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ABSTRACT

This paper proposes a novel optimization framework in passive control techniques to reduce noise pollution. The

geometries of the structures are represented by Catmull-Clark subdivision surfaces, which are able to build gap-free

Computer-Aided Design models and meanwhile tackle the extraordinary points that are commonly encountered

in geometric modelling. The acoustic fields are simulated using the isogeometric boundary element method, and a

density-based topology optimization is conducted to optimize distribution of sound-absorbing materials adhered

to structural surfaces. The approach enables one to perform acoustic optimization from Computer-Aided Design

models directly without needingmeshing and volume parameterization, thereby avoiding the geometric errors and

time-consuming preprocessing steps in conventional simulation and optimization methods. The effectiveness of

the present method is demonstrated by three dimensional numerical examples.
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1 Introduction

Installing sound-absorbing materials on structures is considered as an effective passive control

technique to reduce noise level [1–3]. Considering the increase in weight and cost, the full coverage

of absorption materials is impractical. Under the volume constraint, the materials should be

distributed reasonably to attain a satisfactory soundproofing effect. As a pace-setting technique,

topology optimization serves as an effective tool to solve this engineering problem [4–6]. Topology

optimization is a mathematical method that optimizes material distribution for particular objective

functions and constraints. In topology optimization, the design is improved iteratively until it

converges to an optimal solution. The first application of topology optimization in acoustics is

traced back to the research of Dhring et al. [6], in which outdoor sound barriers were optimized

and remarkable noise reduction was achieved.

As a versatile numerical technique, the finite element method (FEM) is widely used in topol-

ogy optimization. For acoustic problems, the boundary element method (BEM) is also commonly

used for its advantages in dealing with unbounded domain problems [7–12]. However, FEM

or BEM relies on a preprocessing step that converts the structural geometries into polygonal

meshes, which is time-consuming and results in geometric errors. The isogeometric boundary

element method (IGABEM) has recently emerged as a competitive alternative to the conventional

numerical methods. The core concept of the IGABEM is to employ basis functions used in

Computer-Aided Design (CAD) for geometric modeling to solve boundary integral equation that

are transformed from the partial differential equations. As such, IGABEM enables numerical

simulation to be conducted from CAD directly which avoids the cumbersome meshing pro-

cedure and retains geometric accuracy [13–15]. Unlike isogeometric finite element analysis, a

volume parameterization is not needed in IGABEM, because both BEM and CAD are boundary-

represented. IGABEM has been successfully applied in linear elasticity [16,17], acoustic analysis

[18,19], structural optimization [20–23], etc.

Subdivision surface modeling is an important CAD technique to represent the complex sur-

face geometries of structures [24–26]. Compared to Non-Uniform Rational B-splines (NURBS),

the main merit of subdivision surfaces lies in its ability of constructing gap-free models which are

a prerequisite for the numerical analysis. Apart from that, subdivision surfaces are able to tackle

extraordinary points at which the curvatures are not bounded. Although many different schemes

have been proposed in the category of subdivision surface modeling since its inception [27–30], its

first version, the Catmull-Clark subdivision surface [31–33], is still gaining popularity in practice

and is being applied to a large variety of engineering problems [34–37]. This may be attributed to

its simplicity, generality, and well-established ecosystem. Although the Catmull-Clark subdivision

surfaces have been successfully incorporated into IGABEM for numerical simulation [15,38], to

the best of our knowledge, no study has been reported on topology optimization thus far.

This study aims to fill this research gap. We propose a topology optimization procedure to

design the distribution of sound-absorbing materials, in which the Catmull-Clark subdivision sur-

face is adopted to construct geometric models and its basis functions are used to simulate acoustic

fields. The objective is to minimize the noise level subject to the volume constraints of absorption

materials. As an extension of our previous work [39] where the Loop subdivision surface was used

in IGABEM for topology optimization, the incorporation of Catmull-Clark subdivision surfaces

into the acoustic topology optimization procedure enables us to use quadrilateral meshes and thus

enhances our capability of geometric modeling. The main strength of the present method arises

from its capability of seamlessly integrating numerical analysis and CAD models for complex

geometries, which enhances the efficiency and accuracy of topology optimization.
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The remainder of this paper is organized as follows. In Section 2, the fundamentals of

Catmull-Clark subdivision surface modelling are briefly reviewed for completeness. Section 3

introduces the IGABEM formulation in acoustic analysis that takes into account impedance

boundary conditions related to the acoustical effects of absorbing materials. Section 4 formu-

lates the density-based acoustic topology optimization method in which the interpolation scheme

of absorption material impedance and the sensitivity analysis with adjoint variable method are

highlighted. Section 5 provides numerical examples to verify the correctness and efficiency of the

proposed approach, followed by the conclusions in Section 6.

2 Catmull-Clark Subdivision Surfaces

The first step for a designer to build geometries with Catmull-Clark subdivision surfaces is

to construct a control grid, which is a polygon mesh with quadrilateral elements whose vertices

are called control points. Subsequently, the control grid is subdivided, new control points are

introduced, and the positions of the existing control points are updated in Fig. 1. The control

grid can be subdivided repeatedly, and the subdivision process from the subdivision level k to the

level k+ 1 follows the following rule in Fig. 2.

After first subdivision

(a) (b)

Figure 1: Catmull-Clark subdivision algorithm for surfaces. The black points indicate the control

points before the subdivision, and the red points indicate the control points after the subdivision.

(a) Initial control mesh (b) One-level refined mesh

• E-vertex: Let the two vertices of the inner edge be xk1 and xk4, and the vertices of the two

faces sharing this edge be xk2, x
k
3, x

k
5 and xk6, respectively. Subsequently, the new edge point

xk+1 generated by this inner edge is

xk+1 =
3

8
(xk1 + xk4)+

1

16
(xk2 + xk3 + xk5 + xk6) (1)

• F-vertex: If the vertices on each face are xk1, x
k
2, x

k
3 and xk4, then the new face point xk+1

generated by the face is

xk+1 =
1

4
(xk1 + xk2 + xk3 + xk4) (2)

• V-vertex: For an internal vertex xk, we denote its one-neighbor vertices by xki (i =

1, 2, . . . , 2v), in which the vertices with odd subscripts are directly connected to xk, and
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the ones with even subscripts are on the diagonal line of the quadrilateral element.

Correspondingly, the updated position of vertex xk+1 is

xk+1 =
α

v

v
∑

i=1

xk2i−1+
β

v

v
∑

i=1

xk2i+ γxkiv (3)

where α = 3
2v
, β = 1

4v
, γ = 1−α−β.

Figure 2: Topology scheme of a Catmull-Clark subdivision surface. The green circle represents the

E-vertex inserted at the middle of an edge, the purple circle is the F-vertex inserted at the middle

of an element, and the red circle represents the V-vertex formed by the transfer of a vertex in a

parent element

After the control points of the subdivided control grid are determined, a smooth surface can

be constructed through a linear combination of control points and basis functions:

x(ξ ,η)=

ni
∑

i=1

Bi(ξ ,η)xi (4)

where ni is the number of basis functions, (ξ ,η) ∈ [0, 1]2 is the parametric element, and B(ξ ,η)

denotes the basis functions that are expressed by

Bi(ξ ,η)=Ni%4(ξ)Ni/4(η) (5)

where the symbols % and / represent the remainder and division, respectively. The function Ni(ξ)

represents the cubic uniform B-spline basis functions, i.e., N1(ξ)= (1− 3ξ + 3ξ2+ ξ3)/6, N2(ξ)=

(4− 6ξ2+ 3ξ3)/6, N3(ξ)= (1+ 3ξ + 3ξ2− 3ξ3)/6, N4(ξ)= (ξ3)/6.
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Fig. 3 shows an example of a werewolf generated by Catmull-Clark subdivision surfaces. The

second row of the figure represents the head, hands, and feet of the werewolf model after it

is subdivided once. The example shows that the subdivision surface method is highly adaptable

to complex geometry and capable of constructing smooth surfaces. It is noted that the the final

smooth geometries are the same regardless of the subdivision times of the control grid.

Figure 3: A werewolf model generated from Catmull-Clark subdivision surfaces. The number of

elements in the initial model was 3444, which increases to 13776 after subdivision once

3 Acoustic Simulation Using IGABEM

Numerical simulation using the IGABEM can be used to compute the objective function and

evaluate the design performance at each iterative step in the topology optimization process. The

acoustic field is governed by the Helmholtz equation in domain � ∈R
3:

∇2p(x)+ k2p(x)= 0, ∀x ∈� (6)

where ∇2 is the Laplace operator, p(x) is the sound pressure, k=ω/c is the wave number with ω

being the circular frequency and c the wave velocity. By transforming and infinitely approaching

point x in the domain towards the boundary and using Green’s second theorem, the boundary

integral equation at point x is obtained

1

2
p(x)+

∫

Ŵ

∂G(x,y)

∂n(y)
p(y)dŴ(y)=

∫

Ŵ

G(x,y)q(y)dŴ(y)+ pinc(x) (7)

where x and y denote the source point and field point, respectively, n(y) is the outer normal

vector at the source point y, Ŵ denotes the structural surface, and q(y) = ∂p(y)/∂n(y) is acoustic

flux. By denoting pinc as the incident acoustic pressure and psc as scattered acoustic pressure, the

total acoustic pressure p(x) is written as p(x) = pinc + psc. The Green’s function G(x,y) and its

normalized derivative can be expressed as
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G(x,y)=
eikr

4πr
(8)

∂G(x,y)

∂n(y)
=−

eikr

4πr2
(1− ikr)

∂r

∂n(y)
(9)

where i is the imaginary unit and r= |x− y| represents the distance between the source and field

points. G(x,y) and
∂G(x,y)
∂n(y)

are also called kernel functions or fundamental solutions. To charac-

terize the sound-absorption properties of adhesive sound-absorption materials on the structural

surface, the impedance boundary condition is introduced

q(y)=
∂p(y)

∂n(y)
= ikβ(y)p(y) (10)

where β(y) denotes the normalized acoustic admittance at field point y.

The conventional boundary condition may yield fictitious eigen-frequencies. This problem can

be resolved by Burton-Miller method [40–45], which is a linear combination of conventional

boundary integral equation (Eq. (7)) and its normal derivative. Taking into account the impedance

boundary condition, the Burton-Miller method can be formulated as

1

2
p(x)+

∫

Ŵ

∂G(x,y)

∂n(y)
p(y)dŴ(y)+α

(

1

2
ikβ(x)p(x)+

∫

Ŵ

∂2G(x,y)

∂n(x)∂n(y)
p(y)dŴ(y)

)

=

∫

Ŵ

G(x,y)ikβ(y)p(y)dŴ(y)+ pinc(x)+α

(∫

Ŵ

∂G(x,y)

∂n(x)
ikβ(y)p(y)dŴ(y)+

pinc(x)

∂n(x)

)

(11)

where α is the coupling parameter which is equal to i/k for k > 1 and i otherwise. The above

equations hold for both exterior and interior domain problems with the only difference in the

direction of surface normal vector.

For a structural surface that is modeled using Catmull-Clark subdivision surfaces, whose basis

functions Bi are used to discretize the acoustic field around the surface,

pe(ξ ,η)=

ni
∑

i=1

Bi(ξ ,η)pei

qe(ξ ,η)=

ni
∑

i=1

Bi(ξ ,η)qei

(12)

where pe and qe denote the acoustic pressure and its normal flux at a field point (ξ ,η) in a

subdivision surface element, and pei and qei are the control point parameters for discretizing the

sound pressure and normal flux on the boundary element Ŵe, respectively.

To transform the boundary integral equation to linear algebraic equations, we placed the

source points at a set of discrete collocation points on the boundary and enforce the governing

equations to be satisfied on them. In conventional BEM, the nodes of the mesh are normally

chosen as collocation points. In the present work, the collocation points are selected as the points
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on the smooth surface that are mapped from the nodes of the control grid. With the collocation

scheme, the system equation can be rewritten as

1+ ikαβ

2
p(x)=

Ne
∑

e=1

ni
∑

i=1

ikβepei (y (ξ ,η))

∫

Ŵe

Bi (y (ξ ,η))

(

G (x,y)+α
∂G (x,y)

∂n(x)

)

dŴe (13)

−

Ne
∑

e=1

ni
∑

i=1

pei (y (ξ ,η))

∫

Ŵe

Bi (y)

(

∂G(x,y)

∂n(y)
+α

∂2G(x,y)

∂n(x)∂n(y)

)

dŴe

+ pinc(x)+α
∂pinc(x)

∂n(x)

where Ne is the number of elements. The above equations can be collected as

[H−GC]p= pinc (14)

where H and G are the coefficient matrices of the IGABEM with the Catmull-Clark subdivision

scheme, p is a column vector collecting sound pressures at the collocation points, pinc collects

the incident acoustic pressure at the collocation points, and C is the admittance matrix which is

written as

C= ik

⎡

⎢

⎣

β1 0
. . .

0 βNe

⎤

⎥

⎦
(15)

Because the kernel functions are singular at the source points, the singular integral arises in

Eq. (12) which has to be addressed carefully [46,47]. To overcome this problem, the singularity

subtraction technique (SST) is adopted in this work. SST subtracts the singular part from the

integrand and integrate it analytically. The remaining part of the integrand is regular which can

be integrated numerically with Gaussian quadrature.

4 Topology Optimization

4.1 Optimization Model

We consider an optimization problem for the absorbing-material distribution to minimize

sound pressures subject to material volume constraints. The topology optimization problem can

be formulated as follows:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

min �= pH
f
pf

s.t.
Ne
∑

e=1

ρeve− fv
Ne
∑

e=1

ve ≤ 0

0≤ ρe ≤ 1

(16)

where the objective function � is the quadratic sum of sound-pressure amplitudes at the reference

points, pf collects the sound pressure at one or several inspection points, (·)H denotes the con-

jugate transpose of the vector, ρe and ve are the density and volume of element Ŵe, respectively,

and fv is the constraint of the volume fraction. The value of pf is obtained using the discretized

integral equation:

pf =−
[

Hf −GfC
]

p+ pincf (17)
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where matrices Hf and Gf as well as the vector pinc
f

are defined in a similar way to those in

Eq. (13) except that the source point is outside the domain.

In the present work, the density-based method is used for topology optimization. As a

gradient-based optimization algorithm, it is more mathematically sound and converges to the opti-

mized solution more rapidly than the gradient-less optimization methods like genetic algorithms

[48]. To tackle a large number of design variables, the adjoint variable method is adopted to

compute the sensitivities that play a vital role in density-based topology optimization procedure.

In viewing of (13) and (16), we rewrite the objective function by adding zero functions as

�=�(pf )+ λT1 [(H−GC)p− pinc]+ λT2

[

pf +
(

Hf −GfC
)

p− pincf

]

(18)

where λ1 and λ2 are vectors of adjoint variables whose values can be arbitrarily selected. By

differentiating Eq. (17) with respect to ρe, we obtain the following equation:

∂�

∂ρe
=

∂pH
f

∂ρe
pf + pHf

∂pf

∂ρe
+ λT1

[

(H−GC)
∂p

∂ρe
−G

∂C

∂ρe
p

]

+ λT2

[

∂pf

∂ρe
+ (Hf −GfC)

∂p

∂ρe
−Gf

∂C

∂ρe
p

]

(19)

After rearrangements, Eq. (18) can be reformulated as

∂�

∂ρe
=−ℜ

(

λT1G
∂C

∂ρe
p+ λT2Gf

∂C

∂ρe
p

)

+ℜ

[

(λT2 + 2pHf )
∂pf

∂ρe

]

+ℜ

{

[

λT1 (H−GC)+ λT2 (Hf −GfC)
] ∂p

∂ρe

}

(20)

where ℜ represents the operation of determining the real part of the complex number. Finally,

the derivative of the objective function with respect to design variable ρe is expressed by

∂�

∂ρe
=−ℜ

(

λT1G
∂C

∂ρe
p+ λT2Gf

∂C

∂ρe
p

)

(21)

As mentioned above, the adjoint vectors λT1 and λT2 can be arbitrarily selected if they satisfy

the following equation:

{

λT2 + 2pH
f
= 0

λT1 (H−GC)+ λT2 (Hf −GfC)= 0
(22)

Eq. (21) is called adjoint equation. After solving it, the adjoint variables λ1 and λ2 can be

obtained. Upon substitution of λ1 and λ2 into Eq. (20), the sensitivities of the objective function

can be evaluated.

4.2 Interpolation Scheme of Acoustic Absorbing Materials

According to the Delany-Bazley-Miki model [49], the normalized impedance of sound absorp-

tion materials reads

z= 1+ 0.0699

(

f

σ

)−0.632

+ 0.1071i

(

f

σ

)−0.632

(23)
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where σ is the flow resistance rate of the material (N · s/m4), f is the frequency (Hz). Correspond-

ingly the normalized admittance value is expressed as

β0 =
1

z
(24)

To make the material distribution close to a 0–1 design, a material interpolation model, the

so-called solid isotropic material with penalization (SIMP) method, is used to interpolate the

element admittance:

βe = β0ρ
η
e (25)

where η is the penalty parameter that has a function in converging the intermediate density to 0

or 1 and generally assumes the value of 3. The larger the penalty parameter, the closer the design

variable value is to 0–1, but the increase in the value of η converges the optimization result to

the local minimum [4].

After the sensitivities are evaluated, a gradient-based optimizer can be used to update the

design variables until it converges. In the present work, the method of moving asymptotes is used

as the optimizer and the convergence criterion is set as
∣

∣�i+1−�i
∣

∣

�i
< τ (26)

where �i stands for the objective function value at the i-th iteration. Finally, the Heaviside

function can be used as an additional filter to remove intermediate densities to achieve a 0–1

design.

5 Results and Discussion

A numerical example is presented in this section to investigate the effectiveness of the topol-

ogy optimization approach using the IGABEM with Catmull-Clark subdivision surfaces. The

iterative convergence criterion is set to 1.0× 10−4. The geometries in the following examples have

C1 continuity.

5.1 Werewolf Model

Now, we consider the model mentioned in Section 2, which is used to demonstrate the

applicability of the proposed optimization method in addressing complex geometries. Herein, the

plane wave spreads along the x direction, and the coordinates of the test point used for calculation

of objective function are (12, −5, 0). The optimized distribution of sound-absorbing materials

at different frequencies is analyzed, and four different frequencies (f = 50, 100, 150 and 200 Hz)

are considered in Fig. 4. The color red indicates that the area is covered with sound-absorbing

materials, the color blue indicates that the area is rigid. From this figure, we can observe that

the final optimized distribution is symmetric with respect to the XOY plane. When the excitation

frequency is different, the optimized distribution obtained by calculation is different. This indicates

that the optimized distribution of sound-absorbing material has a frequency dependence.
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Figure 4: Optimized distribution of sound-absorbing materials of werewolf model at different

frequencies

Fig. 5 shows the real part, imaginary part, and amplitude of the sound pressure and its flux

on the optimized structural surface at 100 Hz, respectively. A good symmetry along the XOY

plane can be observed, and it verifies the correctness of the algorithm developed in this study.

Figure 5: Contour of the acoustic pressure and flux on the werewolf surface with an optimized

distribution of sound-absorbing materials

Similarly, when f = 50, 100, 150 and 200 Hz, the distribution of the sound-pressure level

after optimization is shown in Fig. 6. We can observe that the higher the frequency, the more

intense the change in the distribution of the sound-pressure level. In addition, the value of the

sound-pressure level on many structural areas increases with the increase in frequency.

The effect of different parameters on the objective function and material volume constraints is

investigated. First, the effect of penalty factor on optimization results is considered. Theoretically,
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the larger the value of η, the closer the design variable value is to 0 and 1. In each iteration step,

when the design variable is updated, the greater the change in the value of the objective function,

and the more apparent the oscillation phenomenon of the error curve. In addition, the increase in

η converges the optimization result to the local minimum. When the value of η decreases, although

these problems are avoided, it may be difficult to eliminate the intermediate variable elements,

resulting in the optimized distribution containing many green elements.

Figure 6: Contour of the acoustic pressure levels (SPL) on the werewolf surface with an optimized

distribution of sound-absorbing materials

Figs. 7 and 8 show the objective function and volume fraction function in terms of the iter-

ation step with different values of η. The figures indicate that at the initial several iteration steps,

the objective function values corresponding to different penalty factor values are considerably

different. When the convergence approaches, the difference in objective function values decreases.

Although the value of the penalty factor has a slight effect on the final objective function value,

this does not imply that it has a slight effect on the optimized distribution result. On the contrary,

the setting of the penalty factor causes a more apparent change in the optimized distribution

map. Therefore, an appropriate penalty factor value must be selected in the topology optimization

process. If the penalty factor is excessively small, it causes the intermediate density to accumulate,

and if the penalty factor is excessively large, the penalty is excessive. A satisfactory result is to set

the parameter value to 3 or 5.
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Figure 8: Iteration history of the material volume fraction at different values of η

We consider the effects of the initial values of design variables on the optimization results.

Figs. 9 and 10 show the objective and material volume fraction functions in terms of iteration

steps with different initial values, respectively. The volume constraint is still set as 0.5. We set the

initial values as (0.2, 0.4, 0.6, 0.8, 1.0) for comparative analysis. Fig. 9 shows that in the initial

iteration step, the initial value of the design variables has a significant effect on the objective

function value, but as the iteration steps increase, the effect decreases rapidly until it converges

to the same level value. The results indicate that the initial value of design variables has a slight

effect on the topology optimization of material distribution.
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Figure 9: Iteration history of the objective function with different initial values
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Figure 10: Iteration history of the material volume fraction with different initial values
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5.2 Car Model

In this example, a car body shell model is constructed using Catmull-Clark subdivision

surfaces with an initial control grid with 2288 elements and 2290 vertices in Fig. 11. We test

the proposed algorithm by solving the acoustic scattering problems and optimizing the layout

of sound-absorbing materials attached to the car surfaces. The incident plane acoustic wave

propagates forward along the x direction, and the excitation frequency is set as 100 Hz. The

optimization aim is to minimize the acoustic pressure at a sample Point A with coordinates

(20, 5, 0).

Figure 11: Initial control grid of a car model (left); smooth Catmull-Clark surface of the car

model (right)

Herein, the volume ratio constraint is 0.5, that is, at most 50% of the structure surface is

covered by acoustic material. The initial value of the design variable is set as 1. The material

volume fraction varies from 0 to 1, where 1 indicates that all the structural surfaces are covered

by sound-absorbing materials and 0 represents rigid structural surfaces.

In the iteration process of the optimization, the objective and material volume fraction func-

tions vary with the number of iterative steps, as shown in Fig. 12. The objective function initially

increases abruptly, decreases rapidly, and finally converges stably because of the full coverage of

the initial design. In addition, the material volume ratio decreases rapidly from 1 to 0.35 in the

initial several iteration steps, and then remains constant at approximately 0.5 after several steps.

Note that although the change in volume ratio is significantly small after the 15-th iteration

step, the corresponding material distribution may have an apparent change until convergence is

achieved.
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Figure 12: Iteration history of the car model after the first subdivision during the optimization

process
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As the number of iterative steps increases, the optimized distribution of sound-absorbing

materials is shown in Fig. 13. We can observe that the optimized distribution is symmetric around

the XOY plane, and this is because the original optimization problem is symmetric around the

XOY plane. Therefore, for such axisymmetric problems, the symmetric part of the structure can

be selected as the optimized object, which can both guarantee the complete symmetry of the

final topology design and further reduce the computation. The sound-pressure levels of the car

model after the optimization of distribution of sound-absorbing materials is shown in Fig. 14.

The acoustic pressure level of the area covered by the acoustic absorbing material is significantly

lower than that of the area not covered. Similarly, a noticeable symmetry can be observed. The

results verify the correctness of the algorithm and the effectiveness of the optimization analysis

of complex models.

Figure 13: Sound-absorbing material distribution at different iteration steps
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Figure 14: Acoustic pressure (SPL) around the car surface after the distribution of sound-

absorbing materials is optimized

6 Conclusions and Future Work

In this study, we propose a method to optimize the distribution of sound-absorbing materials

in noise pass control techniques based on isogeometric boundary element methods. The complex

geometries of components or structures are modeled using Catmull-Clark subdivision surfaces,

whose basis functions are also employed for acoustic analysis. The proposed method eliminates

geometric errors and cumbersome preprocessing steps in traditional topology optimization proce-

dures. The numerical results indicate that sound pressure levels can be significantly reduced subject

to the given constraint of the volume of absorbing materials. However, the present paper only

considers topology optimization. Combining shape and topology optimization with subdivision

surfaces will deliver a more flexible design [50,51]. In addition, a main limitation of the present

method is that the structural-acoustic interaction effect is not taken into account, which will be

studied by coupling FEM and BEM in an isogeometric analysis framework in the future work. We

will also extend the present work to geometric uncertainly qualification [52–54] because IGABEM

enables rapid sampling in stochastic analysis by allowing for numerical simulation directly from

CAD.
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