analysis. For conventional analysis methods, there are various community
developed Python codes devoted to various aspects of STEM analysis. The python package



most widely used in the electron microscopy community is HyperSpy, which was originally
developed to analyze spectroscopic data such as STEM-EELS experiments. HyperSpy has
grown into a general-purpose analysis toolkit for STEM data with many plugins targeting
specific data types. These include atomic resolution image analysis with Atomap, luminescence
spectroscopy data analysis with LumiSpy, 4D-STEM data analysis with pyxem,'** and others.
Another family of STEM analysis methods can be found in the Python-based Pycroscopy eco-
system,'** which includes STEMTools toolkit (https://github.com/pycroscopy/stemtool),
AtomAl library(https://github.com/pycroscopy/atomai) for applications of deep learning to
microscopy data including deep kernel learning, and invariant representation learning,
PyTEMLIb library(https://github.com/pycroscopy/pyTEMIib) for model-based quantification
analysis, and others. In addition, there are 4D-STEM-specific analysis codes currently under
development including LiberTEM!% and py4DSTEM.!#¢ All these packages are fully open
source and can be freely modified to match the specific needs of a given research project.

Finally, simulation also plays a large role in STEM research. The most common
simulations are imaging simulations incorporating the electron scattering process within the
specimen together with the image formation system for the various imaging modalities, which
can be performed using open source simulation codes including QSTEM, '’ 4STEM,'*® Dr.
Probe,'* MULTEM, !> STEMsalabim,"”' abTEM,!>? Prismatic,'>® and others. These codes
often have specific focuses, for example abTEM includes the ability to use the electrostatic
potential of a structure directly from density functional theory (DFT) calculations performed
with the open source code GPAW,'>* while Prismatic focuses on fast calculations. Recently, it
has become possible to simulate STEM spectroscopic signals such as plasmon scattering,'3>-1%
double-channeling core-loss STEM-EELS scattering,'>” very large crystals containing
crystallographic defects,'>® and other modalities. Many new computational methods are under
active development and large STEM simulations can be tackled with the widespread
availability of GPU resources.

[H2] Analysis of hyperspectral data

The discussion of ML in STEM necessitates a brief overview of exploratory data
analysis that originally emerged in the context of EELS hyperspectral image analysis. Core-
loss EELS provides a wealth of information such as chemical composition and local bonding
but correct interpretation requires careful analysis and processing. For example, truly
quantitative analysis of electron energy loss near edge structure (ELNES) requires the removal
of plural scattering using methods such as Fourier-ratio deconvolution, where the
simultaneously acquired zero-loss-peak region is used to deconvolve the plural scattering from
the core-loss signal.'>® This process makes the edge structure more interpretable and provides
increased signal to noise ratios (SNR). Quantitative interpretation of features such as the L23
ratio also requires background subtraction and removal of the continuum components.'®-16!
Background subtraction is often done using a simple power law fit to the spectrum prior to the
edge of interest, but alternative methods are also available.!®? Following this preprocessing,
quantification can be carried out by estimating peak heights and separation by either Gaussian
fitting!®® or more sophisticated model fitting approaches.!%*

[H3] Principal component analysis

Because the crosssections for ionization are quite small, especially for higher energy edges, the
SNR of ELNES is generally quite low. This is also the case for other spectroscopies such as
energy dispersive X-ray spectroscopy (EDX). To improve the SNR, multivariate statistical
analysis of EELS was first demonstrated in the late eighties.??! While many multivariate
methods exist,' the most common method for denoising EELS data is principal component



analysis (PCA). PCA has been widely applied to both chemical mapping and near edge
structure analysis'®1%7 and has been used as a first step in more advanced analysis methods
such as vertex component analysis'®® or the study of precipitates in manganese steels.!**!"" An
alternative linear method is non-negative matrix factorization (NMF), which has been applied
to core-loss EELS and EDX!”! and plasmonic data.!”> PCA and NMF are available in freely-
available software packages and straightforward implementations are available in popular
languages such as Python, making them an accessible approach to denoising EELS data.

PCA represents a dataset as a linear sum of weighted orthogonal components with the
weighting determined by the commonality of each component. Features that are common
throughout a dataset will receive a higher weighting while features such as noise, which is
essentially random, get a much smaller weighting. Removing the lower weighted components
before reconstruction results in the removal of most of the random noise. However, because
features such as interfaces and defects cover only a small volume of the dataset, they receive
low weightings as well. This means components containing valuable information regarding
local structures can be removed along with those related to noise. While PCA has therefore
been successfully applied to perfect crystals, the method can introduce unexpected artifacts in
the processed data when the raw data contains interfaces and defects 371173 This can result
in changes to the features to be measured, such as shifting apparent peak positions in near edge
structures and changes in intensity. Since much of the most interesting physics happens at
interfaces, defects and other localized structural features, this is highly problematic and
approaches to successfully examine small changes in near edge structure due to local structural
changes are required.

[H2] Quantitative STEM

While conventional STEM analysis methods study contrast or image features,
quantitative STEM makes use of the absolute scattered intensity in each pixel of a STEM
image to enable more information about the specimen to be extracted. Quantitative STEM is
essential to quantifying noise and information content and for quantitative comparison
between STEM images and quantum mechanical image simulations.!”* The additional
information that quantitative STEM can deliver about a specimen has been used in
applications such as atom counting,'” local composition measurements®® and nanoparticle
shape!’® and surface stability measurements.!”” Unless the sample allows for internal
calibration of the image intensity,!”® calibration of the STEM detector and the microscope
optics are essential.!”%180

[H3] Intensity measurement

Modern STEM detectors respond linearly to the incident electron current, with the dark
count rate D and the gain G both adjustable by the user. The intensity in electrons in a pixel /
is connected to the measured digital counts C by / = (C — D)/G. G is measured by placing a
signal of known intensity on the detector and there are several ways to measure it. For example,
one convenient signal is the intensity of a single electron'®!!82 Ci. Ci can be measured by
acquiring an image while allowing almost all of the beam to pass through the hole in the
detector to yield G = (C1 — D). Another convenient signal is the full current of the beam B,
which can be measured separately by using a Faraday cup for example, to yield G = (C — D)/B.
Comparing STEM images to simulations requires normalizing the image intensity to the
incident beam,'”* and is straightforward if D and G are known and B is known in amperes. if B
is known only in digital counts as B¢, a quantitative image I, expressed as a fraction of in the
incident beam current, can also be obtained. In this case, I, = (C — D) / (Bc — D).'™

[H3] Calibration



Comparison to simulations requires careful calibration of a variety of other microscope
factors that must then be included in the simulations. These factors include detector inner
angles'®® and outer angles, cutoffs or shadowing from complex pre-specimen optics such as
aberration correctors,'”® and the non-uniform response of common scintillator detectors.!”-18?
Finally, the simulated image intensity must be convolved using a calibrated incoherence
function'’*. For aberration-limited systems, the incoherence function is typically a Gaussian
with FWHM slightly smaller than the STEM image resolution and can be calibrated by
comparing experiments to simulations for a known crystal sample, with thickness
independently measured by position-averaged convergent beam diffraction.'8*,

The incoherence function also accounts for fast instrument instabilities on the pixel
acquisition time scale, such as high-frequency mechanical vibrations or probe jitter. These
effects can be measured separately and may not be Gaussian.”*!'®> When made in an
appropriate optical plane, these measurements incorporate the effect of all mechanical and
electronic instabilities in the STEM system, as well as the partial spatial coherence of the
electron emitter.'%

For aberration-corrected systems, the mathematical form of the incoherence function at high
spatial frequencies can become important for quantitative analysis and needs to be measured
in the absence of any other adjustable parameters.®>!% In systems corrected to higher angles,
i.e. with larger probe forming apertures, temporal incoherence becomes significant and may
also need to be measured and incorporated in quantitative analysis.'3’-1%

[H2] From Images to Atomic Positions

The materials information contained in the data of an atomic-resolution STEM image
can often be captured in a list of the positions, intensities, and shapes of the atomic
columns'®! and uncertainties in those quantities. The combination of positions and
intensities encodes crystallographic phase and orientation, the positions and crystallography of
interfaces and defects, and strain fields. Intensities can be used to count atoms in each column
along the beam direction'’>!°? and the intensities and column shapes can be used to determine
the presence and depth of impurities in a column.%!%3194

[H3] Classical approach

The classical method for determining atomic column parameters from atomically
resolved STEM images is to use a particle-finding approach, potentially informed by the
translation symmetry of the underlying lattice,!*> to find approximate positions for all the
columns in the image, then refine the parameters for each column by the least-square fitting of
its intensity I(x, y) to an assumed functional form for the microscope point spread
function.!>!°6197 These approaches assume that the atomic column position corresponds to a
specific form of intensity distribution, typically a local intensity maxima. This assumption has
greatest validity in the case of Z-contrast images but care must be taken to understand the
influence of dynamical scattering, which can shift intensity maxima in an image relative to the
actual position of the atomic column.'®® An example of a Z-contrast image of GaN [1120]
[110] is shown in Figure 3. Figure 3(a) shows the image with red dots marking the initial,
approximate positions of the Ga columns (the light N columns are not detected), determined
by fitting to a two-dimensional Gaussian:

I(x,y) =1y +Aexp [(2(1_—1c2)) ((x;_‘:‘o)z + (3’;_‘431’0)2 B (W))] @

Where /o is the local background intensity, 4 is peak intensity of the column, (xo, y0) is the
column position, xw and y» are the widths, and ¢ controls the rotation of the major and minor
axes of the fitted Gaussians, accounting for the slight variations in the atomic shape. Figure




3(b) shows the residual between the data and the fit, which is both small and random, indicating
a good fit in this case. Obtaining meaningful uncertainties in the fitting parameters requires
weighting the data by its uncertainty. The uncertainty in N detected electrons in a pixel is never
less than v/N and may be greater due to detector noise for example.

Equation (1) describes local fitting around each atomic column, so the procedure must be
repeated for every column in the image. If several atomic columns are close enough together
that their images overlap, simultaneous fitting to the sum of several 2D Gaussians may be
required for an “all at once” fitting of every column in the image,'®” which necessitates a more
complicated function for /o with additional fitting parameters. For a high SNR and low-
distortion data, which can be achieved by distortion correction and averaging, this fitting
procedure can result in sub-pm precision in locating atomic columns even if the columns are
~100 pm wide.'*> High-quality images also lead to high success rates for the initial approximate
column finding and reliable convergence for fitting. For SNRs and distortions more typical of
single STEM images, the achievable precision is closer to 15 pm'*® and initial column finding
and fitting convergence may require more manual operator tuning. Smoothing or image
denoising using methods such as Fourier filtering, total variational denoising, or non-local
algorithms such as block matching and 3D filtering?®® can improve atom finding, but as these
methods do not typically preserve image intensities, the fitting step should still be performed
on the original intensities. Classical fitting methods are therefore less suitable for single-shot
images and prohibitively time-consuming to apply to very large images or to a time series of
images.

[H3] Computer vision approach

Computer vision methods such as convolutional neural networks (CNNs) have recently
been used to identify atom column positions in STEM images.?’!?%*> CNNs mimic human
vision by identifying image features, which are patterns in intensity, rather than by numerically
comparing intensities to a model, for example by using least squares. CNNs must be trained on
pre-analyzed example images or on simulated data similar to the images that will be analyzed.
Training an entirely new deep CNN from scratch is a major undertaking and requires an
enormous volume of labeled examples. Fortunately, STEM simulations can be used to generate
computer-labeled example images without the human effort of locating the atom positions and
data augmentation can further increase the scope of the training data set.?0!-202204

Figure 3(c) and 3(d) show an example STEM image of graphene and the deep
convoluted neural network (DCNN)-derived atomic positions, respectively. Despite the low
quality of the single-shot image, the DCNN correctly identifies all the atom positions. In
general, DCNN atom identification is robust against both noise and distortion if those were
part of the training set, making it a powerful approach for single-shot images. The precision in
atomic column positions can exceed traditional methods.?**?* In addition, most of the
computational cost in using a DCNN lies in the training. Once trained, execution of the DCNN
is very fast, making analysis of large images**® and time series?"’ straightforward. Current atom
finding DCNNs do not generate the entire set of atom column parameters in Eq. (1) but the
DCNN-derived positions can serve as initial positions for fitting. It is not yet clear how to
quantify the domain of applicability for a particular DCNN given its training data, and therefore
successful application to images of, for example, unusual crystal structures or heavily distorted
atomic columns may require some retraining. Applications of DCNNs can go beyond simply
identifying atom positions to identifying clusters of atom positions characteristic of defects as
shown in Figgure 4(e) and 4(f)**.

[H3] Autoencoders



One way of denoising data while retaining small changes in the dataset is to use

exploratory data analyses based on autoencoders. An autoencoder consists of two neural
networks and learns a low-dimensional embedding of the data, called latent representation, in
an unsupervised manner?®®, In an autoencoder, the first encoder neural network compresses the
data into a small number of latent variables and the second decoder neural network tries to
reconstruct the original data from the latent code. In the process, the autoencoder learns the
optimal representation of high-dimensional data, such as images, while rejecting noise, which
makes it a great tool for both non-linear dimensionality reduction and image or spectrum
denoising. Latent spaces can often highlight regions where differences in spectra occur and
lead to additional scientific insights. The autoencoder concept can be extended towards
learning correlative relationships between structure in an image and property in spectral data
as has been demonstrated with the im2spec encoder-decoder models.?*
Finally, transformation-invariant variational autoencoders (VAE) build upon classical
autoencoders by making the reconstruction process probabilistic and incorporating prior
knowledge into the latent space structure?'®. Figure 4 shows the application of rotationally
invariant VAE to the analysis of graphene data.

Typically, a VAE is a directed latent-variable probabilistic graphical model that learns a
stochastic mapping between observations x with a complicated empirical distribution and latent
variables z whose distribution can be relatively simple.?!' A VAE consists of a generative
model as a decoder that reconstructs xi from a latent code zi, and an inference model as an
encoder whose role is to approximate a posterior of the generative model via amortized
variational inference’'?. Implementation-wise, both encoder and decoder models are
approximated by deep neural networks whose parameters are jointly learned by maximizing
the evidence lower boundary via a stochastic gradient descent with randomly drawn mini-
batches of data. VAEs can therefore build relationships between high-dimensional data sets
and a small number of latent variables in a way reminiscent of manifold learning.

One important aspect of the VAEs similar to many manifold learning methods is that the
variability of the behaviors in the latent space allows one to reveal relevant features of the
system behavior, equivalent to primary non-linear degrees of freedom. Another important
aspect of VAEs here is their parsimony—the training process generates the best short descriptors
representing the data. The primary limitation of the classical VAE approach is VAE sensitivity
to the details of experimental parameters; for example the presence of autoencoder networks
to parameterize atomic STEM data imposing a known structural relationship between latent
variables as an input for statistical analysis, including Bayesian inference and Gaussian process
regression.

[H2] Distortion Corrections

High-resolution STEM experiments are distinguished from conventional plane-wave
TEM experiments by the small dimensions of the converged electron probe, which is able to
reach sizes below atomic bond lengths with modern aberration-correction technology. The
small probe dimensions requires scanning the electron beam over the sample surface in order
to collect spatially resolved information in the detector plane, which leads to relatively long
experimental acquisition times on the scale of seconds per image for most experiments. Any
relative motion of the probe with respect to the sample during the acquisition time will
introduce artifacts that can be due to thermal sample motion, mechanical vibration, local fields
induced by charging or electronic instabilities of the electron beam.?!* In order to perform



precise measurements of atomic positions at the maximum instrument resolution, these residual
drift artifacts must be measured and removed from STEM experiments.!*

The most straightforward method for reducing errors due to sample motion is to simply record
an image series, align all the images, and take the mean value of each pixel.>!>2!® However,
this method does not efficiently make use of all available information since it does not attempt
to recover any information lost by distortions in the imaging system. A more advanced
correction method uses the STEM's ability to scan in any direction and rotate the orientation of
the scanning direction relative to the sample®!’ to measure linear sample drift due to thermal
motion and correct acquired images by applying an affine transformation.?'® This approach can
be extended to measure and correct local nonlinear or nonrigid distortions in acquired images
by using gradient descent.?!>?>! These correction approaches have also been applied to STEM-
EELS and 4D-STEM data.?****

Another family of methods for distortion correction makes use of information measured
from the sample itself. For example, if the crystalline lattice parameters of a material are
known, the linear drift can be removed from a single image.??* In atomic-resolution images, it
is also possible to directly track the measured position of atoms in a time series to estimate the
undistorted configuration,?>>-22

Finally, STEM is not restricted to recording square or rectangular scan patterns. A
variety of complex scan patterns have been proposed to produce a more uniform acceleration
of the electron beam. Some examples include spiral scans?*>***, randomized beam shifts?3!232,
blanking®*® and fractal Hilbert space-filling curves.”** More complex patterns can help
decouple the direction of motion of the sample from the movement of the beam, allowing for
more isotropic information transfer in all directions. We note however that all of the above-
mentioned methods only correct relative errors between images. Length measurements on an
absolute scale still require precise calibration.?*>

[H1] Applications

Advances in STEM over the last decade have allowed routine visualization of atomic
structure of solids and localization of atomic columns with sub-pm precision. Descriptors that
are strongly correlated with the functional properties of materials, such as atomic bond lengths
and angles, can now be measured at the single-atom level. For example, the bond length in
carbon compounds is directly linked to reactivity and bond strength. Similarly, bond length and
bond angle in perovskites are strongly correlated with metal-insulator and ferromagnetic-
antiferromagnetic transitions.?*¢->*® Traditionally, these descriptors have only been accessible
on a macroscopic level via X-ray and neutron scattering; advances in STEM naturally lead to
questions as to how it can be used to explore the local physics and chemistry of crystalline and
disordered solids. For example, one advantage of local imaging is the measurement of bond
lengths and bond angle variations within a material, for example at surfaces, interfaces and
defects, to map of strain fields via direct measurement of atomic column positions.
Correspondingly, multiple examples of strain mapping in the vicinity of second phase
inclusions, dislocations, and surfaces have been reported®**->*!, with the experimental structure
compared with the classical solid-state mechanics models®*? in many cases. In this section, we
show examples of the application of HAADF STEM imaging to several topical materials
science problems. While this work focusses on HAADF imaging, the STEM has many other
imaging modes that can be applied to materials science,>* but applications to biology are also

common.***



[H2] Mapping ferroelectric phenomena

The high spatial resolution of STEM makes it a perfect tool for exploring the physics
of materials with strong coupling between the order parameter and structural distortions.?*>-246
Seminal works using TEM?47:24824% and STEM?>° demonstrated that quantitative measurements
of atomic column positions can be used to map the polarization order parameter field. This
approach was rapidly extended to other physical functionalities strongly coupled to structure,
including octahedra tilting in perovskites in both the image plane®*'>} and the beam
direction®>* and chemical and physical strain fields?*>?3, Common to this approach is an a
priori postulated relationship between the observed contrast (for example atomic column
positions) and the physical descriptor (for example polarization).

The observation of the order parameter field and its evolution near surfaces and
interfaces opens a pathway to learn the mesoscopic physics of the systems, such that
mesoscopic models with a small number of free parameters can be matched to STEM
observations. For example, the correlation and interfacial terms in the Ginzburg-Landau free
energies can be extracted from order parameter profiles across domain walls and
interfaces®32°62%7  while analyses of ferroelectric vortex shapes can be used to derive the
numerical values of the flexoelectric tensor.?>® Recently, these approaches were extended into
the Bayesian domain to take into consideration any prior knowledge about the system and
evaluate changes in our understanding of material behavior given new experimental data.?’
Comparing experimental data to models can systematically address issues such as the
resolution and information limits required to observe specific physical phenomena and whether
prior knowledge of the system enable additional insights from the experimental data.

Although determining the atomic positions in an image to assess polarization in a
ferroelectric domain is a valid approach,? it is an indirect way of revealing a material’s
ferroelectric property. A more direct approach that maps polarization in ferroelectric materials
is based on differential phase contrast STEM, where an annular detector split into at least four
independent azimuthal segments is used to derive changes to the center of mass in the
diffraction pattern due to the in-plane component of the electrostatic field in the sample.** A
center of mass change is determined by calculating the intensities difference of two opposite
detector segments and is proportional to the electrostatic field in the specimen, which affects
the angular propagation of the beam while interacting with the ferroelectric specimen. This
approach has recently successfully mapped large polarization gradients across naturally formed
domains in a doped ferroelectric material.?! Although clear features due to ferroelectric
polarization can be observed at the atomic scale, the differential phase contrast image intensity
requires careful interpretation as the nanoscale field component due to the ferroelectric field is
superimposed on the electrostatic field of the atomic potentials.?®> As mentioned above, any
in-plane electrostatic field in the sample leads to a change of the center of mass in the
diffraction pattern formed behind the sample. The same is also true for magnetic fields, which
similarly affect the propagation of the electron beam. By carefully disentangling the
electrostatic contribution from its magnetic counterpart, differential phase contrast STEM can
also be used to measure magnetic properties of materials on the nanoscale,® similar to off-axis
electron holography?®® carried out in broad-beam TEM mode.

[H2] Grain boundaries and interfaces

STEM imaging is a valuable probe of the atomic structure at grain boundaries and
interfaces in crystalline materials. However, despite improvements in spatial resolution and
depth estimation®, it remains difficult to determine the 3D atomic structure of interfaces.
Computational methods such as DFT can be used to supplement STEM results to improve
structure determination,’**2% but extending such methods to simulating long-range behavior



across interfaces of practical size is not straightforward. While ML and materials informatics
have played a significant role in the development of crystal structure and material property
descriptors®®” to extend length scales and serve as a proxy for expensive calculations,?®%2¢?
reliable descriptors and data-driven modeling paradigms are lacking for interfacial systems.

To transform existing trial-and-error approaches,?’® high-throughput computation is
used together with energetic evaluation from atomistic modeling, STEM image simulations,
and computer vision-based image comparison in order to determine 3D atomic structures at
grain boundaries and interfaces.?”! For energetic modeling of practical interfaces, interatomic
potentials provide a computationally efficient alternative to electronic structure methods such
as DFT while often capturing the same essential physics. Interatomic potential structure search
schemes such as basin hopping and genetic algorithms sample a space of lowest energy
solutions and are often sufficient if the task is to find the most stable structures. This is
problematic if the system of interest contains possible metastable configurations, as is the case
with grain boundaries and interfaces, because these interatomic potentials will often work to
minimize energy regardless of whether the resultant structure is consistent with observations.
With suitable constraints at the boundaries, simulated annealing using empirical potentials has
been used to determine structural motifs during grain boundary migration in aluminum oxide
(Fig. 5a-c).?’? However, there is no guarantee that the computational structures obtained in the
simulated annealing simulations match the experimental structures and the process of matching
can be labor intensive. Therefore, it is desirable to have an additional constraint that involves
a measure of similarity between simulated and experimental STEM images to ensure that the
space of structures explored is somewhat consistent with observations.

For image comparisons, similarity measurements are functions or processes that
quantify how alike two images are. Some similarity measurements are direct pixel
measurements, where pixel values are explicitly considered when making a comparison. In the
simplest case, a direct-pixel measurement is a sum of the errors between pixel values or the
mean squared error. A more sophisticated method such as the structural similarity index
measure (SSIM)?”® processes collections of pixels as patches and provides similarity
measurements based on a multiplicative combination of intensity, contrast, and structure terms.
By normalizing image patches for intensity and contrast differences, SSIM reveals the structure
of the image signal. Finally, state-of-the art image comparison for image and video processing
applications are often based on a visual information fidelity in the pixel domain (VIFP).274275
The principle behind VIFP is that image quality (in our case similarity with respect to a
reference) corresponds to a measure of Shannon information fidelity loss between the reference
and distorted image relative to the information of the reference, using a combination of sub-
band-coding, distortion models, and models of the human visual system.

Figure 5d-g shows a HAADF-STEM image of a cadmium telluride grain boundary,?’
from which the corresponding 3D structures are obtained using high-throughput computation
with an iterative basin hopping scheme. The optimization objective combines the interfacial
energy obtained from the Stillinger-Weber interatomic potential with image similarity between
the simulated and experimental STEM image using SSIM image matching. Rather than a single
3D structure, a family of structures is obtained that can be further investigated using first
principles computation and statistical analysis. It can be seen that the 3D structures obtained
using this method are not composed of simple dislocation core models and cannot otherwise
be conjectured.

[H2] Chemistry
STEM is widely used to investigate interactions between atoms and atomically thin
supports owing to its sub-Angstrém resolution. In particular, HAADF-STEM can provide a



higher image intensity for heavy elements compared to lighter elements based on Z-contrast
imaging, where the signal intensity is proportional to the v-th power of the atomic number of
an element for / ~ 2. The exponent, v, ranges typically from 1.6 to 1.9 depending on the radius
of the atoms, their scattering factor, the surrounding atomic structure and the specimen
thickness 2827727

[H3] Heavy atoms on 2D substrates

HAADF-STEM enables the tracking of heavy metal atoms on monolayer 2D substrates,
shedding light on their diffusion, aggregation, and the physics of various atomic interactions.
For example, the atomic interactions between single platinum atoms and monolayer
molybdenum disulfide, a 2D substrate, have been extensively investigated, with the migration
of single platinum atoms on the surface of molybdenum disulfide well-tracked by sequential
imaging?®®. The atomic model of the hopping of platinum atoms between sulfur vacancy sites
is shown in Fig. 6a. All platinum atoms are on sulfur instead of molybdenum sites, confirming
the affinity of platinum atoms to sulfur vacancies on the clean molybdenum disulfide surface.
The trapping of platinum nanoclusters at dislocations in molybdenum disulfide has also been
studied.”! Fig 6b shows that upon annealing of a chloroplatinic acid precursor at 350 °C on an
in situ heating holder, seeds and clusters of platinum appear at the grain boundaries of
polycrystalline molybdenum sulfide. The platinum nanocrystals at the grain boundaries reveal
a tilt angle of 60° between the two grains, which is confirmed by fast Fourier transform, and
highlight the interactions between platinum dopants and grain boundaries of 2D materials. The
presence of hydrocarbon contamination on 2D substrates, commonly introduced during the
growth of 2D materials, has also been shown to play a significant role in the trapping and
stabilization of metal atoms and nanoclusters. For example, gold, iron and chromium atoms
primarily reside on the amorphous carbon contamination of graphene substrates?.

[H3] In situ heating

In situ heating in aberration-corrected STEM is a powerful tool for investigating the
epitaxial growth of nanocrystals on a 2D substrates. Upon heating of a precursor to 800 °C,
platinum atoms diffuse on the surface of molybdenum disulfide and grow into nanocrystals
(Fig. 6¢).283 The (111) plane of the platinum nanocrystal aligns along the zigzag direction of
molybdenum disulfide (Fig. 5d) while the (002) plane aligns with the armchair direction of the
substrate. The d spacing of the platinum nanocrystals (d = 2.28 A), obtained from a Fourier
transform analysis of the image of the platinum nanocrystal and a reference material, is
comparable to that of a bulk platinum crystal (d = 2.265 A), indicating little strain formed in
the crystals (Fig. 6e). In addition, strategies have been developed to control the morphologies
of metal nanoclusters forming on 2D materials. One example is a metal precursor incorporating
a bulky organic ligand around a metal to suppress the formation of 3D atom clusters on the 2D
support at elevated temperature and yield 2D clusters with flat surfaces and single metal atoms
after annealing.”®* Various reports where the epitaxial interactions between the metal
nanoclusters and the substrates are analyzed by STEM imaging include the growth of 2D
palladium diselenide nanocrystals on monolayer molybdenum disulfide?®>, monolayer lead
iodide nanodisks on graphene?®, a 2D molybdenum diselenide film on hexagonal boron
nitride?®” and pyrochlore Nd2Ir207 grown on yttria-stabilized zirconia®®®,

The van der Waals interactions between a flat aromatic molecule and the basal plane of
an underlying substrate has also been elucidated by STEM. In %, a planar aromatic molecule
containing platinum metal as a marker for tracking was designed. During deposition, the
molecules were found on the basal plane of the molybdenum disulfide near the edges of
nanopores owing to the strong van der Waals interactions between the aromatic core of the
molecule and the underlying molybdenum disulfide substrate. Molecule configurations were
hypothesized by measuring the distance between the platinum markers and the edges of



molybdenum disulfide pores in the STEM images. This heavy-metal tagging method presents
new opportunities for studying the interactions between tagged molecules and the underlying
2D substrates.

[H3] In situ reactions

Recently, STEM has contributed to elucidating chemical reaction mechanisms during
catalysis by directly imaging and tracking metal catalysts. For example, in the gold core of a
core-shell nanoparticle with a nickel phosphide shell, gold atoms have been shown to diffuse
into the nickel phosphide shell during annealing and cause an inward expansion of the
structure.?”® The direct visualization of transition metal catalysts has provided chemical insight
into the performance and mechanism of the hydrogen evolution reaction,”! hydrogenation,?*?
dehydrogenation,® and carbon monoxide oxidation?***>, STEM has also been used to
monitor the structural change of stimuli-responsive organic molecules.?*® When platinum atom
markers were incorporated in azobenzene photoswitches, the photo-irradiation of a flat trans
isomer of azobenzene caused it to switch to a bent cis structure and reduced the platinum-
platinum distance markers from ~2.1 nm to ~1.4 nm (Fig. 6f). Finally, the self-assembly of
mesoscale systems has been investigated by STEM using heavy metal marked
macromolecules. Platinum-marked porphyrin hexamers were imaged on graphene at a low
electron dose to minimize beam-induced damage?’ and shown to align along the graphene
zigzag direction owing to strong epitaxial interaction with the substrate even in the presence of
hydrocarbon contamination. In addition, the self-assembly and packing of non-planar, bowlike
macromolecules has been studied on graphene.?”® The W-marked calix[4]azoarene molecules
stacked in a head-to-tail fashion, forming molecular chains and lamellar structures at high
concentrations. In low concentration areas, various types of intermolecular interactions were
detected, such as side-by-side and head-to-head interactions.

When studying processes such as chemical reactions or the transformation of small
catalytic clusters whose properties strongly depend on the instantaneous atomic configuration,
temporal resolution of the imaging process becomes critical. As mentioned above, common
STEM acquisition speeds are in the range of seconds per frame. With a temporal resolution in
the range of seconds, important dynamics might be missed. However, advanced scan engines
allow for faster acquisition speeds. Recently, recording speeds in STEM mode exceeding 100
frames/s have been used to unravel structural transitions and the stability of small catalytic
clusters.?*” One major drawback of such high frame rates in STEM mode is increased noise in
the data because the electron dose is limited and needs to be balanced against the stability of
the sample under investigation. With dwell times in the range of 100 ns or less, only a few tens
of electrons transmit through the sample per scan position and fewer are eventually scattered
to the detector to form the noisy signal, which suffers from shot noise. Noisy image series
stemming from time-resolved data or from beam-sensitive samples, which do not tolerate a
high enough electron dose for achieving a suitable signal to noise ratio, can be processed with
classical, powerful denoising algorithms>® that are typically slow and require long processing
times. However, denoising of data is an area where ML can bring big benefits. Recently
implemented denoising algorithms based on DCNNs**! can process (both denoise and restore)
time-resolved image series in near real-time. A well-trained algorithm therefore enables
reliable restoration of atomic resolution data and paves the way for further increases of the
temporal resolution in STEM and further minimization of the electron dose for radiation-
sensitive materials.

[H2] Structure of solids from atoms up



In modern condensed matter physics and materials science, current understanding of
condensed matter and quantum systems hinges on macroscopic symmetry. Formalized via
point and space group theory,>”® symmetry underpins areas such as structural analysis and
serves as the basis for the descriptive formalism of quasiparticles and elementary excitations,
phase transitions, and mesoscopic order-parameter based descriptions. The natural counterpart
of symmetry-based descriptors is the concept of physical building blocks. Crystalline solids or
magnetic or ferroelectric behavior can generally be described via a combination of unit cells
with discrete translational symmetry of the lattice. Other systems such as Penrose structures
possess well-defined building blocks but do not possess long-range translational symmetry.
Finally, a broad range of materials fully lack translational symmetry, with examples ranging
from structural glasses to ferroelectric and magnetic morphotropic systems.>-!!. Typically,
symmetry-based descriptors have led to much deeper insights into the structure and
functionalities of materials with translational symmetries compared to partially and fully
disordered systems.?12-314

To date, the analysis of atomically-resolved imaging data has almost invariably been
based on mathematics developed for macroscopic scattering data’*-!3 despite the
fundamentally different nature of microscopic measurements. As a simple example, consider
an ideal crystal containing a macroscopic number of structural units. The symmetry of the
diffraction pattern represents the symmetry of the lattice and the width of the peaks in the
Fourier space is determined by intrinsic factors such as angular resolution of the measurement
system rather than disorder in the material. The presence of symmetry breaking distortions,
such as a cubic to tetragonal state transition, is instantly detectable via diffraction peak splitting.
In comparison, only a small part of the object is visible in microscopic observations. The
positions of the atoms are known only within an uncertainty interval and this uncertainty can
be comparable to the magnitude of the symmetry-breaking feature of interest, such as
tetragonality or polarization. Hence, two question arise: at which image size is it justified to
define symmetry from atomically-resolved data and at which level of confidence can symmetry
be defined? Ideally, such an approach should be applicable to structural data and more complex
multidimensional data sets such as EELS*!*-!6 and ptychographic imaging.>!%-3!7

The alternative to conventional top-down descriptors is a bottom-up structural analysis,
where unsupervised or semi-supervised ML methods are used to determine common structural
blocks and the patterns they form in a solid. For materials with an ideal crystalline lattice, the
conventional way to describe structures is in reference to the lattice. Fig. 7 shows a bottom-up
structural analysis for a ferroelectric material’!®. The experimental image (Fig 7a) can be
converted to a stack of sub-images describing either raw STEM contrast or a DCNN-based
segmented image and subsequent application of linear or non-linear dimensionality methods
yields the components and loading maps (Fig 7d). The component describes the salient
elements of materials structure, whereas the loading map describes the structure of the solid.

The analysis is considerably more complicated in cases where the system does not
possess discrete translational symmetry. When materials have atomic bond disorder, linear
dimensionality reduction methods do not perform well owing to the large number of
orientational variants necessitating alternative descriptors. If the atomic positions are
established, analyses can be based on the analysis of the nearest neighbors.>!*?! Alternatively,
the analysis can be performed using other rotationally invariant representations such as graph
networks.?*

Finally, bottom-up analysis can be performed via transformation-invariant variational
autoencoders (VAE).?!° Shown in Figure 3 is the application of rotationally invariant (r)VAE
to the analysis of graphene data. Here, the graphene lattice undergoes structural transformations
due to electron beam irradiation, which results in the formation of topological defects. The
rVAE is able to segment chemical space by separating the graphene lattice from topological



defects and grouping some of the topological defects together in the latent space. This was
achieved by explicitly separating the variation in orientations of individual building blocks
from the variation in structural content. The rVAE approach was also shown to enable effective
exploration of the chemical evolution of the system based on local structural changes®?* and
may be extended to more complex systems.>?* Importantly, the rVAE allows discovery of the
molecular building blocks and chemical reactions pathways in an unsupervised manner.

[H2] Physics of atomic interactions

Solids can be described based on generative models that give rise to the equivalent
stochastic atomic, dipole, or spin microstructure.’>® Generative models for systems with
defined atomic lattices and chemical site disorder are represented by lattice models such as
Ising,*? Kitaev,*”’ Heisenberg,>*® etc. For example, binary solid solutions can be fully
described via the corresponding Ising-like Hamiltonian that gives rise to statistically similar
microstructures, and this description is compact and generalizable to non-observed
concentrations and temperatures. S/TEM data yields the microstates of physical systems and
enables comparison between generative models and experimental observations. Direct
observation of the mesoscopic degrees of freedom can be directly compared to the lattice model
via statistical distance minimization.’2>3?%32° Beyond statistical analyses, observations of the
multiple metastable configurations have been used to reconstruct the force fields acting
between atoms.>**3! Learning the generative model from atomically-resolved data,
incorporating prior knowledge, and yielding corresponding uncertainties as posterior parameter
distributions is therefore a clear opportunity for characterizing the intrinsic properties of
material systems.

[H1] Reproducibility and data deposition

In this section, we summarize the requirements for data storage in STEM. In any
experiment, it is vitally important to include the important metadata allowing the experiment
to be reproduced. In a STEM study, the most important experimental parameters are the
accelerating voltage of the microscope, the convergence angle of the STEM probe (also called
the numerical aperture), the step size between adjacent probe positions, the dwell time, and at
least a rough estimate of the beam current in the initial STEM probe. Specific imaging
modalities require additional metadata. 2D images recorded using monolithic detectors require
a precise description of the detector response and detector coordinates, for example the angular
range for annular detectors or the position and rotation of detector quadrants in differential
phase contrast measurements, as well as the position and orientation of the diffraction pattern
relative to these coordinates. 3D datasets such as time series require the time stamp of each
frame, while tomography tilt series must specify the stage tilt angles for each time and
spectroscopic measurements such as EDS or EELS must specify the energy range and/or bin
width. Spectroscopic measurements should specify any other parameters needed to reproduce
the experiment, for example monochromation conditions of the beam if applied and the
collection angles of the spectrometer used.

In pixelated measurements of the probe such as in 4D-STEM, one must specify the
calibrated output pixel size or provide absolute reference data and the rotation and/or direction
of the probe scan steps relative to the detector coordinates. In 4D-STEM, it is also useful to
record an image of the STEM probe passing only through vacuum, which can be used a probe
reference image for ptychography, orientation, or strain mapping.



Other microscope parameters such as the voltage settings of the source, focusing optics,
corrector optics, projector system, the vacuum levels of the microscope, hardware models, and
software version numbers can also be recorded as a matter of course. Detailed notes regarding
the sample including the preparation, geometry, and beam exposure conditions should also be
recorded. In STEM studies it is particularly easy to record data at vastly different
magnifications, making the task of generating survey images of the sample layout
straightforward. Of particular importance in most STEM experiments is the sample tilt used
for each measurement; one of the strengths of STEM imaging is combining observations at
different orientations to construct a more complete picture of the specimen.

While new technologies have led to dramatic improvements in data quality, they have
introduced a parallel development which we think is even more important in the long run; the
digitization of TEM and STEM studies. Because STEM imaging experiments typically use
large monolithic detectors that directly output electronic signals, they provided many early
examples of the benefits of running experiments online, where a local computer is used to drive
the experiment, record and analyze the data, or both (see Fig 1).>%-*% The benefits granted by
recording scientific data digitally are numerous. First, performing quantitative analysis is much
easier on far larger scales using computational tools and methods. Some recent experiments
only made possible by combining computational methods with STEM experiments include pm-
precision measurements of atomic column positions,'*> atomic resolution 3D tomography>*°
and imaging past the conventional information limit with ptychography.’!” The next step along
these lines is to further close the loop between experiment and online analysis and perform
data-driven STEM experiments.>3”-33# Secondly, digital data can be shared easily with the wider
scientific community, both in raw formats and after processing for further analysis, provided
data transfer pipelines for big data are available. It has also become standard practice for many
scientific journals to require authors to provide open access to data.’*° In parallel, the “open
science" movement aims to increase transparency, efficiency, and reproducibility in scientific
research.**%3! Reproducibility is a major concern for all scientific disciplines including
STEM?#?; researchers should make their data available in open source file formats such as
ASCII, CSV, or hdf5 with all of the information required to understand and reproduce the
results at the time of publication.

Data deposition can be performed using various online services such as the Materials
Data Facility.>** However, these services do not prescribe what metadata is required or any
specific data formats and are therefore typically less useful than online databanks that target
specific classes of data. The largest example in materials science is the Materials Project, which
stores various calculated parameters for a large number of materials.>** In biological electron
microscopy, there are several examples of large databases that aid in transparency and
reproducibility, including the Electron Microscopy Public Image Archive** and the Protein
Data Bank.**¢ Recently, a similar repository for atomic-resolution 3D structures for materials
science applications called the Materials Data Bank*’ has also been established. There are a
few examples of repositories of experimental or simulated STEM datasets such as in Ref
['33%8]. There is currently, however, no repository that is both open-ended to support all kinds
of STEM experiments while being specific enough to requires submission of all metadata and
data required to reproduce published results. There is a strong need to develop this
infrastructure for STEM research, 338349350

[H1] Limitations and Optimizations
The remarkable progress in high-resolution STEM imaging and spectroscopies over the
last decades is based upon essentially unchanged instrument operation. The typical operation



of the microscope starts with stabilization tuning and focusing of the microscope, a process
that can take minutes to hours and hinges upon predefined tuning routines and operator
intuition. The operator then chooses the regions of interest on the sample and performs imaging
and spectroscopy. The scanning process almost invariably uses a rectangular scanning pattern
with beam rastering in a zig-zag shape. The process is well-recognized and accepted in the
microcopy community but is often opaque to the general scientific community.

The development of ML and artificial intelligence methods over the past ten years has
naturally led to the concept of automated and autonomous experiments in STEM and other
microscopies, which typically includes the concept of a microscope that automatically chooses
optimal imaging parameters, identifies the regions of interest on the sample, and performs the
required measurements. In addition, the ability of STEM to potentially control beam-induced
changes means it can be used as an atomic fabrication platform, which has been demonstrated
by the creation of individual vacancies,>*!**? the insertion of dopant atoms,?® the directed
motion of atomic units,?**>* and the assembly of homo- and heteroatomic molecules®>*3%.
Below we touch on the requirements to enable the synergy between STEM and ML methods.

[H2] Beam control and image reconstruction

The central premise for automated experiments is the ability to alter the probe path via
external control, together with scanning along non-rectangular beam paths. While fairly
straightforward, altering the probe raster path requires access to the microscope scan functions,
which is fairly uncommon for high-resolution STEMs that often possess black-box
manufacturer-developed controls. Scanning the beam using predefined non-rectangular paths
such as spirals?**?3? has, however, been demonstrated.

The reconstruction of images from the data acquired along non-rectangular beam paths
is another issue, which has been addressed using several approaches based on compressed
sensing and a Gaussian process>*¥%3%% or reconstructive autoencoders and VAEs. The
compressed sensing and Gaussian process methods are generally interpolated between the
acquired data points during the experiment and do not have inferential biases or prior
information. Gaussian process methods also allow quantification of uncertainty maps and
enable automated experiment workflows based on exploration or exploitation. In contrast, the
VAE approach utilizes prior knowledge in the form of a trained network, which strongly
increases the efficiency of this approach but makes it sensitive to out of distribution data.

[H2] Automation and image-based feedback

Arbitrary scan paths provide a necessary engineering element for the development of
automated experiment workflows. Another key element is the identification of objects of
interest in the image plane, which depends on sensitivity to small variations in imaging
conditions. For example, some of the early demonstrations of image-based feedback in STEM
include detection of material crystallinity from the magnitude of the peak in the line-by-line
fast Fourier transform of the image.*® The broad introduction of deep learning image
recognition networks offers another approach to automate experiments. However, despite
significant and justified enthusiasm about potential of DCNNs in image analysis, these
technologies are associated with strong inference biases. This implies that DCNNs will be
sensitive to past data and generally sensitive to small changes in microscope parameters. A
common challenge for pre-trained DCNNs comes from the distribution shift**3¢! when a
neural network trained on one set of parameters (such as acquisition parameters, sample
condition, etc.) fails to generalize to parameters outside of the training range. For spectroscopic
experiments that aim to identify regions of sample where a particular behavior/functionality is



maximized (or minimized), one solution is the deep kernel learning approach®? that actively
learns a correlative relationship between structural data and functionality of interest and uses
it to navigate the spectroscopic measurements.?* Finally, target autoencoders are set by human
operators and rapidly-emerging techniques such as curiosity-based learning offer an
automation solution. In general, the likely pathways for adoption of autoencoders in STEM are
high-level decisions at the human time scale with ML making fast low-level decisions.

[H2] Atomic fabrication

Electron beams can induce changes in the structure of materials from amorphization to
complete evaporation. Correspondingly, minimization of beam damage has been a primary
driver in electron microscopy development, with its breakthrough achieved with the invention
and rapid adoption of aberration correction, which enables high-resolution low-voltage
imaging below many material’s knock-on damage thresholds. In this regime, beam damage can
often be sufficiently slow and associated with reconstruction of the chemical bond network
rather than its complete destruction. Phenomena such as beam-induced phase
transformations,*®* vacancy ordering,****%> and crystallization and amorphization,***37° have
been reported. In monolayers®’! of graphene and layered dichalcogenides, STEM studies have
demonstrated the presence of a broad spectrum of chemical transformations including vacancy
formation,*! grain boundary motion,*’? fast beam-induced motion of dopant atoms, and the
dynamic motion of molecular groups.’’® Observing such precise dynamic changes under the
action of a 50-100 kV electron beam is highly surprising and the mechanisms responsible for
the observed phenomena are still actively discussed.’’#37 377378 However, irrespective of the
exact mechanisms, these observations clearly suggest the potential of using the electron beam
for direct atomic fabrication. In bulk materials, beam-induced crystallization of silicon and
strontium titanate was harnessed using image-based feedback.?”® Recently, the direct formation
of vacancies and site-specific dopants, directed motion of silicon adatoms on graphene, and
assembly of homo- and heteroatomic molecules have been demonstrated.’® However, the
atomic fabrication process to date has been driven by a human operator, typically at the time
scale of minutes and tens of minutes for a single operation.

The simple examination of intrinsic latencies of STEM suggests that electron beam
assembly can be accelerated by many orders of magnitude but necessitates the seamless
combination of image recognition on potentially noisy and out of distribution data to identify
the objects of interest together with reinforcement learning or similar methods.**® Compared to
well-popularized examples using reinforcement learning such as Atari or Go games, the rules
that control electron beam transformations are unknown. Hence, we need either determination
of these rules or algorithms that can base reinforcement learning on observations only such as
muZero®®!,

[H1] Outlook

In this Primer, we hope to have illustrated the tremendous potential of deep learning for
post-acquisition analysis, physics extraction from data, and especially automated and
autonomous experiment. Fully realizing this potential necessitates significant developments on
multiple levels, from instrumental platforms to common workflows, shared data and codes.
These developments also necessitate progress in ML methods, which will be common to many
other areas of physics.

On the instrument level, realizing the full potential of ML methods requires enabling
open software architecture to control microscope operation and allow for custom experiments.



General software platforms for such development are well-established and exemplified by
industry standards such as LabView. In recent years, some of the microscope manufacturers
have provided open software for microscope operation such as Nion Swift and JEOL PyJem.
Complementary to open software architectures will be the development of local computing
capabilities to provide the computational power necessary to run complex calculations at the
latencies of microscope operation. It should be noted that rapid progress in computational
infrastructure now offers multiple opportunities for these developments, from extremely light
computational platforms such as RaspberryPi and NVIDIA Jetson series to DGX and cluster
solutions.

On the facility level, progress necessitates the development of universal yet flexible
analysis workflows on sample preparation, imaging, and data analytics. This allows
reproducible and traceable measurements and also serves as a necessary condition for transition
to automated and autonomous experiments. Complementary to this are data repositories for
storage of data, metadata providing context for the measurements and data meaning, and codes
used in the original analysis. Examples of such workflow developments are given by cryo-EM
imaging of biological systems.’®? It should be noted that historically, developments of
workflows do not exclude the human operator from the research process. Rather these
workflows allow delegation of the low-level, low-latency operations to automated systems so
that a human operator can focus on high-level decision making.

On the STEM community level, there is a clear imperative for community-wide
development and sharing of data analysis and, when possible, instrument control codes.
Platforms such as GitHub that enable effective distributed code development are now
mainstream and we hope to see the development of a code-sharing culture and credit within
the community, from home institutions and from sponsor agencies. Equally important is data
sharing, both within the STEM community and as a bridge to the broader physics community.

Finally, the most serendipitous developments are possible at the interface between
STEM and the general scientific community. STEM offers a treasure trove of precise data on
atomic position and functionalities linked to deep electronic levels, the Fermi level, and
collective excitations. Extracting accurate physical information from this data and linking it to
materials physics will revolutionize our understanding of condensed matter physics and
chemistry on the atomic level. This will necessitate matching developments in ML, including
physics-based ML, deep kernel learning, and active learning methods. Special sets of
opportunities and requirements emerge in the context of autonomous experimentation,
necessitating engineering controls, development and deployment of Bayesian optimization and
reinforcement learning algorithms and their seamless integration into STEM workflows. These
can enable automated tuning of the microscope, search and exploration of regions of specific
interest, and ultimately atomic fabrication. To close this primer, we bring forth a quote from
Feynman — “What I cannot make, I cannot understand.” With imaging, quantification, and
fabrication capabilities enabled by the synergy of the experimental method with ML, STEM
holds the promise for true understanding of the atomic world.



Figures captions

Figure 1. STEM as a quantitative tool. a) schematic of a STEM microscope with different
detector configurations. In STEM, the probe is an image of the source focused onto the sample,
which is scanned across the specimen. Here we show the source at the bottom of the column
which is typical of VG and Nion microscopes, but most manufacturers place the source at the
top of the column. The detector plane is in diffraction space, and multiple detectors or a
pixelated detector can be used as in 4D STEM. b) Adoption of ML methods will allow a
transition from qualitative imaging of materials where only features of interest are extracted
toward a more quantitative tool yielding information on the structural and electronic
phenomena, collective excitations and their dispersions, and magnetic and spin effects. In-line
ML methods further open pathways toward automated tuning and image optimization,
automated exploration and discovery, and electron beam modification and atom by atom
assembly.

Figure 2. Angle-dependent STEM-EELS, 4D-STEM and beam engineering. a) Schematic
representation of one of the possible scattering geometries used in angle-dependent STEM-
EELS experiments’®. In this setup, the angular resolution is achieved by displacing the EELS
spectrometer entrance (collection) aperture (schematically represented by the small
overlapping red disks in the figure) along a vector ¢ " relative to the optical axis. This relative
shift is experimentally achieved by projecting the center of the spectrometer entrance aperture
of the bright field disc (BF disk) using the microscope post specimen electronics. The
aperture is shifted at increasingly higher values of momentum ¢, represented by the the
resultant scattered wave vector g = ki—ko, where ko and k1, are the incident and scattered
vectors, respectively. In this representation the optical axis lies along the incident vector ko in
the figure. The momentum resolution Aq is dependent on the beam convergence semi angle
a and spectrometer collection angle B; larger beam convergence angles result in broad,
overlapping diffraction discs, liming the g-space resolution of the spectral data. b) In 4D-
STEM, simultaneous recordings of a STEM image and a 2D diffraction pattern for each
probe position yields a highly redundant 4D dataset containing rich sample information. c-f.
Examples of uses of structured illumination and detection in STEM. (c) Vortex beams can be
used to probe magnetism, here a large quanta of Orbital angular momentum can probe
vertical magnetic field (Reprinted from ['??]), (d) Matched illumination and detector
interferometry (MIDI)-STEM can be used to probe light material through linear contrast
(Reprinted from [1?°] ),. (e) Gaussian probe can be used to simplify the electron probe
propagation in crystals Reprinted figure with permission from Rotunno et al. Phys. Rev. Appl.
Electron-Beam Shaping in the Transmission Electron Microscope: Control of Electron-Beam
Propagation Along Atomic Columns 11, 044072 (2019) Copyright (2019) by the American
Physical Society [''7](f) Scanning a Bessel probe can be used for nano-diffraction and strain
analysis Reprinted from G. Guzzinati et al. Appl. Phys. Lett. 114, 243501 (2019) with the
permission of AIP Publishing ['*'].

Figure 3: Identifying positions of atoms and atomic columns from STEM images. (A) High
quality HAADF-STEM image after distortion correction and averaging with refined atom
positions marked by red dots. (B) Residual between image intensity in red box in (A) and best-
fit Gaussian. (C) Lower-quality, single-shot ADF-STEM image of graphene. (D) Atomic
positions determined using CNN. (E, F) Localization of point defects from noisy STEM data
in graphene by applying a simple graph analysis to the output of a DCNN (green: Si, red: C)
(A) and (B) adapted from Ref. ['?]. (C) and (D) adapted from Ref. [***]. (E) and (F) adapted
from [2%]



Figure Application of VAE to graphene. 4. (a) Simplified schematic of VAE. The encoder
(inference) network compresses input image data into a small number of latent variables. By
default, the first three latent variables are designed to absorb rotations and translations of
structures in the input images. Remaining latent variables aim at disentangling variations in the
structure itself. (b) Encoded angle and (c) one of the latent variables for each atom in a snapshot
(single STEM frame) of graphene undergoing structural transformations under e-beam
irradiation. (d) Latent space manifold learned by VAE from data in unsupervised fashion.

Figure 5. HAADF imaging of grain boundaries. (a-c) HAADF STEM images of grain
boundary migration in Al2Os, overlaid with structural models from simulated annealing,
adapted from Ref [*’?]. (d-g) Reconstruction of three-dimensional atomistic structure of a
CdSeo.25Teo.7s grain boundary.?’® (d) the experimental image, (e) the DFT optimized structure
based on the experimental image, (f) a convolution image based on (e) and (g) the overlay of

(d) and ().

Figure 6. STEM examples in chemistry. (a) Schematic of single atom platinum migration on
molybdenum disulfide 2D surface.?®® (b) High-magnification ADF-STEM image showing
deposition of platinum nanocrystals on a grain boundary. Inset is fast Fourier transform of (b),
in which one set of reflections is observed®®!. (c) Image of a region containing many platinum
nanocrystals epitaxially grown a 2D surface®®. (d) Magnified ADF-STEM image of yellow
box in (c) showing platinum nanocrystal attached to the edge of molybdenum disulfide. (e)
Fast Fourier transform analysis of (d) where reflections from platinum and molybdenum
disulfide are labeled as white and yellow/green, respectively. (f) Structural change of photo-
switches.?”® Schematic of isomerization of azobenzene derivative (left) and ADF-STEM image
showing change of platinum marker distances (right).

Figure 7. Bottom-up structural analysis for a ferroelectric material (a) Experimental
STEM image of La-doped BiFeOs. (b) Local descriptors (sub-images) of different sizes
centered on atoms from one of the sub-lattices extracted from CNN output. (c) Scree plot for
principle component analysis (PCA) performed on the full stack of extracted descriptors
(subimages) showing explained variance as a function of number of PCA components for
different sized sub-images. (d) PCA decomposition of local descriptors into four components.
PCA eigenmodes (associated with distortions) and corresponding loading maps (showing
where distortion occurred in image) are shown in top and bottom rows of (d), respectively

Boxes

Box 1: Common machine learning approaches.

Convolutional neural networks: A deep neural network with an input layer, hidden layers,
and an output layer. Usually used for 2D image, they allow a computer to classify and
discover patterns in an input image.

Bayesian optimisation: A method for finding the global minimum of a function that
expensive to evaluate and for which the gradient is unknown.

Reinforcement learning: A machine learning method where an agent uses trial and error to
learn from it previous actions. The reward function is supplied by the programmer.



Manifold learning: A method that transforms high dimensional data to a lower dimensional
space.

Curiosity-based learning: A reinforcement learning method where the agent builds its own
reward function.

Deep kernel learning: A method combining neural networks with uncertainty estimates using
Gaussian processes.
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Glossary

Aberration: imperfection usually referring to the electron optics of the microscope.
Coherent imaging: Measurements where the local contrast is dominated by the phase-
alignment of the electron wavefronts; constructive interference (in phase) leads to higher
signals and destructive inference (out of phase) leads to lower signals.

Incoherent imaging: When the coherence length of the electron waves are smaller than the
resolution element of the measurement, the total signal is given incoherently by the sum of
individual electron wavefunction intensities, and the relative phase of these wavefronts does
not affect the measured intensity.

Contrast: spatial variation of intensity

Z-contrast imaging: STEM-HAADF imaging method, where the image contrast scales
roughly monotonically with the atomic number Z of the atom(s) being imaged, approximately
as Z17.

Ptychography: A method of generating images from many coherent diffraction patterns
formed at different probe positions in the STEM. It is also widely practiced in X-ray
scattering experiments.

tilt series tomography: By tilting the specimen and recording projected images at different
angles, computer algorithms can be used to reconstruct the 3D sample structure.
transmission modes: Imaging modes in electron microscopy where the electron beam passes
through the specimen.

differential phase contrast: A method that measures the change in the convergent beam
diffraction pattern as a function of probe position either using segmented or pixilated
detector. These changes can be related to the local change in the sample’s potential and
corresponding fields.

Phonons: A quantized collective vibration of atoms in a crystalline sample, which can be
excited by the electron beam and characterized by STEM-EELS or diffraction measurements.
plasmons: A quantized collective oscillation of electrons relative to the fixed ions in a
sample, which can be excited by the electron beam and characterized by STEM-EELS.
core-loss edges: Excitation of inner shell electrons (ionization) by the electron beam, where
the energy loss can be probed by STEM-EELS for features referred to as “edges.”
dynamical scattering: A term commonly used in electron microscopy to describe the multiple
scattering of the incident electron probe as it propagates through the specimen.

electron optical elements: Electromagnetic lenses used to focus or otherwise shape the
electron beam.

electron holography: A technique for viewing the phase of the exit surface wave function
using the interference of a scattered and unscattered electron beam.

azimuthal phase gradient: A wavefunction where the phase is a linearly proportional to the
angle in polar coordinates, and the total phase shift is an integer multiple of 2 \pi for each
revolution (see OAM).

orbital angular momentum: Orbital Angular Momentum are quanta given by the number of
multiples of 2 \pi in the phase of an electron beam, per angular revolution in polar
coordinates. (see Azimuthal Phase Gradient).

electron energy loss near edge structure: The intensity variation of the EELS signal as a
function of energy loss near the onset of the core-loss signal.

L3 ratio: The ratio of the L3 to L2 peaks formed by the transition of the 2p3/2 and 2p1.
electrons to empty states.

Latent variables: A variable that is not directly observable, often obtained using VAEs.
Latent spaces: A vector space spanned by the latent variables.

Evidence lower boundary: The lower bound of the probability of observing a particular result
for a given model.



Dark count rate D: D is the mean value of a STEM image acquired with the beam blanked
preferably near the gun by, for example, closing the gun vacuum valve.

Gain G: Adjustment to ensure the measured signal covers the optimal range of the amplifier.
Faraday cup: A conductive cup which can capture charged free particles, which can estimate
electron beam current by integrating the recorded signal.

Residual: The difference between the fitted image and the experimental image after atom
location.

Penrose structures: local structural units which, when displaced and rotated, can fully tile
space, but do not have periodic translational symmetry. Such atomic structures can be found
in quasicrystals.

Electron beam irradiation: when an electron beam induces changes in a specimen due to
energy transfer, often called beam damage.

Dwell time: the time period of the data collection in each pixel

Inferential biases:

Exploration: uncertainty minimization

Exploitation: balancing exploration and pursuing target functionalities

Out of distribution data: when observational conditions change between experiments and
preclude a direct comparison between experiments.

Distribution shift: in machine learning, when training and test sets do not come from the same
distribution.

knock-on damage thresholds: The energy of the incident electron required to remove an atom
from the crystal lattice.
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