
This is a repository copy of Mixed Criticality Systems - A Review:(13th Edition, February
2022).

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/183619/

Version: Published Version

Book:

Burns, Alan orcid.org/0000-0001-5621-8816 and Davis, Robert Ian orcid.org/0000-0002-
5772-0928 (2022) Mixed Criticality Systems - A Review:(13th Edition, February 2022). ,
(97pp).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/id/eprint/183619/
https://eprints.whiterose.ac.uk/

Mixed Criticality Systems - A Review∗

Alan Burns and Robert I. Davis

Department of Computer Science,

University of York, York, UK.

email: {alan.burns, rob.davis}@york.ac.uk

Abstract

This review covers research on the topic of mixed criticality systems that

has been published since Vestal’s 2007 paper. It covers the period up to

end of 2021. The review is organised into the following topics: introduc-

tion and motivation, models, single processor analysis (including job-based,

hard and soft tasks, fixed priority and EDF scheduling, shared resources and

static and synchronous scheduling), multiprocessor analysis, related topics,

realistic models, formal treatments, systems issues, industrial practice and re-

search beyond mixed-criticality. A list of PhDs awarded for research relating

to mixed-criticality systems is also included.

∗13th edition, February 2022.

1

Contents

1 Introduction 4

2 Mixed Criticality Models 6

3 Single Processor Analysis 8

3.1 Job Scheduling . 9

3.2 Fixed Priority Scheduling . 9

3.2.1 RTA-Based approaches 9

3.2.2 Slack scheduling . 13

3.2.3 Period transformation . 14

3.3 EDF Scheduling . 16

3.4 Shared Resources . 18

3.5 Static and Synchronous Scheduling 19

3.6 Varying Speed Processors . 20

3.7 Semi-Clairvoyant Scheduling . 20

4 Multiprocessor Analysis 21

4.1 Task Allocation . 21

4.2 Schedulability Analysis . 24

4.3 Communication and other Resources 25

5 Links to other Research Topics 29

5.1 Hard and Soft Tasks . 29

5.2 Fault Tolerant Systems (FTS) . 30

5.3 Security . 32

5.4 Hierarchical Scheduling . 32

5.5 Cyber Physical Systems and the Internet of Things 33

5.6 Probabilistic Real-Time Systems 34

6 More Realistic MCS Models 36

7 More Formal Treatments 41

7.1 Utilisation Bounds . 41

7.2 Speedup Factors . 41

7.3 Formal Language and Modelling Issues 42

8 Systems Issues 44

8.1 Run-Time Monitoring and Overheads 44

8.2 Virtualisation and Operating System Support 44

2

8.3 Hardware Aspects . 46

8.4 Benchmarks and Comparative Studies 47

8.5 Criticality-Aware Power Consumption 48

8.6 Issues Relating to Modelling and Tool Support 49

9 Industry Practice and Standards 50

10 Beyond Mixed-Criticality 51

11 PhD Awards for Research within the Field of MCS 52

12 Conclusion and Directions for Future Work 53

Literature 57

3

1 Introduction

An increasingly important trend in the design of real-time and embedded systems

is the integration of components with different levels of criticality onto a common

hardware platform. At the same time, these platforms are migrating from single

cores to multi-cores and in the future many-core architectures. Criticality is a des-

ignation of the level of assurance against failure needed for a system component.

A mixed criticality system (MCS) is one that has two or more distinct levels (for

example safety critical, mission critical and low-critical). Perhaps up to five levels

may be identified (see, for example, the IEC 61508, DO-178B and DO-178C, DO-

254 and ISO 26262 standards). Typical names for the levels are ASILs (Automo-

tive Safety and Integrity Levels), DALs (Design Assurance Levels or Development

Assurance Levels) and SILs (Safety Integrity Levels). It should be noted that not

all standards and papers on MCS assign the same meaning to ‘criticality’, an issue

explored by Graydon and Bate [263], Esper et al. [227], Paulitsch et al. [501], Ernst

and Di Natale [226], Wilhelm [620], Jiang [348,349,354] and Lee and Kim [406].

Most of the complex embedded systems found in, for example, the automotive

and avionics industries are evolving into mixed criticality systems in order to meet

stringent non-functional requirements relating to cost, space, weight, heat gener-

ation and power consumption (the latter being of particular relevance to mobile

systems). Indeed the software standards in the European automotive industry (AU-

TOSAR1) and in the avionics domain (ARINC2) address mixed criticality issues;

in the sense that they recognise that MCS must be supported on their platforms.

The fundamental research question underlying these initiatives and standards

is: how, in a disciplined way, to reconcile the conflicting requirements of parti-

tioning for (safety) assurance and sharing for efficient resource usage. This ques-

tion gives rise to theoretical problems in modelling and verification, and systems

problems relating to the design and implementation of the necessary hardware and

software run-time controls.

A key aspect of MCS is that system parameters, such as tasks’ worst-case ex-

ecution times (WCETs), become dependent on the criticality level of the tasks.

So the same code will have a higher WCET if it is defined to be safety-critical

(as a higher level of assurance is required) than it would if it is just considered

to be mission critical or indeed non-critical. This property of MCS significantly

modifies/undermines many of the standard scheduling results. This report aims to

review the research that has been published on MCS.

The first paper on the verification of a Mixed Criticality System used an exten-

1http://www.autosar.org/
2http://www.arinc.com/

4

sion of standard fixed priority (FP) real-time scheduling theory, and was published

by Vestal (of Honeywell Aerospace) in 2007 [607]3. It employed a somewhat

restrictive work-flow model, focused on a single processor and made use of Re-

sponse Time Analysis [36]. It showed that neither rate monotonic [434] nor dead-

line monotonic [417] priority assignment is optimal for MCS; however Audsley’s

optimal priority assignment algorithm [34] was found to be applicable.

This paper was followed by two publications in 2008 by Baruah and Vestal [95],

and Huber et al. [331]. The first of these papers generalises Vestal’s model by using

a sporadic task model and by assessing fixed job-priority scheduling and dynamic

priority scheduling. It contains the important result that EDF (Earliest Deadline

First) does not dominate FP when criticality levels are introduced, and that there

are feasible systems that cannot be scheduled by EDF. The latter paper addresses

multi-processor issues and virtualisation (though it did not use that term). It fo-

cused on AUTOSAR and resource management (encapsulation and monitoring)

with time-triggered applications and a trusted network layer.

Further impetus to defining MCS as a distinct research topic came from the

white paper produced by Barhorst et al. [56], the keynote talk that Baruah gave

at the 2010 ECRTS conference4 and a workshop report from the European Com-

mission [596]. These have been followed up by tutorials on MCS at ESWEEK in

2012 and 20135, a workshop at HiPEAC in January 20136, a workshop (WICERT)

at DATE 20137, a workshop (ReTiMiCS) at RTCSA 20138, workshops (WMC)

at RTSS 20139, RTSS 201410, RTSS 201511, RTSS 201612, RTSS 201713, RTSS

201814, RTSS 201915 (although unfortunately this workshop did not take place as

RTSS was cancelled; however many of these papers were presented at the 2020

3The term Mixed Criticality had been used before 2007 to address issues of non-interference in

non-federated architectures such as IMA [306]; Vestal changed the focus of research by concentrating

on real-time performance. Systems with more than one criticality level but aim to only give complete

isolation are called multiple-criticality systems; the use of mixed-criticality implies some tradeoff

between isolation and integration that involves resource sharing.
4Available from the conference web site: http://ecrts.eit.uni-kl.de/index.php?id=53.
5Embedded Systems Week: http://www.esweek.org/
6http://www.hipeac.net/conference/berlin/workshop/integration-mixed-criticality-subsystems-

multi-core-processors
7http://atcproyectos.ugr.es/wicert/index.php/conference-proceedings
8http://igm.univ-mlv.fr/rtalgo/Events/RETIMICS/
9http://www.cs.york.ac.uk/ robdavis/wmc2013/

10http://www.cs.york.ac.uk/ robdavis/wmc2014/
11http://www.cs.york.ac.uk/ robdavis/wmc/
12https://gsathish.github.io/wmc2016/
13https://cps-research-group.github.io/WMC2017/
14https://drive.google.com/file/d/14sLpczS6wpQN99dPET08sZP3qjvEr5S2/view?usp=sharing
15https://sites.google.com/njit.edu/wmc2019

5

workshop) and RTSS 202016; a workshop at the 19th International Conference on

Reliable Software Technologies (Ada-Europe) in June 2014, and Dagstuhl Semi-

nars on Mixed Criticality and Many Core Platforms in 201517 and 201718.

This review [140] is organised as follows. In Section 2 we first consider mixed

criticality models. Then in Section 3 single processor systems are covered (includ-

ing fixed priority and EDF scheduling). Section 4 covers multiprocessor issues and

Section 5 links this research to other topics such as hard and soft real-time schedul-

ing and hierarchical scheduling. More realistic models are covered in Section 6,

more formal work is covered in Section 7 and systems work is covered in Section

8. Industry practice and safety standards provide a somewhat different perspective

on MCS to Vestal’s model; these differences are discussed in Section 9. Section 11

lists PhD dissertations that have been produced on MCS since 2014. The review

concludes with Section 12 which outlines a number of open problems and areas

where further research is needed.

An adaptation of this review, covering publications up to the end of 2016, has

been published in ACM Computer Surveys [138]. This should be used as the

main citation for this report. Other overviews/surveys on MCS have also been

produced [25, 29, 154, 175, 281, 635].

2 Mixed Criticality Models

Inevitably not all papers on mixed criticality have used the same system or task

model. Here we define a model that is generally applicable and is capable of de-

scribing the main results considered in this review.

A system is defined as a finite set of components K. Each component has a

level of criticality (designated by the systems engineer responsible for the entire

system), L, and contains a finite set of sporadic tasks. Each task, τi, is defined

by its period (minimum arrival interval), deadline, computation time and criticality

level: (Ti, Di, Ci, Li). Tasks give rise to a potentially unbounded sequence of jobs.

The primary concern with the implementation of MCS is one of separation.

Tasks from different components must not be allowed to interfere with each other.

In particular, mechanisms must be in place to prevent a job from executing for

more than the computation time C defined for its task, and to ensure that a task

does not generate jobs that are closer together than T 19.

The requirement to protect the operation of one component from the faults of

16http://2020.rtss.org/wmc2020/
17http://www.dagstuhl.de/15121
18http://www.dagstuhl.de/17131
19Or (period minus release jitter) if that is part of the task model.

6

another is present in all systems that host multiple applications. It is however of

particular significance if components have different criticality levels. Since without

such protection, all components would need to be engineered to the strict standards

of the highest criticality level, potentially massively increasing development costs.

After concerns of partitioning comes the need to use resources efficiently. This

is facilitated by noting that the task parameters are not independent, in particu-

lar the worst-case computation/execution time estimate, Ci, will be derived by a

process dictated by the criticality level. The higher the criticality level, the more

conservative the verification process and hence the greater will be the value of Ci.

This was the observation at the heart of the paper by Vestal [607].

For systems executing on hardware platforms with deterministic behaviour, any

particular task will have a single real WCET (worst-case execution time); however,

this value typically cannot be known with complete certainty. This uncertainty

is primarily epistemic (uncertainty in what we know, or do not know, about the

system) rather than aleatory (uncertainty in the system itself). Although it is rea-

sonable to assume confidence increases (i.e. uncertainty decreases) with larger

estimates of worst-case execution time, this may not be universally true [263]. It

would certainly be hard to estimate what increase in confidence would result from,

say, a 10% increase in all Cs.

For systems executing on hardware platforms with time-randomised hardware

components [153], then a probabilistic WCET (pWCET) [26, 184, 194, 218, 523]

can be obtained. The exceedance function for this probability distribution defines

for any specific probability, derived from a required maximum failure rate associ-

ated with a criticality level, an execution time budget which has no greater proba-

bility of being exceeded on any given run [183]. The pWCET distribution therefore

effectively defines different estimates of the WCET budget for the same task, for

different criticality levels due to their different requirements on the maximum tol-

erable failure rate.

The focus on different computation times was extended to task periods in sub-

sequent papers [64, 68, 70, 78, 83, 131, 135, 643]. Here tasks are event handlers.

The higher the criticality level the more events must be handled, and hence the task

must execute more frequently even if it does not execute for longer.

In MCS a task is now defined by: (~T , D, ~C, L), where ~C and ~T are vectors of

values – one per criticality level, with the constraints:

L1 > L2 ⇒ C(L1) ≥ C(L2)

L1 > L2 ⇒ T (L1) ≤ T (L2)

for any two criticality levels L1 and L2.

7

Note the completion of the model, by making D criticality dependent [78] has

not as yet been addressed in detail. But it could have the constraint:

L1 > L2 ⇒ D(L1) ≥ D(L2)

So a task may have a ‘safety critical’ deadline and an early Quality of Service

(QoS) deadline. Alternatively:

L1 > L2 ⇒ D(L1) ≤ D(L2)

in which case the conservative ‘safety critical’ deadline is shorter then the one

deemed necessary if the criticality level is lower.

Another feature of many of the papers considered in this review is that the

system is defined to execute in a number of criticality modes. A system starts in

the lowest criticality mode. If all jobs behave according to this mode then the

system stays in that mode. But if any job attempts to execute for a longer time,

or more frequently, than is acceptable in that mode then a criticality mode change

occurs. Ultimately the system may change to the highest criticality mode.

Some papers allow the criticality mode to move down as well as up, but others

(indeed the majority) restrict the model to increases in criticality only. We return

to this issue in Section 6.

Many papers also restrict themselves to just two criticality levels; high (HI)

and low (LO) with HI > LO. These are referred to as dual-criticality systems.

Where modes are used, the system is either in a LO-criticality (or normal) mode

or a HI-criticality mode. And the set of task parameters is typically: (Ti, Di,

Ci(HI), Ci(LO), Li). At the other extreme are the models presented by Ekberg et

al. [219, 221, 223] in which any number of modes are allowed and the movement

between modes is represented by a directed acyclic graph.

The volume of material published on MCS is perhaps surprising as there is not

a consensus as to the definition and use of the notion of criticality. Burns [129]

notes that much of the published material does not require a precise definition of

‘criticality’. Burns argues that the core notion in MCS research is the existence of

multiple interpretations of one or more of the defining parameters of the applica-

tion. It follows, he argues, that perhaps the general term for this body of results

should be Multi-Model Systems rather than Mixed-Criticality Systems. However,

a new name is unlikely to have traction at this late stage.

3 Single Processor Analysis

Since Vestal’s 2007 paper [607] there has been a series of publications. Most of

these papers address single processor platforms and independent components.

8

3.1 Job Scheduling

Initially a number of papers considered the restricted problem of scheduling, on

a single processor, a finite set of mixed criticality jobs with criticality dependent

execution times [63, 71, 73, 87, 89, 94, 269, 285, 369, 419, 420, 496, 554, 567, 568,

572, 574]. This work has, however, largely been superseded by work on the more

widely applicable task model.

3.2 Fixed Priority Scheduling

In this section we look at MCS schemes that are based on applying Response-Time

Analysis (RTA), then those that consider slack scheduling and finally approaches

that are derived from period transformations.

3.2.1 RTA-Based approaches

Vestal’s approach was formalised (i.e. proof that the use of Audsley’s priority

assignment algorithm [34] was optimal) by Dorin et al. [206] in 2010. They also

extended the model to include release jitter, and showed how sensitivity analysis

could be applied.

Vestal’s approach allowed the priorities of high and low criticality tasks to be

interleaved, but all tasks had to be evaluated as if they were of the highest criticality.

By introducing monitoring of task execution time, and the prevention of execution

time over-runs, higher resource usage can be delivered [78]. This is a crucial issue

in mixed criticality scheduling; by the introduction of more trusted components a

high utilisation of the available resources is facilitated.

In 2011 this approach was further extended [81,131] to give a scheduling model

and associated analysis framework for a single processor system that dominates

all previous published analysis for MCS (using fixed priority scheduling) in that

it made better use of the processor and could schedule all systems that could be

guaranteed by other approaches, plus many that could not. These papers were

however restricted to just two criticality levels (or modes). The system’s run-time

behaviour is either low-criticality (which relies on all execution times being bound

by the low-criticality values and guarantees that all deadlines are met) or high-

criticality (where only high criticality work is guaranteed but the bound on high-

criticality execution times is increased). The system’s criticality change (from Low

to High, i.e. LO to HI)20 is triggered by the observation, at run-time, that a low-

criticality condition has been violated. In the context of control applications Cheng

20These modes are sometimes called Normal and HI .

9

et al [160] also allow the state of the controlled plant to trigger a criticality mode

change.

This change in criticality level has a number of similarities to systems that

move between different operational modes (although there are also some signifi-

cant differences [126, 263]). In the HI-criticality mode there are fewer tasks, but

they have longer execution times or shorter periods. The literature on mode change

protocols [49,144,224,504,528,558,597,598], however, highlights one important

problem: a system can be schedulable in every mode, but not schedulable during a

mode change [598]. This is also true for systems that change criticality levels.

An optimal priority ordering is defined in the paper from Baruah et al. [81] in

that it maximises the priority of high criticality tasks, subject to the system being

schedulable. Both the high and low criticality tasks are ordered via deadline (dead-

line monotonic) and a simplified version of Audsley’s algorithm is used to assign

priorities from the lowest to the highest level. At each priority level the lowest

priority task from the low criticality task set is tried first, if it is schedulable then

the algorithm moves up to the next priority level; if it is not schedulable then the

lowest priority task from the high criticality set is tested. If it is schedulable then

again the algorithm moves on to the next level. But if neither of these two tasks are

schedulable then the search can be abandoned as the task set is unschedulable. In

total a maximum of 2N tests are needed (where N is the number of tasks in the sys-

tem)21. Note that this result follows from work on robust priority assignment [192].

As each set of LO/HI criticality tasks can be viewed as additional interference on

the other subset, an optimal priority ordering can be obtained with each subset in

Deadline Monotonic priority order and a merge operation between them.

The protocol (dropping all LO-criticality work if any task executes for more

than its C(LO) value22), the derived analysis and the use of optimal priority or-

dering is shown [81] to out-perform other schemes (in terms of success ratio for

randomly generated task sets). The analysis is based on standard RTA (Response-

Time Analysis). For any task, τi, first its LO-criticality response-time (R(LO))
is computed using LO-criticality parameters for all the tasks. A criticality switch

must occur before this value if the task is to be impacted by the change, otherwise it

will have completed execution. The worst-case response-time in the HI-criticality

mode (R(HI)) is computed by noting that all LO-criticality tasks must be aban-

doned by time R(LO). The paper contains two methods for computing R(HI)23,

one involves a single upper bound, the other looks at all the possible critically

21Strictly, only 2N-1 tests are needed as the highest priority task must be schedulable as its com-

putation time is less than its deadline.
22First proposed by Baruah [63, 71].
23In [81] the example in Section IV.B (final step) should have a worst-case response-time of 90,

not 85 as reported in the paper; however 90 is still below the deadline of 100.

10

change points before R(LO) and computes the worst-case. The latter is more ac-

curate, though still not exact; however, the gain in performance is not significant

and the simple upper bound test is probably sufficient in most cases.

To illustrate the above approaches one of the graphs from [81] is reproduced in

Figure 1. This figure plots the percentage of task sets generated that were deemed

schedulable for a system of 20 tasks, with on average 50% of those tasks having

high criticality and each task having a high criticality execution time that is twice its

low criticality execution time. The compared approaches are (from least effective

to most effective): CrMPO which assigned priorities in criticality order, SMC-NO

(static mixed criticality with no run-time monitoring) which is Vestal’s original

approach, SMC which is an adaptation of Vestal’s approach in which LO-criticality

tasks are monitored at run-time and are prevented from executing for more than

C(LO), and AMC-rtb and AMC-max which are the two methods introduced in

the previous paragraph (AMC for adaptive mixed criticality). In the graph the UB-

H&L line bounds the maximum possible number of schedulable task sets. It serves

to illustrate the quality of the AMC-max approach. Almost all publications on

MCS assume that the task deadlines are constrained (D ≤ T). For AMC, Burns

and Davis [137,139] removed this constraint and a version of the analysis for AMC

now allows arbitrary deadlines.

The AMC-rtb approach was extended by Zhao et al [649, 650, 653] in 2013

to incorporate preemption thresholds [540] into the model. They demonstrated

a reduction in stack usage and improved performance for some parameter ranges.

AMC and preemption thresholds were combined with the semi-clairvoyant schedul-

ing by Zhao et al. [654]. Another approach to combining AMC-rtb and existing

scheduling theory is taken by Burns and Davis [136]. They consider the use of de-

ferred preemption [124,189] and demonstrate a significant improvement over fully

preemptive AMC-rtb. The gain in schedulability they demonstrate is obtained by

having a final non-preemptive region (FNPR) at the end of C(LO) and C(HI),
and by combining the assignment of priority and the determination of the size of

these FNPRs. Where scheduling analysis is part of a design optimisation Zhao

and Zeng [655] argue that even AMC-rtb is too complex. They propose a new

simpler test that is still safe and has bounded pessimism. At the other extreme,

Asyaban and Kargahi [31] develop exact analysis for AMC, unfortunately at the

cost of loosing optimal priority ordering /footnoteThere are also some corrections

noted by Pavic and Dzapo [503].. In keeping with a number of papers on MCS, the

work of Baruah et al. [81] (and most of the subsequent modifications) restricted

itself to dual criticality systems. Fleming and Burns [237] extended these models

to an arbitrary number of criticality levels, focusing particularly on five levels as

this is the maximum found in automotive and avionics standards. They observed

that AMC-rtb remains a good approximation to AMC-max, and that AMC-max

11

0%

20%

40%

60%

80%

100%

120%

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

Utilisation

S
c

h
e

d
u

la
b

le
 T

a
s

k
s

e
ts

UB-H&L

AMC-max

AMC-rtb

SMC

SMC-NO

CrMPO

Figure 1: Percentage of Schedulable Task Sets

became computational expensive for increased numbers of criticality levels. They

concluded that AMC-rtb represented an adequate and effective form of analysis. A

relatively minor improvement to AMC-max was published by Huang et al. [319]

(they termed it AMC-IA); however there are cases where their analysis is optimistic

(i.e. unsound) [241].

One characteristic of all the schemes defined above is that tasks do not change

their priority after a criticality mode change. If priorities can change then a sim-

ple form of sufficient analysis is possible [82]. This work defines a new approach,

PMC (priority may change). Evaluations show that PMC performs similarly to

AMC-rtb, though neither dominates the other. An improved scheme, GFP (Gen-

eralised Fixed Priority) is proposed by Chen et al. [159]. They assign (using an

heuristic) three priorities to each task. One for each of the two criticality levels,

and one for the transition between the criticality modes. They demonstrate an im-

provement over AMC-rtb.

It was noted in the section on Mixed Criticality Models that the period pa-

rameter (T) can be criticality dependent as well as the worst-case execution time

estimate (C). An application may consist of event handlers, and have different

levels of constraint over the arrival patterns of the events. The higher the criti-

12

cality, the closer together the events are assumed to arrive; and hence the smaller

the T parameter. Baruah and Chattopadhyay [83] have reformulated the SMC and

AMC analysis (introduced above) to apply to this model, in which the T s rather

than the Cs vary with criticality. Their evaluation results show similar behaviour

to that depicted in Figure 1. Criticality specific periods are also address by Burns

and Davis [135], Baruah [70], and by Zhang et al. [643] (who derived an improved

analysis that they termed SAMC – Sufficient AMC).

For periodic task sets with offsets, Asyaban et al. [32] has produced feasibility

analysis showing that simulation over an interval of length four times the hyper-

period plus the largest offset forms a sufficient test of schedulability.

An alternative to switching all tasks to the HI criticality mode is proposed by

Boudjadar et al. [118]. They assume tasks behave independently; and so it will

often be the case that only one task switches to the HI criticality mode. This task

has its priority raised, and if necessary some LO-criticality tasks have their period

stretched (extended) to accommodate this. These show how this task-level be-

haviour can be combined with the more normal system-level response. Task-level

scheduling is also address by Lee [401]. The notion of Flexible Mixed-Criticality

(FMC) scheduling is introduced by Chen et al. [158,203] to model task-level over-

runs; it is extended in the work of Chwa et al. [204, 205].

A natural extension to fixed-priority scheduling and response-time analysis is

the multi-frame model [61, 660]. A mixed-criticality version of this analysis is

provided by Hussain et al. [333–335].

Another extension to AMC analysis is to incorporate implementation over-

heads into the model. This is done, within the context of a DAL-A Full Authority

Digital Engine Control (FADEC), by Law et al. [399].

Given a protocol such as AMC, Ranjbar et a. [524] attempt to provide bounds

on the probability that a mode change will take place.

3.2.2 Slack scheduling

An alternative approach to scheduling mixed criticality fixed priority systems is,

for dual-criticality systems, to use a slack scheduling scheme in which low criti-

cality jobs are run in the slack generated by high criticality jobs only using their

low criticality execution budgets. This was first explored by Niz et al. [482]. One

difficulty with this approach is to incorporate sporadic tasks. At what point can

the ‘slack’ of a non-appearing sporadic task be allocated to low criticality jobs?

Even for periodic tasks, ensuring schedulability of high criticality tasks in all cir-

cumstances is not straightforward. Niz et al. [482] compute the time at which a

high criticality task must be released to ensure that it meets its deadline (a scheme

similar to the dual-priority approach outlined in Section 5.1). However, Huang et

13

al. [318] demonstrated that if a low criticality (high priority) task executes beyond

its deadline, a high criticality (lower priority) task could miss its deadline. They

show that either the low criticality task must be aborted at its deadline or (more

practically) its priority must be reduced to a background level. They then derive

safe analysis. Niz et al. subsequently modified the enforcement rule in their model

to remove the problem and improved its performance [483, 484]. Progress-aware

Dynamic Slack Exploitation in MCS is examined further by Kritikakou and Skalis-

tis [392].

While slack is usually generated by tasks not executing for their full budget, it

is also produced by the arrival of jobs being less frequent than anticipated in the

worst-case. Neukirchner et al. [477, 478] adapt and extend a number of schemes

for monitoring activation patterns. Their multi-mode approach is proved to be

safe (no false negatives) and efficient (few false positives). Hu et al. [315] also

consider budget management, and produce an effective scheme for minimising the

overheads associated with slack management.

For a dual-criticality system C(LO) values must, of course, be known. Once

schedulability has been established however, it is possible to derive [547], using

sensitivity analysis [111, 512], a scaling factor F (F > 1) such that the system

remains schedulable with all C(LO) values replaced by F · C(LO). Using these

scaled values at run-time will increase the robustness of the system, as the LO-

criticality tasks will be able to execute for a greater time before a criticality change

is triggered. Scaling can also be applied to the C(HI) values. Volp et al. [612]

look at an alternative means of obtaining C(LO) and C(HI) values; they do not

consider them to be estimates of worst-case execution time, but budgets set by some

design optimisation process. Sensitivity analysis is also addressed by Santinelli and

Guo [544].

As scaling involves changing a task’s computation time, and computation time

influences priority assignment, it is possible to extend this approach by also allow-

ing priorities to change as the system is made more robust [132]. A more dynamic

budget management scheme is used by Gu and Easwaran [271, 273] to postpone

criticality level mode changes within the context of the EDF-VD scheme (see Sec-

tion 3.3). Hu et al. [312] also look to postpone the criticality mode change by

tighter control over the available slack.

Sciandra et al. [553] are extending and applying scaling factors to intelligent

transport systems. Issues of robustness are also addressed by Herman et al. [302].

3.2.3 Period transformation

As Vestal noted [607], an older protocol period transformation [556, 557] (PT), is

also applicable to the mixed criticality scheduling problem. Period transformation

14

splits a task with period T and computation time C into two (or more) parts so that

the task now has the parameters T/2 and C/2. Assuming all tasks have deadlines

equal to their periods, the application of the optimal rate monotonic priority as-

signment scheme [434] will increase the relative priority of all transformed tasks.

If all high criticality tasks are transformed so that their transformed periods are

shorter than all low criticality tasks then the rate monotonic algorithm will deliver

partitioned (i.e. criticality monotonic) priorities. All high criticality tasks will have

priorities greater than all lower criticality tasks. The scheme can easily be extended

to task sets with constrained deadlines (D < T). However, the scheme does in-

troduce extra overheads from the increased number of context switches, and these

could be excessive if there are low criticality tasks with short deadlines. A simple

example of a period transformed task would be one with T = D = 16, C(HI) = 8
and C(LO) = 4; this task could be transformed to one with T = D = 4 and C = 2
Note, this is C(HI)/4, not C(LO)/4). The computation time is such that if the

task executes according to its HI-criticality parameter it will take four invocations

of the transformed task to complete, but if the LO-criticality assumption is valid it

will only take two.

If overheads are ignored then Period Transformation performs well. Baruah

and Burns postulate [79] (and prove for two tasks) that this is primarily due to the

inherent property of PT to deliver tasks sets with harmonic periods (that are then

more likely to be schedulable). It does not seem that PT is of specific benefit to

MCS.

To split the code of a task, either a static code transformation process must be

used or the run-time must employ an execution-time server. With code transfor-

mation, the programmer must identify where in the code the split should be made.

This does not lead to good code modularisation and is similar to the problems en-

countered when functions must to be split into short sections so that they can be

‘packed’ into the minor cycles of a cyclic executive [145]. There is also the prob-

lem of OS locks being retained between slices of the code; making the protected

resource unavailable to other tasks.

With a dual-criticality task such as the one in the example above the point at

which the task can be assumed to have executed for two units of time is itself crit-

icality dependent. This to all intents and purposes makes code transformation im-

practical. Therefore, if the code is not to be changed then a run-time server must be

used to restrict the amount of computation allowed per release of the (transformed)

task. In practice this means that:

• Without PT, LO-criticality tasks may have high priorities and hence their

execution times must be monitored (and enforced); HI-criticality tasks must

also be monitored as they may need to trigger a criticality change if they

15

execute for more than C(LO) thereby triggering the abandonment of LO-

criticality tasks.

• With PT, LO-criticality tasks have the lower priorities and hence they do not

need to be monitored, HI-criticality tasks must be monitored to enforce the

per release budget.

In general, there is less run-time intervention with PT. But recall there is consid-

erably more task switching overhead if the periods of all HI-criticality tasks are

reduced to less than all LO-criticality task periods.

For multiple criticality levels a number of transformations may be required to

generate a criticality monotonic ordering [237]. For example if there are three tasks

(H, M, and L) with criticality levels implied by their names, and periods 5, 33 and

9. Then first M must be divided by 11 to get a period of 3 (so less than 9), but

then H must be divided by 5 to move it below the new value for M. As a result the

transformed periods become 1, 3 and 9. It also seems that the theoretical benefit of

PT diminishes with an increased number of criticality levels [237].

An alternative to the fixed priority scheduling schemes described above, is that

proposed by Li et al. [426]. They assume there are a small number of supported

priority levels, and show how a resource-efficient scheduler can be derived from an

initial unprioritised schedule.

3.3 EDF Scheduling

The first paper to consider MCS with EDF scheduling was Baruah and Vestal [95]

in 2008. Park and Kim [496] later introduced a slack-based mixed criticality

scheme for EDF scheduled jobs which they called CBEDF (Criticality Based EDF).

In essence they use a combination of off- and on-line analysis to run HI-criticality

jobs as late as possible, and LO-criticality jobs in the generated slack. In effect

they are utilising an older protocol developed by Chetto and Chetto [161] for run-

ning soft real-time tasks in the ‘gaps’ produced by running hard real-time tasks so

as to just meet their deadlines.

A more complete analysis for EDF scheduled systems was presented by Ekberg

and Yi [220, 276]. They mimicked the FP scheme by assigning two relative dead-

lines to each high criticality task. One deadline is the defining ‘real’ deadline of the

task, the other is an artificial earlier deadline that is used to increase the likelihood

of high criticality tasks executing before low criticality ones. At the point that the

criticality of the system changes from low to high (due to a task exceeding its low

criticality budget), all low criticality tasks are abandoned and the high criticality

tasks revert to their defining deadlines. They demonstrate a clear improvement

over previous schemes [277]. Later work [221] generalises the model to include

16

changes to all task parameters and to incorporate more than two criticality levels.

Tighter analysis is provided by Easwaran [215], although it is not clear that the

method will scale to more than two criticality levels. Further improvements are

presented by Yao et al. [633]. They use an improved schedulability test for EDF

(a scheme called QPA [642]), and a genetic algorithm (GA) to find better artificial

deadlines.

A similar scheme was presented by Baruah et al. [74,76], called EDF-VD (EDF

- with virtual deadlines). Again for a dual-criticality system, HI-criticality tasks

have their deadlines reduced (if necessary) during LO-criticality mode execution.

All deadlines are reduced by the same factor. They demonstrate both theoretically

and via evaluations that this is an effective scheme. Note, however, that this scheme

is not as general as those reported above [215,220,276]. In these approaches a dif-

ferent reduction factor is used for each task. Nevertheless the use of a single value

does allow schedulability bounds to be derived (see Section 7). An intermediate

approach that uses just two scaling factors is provided by Masrur et al. [449]; there

motivation being to develop an efficient scheme that could be used at run-time.

In later work [96] Baruah has generalised the underlying MCS model to include

criticality-specific values for period and deadline as well as WCET. EDF-VD was

further improved by Gu and Easwaran [272] by the development of a new schedul-

ing test.

EDF scheduling of MCS is also addressed by Lipari and Buttazzo [433] us-

ing a reservation-based approach. Here sufficient budget is reserved for the high

criticality tasks, but if they only make use of what is assumed by their low critical-

ity requirements then a set of low criticality tasks can be guaranteed. Again only

two criticality levels are assumed. In effect low criticality tasks run in capacity

reclaimed from high criticality tasks. Deadlines for the high criticality tasks are

chosen to maximise the amount of capacity reclaiming.

A different approach to using spare capacity was derived by Su at al. [583,584]

by exploiting the elastic task model [147] in which the period of a task can change.

They propose a minimum level of service for each LO-criticality task τi that is

defined by a maximum period, Tmax
i

. The complete system must be schedulable

when all HI-criticality tasks use their C(HI) values and all LO-criticality tasks

use their C(LO) and Tmax values. At run-time if HI-criticality tasks use less than

their full HI-criticality entitlement then the LO-criticality tasks can run more fre-

quently. They demonstrate that for certain parameter sets their approach performs

better than EDF-VD.

Alternative analysis for EDF scheduled MCS is presented by Mahdiani and

Masrur [445, 446], and Santinelli et al. [542]. The latter make use of multiple

demand-bound curves to allow sensitivity analysis to be derived that can be ap-

plied to the trade-off between resource usage and schedulability (within the con-

17

text of MCS). Feasibility analysis is provided by Chwa et al. [167, 168]. Schmidt

and Garcı́a-Ortiz [550] use non-uniform deadline scaling to improve the quality of

service of EDF scheduled systems.

3.4 Shared Resources

With mixed criticality systems it is not clear to what extent data should flow be-

tween criticality levels. There are strong objections to data flowing from low to

high criticality applications unless the high criticality component is able to deal

with potentially unreliable data [555] – this happens with some security proto-

cols [110]. Even with data flowing in the other direction there remains the schedul-

ing problem of not allowing a high criticality task to be delayed by a low criticality

task that has either locked a shared resource for longer than expected or is execut-

ing at a raised priority ceiling level for too long.

Sharing resources within a criticality level is however a necessary part of any

usable tasking model. In single criticality systems a number of priority ceiling

protocols have been developed [53, 559]. These are beginning to be assessed in

terms of their effectiveness for mixed criticality systems. Burns [125] extends

the analysis for fixed priority systems by adding criticality specific blocking terms

into the response-time analysis, and notes that the original form of the priority

ceiling protocol (OPCP) [559] has some useful properties when applied to MCS.

Resources can be easily partitioned between criticality levels and starvation of LO-

criticality tasks while holding a lock on a resource can be prevented. With AMC-

OPCP, a task can only suffer direct blocking if a resource is locked by a lower

priority task of the same criticality.

Rather than use a software protocol, Engel [225] employs Hardware Transac-

tional Memory to roll back any shared object to a previous state if a LO-criticality

task overruns its budget while accessing the object.

For EDF-based scheduling Zhao et al. [649,652] attempt to integrate the Stack

Resource Protocol (SRP) [53] and Preemption Threshold Scheduling [617] with

approaches to EDF scheduling that involve tasks having more than one deadline.

This is not straightforward as these schemes assume that relative deadlines are

fixed.

Alternative approaches are proposed by Lakshmanan et al. [396] by extend-

ing their single processor zero slack scheduling approach [482] to accommodate

task synchronisation across criticality levels for fixed priority systems. They de-

fine two protocols: PCIP (Priority and Criticality Inheritance Protocol) and PCCP

(Priority and Criticality Ceiling Protocol). Both of these contain the notion of

criticality inheritance. This notion is also used by Zhao et al. [651] in their HLC-

PCP (Highest-Locker Criticality Priority Ceiling Protocol) which they apply to the

18

AMC scheduling scheme (see Section 3.2.1). For a dual criticality system they

define three modes of execution, the usual two plus an intermediate mode which

covers the time during which LO-criticality tasks are allowed to continue to ex-

ecute if they are holding a lock on a resource that is shared with a HI-criticality

task.

A more systematic scheme is proposed by Brandenburg [119]. Here all shared

resources are placed in resource servers and all access to these servers is via a

MC-IPC protocol. As a result only these servers and the support for the MC-IPC

protocol have to be developed to the highest criticality level. Resource users can

be of any criticality level, including non-critical. Data sharing within the context

of the MC2 architecture (see Section 4) is address by Chisholm et al. [163].

3.5 Static and Synchronous Scheduling

The move between criticality levels can be captured in a static schedule by switch-

ing between previously computed schedules; one per criticality level. This is ex-

plored by Baruah and Fohler [88]. Socci et al. [570, 572, 573] show how these

Time-Triggered (TT) tables can be produced via first simulating the behaviour one

would obtain from the equivalent fixed priority task execution. Their approach is

improved upon by Behera and Bhaduri [101, 102] (their algorithm has lower com-

putational complexity). Construction of the tables via tree search is addressed by

Theis et al [592], and via the use of linear programming (LP) by Jan et al. [346].

Behera [99], more recently, added fault tolerance to the time-triggered approach.

For legacy systems Theis and Fohler [591] show how an existing single table may

be used to support MCS.

A particularly simple table driven approach is to use a cyclic executive, this

is investigated by Burns et al. [80, 133, 141, 198, 236, 239, 240] for multiprocessor

systems in which the change from minor cycle to minor cycle is synchronised as

is the change from executing code of one criticality to that of another. Both global

and partitioned approaches are investigated, as are systems that use less processors

for the HI-criticality work than they do for the LO-criticality work [240]. Both

LP and ILP based formulations are used to construct the cyclic executives.

A hyper-period optimisation algorithm is used to reduce the size of the static

tables in the work of Zhou et al. [656,657]. They also address the issue of reducing

the run-time overheads with these partitioning schemes. A more dynamic, work

conserving, allocation scheme for a time slotted architecture is proposed by Heb-

bache et al. [300]. The more formal problem of minimising the makespan on a

static schedule is addressed by Novak et al. [487]. They consider non-preemptive

tasks but multiple criticality levels.

The use of tables is extended to synchronous reactive programs by Baruah [65,

19

66]. Here a DAG (Directed Acyclic Graph), of basic blocks that execute accord-

ing to the synchrony assumption, is produced that implements a dual-criticality

program. The synchronous approach is also considered by Yip et al. [634] and

by Cohen et al. [177]. The latter proving an application of mixed criticality from

the railway industry, and an example of why data needs to flow between criticality

levels.

3.6 Varying Speed Processors

Most analysis for MCS assumes a constant speed processor, but there are situations

in which the speed of the processor is not known precisely (for example with asyn-

chronous circuitry). Baruah and Guo [90] consider power issues that could lead

to a processor having variable speed. As a processor slows down the execution

time of the tasks increase. They simplify the model by assuming two basic speeds,

normal and degraded. At the normal speed a scheduling table is used; at the de-

graded speed only HI-criticality jobs are executed and they use EDF. The authors

have extended this work [91,280,282,628] to include a more expressive model, is-

sues of processor self-monitoring (or not), a probabilistic approach to performance

variation, and fluid scheduling. They have also considered system which have both

uncertainty in execution times and processor speed [283]; and they have addressed

multiprocessor systems [561].

Voltage scheduling, and thereby variable speed computation, is used by Huang

et al. [325, 326] to respond to a temporal overload – if a C(HI) value is exceeded

and could lead to a LO-criticality task missing its deadline then energy is utilised

to enable the processor to reduce computation times. Overall, their approach aims

to reduce the system’s expected energy consumption. Taherin et al. [586] present

some alternative DVFS schemes and compare their results with those of Huang.

DVFS management is also addressed by Haririan and Garcia-Ortiz [296] in their

provision of a simulation framework for power management.

A link between imprecise (and precise) executions and varying speed proces-

sors is made by Sruto et al. [106, 578] in the context of EDF-VD scheduling.

3.7 Semi-Clairvoyant Scheduling

All of the models described above that involve a mode change between normal

and HI-criticality behaviour assume that the earliest time that a mode change

can be triggered is when a job from a HI-criticality task has executed for du-

ration C(L) without signalling completion. An alternative model introduced by

Agrawai et al. [9] assumes that as a job arrives it can indicate whether it will ‘over-

run’. It can do this from knowledge of the state of the system at the time of its

20

arrival. They show that considerable advantage can be obtained from this assump-

tion. Semi-Clairvoyant scheduling is also addressed by Burns and Davis [139]. An

extension of this work is to look at the graceful degradation of Semi-Clairvoyant

scheduling [59]. A further extension is reported by Radulescu et al. [514]. The

combination of Semi-Clairvoyant scheduling, Adaptive Mixed Criticality (AMC)

scheduling and Preemption Threshold scheduling is addressed by Zhao et al. [654].

Jiang et al. [353] utilise the notion of ‘Quarter-Clairvoyance’ in I/O-Driven MCS.

4 Multiprocessor Analysis

The first paper to discuss mixed criticality within the context of multiprocessor

or multi-core platforms was by Anderson et al. [28] in 2009 and then extended

in 2010 [464]. Five levels of criticality were identified; going from level-A (the

highest) to level-E (the lowest). They envisaged an implementation scheme, which

they call MC2, that used a cyclic executive (static schedule) for level-A, parti-

tioned preemptive EDF for level-B, global preemptive EDF for levels C and D and

finally global best-effort for level-E. They considered only harmonic workloads

but allowed slack to move between containers (servers). Each processor had a con-

tainer for each criticality level, and a two-level hierarchical scheduler (see Section

5.4). Later work from this group [164, 302] evaluates the OS-induced overheads

associated with multiprocessor platforms. They also experimented with isolation

techniques for LLC (last level cache) and DRAM. And have demonstrated, us-

ing MC2, the benefits of having different isolation techniques for each criticality

level [379, 380]. The support for mode changes within MC2 is considered by

Chrisholm [162]. This MC2 framework is also used by Bommert [117] to sup-

port segmented mixed criticality parallel tasks; and by Bakita et al. [54] to include

simultaneous multithreading (SMT).

In the remainder of this section we first look at task allocation (with global

or partitioned scheduling), then consider analysis and finally communications and

other systems resources. We note that there has also been work on implementing

mixed-criticality synchronous systems on multiprocessor platforms [67].

4.1 Task Allocation

The issue of allocation was addressed by Lakshmanan et al. [397] by extending

their single processor slack scheduling approach [482] to partitioned multiproces-

sor systems employing a Compress-on-Overload packing scheme. Allocation in

a distributed architecture was addressed by Tamas-Selicean and Pop [587–590] in

the context of static schedules (cyclic executives) and temporal partitioning. They

21

observed that scheduling can sometimes be improved by increasing the criticality

of some tasks so that single-criticality partitions become better balanced. This in-

crease comes at a cost and so they employ search/optimisation routines (Simulated

Annealing [247, 588] and Tabu [336, 337, 587, 589]) to obtain schedulability with

minimum resource usage. Search routines, this time GAs (Genetic Algorithms),

are also used by Zhang et al. [644] to undertake task placement in security-sensitive

MCS. Their objective is to minimise energy consumption “while satisfying strict

security and timing constraints”. A toolset to aid partitioning is provided by Alonso

et al. [24].

A more straightforward investigation of task allocation was undertaken by

Kelly et al [375]. They considered partitioned homogeneous multiprocessors and

compared first-fit and best-fit approaches with pre-ordering of the tasks based on

either decreasing utilization or decreasing criticality. They used the original anal-

ysis of Vestal to test for schedulability on each processor, and concluded that in

general first-fit decreasing criticality was best. For heterogeneous multiprocessors

Awan et al. [47] propose a mapping scheme that is energy efficient. Energy efficient

partitioning is also addressed by Guasque et al. [278].

A comprehensive evaluation of many possible schemes is reported by Ro-

driguez at al. [533]. They consider EDF scheduling and used the analysis frame-

work of EDF-VD (see Section 3.3). One of their conclusions is the effectiveness

of a combined criticality-aware scheme in which HI-criticality tasks are allocated

Worst-Fit and LO-criticality tasks are allocated using First-Fit; both with Decreas-

ing Density. The same result is reported by Gu et al. [268]. They additionally

note that if there are some very ‘heavy’ LO-criticality tasks (i.e. high utilisation

or density) then space must be reserved for them before the HI-criticality tasks

are allocated. Partitioning with EDF-VD is also addressed by the work of Han et

al. [290]. Ramanathan and Easwaran [516] demonstrate that an effective partition-

ing scheme can be derived from evenly distributing the differences between HI-

criticality and LO-criticality utilisation. Their results being applicable to EDF-VD

and fixed-priority AMC.

A global allocation scheme for MCS is proposed by Gratia et al. [260, 262].

They adapt the RUN scheduler [531], which uses a hierarchy of servers, to ac-

commodate HI and LO criticality tasks. The latest version of their schedular

(GMC-RUN) [261] has been extended to deal with more criticality levels. In a dif-

ferent study, Koc et al. [382] look to improve the reliability of the highest criticality

tasks running on a hardware/software (HW/SW) co-design environment. Muttillo

et al. [468] also consider HW/SW co-design to support Xtratum-based SW parti-

tions.

Between fully partitioned and fully global scheduling is the class of schemes

termed semi-partitioned. This is being addressed by Bletsas at al. [39,41,114,115]

22

and Al-Bayati et al. [14]. The latter work uses two allocations for their two critical-

ity modes. HI-criticality tasks do not migrate. During a mode change, carry-over

LO-criticality jobs are dropped and new LO-criticality jobs executing on a dif-

ferent processor are given extended deadlines/periods (i.e. they utilise the elastic

task model). A different approach is taken by Xu and Burns [625]; here a mode

change on one processor results in LO-criticality jobs migrating to a different pro-

cessor that has not suffered a criticality mode change. No deadlines are missed.

If all processors suffer such a mode change then at least the timing needs of all

HI-criticality tasks are protected. Naghavi et al. [472] also allow LO-criticality

tasks to migrate. Zhang [640] considers semi-partitioning within the context of

cyclic executive execution; and Wang et al. [616] uses the techniques in 6G-based

edge computing. Qian et al. /citeQIAN2021 consider the allocation problem with

the semi-partitioned approach. And Huang at al. [330] consider some EDF-based

semi-partitioning schemes. Further consideration of the allocation problem is pro-

vided by Yang et al. [627].

A different approach, that aims to maximise the benefits of partitioning and

global scheduling, is that based on clusters. A multi-core platform is statically par-

titioned into a number of clusters, within a cluster tasks execute ‘globally’. Ali and

Kim [20] investigate a scheme in which small clusters are used when the system

is in the LO-criticality mode, but larger clusters are employed when the system

moves to the HI-criticality mode. Nagalakshmi and Gomathi [470] also use clus-

ters but within a EDF-scheduled fully partitioned approach. Within each cluster is

a single HI-criticality task and one or more LO-criticality tasks. As a result the

impact of a HI-criticality task executing beyond its C(LO) value is limited to just

those LO-criticality tasks within the same cluster.

With dual-criticality fault tolerant systems, a scheme in which high criticality

tasks are replicated (duplicated) while low criticality tasks are not is investigated

by Axer et al. [48] for independent periodic tasks running on a MPSoC (multi-

processor system-on-chip). They provide reliability analysis that is used to inform

task allocation.

A more theoretical approach (i.e. it is not directly implementable) is proposed

by Lee et al. [408] with their MC-Fluid model. A fluid task model [85, 308] ex-

ecutes each task at a rate proportional to its utilisation. If one ignores the cost of

slicing up tasks in this way then the scheme delivers an optimal means of schedul-

ing multiprocessor platforms. To produce a mixed criticality version of the fluid

task model the fact that tasks do not have a single utilisation needs to be addressed.

Lee et al. [408, 409] do this and they also produce an implementable version of

the model that performs well in simulation studies (when compared with other ap-

proaches). Baruah et al. [60, 86] derived a simplified fluid algorithm which they

call MCF. Two further algorithms, MC-Sort and MC-slope, are proposed by Ra-

23

manathan and Easwaran [515, 518].

Fluid scheduling is also employed by She et al. [560] in, what they term, precise

MC scheduling. In this work the number of processors available increases when

necessary to ensure that no LO-criticality tasks miss their deadlines.

For static scheduling schemes, such as a FlexRay-based ECU network, Roy et

al. [534] propose a scheme they call GoodSpread to spread out the use of the QoS

resources.

All the above work is focussed on standard single threaded tasks. In addi-

tion there has been some studies on parallel tasks and MCS – see Liu et al. [422,

423, 437], Pathan [500], Agrawal and Baruah [5], Gill et al. [251] and Bhuiyan et

al. [108, 109].

4.2 Schedulability Analysis

For globally scheduled systems Li and Baruah [421] take a ‘standard’ multiproces-

sor scheme, fpEDF [62] and combine it with their EDF-VD approach (see Section

3.3). Evaluations indicate that this is an effective combination. Extensions of this

work [84] compare the use of partitioning or global scheduling for MCS. Their in-

terim conclusion is that partitioning is by far the most effective approach to adopt.

Notwithstanding this result, Pathan derives [497] analysis for globally sched-

uled fixed priority systems. They adopt the single processor approach [81] (see

Section 3.2) and integrate this with a form of analysis for multiprocessor schedul-

ing that is amenable to optimal priority ordering, via Audsley’s algorithm [34].

They demonstrate the effectiveness of their approach (by comparing success ra-

tios). Jung and Lee subsequently improved on this analysis [363]. The global

scheduling scheme of EDZL (Earliest Deadline first until Zero Laxity) is also

adapted for MCS by Jung et al. [51, 362]. They show how it can be used with

EDF-VD and fixed-priority scheduling.

A different and novel approach to multi-core scheduling of MCS is provided

by Kritikakou et al. [388, 391]. They identify that a HI-criticality task will suffer

interference from a LO-criticality task running on a different core due to the hard-

ware platform’s use of shared buses and memory controllers etc.. They monitor the

execution time of the HI-criticality task and can identify when no further interfer-

ence can be tolerated. At this point they abort the LO-criticality task even though

it is not directly interfering. An implementation on a multi-core platform demon-

strated effective performance of their scheme [391]. They subsequently improved

on this static approach by utilising a dynamic version that reduces the time spent

in the controller [389].

Extensions to deal with precedence constraints were given by Socci et al. [571]

but only for jobs (not tasks). A full pipeline scheme is considered by de Niz et

24

al. [197].

4.3 Communication and other Resources

With a more complete platform such as a multiprocessor or System on Chip (SoC),

perhaps with a NoC (Network-on-Chip), more resources have to be shared be-

tween criticality levels. The first design issue is therefore one of partitioning (as

addressed above), how to ensure the behaviour of low criticality components does

not adversely impact on the behaviour of higher criticality components. Pellizzoni

et al. [505] in 2009 was the first to consider the deployment of mixed criticality

systems (MCS) on multi-core and many-core platforms. They defined an Archi-

tectural Analysis and Design Language (AADL), a form of ADL (Architectural

Description Language), for mixed criticality applications that facilitates system

monitoring and budget enforcement of all computation and communication. Later

Obermaisser et al. [490, 491] introduce a system model with gateways and end-to-

end channels over hierarchical, heterogeneous and mixed criticality networks.

For a bus-based architecture it is necessary to control access to the bus so that

applications on one core do not impact unreasonably on applications on other cores

(whether of different or indeed the same criticality level). Pellizzoni et al. [506]

show that a task can suffer a 300% increase in its worst-case execution time due

to memory access interference even when it only spends 10% of its time on fetch-

ing from external memory on an 8-core system. To counter this, Yun et al. [636]

propose a memory throttling scheme for MCS. Kotaba et al [386] also propose a

monitoring and control protocol to prevent processes flooding any shared commu-

nication media be it a bus or network. Kritikakou et al. [390] consider a scenario

in which there are a few critical tasks that can suffer indirect interference from

many lower critical tasks. They attempt to allow as much parallelism as possible

commensurate with the critical tasks retaining their temporal validity. Hassan and

Patel [298] claim an improved bus arbitrator, called Carb, that is more criticality

aware. Bounding the interference that a safety-critical task can suffer from lower

criticality tasks using the same shared communication resources on a multi-core

platform is also addressed by Nowotsch et al. [488]. Freitag et al. [242] utilise a

fully isolated model (each core only has tasks of only one criticality), those core

that have LO-criticality tasks are slowed down (or even stopped) if their measured

interference on the HI-criticality cores is above statically derived bounds.

Within the time-triggered model of distributed computation and communica-

tion a mixed criticality system is often viewed as one that has both time-triggered

and event-triggered activities, also referred to as synchronous and asynchronous

[511, 579]. The time-triggered traffic is deemed to have the highest criticality,

the event-triggered traffic can be either just best-effort or can have some level of

25

assurance if its impact on the system is bounded; what Steiner [579] calls rate-

constrained. Protocols that support this distinction can be supported on networks

such as TTEthernet. Another TDMA-based approach, though this time built into

the Real-Time Ethernet protocol, is proposed by Carvajal and Fischmeister in their

open-source framework, Atacama [151]. Cilku at al. [171] describe a TDMA-

based bus arbitration scheme. Novalk et al. [485] propose a scheduling algorithm

for time-triggered traffic that minimises jitter while allowing HI-criticality mes-

sages to be re-transmitted (following failure) at the expense of LO-criticality mes-

sages (which are abandoned). They also [486] consider how to produce an effective

static schedule when there are unforeseen re-transmissions (for two and three lev-

els of criticality). Analysis of AFDX (Avionics Full Duplex Switched Ethernet)

within the context of MCS is provided by Finzi et al. [235].

A model that does not preclude concurrent transmissions, but limits the number

of clashes that need be tolerated is provided by Agrawal et al. [8].

A reconfigurable SDRAM controller is proposed by Goossen et al. [257] to

schedule concurrent memory requests to the same physical memory. They also

use a TDMA approach to share the controller’s bandwidth. A key aspect of this

controller is that it can adapt to changes in the run-time characteristics of the ap-

plication(s). For example, a criticality mode change which should result in more

bandwidth being assigned to the higher criticality tasks can be accommodated by

what the authors call a use-case switch. Criticality aware DRAMs are also ad-

dressed by Jalle et al [345] in the context of a Space case study in which there are

two criticality levels: ‘control’ and ‘payload’.

Virtual DRAMs are adapted by Ecco et al. [217] to isolate critical tasks (which

are guaranteed) from non-critical tasks that, although not guaranteed, do perform

adequately. Each virtual device represents a group of DRAM banks supports one

critical task and any number of non-critical tasks. All critical tasks run on dedicated

cores, and hence the only potential source of inter-criticality interference is from

the interconnection fabric (bus). By use of virtual devices, the critical tasks benefit

from interference-free memory access. DRAMs are also the focus of the work by

Hassen et al. [299], Awan et al. [40] and Guo and Pellizzon. [279].

Kim at al. [377] propose a priority-based DRAM controller for MCS that sep-

arates critical and non-critical memory accesses. They demonstrate improved per-

formance for the non-critical traffic. Note this work is focussed on supporting

critical and non-critical traffic on the same memory banks (rather than mixed-

criticality). A similar approach and result is provided by Goossens et al. [256]

with their open-page policy.

Giannopoulou et al. [247, 248] use a different time-triggered approach. They

partition access to the multiprocessor bus so that at any time, t, only memory ac-

cesses from tasks of the same criticality can occur. This may introduce some in-

26

efficiencies, but it reduces the temporal modelling of a mixed criticality shared

bus to that of a single criticality shared bus. The latter problem is not, however,

straightforward (but is beyond the scope of this review). In later work they gener-

alise their approach by introducing the notion of isolation scheduling [322]. They

also demonstrate the implementation of their approach on a Layray MPPA-256

many-core platform [601].

The problems involved in using a shared bus has lead Giannopoulou et al. to

also include a Network-on-Chip (NoC) in their later work [250]. Burns et al. [80,

133,141,239] apply a ‘one criticality at a time’ approach to MCS scheduled by the

use of a Cyclic Executive; they considered both partitioned and global allocation

of jobs to frames.

Tobuschat et al. [599, 600] have developed a NoC explicitly to support MCS.

Their IDAMC protocol uses a back suction technique [200] to maximise the band-

width given to low (or non) critical messages while ensuring that high-criticality

messages arrive by their deadlines. The more familiar wormhole routing [481]

scheme for a NoC has been expanded by Burns, Harbin and Indrusiak [142, 340]

to provide support for mixed criticality traffic. Response-time analysis, already

available for such protocols [562]24, is augmented to allow the size and frequency

of traffic to be criticality aware. Wormhole routing is also used by Hollstein et

al [307] to provide complete separation of mixed-criticality code; they also sup-

port run-time adaptability following any fault identified by a Built-In Self Test.

Another wormhole router (DAS - double arbiter and switching) is described by

Dridi et al. [210–212]; they use wormhole for the LO-criticality traffic, but store-

and-forward for the HI-criticality messages.

On-chip networks require reliable/trusted interfaces to prevent babbling be-

haviour [122]; Ahmadian and Obermaisser [12] describe how to provide this via

a time-triggered extension layer for a mixed-criticality NoC. Dynamic and adap-

tive control of a mixed-criticality NoC is considered by Kostrzewa t al. [384, 385].

Other work focuses on COTS RTOS solutions [38, 229]. Control over I/O con-

tention via an Ethernet-based criticality-aware NoC is advocated by Abdallah et

al. [1]. A focus on NoC security, in which HI-criticality messages need more

protection than LO-criticality is taken by Papastefanakis et al. [495].

An alternative to using a NoC for all traffic (task to task and task to off chip

memory) is proposed by Audsley [35, 253]. They advocate the use of a separate

memory hierarchy to link each core to off chip memory. A criticality aware pro-

tocol is used to pass requests and data through a number of efficient multiplexers.

If the volume of requests and data is criticality dependent then analysis similar to

24This analysis has been shown to be optimistic in some circumstances, see discussion by Xiong

et al. [624].

27

that used for processor scheduling can be used on this memory traffic. The separa-

tion of execution-time from memory-access time is explored by Li et al. [425,428].

They demonstrate that this distinction improves schedulability.

Controller Area Network (CAN) [252] is a widely used network for real-time

applications, particularly in the automotive domain. It has been the subject of

considerable attention with Response-Time Analysis derived [193] for what is, in

essence, a fixed priority non-preemptive protocol. The use of CAN in mixed crit-

icality applications has been addressed by Burns and Davis [135]. In this work it

is the period of the traffic flows and the fault model that changes between criti-

cality levels. A MixedCAN protocol was developed that makes use of a Trusted

Network Component that polices the traffic that nodes are allowed to send over the

network. Evaluations are used to show the advantages of using MixedCAN rather

than a criticality agnostic approach. However the paper, in keeping with many

other publications, only considered dual-criticality systems.

Herber et al. [301] also addressed the CAN protocol. They replaced the phys-

ical network controller with a set of virtual controllers that facilitate spacial sepa-

ration. A weighted round robin scheduler in then used to give temporal isolation.

Their motivation is to support virtualisation in an automotive platform. They do

not however use criticality specific parameters for the different applications hosted

on the same device. Nager et al. [471] show how CAN can be used in a more

flexible way to support MCS.

Other protocols that have been considered in terms of their support for mixed

criticality systems include FlexRay [258] and switched Ethernet [181, 182]. In the

latter work, a change in criticality mode is broadcast to the entire system by adding

a new field to the IEEE 1588 PTP (Precision Time Protocol). The work by Lee at

al. [411, 412] makes use of SDN (Software-Defined Networking) architecture on

switched Ethernet.

George et al. [244] assume the speed of the wireless communication media

varies over time. Each node monitors this speed and only send messages that are

compatible with its current estimate. Offline analysis partitions the messages ac-

cording to criticality and required speed.

A further communication protocol is addressed by Addisu et al. [4]. They con-

sider JPEG2000 Video streaming over a wireless sensor network. With such a

network the available bandwidth varies in an unpredictable way. They propose a

bandwidth allocation scheme that is criticality aware. A wireless protocol (Wire-

lessHART) is also used by Jin at al. [356,357] to support delay analysis with fixed

priority scheduling for sensor networks. A hybrid scheduling approach for sensor

nodes with mixed-criticality tasks is investigated by Micea et al. [460].

AirTight [143, 293, 295] is a wireless protocol that has been designed specif-

ically to support mixed-criticality traffic. High criticality packets must be able to

28

survive a greater intensity and frequency of faults than lower criticality packets.

This is modelled by means of criticality-aware fault models. Carvalho et al. [152]

also address low power wide area network technologies and show how redundant

transmissions within LoRaWAN can be improved for mixed-criticality IoTs.

A means of modelling an entire end-to-end vehicular embedded system includ-

ing various forms of networking is provided by Mubeen et al. [466].

A novel scheduling approach (triangle scheduling) for mixed-criticality mes-

sages is proposed by Dürr et al. [213]. The adaptation of synchronisation protocols

such as MSRP (Multiprocessor Stack Resource Policy) to multiprocessor platforms

and mixed-criticality software scheduled using partitioned EDF is addressed by

Han et al. [291].

Mixed-criticality Industrial Data Scheduling on 5G NR (new radio) is addressed

by Jin et al. [355].

5 Links to other Research Topics

5.1 Hard and Soft Tasks

Although the label ‘Mixed Criticality Systems’ is relatively new, many older re-

sults and approaches can be reused and reinterpreted under this umbrella term. In

particular dual-criticality systems in which there are hard and soft tasks combined

has been studied since at least 1987 [415]. Hard tasks must be guaranteed. Soft

tasks are then given the best possible service. But soft tasks are usually unbounded

in some sense (either in terms of their execution time or their arrival frequency)

and hence they must be constrained to execute only from within servers (execution-

time servers). Servers have bounded impact on the hard tasks. Since 1987 a number

of servers have been proposed. The major ones for fixed priority systems being the

Periodic Server, the Deferrable Server, the Priority Exchange Server (all described

by Lehoczky et al. [415]), and the Sporadic Server [575]. The ability to run soft

tasks in the slack provided by the hard tasks is also supported by the Slack Steal-

ing schemes [186, 195, 414, 522] which have similar properties to servers. These

all have equivalent protocols for dynamic priority (EDF) systems; and some EDF

specific ones exist such as the Constant Bandwidth server [431].

Since their initial specification, analysis has improved and means of allocat-

ing and sharing capacity between servers have been investigated (see for exam-

ple [103, 104, 637]). However, these results on servers (and examples of how they

can be implemented in Operating Systems and programming languages) are gener-

ally known (see standard textbooks [145,148,438]), hence they are not reviewed in

more detail here. Note however, that standard servers only deal with the isolation/

partitioning aspect of MCS. To support sharing (of resources) there must be some

29

means of moving capacity from the under utilised servers of high criticality tasks

to the under provisioned servers of lower criticality tasks. The Extended Priority

Exchange server [575] as well as work on making use of gain time, show how this

can be achieved.

Another way of maximising the slack available for soft tasks is the dual-priority

scheme [146, 196]. Here there are three bands of priority. The soft tasks run in the

middle band while the hard tasks start in the lower band but are promoted to the

higher band at the latest possible time commensurate with meeting their deadlines.

So hard tasks execute when they have to, or when there are no soft tasks, soft tasks

run otherwise.

Run-time adaptability for MCS has been addressed by Hu et al. [312–314,

316]. They present an approach to adaptively shape at runtime the inflow workload

of LO-criticality tasks based on the actual demand of HI-criticality tasks. This

improves the QoS of LO-criticality tasks; but it not clear what level of guarantee

is provided for these tasks. An alternative scheme, with the same aim, is given

by Hikmet [305]. A QoS focus is also taken by Vaidhun et al. [604] with respect

to pervasive systems. Schlatow et al. [549] propose a self-aware budget control

system to manage run-time variability in resource usage. Monitoring and control

is also the focus of the work presented by Loche et al. [440].

Awan et al. [45] consider the use of periodic servers for uniprocessor systems.

They consider how server budgets can be dynamically adjusted in the event of a

mode change.

5.2 Fault Tolerant Systems (FTS)

Fault tolerant systems typically have means of identifying a fault and then recov-

ering before there is a system failure. Various recovery techniques have been

proposed including exception handling, recovery blocks, check-points, task re-

execution and task replication. If, following a fault, extra work has to be under-

taken then inevitably some existing work will need to be abandoned, or at least

postponed. And this work must be less important than the tasks that are being

re-executed. It follows that many fault tolerant systems are, in effect, mixed criti-

cality.

To identify a fault, timeouts are often used. A job not completing before a

deadline is evidence of some internal problem. Earlier warning can come from

noting that a job is executing for more than its assumed worst-case execution time.

Execution-time monitoring is therefore common in safety critical systems that are

required to have at least some level of fault tolerance. Again this points to common

techniques being required in FTS and MCS.

As noted earlier, in the discussion on CAN (Section 4.3), a fault model can be

30

criticality dependent [135] – a task may, for example, be required to survive one

fault if it is mission critical, but two faults if it is safety critical. The difference

between the assumed computation times at different criticality levels may be a

result of the inclusion or not of recovery techniques in the assumed worst-case

execution time of tasks.

Although there is this clear link between FTS and MCS there was not initially

much work published that directly addresses fault-tolerant mixed criticality sys-

tems. Exceptions being work by Huang et al. [328, 329], a paper by Pathan [498]

that focuses on service adaptation and the scheduling of fault-tolerant MCS, and a

four-mode lockstep model developed by Al-Bayati et al. [13] (the requirement for

lockstep execution is relaxed in later work [150]). This idea is also addressed by

Kempf et al. [376].

Work by Thekkilakattil uses Zonal Hazard Analysis and Fault Hazard Anal-

ysis [594] and Error-Burst models [593] to deliver both flexibility and real-time

guarantees for the most critical tasks. Thekkilakattil et al. [595] also considers the

link between MCS and the tolerance of permanent faults. Lin et al. [429] attempt

to integrate mixed criticality with the use of primary and backup executions in

both of the two criticality modes they consider. Guo et al. [287] use the notion of

failure probability to define a new scheduling scheme that accommodates failure

dependent tasks.

Islam at al. [341], in a paper that preceded that of Vestal, looked at combin-

ing different levels of replication for different levels of criticality. Co-scheduling

loosely-coupled replicas for MCS is shown to be effective by Rambo and Ernst [520,

521]. These authors also develop [519] a AIQ (Advanced Integrity Q-service) for

a fault-tolerant NoC that can support MCS. Related work [365] looks at safe re-

configuration of a many-core platform following a foreseen system failure.

Ahmadian et al. [11] invoke reconfiguration to provide for fault tolerance in the

context of a time-triggered NoC based MCS. Alahmad and Gopalakrishnan [16]

use what they term ‘isochronous’ execution to synchronise the execution of redun-

dant versions of critical software over ‘regular’ and ‘safe’ processors. Improved

response-time analysis for FT MCS is provided for multi-core systems by Choi et

al. [165]. Kajmakovicet al. [371] proposed a soft error correction strategy called

Redundant Parity (RP), which is itself an enhanced version of existing 1oo2 archi-

tectures.

Standby-Sparing (SS) is an approach to FT that uses two processors, every

task runs on the primary processor (which uses voltage management to execute as

slowly as feasible). If for any reason this version of the task fails an identical copy

runs on the second (share) processor. This version runs as late as possible, with the

processor running at maximum speed. CASS [647] is a criticality-aware version

of SS in which the lower criticality tasks are less tolerant of faults. Naghavi et

31

al. [472] also use a spare processor for HI-criticality tasks so that they can survive

permanent faults. LO-criticality tasks migrate when there is a failure.

As highlighted already in this review, many models and protocols for mixed

criticality behaviour allow the system to move through a sequence of criticality

modes. With a two mode system (HI and LO) the system starts in the LO mode

in which all deadlines of all tasks are guaranteed, but can then transition to the HI
mode in which only the HI-criticality tasks are guaranteed (and the LO-criticality

tasks may actually be abandoned). It may, or may not, later return to the LO mode

when it is safe to do so. Burns [126] attempts to compare these criticality mode

changes with the more familiar system mode change, and concludes that the LO
mode behaviour should be considered to be the ‘normal’ expected behaviour. A

move away from this mode is best classified as a fault; with all other modes being

considered forms of graceful degradation. Such a mode change is planned but may

never occur. A move back to the fully functional LO mode is closest in nature to

an operational (sometime known as exceptional) mode change.

5.3 Security

Many MCS papers have, either explicitly or implicitly, focused on issues of safety

and reliability. Criticality can however also refer to security. Within this domain

it is usual to have different security levels. And hence much of the extensive lit-

erature on security is relevant, but is out of scope of this review. Some work is

nevertheless applicable to safety and security; for example the definition of a sep-

aration kernel for a system-on-chip built using a time-triggered architecture [618].

An overview of the security (and other) issues associated with MPSoCs is provided

by Hassan [297].

Another paper directly linking security and MCS is from Baek and Lee [50].

They incorporate the cost of flushing between security levels in a non-preemptive

version of AMC (for fixed priority scheduling). Woolley at al. [621] focus on

security aspects of hierarchical scheduling of mixed safety and security-critical

MCS.

Kadar et al. [364] propose a safety-aware method to integrate hardware-assisted

control flow based security monitoring with ARM CoreSight into a MCS, and pro-

vide metrics to evaluate the trade-off between performance impact and security

monitoring coverage.

5.4 Hierarchical Scheduling

One means of implementing a MCS where strong partitioning is needed between

applications is to use a hierarchical (typically two-level) scheduler. A trusted base

32

scheduler assigns budgets to each application. Within each application a secondary

scheduler manages the threads of the application. There are a number of relevant

results for such resource containment schemes (e.g. [156, 190, 191, 432, 536, 630,

641]). Both single processor and multiprocessor platforms can support hierarchical

scheduling.

Unfortunately when hierarchical scheduling is applied to MCS there is a loss

of performance [395]. A simple interface providing a single budget and replen-

ishment period (which is often associated with virtualisation or the use of a hy-

pervisor [23]) is too inflexible to cater for a system that needs to switch between

criticality levels. To provide a more efficient scheme, Lackorznshi et al. [395] pro-

pose ‘flattening’ the hierarchy by exposing some of the interval structure of the

scheduled applications. They develop the notion of a scheduling context which

they apply to MCS [611]. In effect they assign more than one budget to each

‘guest’ OS. As a result, applications that would otherwise not be schedulable are

shown to utilise criticality to meet all deadlines. An alternative, but still flexible

approach, is provided by Groesbrink et al. [265,266]. They allow budgets to move

between virtual machines executing on a hypervisor that is itself executing on a

multi-core platform. The hypervisor controls access to the processor, the memory

and shared I/O devices. Yet another scheme is described by Marinescu et al [447];

they are more concerned with partitioning as opposed to resource usage, but they

do address distributed heterogeneous architectures. Hypervisors are also used by

Cilku and Puschner [172], to give temporal and spacial separation on a multipro-

cessor platform, and Perez et al. [508] use a hierarchical scheduler to statically

partition a wind power mixed criticality embedded system requiring certification

under the IEC-61508 standard. A hypervisor for a mixed criticality on-board satel-

lite software system is discussed by Salazar et al. [22, 541]. And one that uses and

supports general control theory is addressed by Crespo et al [179, 180]. The issue

of minimising the overheads of a hypervisor is addressed by Blin et al. [116].

Section 8.2 continues this discussion on hypervisors and virtualisation.

5.5 Cyber Physical Systems and the Internet of Things

In parallel with the development of a distinct branch of research covering MCS has

been the identification of Cyber Physical Systems (CPS) as a useful focus for sys-

tem development. Not surprisingly it has been noted that many CPS are also mixed

criticality. For example Schneider et al. [551] note that many CPS are a combina-

tion of deadline-critical and QoS-critical tasks. They propose a layered scheme in

which QoS is maximised while hard deadline tasks are guaranteed. Izosimov and

Levholt [344] use a safety-critical CPS to explore how metrics can be used to map

potential hazards and risk from top level design down to mixed criticality compo-

33

nents on a multi-core architecture. Issues of composability within an open CPS are

introduced in the short paper by Lee et al. [403].

Maurer and Kirner [451] consider the specification of cross-criticality inter-

faces (CCI) in CPSs that define the level of communication allowed between ‘open’

subsystems/components. J. Lee at al. [402] also look at interfaces and composition

for mixed criticality CPSs.

The link between the Internet of Things, IoT, and MCS is made by Kamien-

ski et al. [373] in the context of development methods for energy management in

public buildings. Smart buildings are also the focus of the work of Dimopoulos et

al. [202] on a context-aware management architecture. The Smart City Paradigm

is considered by Naveen Balaji et al. [55]. A Model-based approach for managing

criticality in an e-health IoT system is developed by Kotronis et al. [387]. A Jitter-

based analysis of a distributed real-time system is presented by K. Lee et al. [410],

they are motivated by the requirements of IoT. Rashtian and Gopalakrishnan [527]

look at soft real-time IoTs and propose a method of balancing criticality and time-

liness. A link between MCS, scheduling, security and IoT is explored by Ali et

al. [19].

Mirhosseini and Wenisch [462] consider a microservice architecture and show

how a mixed-criticality approach can help structure a feedback controller to control

request on microservice instances.

5.6 Probabilistic Real-Time Systems

In mixed criticality systems, the worst-case execution time of a task is expressed

as a function of the criticality level (e.g. C(LO) and C(HI)) with larger values

for the WCET obtained for higher criticality levels. Research into probabilistic

hard real-time systems can be viewed as extending this model to a continuum (or

at least a large number of discrete values). Instead of a number of single values

for the WCET with different levels of confidence, the worst-case execution time is

expressed as a probability distribution, referred to as a pWCET [105].

The exceedance function (or 1 - CDF 25) for the pWCET gives the probabil-

ity that the task will exceed the specified execution time budget on any given run.

Conversely, the exceedance function may be used to determine the execution time

budget required such that the probability of overrunning that budget does not ex-

ceed a specified probability. This is illustrated in Figure 2. Here, an execution

time budget of 55 has a probability of being exceeded of 10−5, whereas the exe-

cution time budget required to ensure that the probability of exceedance is at most

10−9 is 70. We note that exceedance probabilities and failure rates (e.g. 10−9 fail-

25Cumulative Distribution Function.

34

1.E-16

1.E-15

1.E-14

1.E-13

1.E-12

1.E-11

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 20 40 60 80 100

E
x
ce

e
d

a
n

ce
 P

ro
b

a
b

il
it

y

Execution Time

Figure 2: pWCET distribution as an Exceedance function

ure per hour) are not the same, but that such probabilities can be transformed into

failure rates by accounting for the number of jobs in a given time period, or via

probabilistic schedulability analysis techniques.

Probabilistic analysis provides an alternative treatment for mixed criticality

systems, where high criticality tasks are specified as having an extremely low ac-

ceptable failure rate (e.g. 10−9 per hour), whereas a higher failure rate (e.g. 10−6

or 10−7 per hour) is permitted for lower criticality tasks. Probabilistic worst-case

execution times [26,153] and the probabilistic worst-case response times [199,441]

derived from them provide a match to requirements specified in this way. These

techniques can potentially be used to show that pathological cases with very high

execution times / high response times have a provably vanishingly low probability

of occurring, thus avoiding the need to over-provision compute resources to handle

these cases.

Just as MCS has expanded from a focus on worst-case execution times to one

that includes arrival rates (for sporadic work), probabilistic analysis has been de-

veloped [18] for the case where the arrival rate of tasks is described by a proba-

bility distribution. This work could form a further link between MCS and prob-

abilistic analysis. Indeed Masrur [448] uses random jitter on the arrival time of

LO-criticality tasks to improve schedulability.

Guo et al. [284] demonstrate the usefulness of a probabilistic framework in

35

their analysis of an EDF scheduled system in which there is a permitted (but low)

probability of timing faults. The chances of a HI-criticality task executing for

more than its LO-criticality value is also expressed as a probability26. Their cur-

rent work assumes that task execution times are independent; this is an unreal-

istic assumption, but one that could be weakened in future work. Santinelli and

George [543] also explore the probability space of worst-case execution times for

MCS. Probabilistic analysis for the SMC and AMC schemes is derived by Maxim

et al. [452, 453]. And a constrained Markov decision process is used by Alahmad

and Gopalakrishnan [15,17] to model job releases in MCS. A discrete time Markov

chain is also used by Singh et al. [565].

Probabilistic analysis is used, by Draskovic et al. [207, 209], to investigate the

safety of each criticality level. Abdeddaim and Maxim [3] derived probabilistic

response time analysis for mixed criticality tasks under fixed priority preemptive

scheduling, computing the probability of deadline misses for each task in each

criticality mode. Their work does not assume any monitoring, hence they assume

that lower criticality tasks continue to execute in higher criticality modes. Küttler

et al. [394] use symbolic execution to derive probabilistic estimates of the LO-

criticality tasks’ completing before their deadlines. Lee [401] provides probabilis-

tic performance evaluations for task-level mode changes. Singh et al. [566] use

pWCET in their analysis of non-preemptive period tasks. Safety is also the pri-

mary driver for the work of Draskovic et al. [208].

Novak et al. [487] look at uncertain processing times in various contexts in-

cluding replicated task execution.

One further use of stochastic models is to estimate the amount of time that LO-

criticality tasks are unavailable (not executed). Medina et al. [454, 456] provide

such availability analysis for MCS hosted on multi-core platforms scheduled using

data-flow graphs.

6 More Realistic MCS Models

The abstract behavioural model described in Section 2 has been very useful in

allowing key properties of mixed criticality systems to be derived, but it is open

to criticism from systems engineers that it does not match their expectations. In

particular:

• In the HI-criticality mode, LO-criticality tasks should not be abandoned.

Some level of service should be maintained if at all possible, as LO-criticality

tasks are still critical.

26An approach also investigated by Zeng et al. [639].

36

• For systems which operate for long periods of time it should be possible

for the system to return to the LO-criticality mode when the conditions are

appropriate. In this mode all functionality should be provided.

It can be argued that these criticisms are, at least partly, misplaced as any high

integrity system should remain in the LO-criticality mode for its entire execu-

tion: the transition to HI-criticality mode is only a theoretical possibility that

the scheduling analysis can exploit [81]. Nevertheless, in less critical applica-

tions (such as those envisaged in the automotive industry) actual criticality mode

changes may be experienced during operation and the above criticisms should be

addressed. Of course for some applications it is acceptable to provide only lim-

ited timing guarantees during these rare events, and hence no online controls are

required [613].

Recent reflections (at two 2017 events – the WMC workshop and Dagstuhl

seminar) has identified two distinct roles for what is now called the ‘Vestal Model’:

the verification of a MCS, and its run-time survivability. For the former it may be

only necessary to argue that the HI-criticality work is guaranteed (in all circum-

stances) and hence no guarantees need be developed for the LO-criticality work.

But survivability concerns all criticality levels. If faults are occurring (in particular

timing overruns) then criticality-aware graceful degradation should result. Note

material linking MCS and fault tolerance was reviewed in Section 5.2.

With this dual role for the Vestal Model it is not true to say that it advocates

dropping all LO-criticality tasks are soon as there is any, even minor, budget over-

run. Rather it is saying that for static verification the interference from lower crit-

icality tasks must be demonstrably bounded. Within this bound a variety of of

techniques are available to increase the survivability of the LO-criticality work.

To distinguish between two forms of survivability, Burns et al. [58,134] define

Robustness to imply those techniques used to deliver full functionality within an

explicit bound on the duration and severity of the temporal faults, and Resilience to

encompass the wide range of techniques available to give different levels of grace-

ful degradation when the system’s faulty behaviour is beyond the lower bound.

Means of enhancing Robustness (by mode-switch procrastination and deferred

switching) are considered by Hu et al. [312–314,316], Gu and Easwaran [271,273]

and by Huang et al. [320].

The wide range of techniques addressing Resilience include:

1. Letting any LO-criticality job that has started, run to completion (this is in

effect what is assumed by many forms of analysis [81]).

2. Reducing the priorities of the some of the LO-criticality tasks [78, 338], or

similar with EDF scheduling [323, 324].

37

3. Increasing the periods and deadlines of some or all of the LO-criticality

jobs [251, 347, 517, 580, 582–584, 631], called task stretching, the elastic

task model or multi-rate.

4. Imposing a weakly-hard constraint on the LO-criticality jobs [245,360,455,

526].

5. Decreasing the computation times of some or all of the LO-criticality tasks

[132]27 [60], perhaps by utilising an imprecise mixed-criticality (IMC) model

[320, 321, 351, 435, 436, 499] or budget control [271, 273].

6. Moving some LO-criticality tasks to a different processor that has not ex-

perienced a criticality mode change [52, 339, 625, 626]. Offloading is also

considered by Schonberger et al. [552].

7. Abandoning LO-criticality work in a disciplined sequence [2, 238, 275, 327,

404, 407, 532].

The fifth action leads to a modification to the system model; whereas for HI-

criticality tasks we have C(HI) ≥ C(LO), for LO-criticality tasks we now have

C(HI) ≤ C(LO). For some tasks C(HI) = 0, that is they are abandoned. For

others a lower level of service can be guaranteed. For some they may be able to

continue with their full computation time budgets.

The final approach is addressed by Fleming and Burns [238]; they introduce

a further notion into the standard model; tasks are allocated to applications and

each application is assigned (by the system designers) an importance level. LO-

criticality tasks are abandoned in inverse order of importance. The notion of impor-

tance is explored further by Bletas et al. [112]; they draw a distinction between crit-

icality as used for verification and importance to control run-time graceful degra-

dation. A task may have low criticality but high importance, or vice versa (though

of course there is often a close coordinated relation). This approach is explored

further by Sundar and Easwaran [585].

Huang et al. [327] introduce an extension to the standard model by the use of

an ICG (Interference Constraint Graph) to capture more specifically which tasks

need to be dropped when particular higher criticality tasks exceed their allocated

criticality-aware execution times. Controlled abandonment by the use of partition-

ing is advocated by Mahdiani and Masrur [444] in the context of the EDF-VD

scheduling.

Obviously all seven schemes can be used together: complete or move all started

jobs, allow some new jobs to have an extended deadline or reduced computation

27Note equation (6) in this paper has a typo, both Ri(LO) terms should be starred (R∗

i (LO)).

38

time or a weakly-hard constraint, reduce the priorities of some others jobs and

abandon those of lowest importance in particular partitions. Such an approach is

advocated by Su et al. [581]; here LO-criticality tasks have two periods (short and

long) and two priorities. At the criticality mode change these tasks switch to their

longer periods and new priorities. Analysis is provided to show that all modes are

schedulable.

A flexible scheme utilising hierarchical scheduling is proposed by Easwaran et

al. [216, 274]. They differentiate between minor violations of LO-criticality exe-

cution time which can be dealt with within a component (an internal mode change)

and more extensive violations that requires a system-wide external mode change.

In doing so they introduce a new mixed-criticality resource interface model for

component-based systems which supports isolation, virtualisation and composi-

tionality. Compositionality is also addressed by Yang and Dong [629] in the con-

text of budget estimation.

Within the context of EDF-VD Chen et al. [157] allow the overrunning HI-

criticality task to progress through multiple intermediate levels rather than assume

a single jump to C(HI). They term this a Multiple-Shot transition. It facilitates a

more control impact on LO-criticality tasks. A similar idea is utilised by Chwa et

al. [169].

Papadopoulos et al. [494] also address small overruns of LO-criticality bud-

gets, they use a control-theoretic approach to automatically make minor and stable

modifications to future budgets so as to return the system to normal behaviour with-

out the need for mode changes or other significant reductions in system function-

ality. A more controlled response to small overruns is also considered by Massaro

et al. [450]; they use a proactive mode change to anticipate an overrun before it

actually occurs, thereby reducing its impact.

In keeping with other mode change situations ([144, 224, 504, 528, 558, 597,

598]) a simple protocol for controlling the time of the change of mode back to LO-

criticality is to wait until the system is idle (has no application tasks to run) and

then the change can safely be made [597]. Santy et al. [548] extend this approach

and produce a somewhat more efficient scheme that can be applied to globally

scheduling multiprocessor systems, in which the system may never get to an idle

tick. With a dual criticality system that has just transitioned into the HI-criticality

mode (and hence no low-criticality jobs are executing); their protocol first waits

until the highest priority HI-criticality job completes, then its waits until the next

highest priority job is similarly inactive. This continues until the lowest priority

job is inactive; it is then safe to reintroduce all LO-criticality tasks. Obviously if

there is a further violation of the C(LO) bound then the protocol is abandoned and

subsequently restarted. The authors call this a SCR (Safe Criticality Reduction);

their paper also has a second protocol, but this is less intuitive and considerably

39

more expensive at run-time.

A more aggressive scheme for returning a system back to its LO-criticality

mode is proposed by Bate et al. [97, 98]. In this approach a bailout protocol is

proposed. HI-criticality tasks take out a loan if they execute for more than their

C(LO) estimate. Other tasks repay the loan by either not executing at all or by

executing for less than expected. When the loan is repaid (and a further condition

is met) the system returns to it normal mode. The authors demonstrate, using

a scenario-based assessment, that the bailout protocol returned the system to the

normal mode much quicker than the ‘wait for idle tick’ scheme. Law et al. [400]

also look at reducing the time a system spends in the degraded mode, and provide

supporting evidence based on a real life avionics case study. The bailout protocol

has been improved by Iacovelli and Kirner [338] by allowing LO-criticality tasks

to run at a background priority rather than being aborted.

As well as experiencing a criticality mode change a system can, of course, be

structured to behave in a number of operational or behavioural modes. As indicated

earlier, Burns [126] compares and contrasts these two forms of mode change. De

Niz and Phan [483] note that the criticality of a task can depend on the behavioural

mode of the system. They develop scheduling analysis for this dependency and

consider the static allocation of such tasks to multiprocessor platforms.

Another aspect of the ‘standard model’ for MCS that can be argued to be unre-

alistic is the idea that a system with, say, five criticality levels would also have five

different estimates of worst-case execution time for its most critical tasks. An aug-

mented model has been proposed [127, 482] that restricts each task to having just

two estimates of WCET. So, in the general case where there are V criticality levels,

L1 to LV (with L1 being the highest criticality), each task just has two C values.

One represents its estimated execution time at its own criticality level (Ci(Li)) and

the other an estimate at the base (i.e., lowest) criticality level (Ci(LV)). It follows

that if a job is of the lowest criticality level (i.e., Li = LV) then it only has one

WCET parameter. For all other jobs, C(Li) ≥ C(LV). The two parameters of this

augmented model have been referred to as C(self) (or C(SF)) and C(normal)
(C(NL)); the model seems to be sufficiently expressive to capture most of the key

properties of mixed criticality systems. However, Baruah and Guo [92] has shown

that: “The Burns model is strictly less expressive than the Vestal model. Deter-

mining whether a given instance can be scheduled correctly remains NP-hard in

the strong sense. Lower bounds on schedulability, as quantified using the speedup

factor metric, are no better for the Burns model than for the Vestal model.” This

quote makes use of terms described in the next section.

An important property of any realistic form of analysis is that it is sustain-

able [77]. This, informally, implies that a systems that is deemed schedulable by

some appropriate test will remain schedulable when the application’s characteris-

40

tics improve (for example, worst-case execution times are reduced, or period and

deadlines extended). Guo et al [286] consider the sustainability of various forms of

analysis for MCS. For example, they showed that AMC and EDF-VD are sustain-

able forms of analysis. This not only included reductions in C(HI) and C(LO)
but also a reduction in the criticality level assigned to a task (e.g. a reduction

from HI-criticality to LO-criticality). They showed that other methods of im-

plementing MCS such as criticality-monotonic are not sustainable. Sustainability

of MCS is also considered by Kahil et al [366, 368] who introduce the notion of

MC-Sustainable, and link sustainability to predictability.

7 More Formal Treatments

In this section we consider utilisation bounds, speedup factors and (formal) lan-

guage issues.

7.1 Utilisation Bounds

For normal single criticality systems there are well known bounds on task set util-

isation that will deliver a schedulable system with either fixed priority or EDF

scheduling. Although the definition of utilisation is not straightforward when a

task has more than one worst-case computation time, it is possible to give an ef-

fective definition and to derive least upper bounds (LUBs) for MCS. Santos-Jr et

al. [546] derive a number of useful results for LUB. They construct a task set that

is unschedulable (during a criticality mode change) with LUB arbitrarily close to

0. But where tasks have harmonic periods LUB can reach 1 (for a uniprocessor

system). Between these two extremes they show that if higher criticality tasks do

not have periods longer than lower criticality tasks then LUB lies between ln2 and

2(
√
2− 1).

7.2 Speedup Factors

It has been shown [63,65,71,73,292] that the mixed criticality schedulability prob-

lem (preemptive or non-preemptive) is strongly NP-hard even if there are only two

criticality levels. Hence only sufficient rather than exact analysis is possible. A list

of open problems with regard to the schedulability of MCS was provided by Ekberg

and Yi [222] in 2015. More recently (in 2017) Kahil et al. [366,367] claim to have

found a counter-example to the proof that the mixed-criticality optimality problem

belongs to the class NP. This study was continued [369] with an exploration of the

algorithmic complexity of correctness testing (simulation) for job-based MCS.

41

For approaches and tests that are only sufficient, an assessment of their quality

is possible if a speedup factor can be computed. A speedup factor [372] of X(X >
1) for schedulability test S implies that a task set that is schedulable on a processor

of speed 1 will be deemed schedulable by S if the processor’s speed is increased

to X . Of course, in general, it is not possible to know if the task set is schedulable

on the original speed 1 processor (this would require an exact and possibly even

a clairvoyant test), but a real scheduling scheme and test with a speedup factor of

say 2 is clearly better than one with a speed up factor of 10.

For job-based fixed priority scheduling, a priority assignment scheme and test

has been found [6, 72, 73, 93, 420] with a speed up factor of SL (for L criticality

levels), where SL is the root of the equation xL = (1+x)L−1. For L = 2 the result

is S2 = (1 +
√
5)/2 which is equal to the golden ratio, φ = 1.618. This can be

compared with a partitioned approach (all HI-criticality jobs have priorities higher

than all LO-criticality jobs) which has an unbounded speedup factor. This latter

result is easily illustrated by considering a two job system. The LO-criticality job

has a small computation time, 1, and deadline of 2. The HI-criticality job has a

huge computation time of G and a deadline of G + 1. These two jobs will both

meet their deadlines if the LO-criticality task is given the highest priority. But the

reverse priority assignment (which executes the HI-criticality job first) will only

be schedulable if G + 1 will fit into the deadline 2. To obtain this a speedup of

(G+1)/2 is required. As G can be arbitrary large the speedup factor is effectively

unbounded.

For EDF scheduled systems Baruah et al. [76, 93] prove that a variant of EDF

(EDF-VD, described in Section 3.3) in which HI-criticality sporadic tasks (in a

dual-criticality system) have their deadlines reduced (in the LO-criticality mode)

is also schedulable on a single processor that is speeded up by a factor φ. They also

show that a finite set of independent jobs? scheduled on m identical multiproces-

sors is schedulable with a speed-up factor of φ + 1 + 1/m. And on a partitioned

system a speed-up factor of φ + ǫ is derivable for any value of ǫ > 0. In later

work [75] they improve this bound to 4/3 (1.333) rather than φ (1.618). Further

formal analysis of EDF-VD is provided by Li [418], Muller and Masrur [467] and

Gu and Easwaran [270]. The MC-Fluid approach also has a speed-up factor of

4/3 [86], as does EDF-VD when applied to systems with degraded/imprecise guar-

antees [436].

7.3 Formal Language and Modelling Issues

The application of formal design languages, such as real-time BIT (Behavior Inter-

actions Priorities), are being used to model MCS. And verification approaches such

as model checking or simulation are being applied to both application software and

42

multi-core platforms. See, for example, the work of Socci et al. [569]. State-space

explosion is of course always an issue with these approaches.

A 2005 paper by Amey at al. [27], which predates Vestal’s work, looked at

the (smart) certification of mixed criticality systems. They report real industrial

application of formal code analysis to prove isolation between tasks of difference

criticality levels. In one application, concerning safety-critical landing guidance

for ship-borne helicopters, SIL 4 code (the highest in UK Defence Standard 00-

55 [461]) was executing in the same processor and memory space as SIL3 and

SIL2 code. Another application (a civil jet engine monitoring unit) have Level-C

and Level-E code co-located (DO-178B standard [535] has levels A down to E).

In both of these examples formal analysis of information flow at the program level

was able to demonstrate code segregation.

Compile time checking is also advocated by Lindgren at al. [430] with their

experimental RTFM-language. Language constructs allow static assessment of the

interfaces between critical and non-critical code. At run-time however separation

is achieved by assigning higher priorities to the critical tasks. As indicated earlier

this is not a very effective strategy in terms of efficient resource usage.

Model-based design using Synchronous Reactive models is used to design em-

bedded control systems and is formalised within languages such as LUSTRE,

SIGNAL and Simulink. Its application to MCS is considered in detail by Zhao

et al. [648]; where they adopt the elastic mixed-criticality task model for fixed-

priority scheduling.

As run-time behaviours become more complicated, with many possible schedul-

ing schemes being proposed for MCS, there is a need to precisely (indeed for-

mally) specify the relationship between the tasks/jobs of the application and the

scheduler. An initial attempt to use the Rely/Guarantee framework [358] has been

reported [130, 359].

An alternative task model to that which underpins most scheduling research on

MCS is the sporadic DAG (Directed Acyclic Graph) task model. An initial study,

within the context of multiprocessor federated systems, is provided by Baruah [69].

Wang and Wang [615], Medina et al. [455, 457, 458] and Liu et al. [439] also con-

sider this model. A semi-federated approach is proposed by Yang et al. [632] and

is shown to be more efficient. Hu et al. [311] also address DAG-based applications

but use a least laxity scheduling scheme to give adaptive support on heterogeneous

distributed platforms.

43

8 Systems Issues

In this section we consider a number of what are often terms systems issues. These

include run-time monitoring and system overhead, virtualisation and Operating

System support, hardware aspects, benchmarks and comparative studies, power

consumption, and issues relating to modelling and tool support.

8.1 Run-Time Monitoring and Overheads

A fundamental issue with MCS is separation. Many of the more theoretical papers

reviewed here assume various levels of run-time monitoring and control. However,

few papers consider or demonstrate how the required mechanisms can be imple-

mented, Neukirchner et al. [479] presented one such paper. They consider mem-

ory protection, timing fault containment, admission control and (re-)configuration

middleware for MCS. Their framework [233] is aimed at supporting AUTOSAR

conforming applications within the automotive domain. An early paper looking at

non-interference at the memory level for IMA platforms within the avionics indus-

try is that of Hill and Lake [306].

Another detailed study of the overheads for two common implementations

schemes for MCS is presented by Sigrist et al. [563]. They conclude that over-

heads of up to 97% can be encountered and they recommend that all scheduling

models be extended to include parameters to capture the impact of run-time over-

heads. One source of overhead is the context switch time between tasks. Davis

et al. [187] note that switching between tasks of the same criticality should be

quicker than between tasks of different criticality. They produce analysis for the

standard fixed priority approach for MCS (AMC and SMC) that explicitly caters

for varying context switch times; they note however that priority assignment is not

straightforward for this model [188].

The issue of monitoring is also addressed by Motruk et al. [465] in the context

of their IDAMC (Integrated Dependable Architecture for Many Cores). This work

builds on the more general (i.e. not MCS specific) work on separation, isolation

and monitoring for SoC/NoC architectures.

8.2 Virtualisation and Operating System Support

The MultiPARTES project is addressing virtualisation in terms of Model Driven

Engineering for MCS [23, 170, 171, 602, 603]. Goossens et al. [254, 255] are

also looking at virtualisation “to allow independent design, verification and ex-

ecution” with their CompSOC architecture. Paravirtualisation of legacy RTOSs

to provide the necessary memory isolation is considered by Armbrust et al. [30].

44

However, Hughes and Awad warn of the difficulties that can arise from increased

non-determinism with virtualised platforms [332].

Hypervisor technology is also being used to give the appropriate level of isola-

tion in MCS. The DREAMS architecture uses it [214,398] to minimise interference

via modelling patterns of execution, and to provide for levels of fault tolerance.

Evripidou and Burns [232] employ different execution-time servers (deferrable

server for short deadline event-triggered work, and periodic server for periodic

work) under the control of a hypervisor to bound the overheads associated with

server technology. If there is a criticality induced mode change then the deferrable

servers are transposed to the much more efficient (but less responsive) periodic

servers. General hypervisor architectures for multi-core MCS are proposed by

Pérez et al. [507] and Avramenko et al. [37]. Within the context of ARMv8-A,

Lucas et al. [442] have developed a VOSYSmonitor that allows a safety-critical

RTOS and a non-critical general purpose OS to co-exist on the same hardware

platform. With a large Nuclear Fusion project, Cinque et al. [176] argue that vir-

tualisation will not scale to the ‘tens of thousands’ of threads envisaged in this

application. They propose a more lightweight solution using containers [173,174].

The Jailhouse hypervisor is used by Gracioli et al. [259] to support mixed critical-

ity applications running on a heterogeneous MPSoC platform. They address issues

of resource sharing and isolation, and utilise programmable logic and ScratchPad

memory. A hypervisor approach for mixed-criticality UAV applications is provided

by Fautrel et al. [234].

The issue of monitoring and testing MCS, including the use of HIL (hardware-

in-the-loop), is addressed in a number of papers. Particular attention being given

to multi-core platforms [230, 231, 489].

A separation kernel has been developed by West et al. [424, 463, 619]. They

can host guest operating systems, such as Linux or their own real-time operating

system (RTOS), QUEST-V. They partition the available cores into Sandboxes that

have different criticality levels. Their architecture is aimed at achieving efficient

resource partitioning and performance isolation. One means of achieving this is

for interrupts to go directly to the appropriate partition, they do not have to be

first handled by the hypervisor. An RTOS that addresses partitioning for the NoC

(network-on-chip) as well as the processor is developed by Esposito et al. [229]

and extended by Avramenko and Violante [38]. A capability-based structuring of

OS interactions is proposed by Gadepalli et al. [243] to provide fine-grain control

over sharing and separation.

PikeOS [370] also employs a separation microkernel to provide ‘a powerful

and efficient paravirtualization real-time operating system’ [539] for a partitioned

multi-core platform. Vanga et al. [606] present a case study in the use of PikeOS

in which they aim to give effective support to low criticality tasks that have short

45

deadlines (low latency). Another high-assurance (micro) kernel is sel 4. Lyons

and Heiser [443] show how the sel 4 model can be extended to cater for mixed

criticality. VMs (virtual machines) that are appropriate for real-time Java-based

mixed-criticality systems have been designed by Ziarek and Blanton [658] and

Hamza et al. [289]. Mginkgo [317] is another microkernel aimed at MCS.

To implement the criticality mode change the run-time support system must

support execution time monitoring, the modes and mode changes. Baruah and

Burns [78] show how this can be achieved within the facilities provided by the

Ada programming language. Kim and Jin do the same for a standard RTOS [381].

They make use of bitmaps to provide a very efficient implementation. DMPL [155]

is a language designed specifically for distributed real-time MCS. Natarajan and

Broman [476] look at the programming language Timed C with reference to its

ability to address the run-time monitoring functions needed to implement MCS.

A further operating system designed to support mixed criticality is Kron-OS

[185]. This controls the execution of RSFs (Repetitive Sequence of Frames) that is

partitioned between two criticality levels. Instead of a purpose built RTOS a COTS

platform is preferred by Raghenzani et al. [529]. They focus on Linux and attempt

to characterise the interference that the platform can produce. HIPPEROS [493]

is a multi-core OS designed for use in the avionics domain. They use one core to

make all scheduling decisions. They also use the elastic task model (see Section

3.3) to allow LO-criticality tasks to degrade when an overrun occurs. Vetter et

al. [608] show how a low latency criticality-aware network channel can be con-

structed between different OSs, in particular between Linux and one utilising an

ARM TrustZone. Extensions to the OSEK RTOS to support mixed-criticality is

considered by Gupta et al. [288] and Bril and Luit [120].

8.3 Hardware Aspects

As an alternative to using an RTOS to give the right level of protection and (safe)

resource sharing, Zimmer et al. [659] have designed a processor (FlexPRET) to di-

rectly support MCS. They use fine-grained multithreading and scratchpad memory

to give protection to hard real-time tasks while increasing the resource utilisation

of soft tasks. In effect soft tasks (threads) can safely exploit the spare capacity

generated from the hard tasks at the cycle level. They have a soft-core FPGA im-

plementation that caters for up to 8 hardware threads, each of which can support

a number of software threads. A more focused scheme aimed at partitioning the

cache is described by Lesage et al. [416]. An LC (least critical) cache replace-

ment policy is evaluated by Kumar et al. [393]. The effective use of cache, for a

multi-core platform, is also considered by Chrisholm et al. [166]. Similarly, Ali

Awan et al. incorporate criticality into their dynamic last-level cache partitioning

46

scheme [42], and memory bandwidth regulation [43, 44]. Partial lockdown and

cache reclamation is also considered by this group [113]. Sritharan et al. [576,577]

propose a time-based cache coherence protocol called PENDULUM for bounding

latencies from critical memory accesses.

The development of purpose built hardware (FPGA based) to support reliable

MCS is being undertaken as part of the RECOMP project. They aim to reduce the

cost of certification for MCS on multiprocessor architectures by use of open source

hardware and software [459, 480, 510]. Santos et al. [545] are also looking at sys-

tems built on FPGA platforms. They have developed a criticality-aware scrubbing

mechanism that improves system reliability by up to 79%. Scrubbing is a tech-

nique for recovering from SEU (single event upsets) that affect FPGA platforms

in harsh environments such as space. Another hardware implementation of a MCS

schedular is being considered by Hounsinou at al. [310]. Kohutka et al. [383] pro-

vides an ASIC design of a coprocessor that schedules MCS using a Robust Earliest

Deadline algorithm.

A hardware platform that supports applications of different criticality must

manage its I/O functions in a partitioned and hence safe (and secure) way. If

lower criticality work can cause an interrupt to occur ‘at any time’ then unpre-

dictable overheads may be suffered by high criticality applications. This is a topic

addressed by Paulitsch et al. [501]. They rightly claim that this topic is often over-

looked. Later, support for I/O and IPC via fine-grained OS isolation is considered

by Kim at al. [378] within the context of MC2 (see Section 4). Valente et al. [605]

provide lightweight hardware support for isolation within a multi-core platform

using a NoC. Kaushik et al. [374] develop a hardware cache coherence protocol,

called CARP, that allows safe data communication between criticality levels. Jiang

et al. [350, 352] also consider hardware-assisted I/O virtualization for MCS.

8.4 Benchmarks and Comparative Studies

Although research on MCS has generated many different approaches, there have

been few empirical benchmarks or comparative studies. One useful study however

was published in 2012 by Huang et al. [318]. They compared Vestal’s scheme

with its optimal priority assignment, their improved slack scheduling scheme and

Period Transformation (PT) (see Section 5.1). They conclude that Vestal’s ap-

proach and period transformation usually, though not always, outperform slack

scheduling; and that there are additional overheads with period transformation and

slack scheduling. Nevertheless the overheads were not excessive, typically an extra

0.3%. Later Fleming and Burns [237] compared Vestal’s approach, AMC (see Sec-

tion 3.2) and PT for multiple criticality levels. As the number of criticality levels

increased the relative advantage of PT, even when overheads are ignored, was ob-

47

served to decrease. This observation was also supported by Huang et al. [319] who

updated their study in 2014 and concluded that AMC-based scheduling gave the

best performance for fixed priority sporadic task systems. This study also looked

at the overheads involved in user-space implementation of AMC on top of Linux,

without kernel modifications.

The need for useful benchmarks is noted in a number of papers. One industri-

ally inspired case study is provided by Harbin et al. [294]. The use of realistic sim-

ulations to evaluate schemes is discussed by Bate et al. [97, 98], Griffin et al [264]

and Ittersshagen et al. [342]. A brief comparison of approaches to multiprocessor

scheduling of MCS is provided by Osmolovskiy et al. [492]. The evaluation of

communications within a MCS is considered by the work of Napier et al. [474]

and Petrakis et al. [509]. A testbed for MCS design is discussed by Sundar and

Easwaran [169]. And a framework for evaluating schedulability tests is provided

by Pavic and Dazpo [502].

8.5 Criticality-Aware Power Consumption

Another systems issue of crucial important in many mobile embedded systems is

power consumption. The work of Broekaert et al. [121] allocates and monitors

power budgets to different criticality levels. If a crucial VM (Virtual Machine)

“overpassed its power budget during its time partition, the extra power consumed

will be removed from the initial power budget of the next low critical VM sched-

uled”. Energy consumption is also addressed by Legout et al. [413]. They trade

energy usage with deadline misses of low-criticality tasks, and claim a 17% reduc-

tion in energy with deadline misses kept below 4%. The objective of minimising

energy usage is used by Zhang et al. [644] to drive task allocation in a multiproces-

sor system. As discussed earlier, a slightly different approach is taken by Huang

et al. [325]. They advocate the use of DVFS (Dynamic Voltage and Frequency

Scaling) to increase the speed of the processor if HI-criticality tasks need more

than their C(LO) requirement. Hence LO-criticality work is not abandoned, but

more energy is used. They integrate their approach with the EDF-VD schedul-

ing scheme (see Section 3.3) and have, more recently, addressed multi-core plat-

forms [475]. Behera and Bhaduri [100] address the same problem with their TT-

Merge scheme [101, 102] which they claim outperforms EDF-VD when all tasks

are periodic. For sporadic task systems Zhang [645] shows how energy use can be

reduced by taking into account the random arrival of such tasks.

This approach is extended by Ali et al. [21] who propose a new dynamic power-

aware scheduling scheme for hardware with discrete frequency levels. Awan et

al. [46] consider how energy-aware task allocation can be utilised in the context

of heterogeneous multi-core systems. A leakage aware DVFS scheme is proposed

48

by Digalwar et al. [201] and is shown to be more energy efficient when compared

to existing approaches. Slack scheduling and DVFS are combined in the work of

Ranjbar et al. [525].

Cao et al. [149] directly model transient and permanent faults on a uniprocessor

with DVFS in order to address the “lifetime optimisation problem”. They utilise

a MILP (mixed-integer linear programming) method; but for large-scale problems

rely on a cross-entropy heuristic. Energy-aware fault-tolerance, via replication, is

also considered by Safari et al. [537].

Where energy is limited or indeed the system is energy neutral, then criticality-

aware energy usage becomes crucially important [610]. ENOS [614] is an experi-

mental OS that addresses mixed resources (time and energy) and mixed criticality.

It transforms the system through a series of ‘energy modes’ including one that

ensures all state is safely stored in persistent memory before system blackout.

Energy harvesting in the context of a battery-less real-time system is consid-

ered by Asyaban et al. [33]. They propose a scheduling scheme that satisfies both

temporal and success-ratio constraints whilst addressing uncertainty in the plat-

form’s power management. Xiang and Pasricha [623] also look at harvesting for

multicore heterogeneous MCS. Wu et al. [622] extend this idea to include distinct

energy levels.

Even where energy is not limited, isolation in terms of power usage and tem-

perature control is important; an issue addressed by Grüttner in the context of het-

erogeneous MPSoCs [267]. Power management in also addressed by Juhasz and

Jantsch [361] in order to manage QoS in a MCS. A measurement-based probabilis-

tic approach to energy-constrained MCS is proposed by Reghenzani et al. [107,

530]. They employ non-preemptive scheduling, as does Zhang [646]. And a

thermal-aware server framework is proposed by Hosseinimotlagh et al. [309] to

safely upper-bound the maximum operating temperature of multi-core MCS. Thermal-

aware scheduling is also addressed by Safari et al. [538].

8.6 Issues Relating to Modelling and Tool Support

Complex mixed criticality systems also present a number of significant challenges

at the specification and design stage [427]. Herrera et al. [303,304] propose a mod-

elling and design framework for MCS hosted on Systems-on-Chip and/or Systems-

of-Systems. They present a core ontology but freely admit that there is considerable

work to do before a sound engineering process is available for system builders/ar-

chitects. Ittershagen et al. [343] go further and propose a systematic method for

constructing workload and integration flow models for time-triggered MPSoC plat-

forms. Design space exploration for MCS is considered by Muttillo et al. [469].

Giannopoulou et al. [246] support the development of MCS on multi-core plat-

49

forms by the development of an appropriate tool chain. This group has also con-

sidered [249, 638] the mapping and design of fault-tolerant MCS to multi-core

platforms.

9 Industry Practice and Standards

This survey covers the considerable body of research into MCS stemming from

the model presented by Vestal [607]. Industry practice and safety standards; how-

ever, provide a somewhat different perspective on MCS [228]. There are different

meanings assumed for some of the commonly used terms, and different objectives.

Determining the criticality of an application (or system function implemented

via both hardware and software) is done via a system safety assessment that in-

volves Hazard Analysis (HA) Failure Modes and Effects Analysis (FMAE) and

Fault Trees Analysis (FTA). The criticality level typically depends on (i) an eval-

uation of the consequences of a failure, (ii) the probability that the failure occurs,

and (iii) the provision of means to mitigate or cope with the fault. Hence the criti-

cality level of an application may not necessary reflect the severity or consequences

of failure. An example given by Esper et al. [227] and Ernst and Di Natale [226]

comes from ISO 26262. If the probability of failure occurrence is very low, the

ASIL level assigned may be low, despite severe consequences if a failure actually

happens. A different application with a high probability of failure may be assigned

a higher ASIL despite having lower severity consequences. With this interpreta-

tion, the idea of dropping low-criticality functionality in favour of completing that

of higher criticality does not hold; the consequences would be more severe. ISO

26262 also permits high-criticality applications to be composed from lower criti-

cality components with diverse implementations, again dropping one of the lower

criticality components would remove the diversity and undermine the safety argu-

ment for the high-criticality function. The message here is that the criticality level

is not the same as the importance of the application. Functionality that has low

criticality cannot simply be dropped.

The standards require that “sufficient independence” or “freedom from inter-

ference” is demonstrated between functions of different criticality levels in both

spatial and timing domains. If this is not done, then the whole system needs to be

designed and developed according to methods appropriate for the highest criticality

level involved, which would be untenable in practice for cost reasons. It remains

a significant challenge to achieve the necessary separation, while also providing

an efficient means of sharing resources. This is particularly apposite with the ad-

vent of multi-core and many-core platforms. Tool are required to verify that the

necessary level of independence is indeed manifest in the design of MCS [609].

50

A focus on industrial practice in the automotive industry is presented by Lee

and Kim [405, 406] within the context pf the AUTOSAR standard. Farrall et

al. [233] and Copic et al. [178] also address supporting AUTOSAR; the latter look-

ing at both Classic and Adaptive AUTOSAR. The evolution of the industrial com-

ponent model for multi-criticality vehicular software is addressed by Bucaioni et

al. [123]. In a wider context, Simo et al. [564] discuss the role of MCS within the

context of Industry 4.0. An analysis of task parameters for automotive application

is presented by Nair et al. [473].

10 Beyond Mixed-Criticality

One of the more recent outcomes from the extensive research that has taken place

on mixed-criticality systems is the application of the notions, models, concepts and

approaches that have been developed for MCS to other, largely unrelated, areas of

research. Here we note some of these developments.

The key element of Vestal’s model [607] is that a task can have more than one

estimate of worst-case execution time, with each estimate being a function of a

stateholder’s view of the criticality of the task. Quinton et al. [513] reinterpret this

property to imply that a task has a worst-case estimate and a typical estimate. The

worst-case value has the usual definition; the typical value is the upper bound you

get when you eliminate, exceedingly unlikely to occur, outliers. These outliers may

actually never be experienced at run-time but the means of obtaining the worst-case

values was unable to eliminate them (i.e. the worst-case estimates are unavoidably

pessimistic). Algorithms that have been developed for MCS can be applied directly

to systems that are modelled using typical and worst-case values.

For example, Agrawal and Baruah [7, 57] considered real-time routing prob-

lems on graphs in which each edge is labeled with a pair of edge-weights, one

denoting the maximum delay one could encounter while traversing the edge, and

the other an estimate of the delay one typically encounters upon traversing the

edge. They develop routing algorithms that minimise the cost when typical val-

ues are experienced, but at the same time meet an imposed deadline when/if the

worst-case costs are encountered. A similar approach is proposed by Agrawal et

al. [10] for optimising the order in which Leaning-Enabled Components (LEC),

within a safety-critical system, are executed. Each LEC has a minimum value and

a (larger) typical value. Overall, a safe threshold must be delivered (by LECs that

only contribute their minimum value). However, if typical values are witnessed

then an optimal (minimum duration) sequence is followed.

More generally, Burns argues [128] that the key characteristic of what is cur-

rently called a mixed-criticality system is the existence of multiple interpretations

51

of one or more of the defining parameters of the tasks/agents that make up the

real-time system. This emphasis leads naturally to the term Multi-Model Systems

(MMS). MMS are those that are defined by more than one model. Each model re-

lating to a distinct stakeholder or a distinct environmental mode of operation. MCS

are just one example of the more general construct of MMS.

11 PhD Awards for Research within the Field of MCS

As an indication of the richness of the landscape for research within the many

aspects of MCS we note (some) of the PhDs (or equivalent) that have been awarded

to students studying topics within the domain of mixed criticality systems:

Mohemed El Mehdi Aichouch, Evaluation of a Multiple-Criticality Real-Time Vir-

tual Machine System and Configuration of an RTOS Resource Allocation Tech-

niques, INSA Rennes, 2014.

Serhiy Avramenko, Network-on-Chip-based Multi-Processor System-on-Chip: To-

wards Mixed-Criticality System Certification, Politecnico di Torino, 2019.

Christos Evripidou, Scheduling for Mixed-criticality Hypervisor Systems in the Au-

tomotive Domain, University of York, 2016.

Thomas Fleming, Allocation and Optimisation of Mixed Criticality Cyclic Execu-

tives, University of York, 2017.

Georgia Giannopoulpou, Implementation of Mixed-Criticality Applications on Multi-

Core Architectures, ETH Zurich, 2016.

Chetan Govindaiah, Hardware Architecture Support for Mixed-Criticality and Real-

Time Systems, Iowa State University, 2016.

Romain Gratia, A Generic, Efficient Approach to Mixed Criticality Sequencing for

Multi-Core Processors, Telecom Paristech, 2017.

Xiaozhe Gu, Schedulability Analysis and Low-Criticality Execution Support for

Mixed-Criticality Real-Time Systems on Uniprocessors, Nanyang Technological

University, 2017.

Zhishan Guo, Real-Time Scheduling of Mixed-Criticality Workloads upon Plat-

forms with Uncertainty, University of North Carolina at Chapel Hill, 2016.

Biao Hu, Schedulability Analysis of General Task Model and Demand Aware Schedul-

ing in Mixed-Criticality Systems, University of Munchen, 2017.

Pengcheng Huang, Design and Optimisation of Mixed-Criticality Systems, EFL

Zurich, 2016.

52

Anirudh Mohan Kaushik, Timing Predictable and High-Performance Hardware

Cache Coherence Mechanisms for Real-Time Multi-Core Platforms, University of

Waterloo, Canada, 2021.

Stephen Law, Advancing Mixed Criticality Scheduling Techniques to Support In-

dustrial Applications, University of York, 2020.

Jaewoo Lee, Resource-Efficient Scheduling of Multiprocessor Mixed-Criticality

Real-Time Systems, University of Pennsylvania, 2017.

Haohan Li, Scheduling Mixed-Criticality Real-Time Systems, University of North

Carolina at Chapel Hill, 2013.

Mitra Mahdiani, Advanced Scheduling Techniques for Mixed-Criticality Systems,

Technische Universitat, Chemnitz, 2020.

Roberto Medina, Deployment of Mixed Criticality and Data Driven Systems on

Multi-Cores Architecture, I’Universite Paris-Saclay, 2019.

Dario Socci, Scheduling of Certifiable Mixed-Criticality Systems, University of

Grenoble, 2016.

Jens Theis, Certification-Cognizant Mixed-Criticality Scheduling in Time-Triggered

Systems, University of Kaiserslaitern, 2015.

Irune Agirre Troncoso, Development and Certification of Mixed-Criticality Em-

bedded Systems based on Probabilisitc Timing Anallysis, Universitat Politecnica

de Catalunya, 2018.

Hao Xu, A Semi-Partitioned Model for Scheduling Mixed-Criticality Multi-Core

Systems, University of York, 2017.

Michael Zimmer, Predictable Processors for Mixed-Criticality Systems and Precision-

Timed I/O, University of California at Berkeley, 2015.

12 Conclusion and Directions for Future Work

As identified in the introduction, the fundamental issue with MCS is how to recon-

cile the differing needs of separation (for safety) and sharing (for efficient resource

usage). These concerns have lead to somewhat of a bifurcation in the resulting re-

search. Much of the implementation and systems work has concentrated on how to

safely partition a system so that high-integrity components can, in some way, share

computational and communication resources. By comparison, the more theoretical

and scheduling research has largely focused on how criticality-specific worst-case

53

execution times can be utilised to deliver systems that are schedulable at each crit-

icality level but have high processor utilisation. Unfortunately these two areas of

research are not easily integrated. Flexible scheduling requires, at least, dynamic

partitioning. Certified systems require complete separation or at least static parti-

tioning. Future work must address this mismatch.

A second topic for future work is a move away from a processor-centric view of

MCS to one that incorporates other shared resources, for example communication;

particularly on a multi-core or many-core platform. Can a shared bus provide the

required separation, or is a Network-on-Chip protocol required? Work is only

beginning to address these issues.

What becomes clear from reading the extensive literature that has been pro-

duced since the seminal paper of Vestal [607] in 2007, is that MCS presents a col-

lection of interesting issues that are both theoretically intriguing and challenging

from the perspective of implementation.

We finish this survey by listing open issues identified from reading the exten-

sive research literature. (Many of these issues were presented by Alan Burns in

his keynote talk at the Dagstuhl Seminar on Mixed Criticality Systems on Multi-

core/Many-core Platforms in March 2015).

1. Holistic analysis is needed considering all system resources, particularly

communications buses, networks, and access to memory, as well as the pro-

cessor(s).

2. Appropriate models of system overheads and task dependencies are required,

and need to be integrated into the analysis. In particular, attention needs to be

paid to how overheads arising from tasks of one criticality level may impact

tasks of different (particularly higher) criticality.

3. More work is needed to integrate run-time behaviour, i.e. monitoring and

control, with the assumptions made during static analysis and verification.

4. Effective protocols are needed for sharing information between criticality

levels.

5. There are a number of open issues with regards to graceful degradation and

fault recovery. These include timely recovery back to the low-criticality

mode of operation, and support for limited low-criticality functionality in

higher criticality modes, avoiding the abandonment problem.

6. To be of practical use, techniques need to scale to more than two (possibly

up to five) levels of criticality.

54

7. Better WCET analysis is needed to reduce the sound C(HI) and C(LO)
estimates used, and to improve confidence in these values.

8. How many different WCET estimates are required (or useful) for the same

software?

9. Much of the existing research has looked at mixed criticality within a single

scheduling scheme; however, further work is needed on integrating different

schemes (e.g. cyclic executives for safety-critical applications, fixed priority

for mission-critical applications, on the same processor).

10. Mechanisms are needed to tightly bound the impact of lower criticality tasks

on those of higher criticality, independent of the behaviour or misbehaviour

of the former, without significantly compromising performance, which may

happen if strict isolation is enforced.

11. Time composability is needed across different criticality levels, so that the

timing behaviour of tasks determined in isolation can be used when they are

composed during system integration.

12. So far there has been little work on security as an aspect of criticality in

real-time systems.

13. Probabilistic and statistical methods are a good match to requirements spec-

ified in terms of failure rates for different criticality levels; however, little

work has been done on applying these techniques to MCS.

14. There are a number of formal aspects of scheduling still to be investigated.

15. Openly available benchmarks and case studies are needed for the evaluation

of MCS techniques and analysis.

16. For research on MCS to have real impact it will be necessary to influence

the relevant standards in the various application domains (e.g. automotive,

aerospace).

Returning to the fundamental question underlying MCS research: how, in a

disciplined way, to reconcile the conflicting requirements of partitioning for safety

assurance and sharing for efficient resource usage. As yet we do not have the

structures (models, methods, protocols, analysis etc.) needed to allow the tradeoffs

between partitioning and separation to be properly evaluated. It is clear that MCS

will continue to be a focus for practical and theoretical work for some time to come.

55

Acknowledgements

The authors would like to thank Sanjoy Baruah for a number of very useful dis-

cussions on the topic of this paper. The research that went into writing this pa-

per is funded in part by the ESPRC grants, MCC (EP/K011626/1) and MCCps

(EP/P003664/1).

56

Literature

[1] L. Abdallah, M. Jan, J. Ermont, and C. Fraboul. I/O contention aware mapping of multi-

criticalities real-time applications over many-core architectures. In Proc. WiP, RTAS, pages

25–28, 2016. 27

[2] Y. Abdeddaı̈m. Accurate strategy for mixed criticality scheduling. In Belgacem Ben Hedia,

Yu-Fang Chen, Gaiyun Liu, and Zhenhua Yu, editors, Verification and Evaluation of Com-

puter and Communication Systems, pages 131–146. Springer International Publishing, 2020.

38

[3] Y. Abdeddaim and D. Maxim. Probabilistic schedulability analysis for fixed priority mixed

criticality real-time systems. In Proc DATE, pages 596–601, 2017. 36

[4] A. Addisu, L. George, V. Sciandra, and M. Agueh. Mixed criticality scheduling applied to

jpeg2000 video streaming over wireless multimedia sensor networks. In Proc. WMC, RTSS,

pages 55–60, 2013. 28

[5] K. Agrawal and S. Baruah. A Measurement-Based Model for Parallel Real-Time Tasks. In

Sebastian Altmeyer, editor, 30th Euromicro Conference on Real-Time Systems (ECRTS 2018),

volume 106 of Leibniz International Proc. in Informatics (LIPIcs), pages 5:1–5:19. Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018. 24

[6] K. Agrawal and S. Baruah. Intractability issues in mixed-criticality scheduling. In Proc.

Euromicro Conference on Real-Time Systems (ECRTS), pages 11:1–11:21, 2018. 42

[7] K. Agrawal and S. Baruah. Adaptive real-time routing in polynomial time. In Proc. IEEE

Real-Time Systems Symposium (RTSS), pages 287–298. IEEE Computer Society, 2019. 51

[8] K. Agrawal, S. Baruah, and A. Burns. Fault-tolerant transmission of messages of differing

criticalities across a shared communication medium. In Proc. 27th International Conference

on Real-Time Networks and Systems (RTNS), page 41?49, New York, NY, USA, 2019. Asso-

ciation for Computing Machinery. 26

[9] K. Agrawal, S. Baruah, and A. Burns. Semi-clairvoyance in mixed-criticality scheduling. In

Proc. IEEE Real-Time Systems Symposium (RTSS), pages 458–468, 2019. 20

[10] K. Agrawal, S. Baruah, and A. Burns. The safe and effective use of learning-enabled com-

ponents in safety-critical systems. In Marcus Völp, editor, Proc. 32nd Euromicro Conference

on Real-Time Systems (ECRTS), volume 165, pages 7:1–7:20. Schloss Dagstuhl–Leibniz-

Zentrum für Informatik, 2020. 51

[11] H. Ahmadian, F. Nekouei, and R. Obermaisser. Fault recovery and adaptation in time-

triggered networks-on-chips for mixed-criticality systems. In Proc. 12th International Sym-

posium on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), pages 1–8,

2017. 31

[12] H. Ahmadian and R. Obermaisser. Time-triggered extension layer for on-chip network inter-

faces in mixed-criticality systems. In Proc. Digital System Design (DSD), pages 693–699.

IEEE, 2015. 27

[13] Z. Al-Bayati, J. Caplan, B.H. Meyer, and H. Zeng. A four-mode model for efficient fault-

tolerant mixed-criticality systems. In Proc. DATE, pages 97–102. IEEE, 2016. 31

[14] Z. Al-Bayati, Q. Zhao, A. Youssef, H. Zeng, and Z. Gu. Enhanced partitioned scheduling

of mixed-criticality systems on multicore platforms. In 20th Asia and South Pacific Design

Automation Conference (ASP-DAC), pages 630–635, 2015. 23

57

[15] B. Alahmad and S. Gopalakrishnan. A Risk-Constrained Markov Decision Process Approach

to Scheduling Mixed-Criticality Job Sets. In Proc 4th WMC (RTSS), 2016. 36

[16] B. Alahmad and S. Gopalakrishnan. Isochronous execution models for mixed-criticality sys-

tems on parallel processors. In WiP, RTSS, pages 354–356, 2017. 31

[17] B. Alahmad and S. Gopalakrishnan. Risk-aware scheduling of dual criticality job systems

using demand distributions. Leibniz Transactions on Embedded Systems, 5(1):01–1–01:30,

2018. 36

[18] B. Alahmad, S. Gopalakrishnan, L. Santinelli, and L. Cucu-Grosjean. Probabilities for mixed-

criticality problems: Bridging the uncertainty gap. In WiP, RTSS, pages 1–4, 2011. 35

[19] A. Ali, H. Kim, M. Faisal, and M.J.H. Mughal. Secured internet of things by fixed-priority

compositional real-time mixed-criticality scheduling. International Journal of Grid and Dis-

tributed Computing, 13(2):184–193, 2020. 34

[20] A. Ali and K.H. Kim. Cluster-based multicore real-time mixed-criticality scheduling. Journal

of Systems Architecture, 79:45 – 58, 2017. 23

[21] I. Ali, J. Seo, and K.H. Kim. A dynamic power-aware scheduling of mixed-criticality real-time

systems. In Computer and Information Technology; Ubiquitous Computing and Communica-

tions; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing

(CIT/IUCC/DASC/PICOM), pages 438–445, 2015. 48

[22] A. Alonso, J.A. de la Puente, J. Zamorano, M.A. de Miguel, E. Salazar, and J. Garrido. Safety

concept for a mixed criticality on-board software system. IFAC-PapersOnLine, 48(10):240–

245, 2015. 33

[23] A. Alonso, C. Jouvray, S. Trujillo, M.A. de Miguel, C. Grepet, and J. Simo. Towards model-

driven engineering for mixed-criticality systems: MultiPARTES approach. In Proc. of the

Conference on Design, Automation and Test in Europe, WICERT, DATE, 2013. 33, 44

[24] A. Alonso, E. Salazar, and M.A. de Miguel. A toolset for the development of mixed-criticality

partitioned systems. In HiPEAC Workshop, 2014. 22

[25] H. Althebeiti. Research review on mixed-criticality scheduling. Technical report, University

of Central Florida, STARS, 2020. 6

[26] S. Altmeyer, L. Cucu-Grosjean, and R.I. Davis. Static probabilistic timing analysis for real-

time systems using random replacement caches. Real-Time Systems, 51(1):77–123, 2015. 7,

35

[27] P. Amey, R. Chapman, and N. White. Smart certification of mixed criticality systems. In Re-

liable Software Technologies, Proc. of the Ada Europe Conference, pages 144–155. Springer

Verlag, LNCS 3555, 2005. 43

[28] J.H. Anderson, S.K. Baruah, and B.B. Brandenburg. Multicore operating-system support for

mixed criticality. In Proc. of the Workshop on Mixed Criticality: Roadmap to Evolving UAV

Certification, San Francisco, 2009. 21

[29] R. Arbaud, D. Juha¡sz, and A. Jantsch. Resource management for mixed-criticality systems

on multi-core platforms with focus on communication. Technical report, ResearchGate, 2018.

6

[30] E. Armbrust, J. Song, G. Bloom, and G. Parmer. On spatial isolation for mixed-criticality,

embedded systems. In L. Cucu-Grosjean and R. Davis, editors, Proc. 2nd Workshop on Mixed

Criticality Systems (WMC), RTSS, pages 15–20, 2014. 44

58

[31] S. Asyaban and M. Kargahi. An exact schedulability test for fixed-priority preemptive mixed-

criticality real-time systems. Real-Time Systems Journal, 54:32–90, 2018. 11

[32] S. Asyaban and M. Kargahi. Feasibility interval for fixed-priority scheduling of mixed-

criticality periodic tasks with offsets. IEEE Embedded Systems Letters - online, pages 1–4,

2018. 13

[33] S. Asyaban, M. Kargahi, L. Thiele, and M. Mohaqeqi. Analysis and scheduling of a battery-

less mixed-criticality system with energy uncertainty. ACM Transactions on Embedded Com-

puting Systems (TECS), 16(1):23, 2016. 49

[34] N.C. Audsley. On priority assignment in fixed priority scheduling. Information Processing

Letters, 79(1):39–44, 2001. 5, 9, 24

[35] N.C. Audsley. Memory architectures for NoC-based real-time mixed criticality systems. In

Proc. WMC, RTSS, pages 37–42, 2013. 27

[36] N.C. Audsley, A. Burns, M. Richardson, K. Tindell, and A.J. Wellings. Applying new schedul-

ing theory to static priority preemptive scheduling. Software Engineering Journal, 8(5):284–

292, 1993. 5

[37] S. Avramenko, S. Esposito, M. Violante, M. Sozzi, M. Traversone, M. Binello, and M. Ter-

rone. An hybrid architecture for consolidating mixed criticality applications on multicore

systems. In Proc. IEEE 21st International On-Line Testing Symposium (IOLTS), pages 26–

29, 2015. 45

[38] S. Avramenko and M. Violante. RTOS solution for noc-based COTS MPSoC usage in

mixed-criticality systems. Journal of Electronic Testing: Theory and Applications (JETTA),

35(1):29–44, 2019. 27, 45

[39] M. A. Awan, K. Bletsas, P.F. Souto, and E. Tovar. Semi-partitioned mixed-criticality schedul-

ing. In 30th International Conference on Architecture of Computing Systems (ARCS), pages

205–218, 4 2017. 22

[40] M.A. Awan, K. Bletsas, P. Souto, B. Akesson, E. Tovar, and J. Ali. Mixed-criticality schedul-

ing with memory regulation. In Proc. WiP, ECRTS, page 22, 2016. 26

[41] M.A. Awan, K. Bletsas, P. Souto, and E. Tovar. Semi-partitioned mixed-criticality scheduling.

Technical report, CISTER/ISEP, 2016. 22

[42] M.A. Awan, K. Bletsas, P.F. Souto, B. Akesson, and E. Tovar. Mixed-criticality scheduling

with dynamic redistribution of shared cache. In Marko Bertogna, editor, Proc. Euromicro

Conference on Real-Time Systems (ECRTS), volume 76 of Leibniz International Proc. in In-

formatics (LIPIcs), pages 18:1–21:20. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,

2017. 47

[43] M.A. Awan, K. Bletsas, P.F. Souto, B. Akesson, and E. Tovar. Mixed-criticality scheduling

with dynamic memory bandwidth regulation. In Proc. 24th International Conference on Em-

bedded and Real-Time Computing Systems and Applications (RTCSA), pages 111–117, 2018.

47

[44] M.A. Awan, K. Bletsas, P.F. Souto, B. Akesson, and E. Tovar. Mixed-criticality scheduling

with memory bandwidth regulation. In Proc. Design, Automation Test in Europe Conference

Exhibition (DATE), pages 1277–1282, 2018. 47

[45] M.A. Awan, K. Bletsas, P.F. Souto, B. Akesson, and E. Tovar. Techniques and analysis for

mixed-criticality scheduling with mode-dependent server execution budgets. ACM Trans.

Embedd. Comp. Sys.‘, 18(5s), 2019. 30

59

[46] M.A. Awan, D. Masson, and E. Tovar. Energy-aware task allocation onto unrelated heteroge-

neous multicore platform for mixed criticality systems. In WiP, RTSS, 2015. 48

[47] M.A. Awan, D. Masson, and E. Tovar. Energy efficient mapping of mixed criticality appli-

cations on unrelated heterogeneous multicore platforms. In Proc. 11th IEEE Symposium on

Industrial Embedded Systems (SIES), pages 1–10, 2016. 22

[48] P. Axer, M. Sebastian, and R. Ernst. Reliability analysis for mpsocs with mixed-critical, hard

real-time constraints. In Proc. of the seventh IEEE/ACM/IFIP international conference on

Hardware/software codesign and system synthesis, CODES+ISSS ’11, pages 149–158. ACM,

2011. 23

[49] A. Azim and S. Fischmeister. Efficient mode changes in multi-mode systems. In Proc. Com-

puter Design (ICCD), pages 592–599. IEEE, 2016. 10

[50] H. Baek and J. Lee. Incorporating security constraints into mixed-criticality real-time schedul-

ing. IEICE Trans. on Information and Systems, E100-D(9):2068–2080, 2017. 32

[51] H. Baek and J. Lee. Contention-free scheduling for mixed-criticality multiprocessor real-time

system. Symmetry, 12:1–18, 2020. 24

[52] J. Baik and K. Kang. Schedulability analysis for task migration under multiple mixed-

criticality systems. In Proc Korean Society of Computer Science, page X, 2019. 38

[53] T.P. Baker. A stack-based resource allocation policy for realtime processes. In Proc. IEEE

Real-Time Systems Symposium (RTSS), pages 191–200, 1990. 18

[54] J. Bakita, S. Ahmed, S.H. Osborne, S. Tang, J. Chen, F.D. Smith, and J.H. Anderson. Simul-

taneous multithreading in mixed-criticality real-time systems. In Proc. 27th IEEE Real-Time

and Embedded Technology and Applications Symposium (RTAS), pages 278–291. IEEE, 2021.

21

[55] G. Naveen Balaji, M. Sethupathi, N. Sivaramakrishnan, and S. Theeijitha. EDF-VD

scheduling-based mixed criticality cyber-physical systems in smart city paradigm. In Ran-

ganathan and Rocha, editors, Inventive Communication and Computational Technologies,

volume 6652 of Lecture Notes in Networks and Systems. Springer, 2020. 34

[56] J. Barhorst, T. Belote, P. Binns, J. Hoffman, J. Paunicka, P. Sarathy, J. Scoredos, P. Stanfill,

D. Stuart, and R. Urzi. White paper: A research agenda for mixed-criticality systems, April

2009. Available at http://www.cse.wustl.edu/˜ cdgill/CPSWEEK09 MCAR. 5

[57] S. Baruah. Rapid routing with guaranteed delay bounds. In Proc. IEEE Real-Time Systems

Symposium (RTSS), pages 13–22. IEEE Computer Society, 2018. 51

[58] S. Baruah and A. Burns. Expressing survivability considerations in mixed-criticality schedul-

ing theory. Journal of Systems Architecture, 109:101755, 2020. 37

[59] S. Baruah and P. Ekberg. Graceful degradation in semi-clairvoyant scheduling. In Björn B.

Brandenburg, editor, Proc. 33rd Euromicro Conference on Real-Time Systems (ECRTS),

volume 196 of Leibniz International Proceedings in Informatics (LIPIcs), pages 9:1–9:21,

Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. 21

[60] S. K. Baruah, A. Burns, and Z. Guo. Scheduling mixed-criticality systems to guarantee some

service under all non-erroneous behaviours. In Proc. ECRTS, pages 131–140, 2016. 23, 38

[61] S. K. Baruah, D. Chen, and A. Mok. Static-priority scheduling of multiframe tasks. In Proc.

11th Euromicro Conference on Real-Time Systems, ECRTS, pages 38–45, 1999. 13

[62] S.K. Baruah. Optimal utilization bounds for fixed priority scheduling of periodic task systems

on identical multiprocessors. IEEE Transactions on Software Engineering, 53(6), 2004. 24

60

[63] S.K. Baruah. Mixed criticality schedulability analysis is highly intractable. Technical report,

University of North Carolina at Chapel Hill, 2009. 9, 10, 41

[64] S.K. Baruah. Certification-cognizant scheduling of tasks with pessimistic frequency specifica-

tion. In Proc. 7th IEEE International Symposium on Industrial Embedded Systems (SIES’12),

pages 31–38, 2012. 7

[65] S.K. Baruah. Semantic-preserving implementation of multirate mixed criticality synchronous

programs. In Proc. RTNS, 2012. 19, 41

[66] S.K. Baruah. Implementing mixed-criticality synchronous reactive programs upon uniproces-

sor platforms. Real-Time Systems Journal, 49(6), 2013. 19

[67] S.K. Baruah. Implementing mixed criticality synchronous reactive systems upon multipro-

cessor platforms. Technical report, University of North Carolina at Chapel Hill, 2013. 21

[68] S.K. Baruah. Response-time analysis of mixed criticality systems with pessimistic frequency

specification. Technical report, University of North Carolina at Chapel Hill, 2013. 7

[69] S.K Baruah. The federated scheduling of systems of mixed-criticality sporadic DAG tasks. In

Proc. Real-Time Systems Symposium (RTSS), pages 227–236. IEEE, 2016. 43

[70] S.K. Baruah. Schedulability analysis of mixed-criticality systems with multiple frequency

specifications. In Proc. International Conference on Embedded Software (EMSOFT), page 24.

ACM, 2016. 7, 13

[71] S.K. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela, N. Megow, and

L. Stougie. Scheduling real-time mixed-criticality jobs. In P. Hlinený and A.ı́n Kucera, ed-

itors, Proc. of the 35th International Symposium on the Mathematical Foundations of Com-

puter Science, volume 6281 of Lecture Notes in Computer Science, pages 90–101. Springer,

2010. 9, 10, 41

[72] S.K. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela, N. Megow, and

L. Stougie. Mixed-criticality scheduling. In 10th Workshop on Models and Algorithms for

Planning and Scheduling Problems (MAPSP), Nymburk, Czech Republic, pages 1–3, 2011.

42

[73] S.K. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela, N. Megow, and

L. Stougie. Scheduling real-time mixed-criticality jobs. IEEE Transactions on Computers,

61(8):1140–1152, 2012. 9, 41, 42

[74] S.K. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela, S. Van Der Ster, and

L. Stougie. Preemptive uniprocessor scheduling of mixed-criticality sporadic task systems.

Journal of the ACM (JACM), 62(2):14, 2015. 17

[75] S.K. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela, S. van der Ster, and

L. Stougie. The preemptive uniprocessor scheduling of mixed-criticality implicit-deadline

sporadic task systems. In Proc. of ECRTS, pages 145–154, 2012. 42

[76] S.K. Baruah, V. Bonifaci, G. D’Angelo, A. Marchetti-Spaccamela, S. van der Ster, and

L. Stougie. Mixed-criticality scheduling of sporadic task systems. In Proc. of the 19th Annual

European Symposium on Algorithms (ESA 2011) LNCS 6942, Saarbruecken, Germany, pages

555–566, 2011. 17, 42

[77] S.K. Baruah and A. Burns. Sustainable schedulability analysis. In Proc. of IEEE Real-Time

Systems Symposium (RTSS), pages 159–168, 2006. 40

[78] S.K. Baruah and A. Burns. Implementing mixed criticality systems in Ada. In Proc. of

Reliable Software Technologies - Ada-Europe, pages 174–188, 2011. 7, 8, 9, 37, 46

61

[79] S.K. Baruah and A. Burns. Fixed-priority scheduling of dual-criticality systems. In Proc. 21st

RTNS, pages 173–182. ACM, 2013. 15

[80] S.K. Baruah and A. Burns. Achieving temporal isolation in multiprocessor mixed-criticality

systems. In L. Cucu-Grosjean and R. Davis, editors, Proc. 2nd Workshop on Mixed Criticality

Systems (WMC), RTSS, pages 21–26, 2014. 19, 27

[81] S.K. Baruah, A. Burns, and R.I. Davis. Response-time analysis for mixed criticality systems.

In Proc. IEEE Real-Time Systems Symposium (RTSS), pages 34–43, 2011. 9, 10, 11, 24, 37

[82] S.K. Baruah, A. Burns, and R.I. Davis. An extended fixed priority scheme for mixed criticality

systems. In L. George and G. Lipari, editors, Proc. ReTiMiCS, RTCSA, pages 18–24, 2013.

12

[83] S.K. Baruah and B. Chattopadhyay. Response-time analysis of mixed criticality systems with

pessimistic frequency specification. In Proc. IEEE International Conference on Embedded

and Real-Time Computing Systems and Applications (RTCSA), 2013. 7, 13

[84] S.K. Baruah, B. Chattopadhyay, H. Li, and I. Shin. Mixed-criticality scheduling on multipro-

cessors. Real-Time Systems Journal, 50:142–177, 2014. 24

[85] S.K. Baruah, N. Cohen, G. Plaxton, and D. Varvel. Proportionate progress: A notion of

fairness in resource allocation. Algorithmica, 15(6):600–625, 1996. 23

[86] S.K. Baruah, A. Easwaran, and Z. Guo. MC-Fluid: Simplified and optimally quantified. In

Proc. IEEE Real-Time Systems Symposium (RTSS), pages 327–337, 2015. 23, 42

[87] S.K. Baruah, A. Easwaran, and Z. Guo. Mixed-criticality scheduling to minimize makespan.

In LIPIcs-Leibniz International Proc. in Informatics, volume 65, 2016. 9

[88] S.K. Baruah and G. Fohler. Certification-cognizant time-triggered scheduling of mixed-

criticality systems. In Proc. of IEEE Real-time Systems Symposium 2011, December 2011.

19

[89] S.K. Baruah and Z. Guo. Mixed criticality scheduling upon unreliable processors. Technical

report, University of North Carolina at Chapel Hill, 2013. 9

[90] S.K. Baruah and Z. Guo. Mixed-criticality scheduling upon varying-speed processors. In

Proc. IEEE 34th Real-Time Systems Symposium, pages 68–77, 2013. 20

[91] S.K. Baruah and Z. Guo. Scheduling mixed-criticality implicit-deadline sporadic task systems

upon a varying-speed processor. In Proc. IEEE Real-Time Systems Symposium, pages 31–400.

IEEE, 2014. 20

[92] S.K. Baruah and Z. Guo. Mixed-criticality job models: a comparison. In L. Cucu-Grosjean

and R. Davis, editors, Proc. 3rd Workshop on Mixed Criticality Systems (WMC), RTSS, pages

1–5, 2015. 40

[93] S.K. Baruah, H. Li, and L. Stougie. Mixed-criticality scheduling: Improving resource-

augmented results. In Computers and Their Applications, ISCA, pages 217–223, 2010. 42

[94] S.K. Baruah, H. Li, and L. Stougie. Towards the design of certifiable mixed-criticality sys-

tems. In Proc. of the IEEE Real-Time Technology and Applications Symposium (RTAS), pages

13–22. IEEE, 2010. 9

[95] S.K. Baruah and S. Vestal. Schedulability analysis of sporadic tasks with multiple criticality

specifications. In ECRTS, pages 147–155, 2008. 5, 16

[96] S.K. Barugh. Scheduling analysis for a general model of mixed-criticality recurrent real-time

tasks. In Proc. IEEE RTSS, pages 25–34, 2016. 17

62

[97] I. Bate, A. Burns, and R.I. Davis. A bailout protocol for mixed criticality systems. In Proc.

27th ECRTS, pages 259–268, 2015. 40, 48

[98] I. Bate, A. Burns, and R.I. Davis. An enhanced bailout protocol for mixed criticality embedded

software. IEEE Transactions on Software Engineering, 43(4):298–320, 2016. 40, 48

[99] L. Behera. A fault-tolerant time-triggered scheduling algorithm of mixed-criticality systems.

Computing, page online, 2021. 19

[100] L. Behera and P. Bhaduri. An energy-efficient time-triggered scheduling algorithm for mixed-

criticality systems. Des Autom Embed Syst, 2018. 48

[101] L. Behera and P. Bhaduri. Time-triggered scheduling for multiprocessor mixed-criticality

systems. In Proc. Distributed Computing and Internet Technology, pages 135–151. Springer

International Publishing, 2018. 19, 48

[102] L. Behera and P. Bhaduri. Time-Triggered Scheduling for Multiprocessor Mixed-Criticality

Systems, pages 135–151. Springer International Publishing, 2018. 19, 48

[103] G. Bernat and A. Burns. New results on fixed priority aperiodic servers. In Proc. 20th IEEE

Real-Time Systems Symposium, pages 68–78, 1999. 29

[104] G. Bernat and A. Burns. Multiple servers and capacity sharing for implementing flexible

scheduling. Real-Time Systems Journal, 22:49–75, 2002. 29

[105] G. Bernat, A. Colin, and S.M. Petters. Wcet analysis of probabilistic hard real-time systems.

In 23rd IEEE Real-Time Systems Symposium, pages 279–288. IEEE, 2002. 34

[106] A. A. Bhuiyan, A. Sruti, Z. Guo, and K. Yang. Precise scheduling of mixed-criticality tasks

by varying processor speed. In Proc. RTNS, pages 123–132, 2019. 20

[107] A.A. Bhuiyan, F. Reghenzani, W. Fornaciari, and Z. Guo. Optimizing energy in non-

preemptive mixed-criticality scheduling by exploiting probabilistic information. IEEE Trans.

on Computer-Aided Design of Integrated Circuits and Systems, 39(11):3906–3917, 2020. 49

[108] A.A. Bhuiyan, K. Yang, S. Arefin, A. Saifullah, N. Guan, and Z. Guo. Mixed-criticality multi-

core scheduling of real-time Gang task systems. In Proc. IEEE Real-Time Systems Symposium

(RTSS), pages 469–480, 2019. 24

[109] A.A. Bhuiyan, K. Yang, S. Arefin, A. Saifullah, N. Guan, and Z. Guo. Mixed-criticality

real-time scheduling of Gang task systems. Real-Time Systems Journal, 57:268–301, 2021.

24

[110] K.J. Biba. Integrity considerations for secure computer systems. Mtr-3153, Mitre Corpora-

tion, 1977. 18

[111] E. Bini, M. Di Natale, and G.C. Buttazzo. Sensitivity analysis for fixed-priority real-time

systems. In Proc. ECRTS, pages 13–22, 2006. 14

[112] K. Bletsas, M.A. Awan, P.F. Souto, B. Akesson, A. Burns, and E. Tovar. Decoupling criticality

and importance in mixed-criticality scheduling. In Jing Li and Zhishan Guo, editors, Proc.

6th Workshop on Mixed Criticality Systems (WMC), RTSS, pages 25–32, 2018. 38

[113] K. Bletsas, M.A. Awan, P.F. Souto, B. Akesson, and E. Tovar. Mixed-criticality systems with

partial lockdown and cache reclamation upon mode change. In Proc. WiP at ECRTS, pages

22–24, 2017. 47

[114] K. Bletsas and S.M. Petters. Using NPS-F for mixed criticality systems. In Proc. WiP, RTSS,

page 25, 2012. 22

63

[115] K. Bletsas and S.M. Petters. Using NPS-F for mixed criticality multicore ystems. Cister-tr-

130303, CISTER, 2013. 22

[116] A. Blin, C. Courtaud, J. Sopena, and G. Muller. Maximizing parallelism without exploding

deadlines in a mixed-criticality embedded system. In Proc. ECRTS, pages 109–119, 2016. 33

[117] M. Bommert. Schedule-aware distributed of parallel load in a mixed criticality environment.

In Proc. JRWRTC, RTNS, pages 21–24, 2013. 21

[118] J. Boudjadar, S. Ramanathan, A. Easwaran, and U. Nyman. Combining task-level and system-

level scheduling modes for mixed criticality systems. In IEEE/ACM 23rd International Sym-

posium on Distributed Simulation and Real Time Applications (DS-RT), pages 1–10, 2019.

13

[119] B.B. Brandenburg. A synchronous IPC protocol for predicatable access to shared resources

in mixed-criticality systems. In Proc. IEEE Real-Time Systems Symposium, pages 196–206.

IEEE, 2014. 19

[120] R. J. Bril and E. J. Luit. Experience report: Combining mixed-criticality support with resource

reservation and spare capacity allocation. In Proc. IEEE International Conference on Software

Architecture Companion (ICSA-C), pages 65–68, 2019. 46

[121] F. Broekaert, A. Fritsch, L. Sa, and S. Tverdyshev. Towards power-efficient mixed-critical

systems. In Proc. of OSPERT 2013, pages 30–35, 2013. 48

[122] I. Broster and A. Burns. An analysable bus-guardian for event-triggered communication. In

Proc. of the 24th Real-time Systems Symposium, pages 410–419. Computer Society, IEEE,

2003. 27

[123] A. Bucaioni, S. Mubeen, F. Ciccozzi, A. Cicchetti, and M. Sjodin. Modelling multi-criticality

vehicular software systems: evolution of an industrial component model. Software and Sys-

tems Modeling, 19:1283–1302, 2020. 51

[124] A. Burns. Preemptive priority based scheduling: An appropriate engineering approach. In

S.H. Son, editor, Advances in Real-Time Systems, pages 225–248. Prentice-Hall, 1994. 11

[125] A. Burns. The application of the original priority ceiling protocol to mixed criticality systems.

In L. George and G. Lipari, editors, Proc. ReTiMiCS, RTCSA, pages 7–11, 2013. 18

[126] A. Burns. System mode changes - general and criticality-based. In L. Cucu-Grosjean and

R. Davis, editors, Proc. 2nd Workshop on Mixed Criticality Systems (WMC), RTSS, pages

3–8, 2014. 10, 32, 40

[127] A. Burns. An augmented model for mixed criticality. In Davis Baruah, Cucu-Grosjean

and Maiza, editors, Mixed Criticality on Multicore/Manycore Platforms (Dagstuhl Semi-

nar 15121), volume 5(3), pages 92–93. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,

Dagstuhl, Germany, 2015. 40

[128] A. Burns. Multi-model systems – an mcs by any other name. In Proc. 7th Int. RTSS Workshop

On Mixed Criticality Systems (WMC), pages 5–8, 2019. 51

[129] A. Burns. Multi-model systems - an mcs by any other name. In J. Li and Z. Guo, editors,

Proc. 7th Workshop on Mixed Criticality Systems (WMC), RTSS, pages 5–8, 2019. 8

[130] A. Burns, S. Baruah, C.B. Jones, and I. Bate. Reasoning about the relationship between the

scheduler and mixed-criticality jobs. In J. Li and Z. Guo, editors, Proc. 7th Workshop on

Mixed Criticality Systems (WMC), RTSS, pages 17–22, 2019. 43

[131] A. Burns and S.K. Baruah. Timing faults and mixed criticality systems. In Jones and Lloyd,

editors, Dependable and Historic Computing, volume LNCS 6875, pages 147–166. Springer,

2011. 7, 9

64

[132] A. Burns and S.K. Baruah. Towards a more practical model for mixed criticality systems. In

Proc. 1st Workshop on Mixed Criticality Systems (WMC), RTSS, pages 1–6, 2013. 14, 38

[133] A. Burns and S.K. Baruah. Semi-partitioned cyclic executives for mixed criticality systems.

In L. Cucu-Grosjean and R. Davis, editors, Proc. 3rd Workshop on Mixed Criticality Systems

(WMC), RTSS, pages 36–41, 2015. 19, 27

[134] A. Burns, R. Davis, S. K. Baruah, and I. Bate. Robust mixed-criticality systems. IEEE

Transactions on Computers, 67(10):1478–1491, 2018. 37

[135] A. Burns and R.I. Davis. Mixed criticality on controller area network. In Proc. Euromicro

Conference on Real-Time Systems (ECRTS), pages 125–134, 2013. 7, 13, 28, 31

[136] A. Burns and R.I. Davis. Adaptive mixed criticality scheduling with deferred preemption. In

Proc. IEEE Real-Time Systems Symposium (RTSS), pages 21–30, 2014. 11

[137] A. Burns and R.I. Davis. Response-time analysis for mixed-criticality systems with arbitrary

deadlines. In Proc. Workshop on Mixed Criticality Systems (WMC), pages 13–18, 2017. 11

[138] A. Burns and R.I. Davis. A survey of research into mixed criticality systems. ACM Computer

Surveys, 50(6):1–37, 2017. 6

[139] A. Burns and R.I. Davis. Schedulability analysis for adaptive mixed criticality systems with

arbitrary deadlines and semi-clairvoyance. In Proc. IEEE Real-Time Systems Symposium

(RTSS), pages 12–24, 2020. 11, 21

[140] A. Burns and R.I. Davis. Mixed criticality systems: A review (13th edition). Technical Re-

port MCC-1(13), available at https://www-users.cs.york.ac.uk/b̃urns/review.pdf and the White

Rose Repository, Department of Computer Science, University of York, 2022. 6

[141] A. Burns, T. Fleming, and S.K. Baruah. Cyclic executives, multi-core platforms and mixed-

criticality applications. In Proc. 27th ECRTS, pages 3–12, 2015. 19, 27

[142] A. Burns, J. Harbin, and L.S. Indrusiak. A Wormhole NoC protocol for mixed criticality

systems. In Proc. IEEE Real-Time Systems Symposium, pages 184–195. IEEE, 2014. 27

[143] A. Burns, J. Harbin, L.S. Indrusiak, I. Bate, R.I. Davis, and D. Griffin. AirTight – A resilient

wireless communication protocol for mixed-criticality systems. In Proc. RTCSA, 2018. 28

[144] A. Burns and T.J. Quiggle. Effective use of abort in programming mode changes. Ada Letters,

1990. 10, 39

[145] A. Burns and A. J. Wellings. Real-Time Systems and Programming Languages. Addison

Wesley Longman, 4th edition, 2009. 15, 29

[146] A. Burns and A.J. Wellings. Dual priority scheduling in Ada 95 and real-time POSIX. In

Proc. of 21th IFAC/IFIP Workshop on Real-Time Programming (WRTP96),, 1996. 30

[147] G. Buttazzo, G. Lipari, and L. Abeni. Elastic task model for adaptive rate control. In IEEE

Real-Time Systems Symposium, pages 286–295, 1998. 17

[148] G.C. Buttazzo. Hard Real-Time Computing Systems. Springer, 2005. 29

[149] K. Cao, G. Xu, J. Zhou, M. Chen, T. Wei, and K. Li. Lifetime-aware real-time task scheduling

on fault-tolerant mixed-criticality embedded systems. Future Generation Computer Systems,

100:165 – 175, 2019. 49

[150] J. Caplan, Z. Al-bayati, H. Zeng, and B.H. Meyer. Mapping and scheduling mixed-criticality

systems with on-demand redundancy. IEEE Transactions on Computers, PP(99):1–1, 2017.

31

65

[151] G. Carvajal and S. Fischmeister. An open platform for mixed-criticality real-time ethernet.

In Proc. of the Conference on Design, Automation and Test in Europe, Proc. DATE, pages

153–156, 2013. 26

[152] D.F. Carvalho, P. Ferrari, E. Sisinni, and A. Flammini. Improving redundancy in lorawan for

mixed-criticality scenarios. IEEE Systems Journal, 15(3):3682–3691, 2021. 29

[153] F.J. Cazorla, E. Quiaones, T. Vardanega, L. Cucu-Grosjean, B. Triquet, G. Bernat, E.D.

Berger, J. Abella, F. Wartel, M. Houston, L. Santinelli, L. Kosmidis, C. Lo, and D. Maxim.

PROARTIS: Probabilistically analyzable real-time systems. ACM Trans. Embedded Comput.

Syst., 12(2):94, 2013. 7, 35

[154] H. Chai, G. Zhang, J. Sun, A. Vajdi, J. Hua, and J. Zhou. A review of recent techniques

in mixed-criticality systems. Journal of Circuits, Systems and Computers, 28(07):1930007,

2019. 6

[155] S. Chaki and D. Kyle. Dmpl: Programming and verifying distributed mixed-synchrony and

mixed-critical software. Technical Report CMU/SEI-2016-TR-005, 2016. 46

[156] F. Checconi, T. Cucinotta, D. Faggioli, and G. Lipari. Hierarchical multiprocessor cpu reser-

vations for the linux kernel. In Proc. of 5th International Workshop on Operating Systems

Platforms for Embedded Real-Time Applications (OSPERT 2009), 2009. 33

[157] G. Chen, N. Guan, B. Hu, and W. Yi. Edf-vd scheduling of flexible mixed-criticality system

with multiple-shot transitions. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 2018. 39

[158] G. Chen, N. Guan, D. Liu, Q. He, K. Huang, T. Stefanov, and W. Yi. Utilization-based

scheduling of flexible mixed-criticality real-time tasks. IEEE Transactions on Computers,

67(4):543–558, 2018. 13

[159] Y. Chen, K.G. Shin, and H. Xiong. Generalizing fixed-priority scheduling for better schedu-

lability in mixed-criticality systems. Information Processing Letters, 116(8):508–512, 2016.

12

[160] L. Cheng, K. Huang, G. Chen, B. Hu, and A. Knoll. Mixed-criticality control system with

performance and robustness guarantees. In Proc. IEEE Trustcom/BigDataSE/ICESS, pages

767–775, 2017. 10

[161] H. Chetto and M. Chetto. Some results of the earliest deadline scheduling algorithm. IEEE

Transactions on Software Engineering, 15(10):1261–1269, 1989. 16

[162] M. Chisholm, N. Kim, S. Tang, N. Otterness, J.H. Anderson, F.D. Smith, and D. Porter.

Supporting mode changes while providing hardware isolation in mixed-criticality multicore

systems. In Proc. RTNS, 2017. 21

[163] M. Chisholm, N. Kim, B.C. Ward, N. Otterness, J.H. Anderson, and F.D. Smith. Reconcil-

ing the tension between hardware isolation and data sharing in mixed-criticality, multicore

systems. In Proc. Real-Time Systems Symposium (RTSS), pages 57–68. IEEE, 2016. 19

[164] M. Chisholm, B. Ward, N. Kim, and J. Anderson. Cache sharing and isolation tradeoffs in

multicore mixed-criticality systems. Technical report, University of North Carolina, 2015. 21

[165] J. Choi, H. Yang, and S. Ha. Optimization of fault-tolerant mixed-criticality multi-core sys-

tems with enhanced wcrt analysis. ACM Trans. Des. Autom. Electron. Syst., 24(1):6:1–6:26,

2018. 31

[166] M. Chrisholm, B. Ward, N. Kim, and J. Anderson. Cache-sharing and isolation tradeoffs in

multicore mixed-criticality systems. In Proc. IEEE Real-Time Systems Symposium (RTSS),

pages 305–316, 2015. 46

66

[167] H.S. Chwa, H. Baek, and J. Lee. Necessary feasibility analysis for mixed-criticality task

systems on uniprocessor. In Proc. IEEE Real-Time Systems Symposium (RTSS), pages 446–

457, 2019. 18

[168] H.S. Chwa, H. Baek, and J. Lee. Necessary feasibility analysis for mixed-criticality real-time

embedded systems. IEEE Transactions on Parallel and Distributed Systems, 33(7):1520–

1537, 2022. 18

[169] H.S. Chwa, K.G. Shin, H. Baek, and J Lee. Physical-state-aware dynamic slack management

for mixed criticality systems. In Proc. RTAS, 2018. 39, 48

[170] B. Cilku, A. Crespo, P. Puschner, J. Coronel, and S. Peiro. A memory arbitration scheme for

mixed-criticality multocore platforms. In L. Cucu-Grosjean and R. Davis, editors, Proc. 2nd

Workshop on Mixed Criticality Systems (WMC), RTSS, pages 27–32, 2014. 44

[171] B. Cilku, A. Crespo, P. Puschner, J. Coronel, and S. Peiro. A TDMA-based arbitration scheme

for mixed-criticality multicore platforms. In Proc EBCCSP, pages 1–6. IEEE, 2015. 26, 44

[172] B. Cilku and P. Puschner. Towards temporal and spatial isolation in memory hierarchies

for mixed-criticality systems with hypervisors. In L. George and G. Lipari, editors, Proc.

ReTiMiCS, RTCSA, pages 25–28, 2013. 33

[173] M. Cinque, R.D. Corte, A. Eliso, and A. Pecchia. RT-CASEs: Container-based virtualiza-

tion for temporally separated mixed-criticality task sets. In Sophie Quinton, editor, Proc.

31st Euromicro Conference on Real-Time Systems (ECRTS), volume 133 of Leibniz Inter-

national Proceedings in Informatics (LIPIcs), pages 5:1–5:22, Dagstuhl, Germany, 2019.

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. 45

[174] M. Cinque and D. Cotroneo. Towards lightweight temporal and fault isolation in mixed-

criticality systems with real-time containers. In Proc. 48th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks Workshops (DSN-W), pages 59–60, 2018.

45

[175] M. Cinque, D. Cotroneo, L. De Simone, and S. Rosiello. Virtualizing mixed-criticality

systems: A survey on industrial trends and issues. Future Generation Computer Systems,

129:315–330, 2022. 6

[176] M. Cinque and G.D. Tommasi. Real-time containers for large-scale mixed-criticality systems.

In WiP, RTSS, pages 369–371, 2017. 45

[177] A. Cohen, V. Perrelle, D. Potop-Butucaru, E. Soubiran, and Z. Zhang. Mixed-criticality in

railway systems: A case study on signaling application. Ada User Journal, Proc of Workshop

on Mixed Criticality for Industrial Systems (WMCIS’2014), 35(2):138–143, 2014. 20

[178] M. Copic, R. Leupers, and G. Ascheid. Runnable configuration in mixed classic/adaptive au-

tosar systems by leveraging nondeterminism. In Proc. 24th Euromicro Conference on Digital

System Design (DSD), pages 418–425, 2021. 51

[179] A. Crespo, A. Alonso, M. Marcos, J.A. Puente, and P. Balbastre. Mixed criticality in control

systems. In Proc. 19th World Congress The Federation of Automatic Control, pages 12261–

12271, 2014. 33

[180] A. Crespo, P. Balbastre, and J. Simo. Execution control in mixed-criticality systems. In Proc.

Int. Conf. Embedded Systems, Cyber-Physical Systems and Applications, pages 77–82, 2018.

33

[181] O. Cros, F. Fauberteau, L. George, and X. Li. Mixed-criticality over switched ethernet net-

works. Ada User Journal, Proc of Workshop on Mixed Criticality for Industrial Systems

(WMCIS’2014), 35(2):138–143, 2014. 28

67

[182] O. Cros, L. George, and X.Li. A protocol for mixed-criticality management in switched

ethernet networks. In L. Cucu-Grosjean and R. Davis, editors, Proc. 3rd Workshop on Mixed

Criticality Systems (WMC), RTSS, pages 12–17, 2015. 28

[183] L. Cucu-Grosjean. Independence - a misunderstood property of and for probabilistic real-time

systems. In N. Audsley and S.K. Baruah, editors, In Real-Time Systems: the past, the present

and the future, pages 29–37, 2013. 7

[184] L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo, T. Vardanega, L. Kosmidis, J. Abella,

E. Mezzetti, E. Quiaones, and F.J. Cazorla. Measurement-based probabilistic timing analysis

for multi-path programs. In Proc. 24th Euromicro Conference on Real-Time Systems (ECRTS),

pages 91–101, 2012. 7

[185] V. David, A. Barbot, and D. Chabrol. Dependable real-time system and mixed criticality:

Seeking safety, flexibility and efficiency with Kron-OS. Ada User Journal, 35(4):259–265,

2014. 46

[186] R.I. Davis. On exploiting spare capacity in hard real-time systems. PhD thesis, University of

York, UK, 1995. 29

[187] R.I. Davis, S. Altmeyer, and A. Burns. Mixed criticality systems with varying context switch

costs. In Proc. Real-Time and Embedded Technology and Applications Symposium (RTAS),

2018. 44

[188] R.I. Davis, S. Altmeyer, and A. Burns. Priority assignment in fixed priority pre-emptive

systems with varying context switch costs. In Proc. RTSS Workshop on Open Problems,

pages 11–12, 2018. 44

[189] R.I. Davis and M. Bertogna. Optimal fixed priority scheduling with deferred pre-emption. In

Proc. IEEE Real-Time Systems Symposium, pages 39–50, 2012. 11

[190] R.I. Davis and A. Burns. Hierarchical fixed priority preemptive scheduling. In Proc. of IEEE

Real-Time Systems Symposium (RTSS), pages 389–398, 2005. 33

[191] R.I. Davis and A. Burns. Resource sharing in hierarchical fixed priority preemptive systems.

In Proc. IEEE Real-Time Systems Symposium (RTSS), 2006. 33

[192] R.I. Davis and A. Burns. Robust priority assignment for fixed priority real-time systems. In

Proc. of IEEE Real-Time Systems Symposium (RTSS), 2007. 10

[193] R.I. Davis, A. Burns, R.J. Bril, and J.J. Lukkien. Controller area network (CAN) schedula-

bility analysis: Refuted, revisited and revised. Journal of Real-Time Systems, 35(3):239–272,

2007. 28

[194] R.I. Davis, L. Santinelli, S. Altmeyer, C. Maiza, and L. Cucu-Grosjean. Analysis of proba-

bilistic cache related pre-emption delays. In ECRTS, pages 129–138, 2013. 7

[195] R.I. Davis, K. Tindell, and A. Burns. Scheduling slack time in fixed priority preemptive

systems. In Proc. 14th IEEE Real-Time Systems Symposium, 1993. 29

[196] R.I. Davis and A. J. Wellings. Dual priority scheduling. In Proc. 16th IEEE Real-Time Systems

Symposium, pages 100–109, 1995. 30

[197] D. de Niz, B. Andersson, H. Kim, M. Klein, L.T.X. Phan, and R. Rajkumar. Mixed-criticality

processing pipelines. In Design, Automation Test in Europe Conference Exhibition (DATE),

pages 1372–1375, 2017. 25

[198] C. Deutschbein, T. Fleming, A. Burns, and S. Baruah. Multi-core cyclic executives for safety-

critical systems. In Kim Guldstrand Larsen, Oleg Sokolsky, and Ji Wang, editors, Proc. De-

pendable Software Engineering. Theories, Tools, and Applications, SETTA, pages 94–109.

Springer International Publishing, 2017. 19

68

[199] J.L. Dı́az, D.F. Garcia, K. Kim, C.G. Lee, L.L. Bello, J.M. López, and O. Mirabella. Stochastic

analysis of periodic real-time systems. In IEEE Real-Time Systems Symposium (RTSS), 2002.

35

[200] J. Diemer and R. Ernst. Back suction: Service guarantees for latency-sensitive on-chip net-

works. In Proc. of the 2010 Fourth ACM/IEEE International Symposium on Networks-on-

Chip, Proc. NOCS ’10, pages 155–162. IEEE Computer Society, 2010. 27

[201] M. Digalwar, B.K. Raveendran, and S. Mohan. LAMCS: A leakage aware DVFS based

mixed task set scheduler for multi-core processors. Sustainable Computing: Informatics and

Systems, 15(Supplement C):63 – 81, 2017. 49

[202] A.C. Dimopoulos, G. Bravos, G. Dimitrakopoulos, M. Nikolaidou, V. Nikolopoulos, and

D. Anagnostopoulos. A multi-core context-aware management architecture for mixed-

criticality smart building applications. In Proc. System of Systems Engineering Conference

(SoSE), pages 1–6. IEEE, 2016. 34

[203] X. Dond, G. Chen, M. Lv, W. Pang, and W. Yi. Flexible mixed-criticality scheduling with

dynamic slack management. In J. Li and Z. Guo, editors, Proc. 7th Workshop on Mixed

Criticality Systems (WMC), RTSS, pages 23–15, 2019. 13

[204] X. Dong, G. Chen, M. Lv, W. Pang, and W. Yi. Flexible mixed-criticality scheduling with

dynamic slack management. In Proc. WMC Workshop, IEEE Real-Time Systems Symposium

(RTSS), 2020. 13

[205] X. Dong, G. Chen, M. Lv, W. Pang, and W. Yi. Flexible mixed-criticality scheduling with

dynamic slack management. Journal of Circuits, Systems and Computers, 30(10):2150306,

2021. 13

[206] F. Dorin, P. Richard, M. Richard, and J. Goossens. Schedulability and sensitivity analysis

of multiple criticality tasks with fixed-priorities. Real-Time Systems Journal, 46(3):305–331,

2010. 9

[207] S. Draskovic, R. Ahmed, P. Huang, and L. Thiele. Schedulability of probabilistic mixed-

criticality systems. Real-Time Systems, 57(4):397–442, 2021. 36

[208] S. Draskovic, R. Ahmed, P. Huang, and L. Thiele. Schedulability of probabilistic mixed-

criticality systems. Real-Time Systems, pages 1–46, 2021. 36

[209] S. Draskovic, P. Huang, and L. Thiele. On the safety of mixed-criticality scheduling. In Proc.

4th WMC (RTSS), page 6, 2016. 36

[210] M. Dridi, M. Lallali, S. Rubin, F. Singhoff, and J-P. Diguet. Modeling and validation of a

mixed-criticality NoC router using the IF language. In Proc. NoCArc, International Workshop

on Network on Chip Architectures. ACM, 2017. 27

[211] M. Dridi, S. Rubin, M. Lallali, J. Sepulveda, F. Singhoff, and J-P. Diguet. DAS: An efficient

NoC router for mixed-criticality real-time systems. In Proc. ICCD, International Conference

on Computer Design. IEEE, 2017. 27

[212] M. Dridi, S. Rubini, M. Lallali, M.J.S. Florez, F. Singhoff, and J-P Diguet. Design and multi-

abstraction level evaluation of a NoC router for mixed-criticality real-time systems. ACM

Journal on Emerging Technologies in Computing Systems, 2018. 27

[213] C. Dürr, Z. Hanzálek, C. Konrad, R. Sitters, O.C. Vásquez, and G. Woeginger. The triangle

scheduling problem. arXiv preprint arXiv:1602.04365, 2016. 29

[214] G. Durrieu and C. Pagetti. Grec: Automatic computation of reconfiguration graphs for multi-

core platforms. ACM Trans. Embed. Comput. Syst., 18(5), 2019. 45

69

[215] A. Easwaran. Demand-based scheduling of mixed-criticality sporadic tasks on one processor.

In Proc. IEEE 34th Real-Time Systems Symposium, pages 78–87, 2013. 17

[216] A. Easwaran and I. Shin. Compositional mixed-criticality scheduling. CRTS 2014, 2014. 39

[217] L. Ecco, S. Tobuschat, S. Saidi, and R. Ernst. A mixed critical memory controller using bank

privatization and fixed priority scheduling. In Proc. Embedded and Real-Time Computing

Systems and Applications (RTCSA), pages 1–10. IEEE, 2014. 26

[218] S. Edgar and A. Burns. Statistical analysis of WCET for scheduling. In Proc. 22nd IEEE

Real-Time Systems Symposium, 2001. 7

[219] P. Ekberg, M. Stigge, N. Guan, and W. Yi. State-based mode switching with applications to

mixed criticality systems. In Proc. WMC, RTSS, pages 61–66, 2013. 8

[220] P. Ekberg and W. Yi. Bounding and shaping the demand of mixed-criticality sporadic task

systems. In ECRTS, pages 135–144, 2012. 16, 17

[221] P. Ekberg and W. Yi. Bounding and shaping the demand of generalized mixed-criticality

sporadic task systems. Journal of Real-Time Systems, 50:48–86, 2014. 8, 16

[222] P. Ekberg and W. Yi. A note on some open problems in mixed-criticality scheduling. In Proc.

RTOPS, 27th ECRTS, pages 1–2, 2015. 41

[223] P. Ekberg and W. Yi. Schedulability analysis of a graph-based task model for mixed-criticality

systems. Real-Time Systems, 52:1–37, 2016. 8

[224] P. Emberson and I. Bate. Minimising task migrations and priority changes in mode transitions.

In Proc. of the 13th IEEE Real-Time And Embedded Technology And Applications Symposium

(RTAS 07), pages 158–167, 2007. 10, 39

[225] B. Engel. Tightening critical section bounds in mixed-criticality systems through preemptible

hardware transactional memory. In Proc. OSPERT, pages 17–22, 2016. 18

[226] R. Ernst and M. Di Natale. Mixed criticality systems?a history of misconceptions? IEEE

Design & Test, 33(5):65–74, 2016. 4, 50

[227] A. Esper, G. Neilissen, V. Neils, and E. Tovar. How realistic is the mixed-criticality real-time

system model. In 23rd International Conference on Real-Time Networks and Systems (RTNS

2015), pages 139–148, 2015. 4, 50

[228] A. Esper, G. Nelissen, V. Nélis, and E. Tovar. An industrial view on the common academic

understanding of mixed-criticality systems. Real-Time Systems, 54(3):745–795, 2018. 50

[229] S. Esposito, S. Avramenko, and M. Violante. Rtos for mixed criticality applications deployed

on noc-based cots mpsoc. In Proc. IEEE 19th Latin-American Test Symposium (LATS), pages

1–6, 2018. 27, 45

[230] S. Esposito, J. Sini, and M. Violante. Real-time validation of mixed-criticality applications.

In Proc. IEEE 19th Latin-American Test Symposium (LATS), pages 1–6, 2018. 45

[231] S. Esposito, M. Violante, M. Sozzi, M. Terrone, and M. Traversone. A novel method for

online detection of faults affecting execution-time in multicore-based systems. ACM Trans.

Embed. Comput. Syst., 16(4):94:1–94:19, 2017. 45

[232] C. Evripidou and A. Burns. Scheduling for mixed-criticality hypervisor systems in the auto-

motive domain. In Proc. 4th WMC (RTSS), page 6, 2016. 45

[233] G. Farrall, C. Stellwag, J. Diemer, and R. Ernst. Hardware and software support for mixed-

criticality multicore systems. In Proc. of the Conference on Design, Automation and Test in

Europe, WICERT, DATE, 2013. 44, 51

70

[234] T. Fautrel, L. George, F. Fauberteau, and T. Grandpierre. An hypervisor approach for mixed

critical real-time uav applications. In Proc.IEEE International Conference on Pervasive Com-

puting and Communications Workshops (PerCom Workshops), pages 985–991, 2019. 45

[235] A. Finzi, A. MIFDAOUI, F. Frances, and E. Lochin. Mixed-Criticality on the AFDX Network:

Challenges and Potential Solutions. In Proc. 9th Embedded Real-Time Software and Systems

(ERTS), pages pp. 1–9, 2018. 26

[236] T. Fleming, S.K. Baruah, and A. Burns. Improving the schedulability of mixed criticality

cyclic executives via limited task splitting. In Proc. of the 24th International Conference

RTNS, pages 277–286. ACM, 2016. 19

[237] T. Fleming and A. Burns. Extending mixed criticality scheduling. In Proc. Workshop on

Mixed Criticality Systems (WMC), pages 7–12, 2013. 11, 16, 47

[238] T. Fleming and A. Burns. Incorporating the notion of importance into mixed criticality sys-

tems. In L. Cucu-Grosjean and R. Davis, editors, Proc. 2nd Workshop on Mixed Criticality

Systems (WMC), RTSS, pages 33–38, 2014. 38

[239] T. Fleming and A. Burns. Investigating mixed criticality cyclic executive schedule generation.

In L. Cucu-Grosjean and R. Davis, editors, Proc. 3rd Workshop on Mixed Criticality Systems

(WMC), RTSS, pages 42–47, 2015. 19, 27

[240] T. Fleming and A. Burns. Utilising asymmetric parallelism in multi-core mcs implemented

via cyclic executives. In Proc. 4th WMC (RTSS), page 6, 2016. 19

[241] T. Fleming, H-M.Huang, A. Burns, C. Gill, S. Baruah, and C. Lu. Corrections to and discus-

sion of ”implementation and evaluation of mixed-criticality scheduling approaches for spo-

radic tasks”. ACM Trans. Embed. Comput. Syst., 16(3):77:1–77:4, 2017. 12

[242] J. Freitag, S. Uhrig, and T. Ungerer. Virtual Timing Isolation for Mixed-Criticality Systems.

In Sebastian Altmeyer, editor, 30th Euromicro Conference on Real-Time Systems (ECRTS

2018), volume 106 of Leibniz International Proc. in Informatics (LIPIcs), pages 13:1–13:23.

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018. 25

[243] P. K. Gadepalli, R. Gifford, L. Baier, M. Kelly, and G. Parmer. Temporal capabilities: Access

control for time. In Proc. IEEE Real-Time Systems Symposium (RTSS), pages 56–67, 2017.

45

[244] L. George, D. Masson, and V. Neli. Selective real-time data emission in mobile intelligent

transport systems. In Agrawal and Easwaran, editors, Proc. 5th Workshop on Mixed Criticality

Systems (WMC), RTSS, pages 7–12, 2017. 28

[245] O. Gettings, S. Quinton, and R.I. Davis. Mixed criticality systems with weakly-hard con-

straints. In Proc. International Conference on Real-Time Networks and Systems (RTNS)),

pages 237–246, 2015. 38

[246] G. Giannopoulou and et al. DOL-BIP-Critical: A tool chain for rigorous design and imple-

mentation of mixed-criticality multi-core systems. Technical Report TR-2016-363, Verimag,

2016. 49

[247] G. Giannopoulou, P. Huang, A. Gomez, and L. Thiele. Mixed-criticality runtime mechanisms

and evaluation on multicore. In Proc. RTAS, 2015. 22, 26

[248] G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele. Scheduling of mixed-criticality

applications on resource-sharing multicore systems. In Proc. Int. Conference on Embedded

Software (EMSOFT), Montreal, 2013. 26

71

[249] G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele. Mapping mixed-criticality applica-

tions on multi-core architectures. In Proc. Design, Automation and Test in Europe Conference

and Exhibition (DATE), pages 1–6. IEEE, 2014. 50

[250] G. Giannopoulou, N. Stoimenov, P. Huang, L. Thiele, and B. D. de Dinechin. Mixed-criticality

scheduling on cluster-based manycores with shared communication and storage resources.

Real-Time Systems, pages 1–51, 2015. 27

[251] C. Gill, J. Orr, and S. Harris. Supporting graceful degradation through elasticity in mixed-

criticality federated scheduling. In Jing Li and Zhishan Guo, editors, Proc. 6th Workshop on

Mixed Criticality Systems (WMC), RTSS, pages 19–24, 2018. 24, 38

[252] Robert Bosch GmbH. CAN specification version 2.0. Technical report, Postfach 30 02 40,

D-70442 Stuttgart, 1991. 28

[253] M. Gomony, J. Garside, B. Akesson, N. Audsley, and K. Goossens. A globally arbitrated

memory tree for mixed-time-criticality systems. IEEE Transactions on Computers, 2016. 27

[254] K. Goossens, A. Azevedo, K. Chandrasekar, M.D. Gomony, S. Goossens, M. Koedam, Y. Li,

D. Mirzoyan, A. Molnos, A.B. Nejad, A. Nelson, and S. Sinha. Virtual execution platforms

for mixed-time-criticality systems: The compsoc architecture and design flow. SIGBED Rev.,

10(3):23–34, 2013. 44

[255] K. Goossens, M. Koedam, A. Nelson, S. Sinha, S. Goossens, Y. Li, G. Breaban, R. van Kam-

penhout, R. Tavakoli, J. Valencia, H.A. Balef, B. Akesson, S. Stuijk, M. Geilen, D. Goswami,

and M. Nabi. NoC-based multiprocessor architecture for mixed-time-criticality applications.

In Soonhoi Ha and Jürgen Teich, editors, Handbook of Hardware/Software Codesign, pages

1–40. Springer Netherlands, Dordrecht, 2017. 44

[256] S. Goossens, B. Akesson, and K. Goossens. Conservative open-page policy for mixed time-

criticality memory controllers. In Proc. DATE, pages 525–530, 2013. 26

[257] S. Goossens, J. Kuijsten, B. Akesson, and K. Goossens. A reconfigurable real-time SDRAM

controller for mixed time-criticality systems. In Int’l Conf. on Hardware/Software Codesign

and System Synthesis (CODES+ISSS), 2013. 26

[258] D. Goswami, M. Lukasiewycz, R. Schneider, and S. Chakraborty. Time-triggered imple-

mentations of mixed-criticality automotive software. In Proc. of the Conference on Design,

Automation and Test in Europe, Proc. DATE, pages 1227–1232, 2012. 28

[259] G. Gracioli, R. Tabish, R. Mancuso, R. Mirosanlou, R. Pellizzoni, and M. Caccamo. De-

signing Mixed Criticality Applications on Modern Heterogeneous MPSoC Platforms. In

Sophie Quinton, editor, Proc. 31st Euromicro Conference on Real-Time Systems (ECRTS),

volume 133 of Leibniz International Proceedings in Informatics (LIPIcs), pages 27:1–27:25,

Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. 45

[260] R. Gratia, T. Robert, and L. Pautet. Adaptation of RUN to mixed-criticality systems. In Proc.

8th Junior Researcher Workshop on Real-Time Computing, RTNS, 2014. 22

[261] R. Gratia, T. Robert, and L. Pautet. Generalized mixed-criticality scheduling based on RUN.

In 23rd International Conference on Real-Time Networks and Systems (RTNS 2015), pages

267–276, 2015. 22

[262] R. Gratia, T. Robert, and L. Pautet. Scheduling of mixed-criticality systems with run. In Proc.

ETFA, pages 1–8. IEEE, 2015. 22

[263] P. Graydon and I. Bate. Safety assurance driven problem formulation for mixed-criticality

scheduling. In Proc. WMC, RTSS, pages 19–24, 2013. 4, 7, 10

72

[264] D. Griffin, I. Bate, B. Lesage, and F. Soboczenski. Evaluating mixed criticality scheduling

algorithms with realistic workloads. In L. Cucu-Grosjean and R. Davis, editors, Proc. 3rd

Workshop on Mixed Criticality Systems (WMC), RTSS, pages 24–29, 2015. 48

[265] S. Groesbrink, L. Almeida, M. de Sousa, and S.M. Petters. Towards certifiable adaptive

reservations for hypervisor-based virtualization. In Proc. of the 20th Real-Time and Embedded

Technology and Applications Symposium (RTAS), 2014. 33

[266] S. Groesbrink, S. OberthÂžr, and D. Baldin. Architecture for adaptive resource assignment to

virtualized mixed-criticality real-time systems. In Special Issue on the 4th Workshop on Adap-

tive and Reconfigurable Embedded Systems (APRES 2012), volume 10(1). ACM SIGBED

Review, 2013. 33

[267] K. Grüttner. Empowering mixed-criticality system engineers in the dark silicon era: To-

wards power and temperature analysis of heterogeneous mpsocs at system level. In Model-

Implementation Fidelity in Cyber Physical System Design, pages 57–90. Springer, 2017. 49

[268] C. Gu, N. Guan, Q. Deng, and W. Yi. Partitioned mixed-criticality scheduling on multiproces-

sor platforms. In Design, Automation and Test in Europe Conference and Exhibition (DATE),

2014, pages 1–6. IEEE, 2014. 22

[269] C. Gu, N. Guan, Q. Deng1, and W. Yi. Improving ocbp-based scheduling for mixed-criticality

sporadic task systems. In Proc. RTCSA, 2013. 9

[270] X. Gu and A. Easwaran. Optimal speedup bound for 2-level mixed-criticality arbitrary dead-

line systems. In Proc. RTSOPS (ECRTS), pages 15–16, 2014. 42

[271] X. Gu and A. Easwaran. Dynamic budget management with service guarantees for mixed-

criticality systems. In Proc. Real-Time Systems Symposium (RTSS), pages 47–56. IEEE, 2016.

14, 37, 38

[272] X. Gu and A. Easwaran. Efficient schedulability test for dynamic-priority scheduling of

mixed-criticality real-time systems. ACM Trans. Embed. Comput. Syst., 17(1):24:1–24:24,

2017. 17

[273] X. Gu and A. Easwaran. Dynamic budget management and budget reclamation for mixed-

criticality systems. Real-Time Systems, 55:552–597, 2019. 14, 37, 38

[274] X. Gu, A. Easwaran, K.M. Phan, and I. Shin. Compositional mixed-criticality scheduling.

Technical report, Nanyang Technological University, Singapore, 2014. 39

[275] X. Gu, K.-M. Phan, A. Easwaran, and I. Shin. Resource efficient isolation mechanisms in

mixed-criticality scheduling. In Proc. 27th ECRTS, pages 13–24. IEEE, 2015. 38

[276] N. Guan, P. Ekberg, M. Stigge, and W. Yi. Effective and efficient scheduling of certifiable

mixed-criticality sporadic task systems. In IEEE RTSS, pages 13–23, 2011. 16, 17

[277] N. Guan and W. Yi. Improveing the scheduling of certifiable mixed criticality sopradic task

systems. Technical report, University of Uppsala, 2012. 16

[278] A. Guasque, P. Balbastre, A. Crespo, and S. Peiró. Energy efficient partition allocation in

mixed-criticality systems. PLOS ONE, 14(3):1–22, 2019. 22

[279] D. Guo and R. Pellizzoni. A requests bundling dram controller for mixed-criticality systems.

In Proc. IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS),

pages 247–258, 2017. 26

[280] Z. Guo. Mixed-criticality scheduling on varying-speed platforms with bounded performance

drop rate. In Proc. SMARTCOMP, pages 1–3. IEEE, 2016. 20

73

[281] Z. Guo and S. Baruah. Mixed-criticality real-time systems. In X. Wang, editor, Cyber-

Physical Systems: A Reference. Springer, Berlin, Heidelberg, 2017. 6

[282] Z. Guo and S.K. Baruah. Implementing mixed-criticality systems upon a preemptive varying-

speed processor. Leibniz Transactions on Embedded Systems, 1(2):03–19, 2014. 20

[283] Z. Guo and S.K. Baruah. The concurrent consideration of uncertainty in WCETs and pro-

cessor speeds in mixed criticality systems. In 23rd International Conference on Real-Time

Networks and Systems (RTNS 2015), pages 247–256, 2015. 20

[284] Z. Guo, L. Santinelli, and K. Yang. EDF schedulability analysis on mixed-criticality systems

with permitted failure probability. In Proc. RTCSA, 2015. 35

[285] Z. Guo, L. Santinelli, and K. Yang. Mixed-criticality scheduling with limited HI-criticality

behaviors. In Xinyu Feng, Markus Müller-Olm, and Zijiang Yang, editors, Dependable Soft-

ware Engineering. Theories, Tools, and Applications, pages 187–199. Springer International

Publishing, 2018. 9

[286] Z. Guo, S. Sruti, B. Ward, and S. Baruah. Sustainability in mixed-criticality scheduling. In

Proc. Real-Time Systems Symposium (RTSS), pages 24–33. IEEE, 2017. 41

[287] Z. Guo, S. Vaidhun, L. Satinelli, S. Arefin, J. Wang, and K. Yang. Mixed-criticality scheduling

upon permitted failure probability and dynamic priority. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, pages 1–14, 2021. 31

[288] T. Gupta, E.J. Luit, M.M.H.P. van den Heuvel, and R.J. Bril. Experience report: Towards

extending an osek-compliant rtos with mixed criticality support. e-Informatica Software En-

gineering Journal, 12(1):305–320, 2018. 46

[289] H. Hamza, A. Hughes, and R. Kirner. On the design of a Java virtual machine for mixed-

criticality systems. In Proc. JTRES. ACM, 2015. 46

[290] J.J. Han, X. Tao, D. Zhu, and H. Aydin. Criticality-aware partitioning for multicore mixed-

criticality systems. In Proc. Parallel Processing (ICPP), pages 227–235. IEEE, 2016. 22

[291] J.J. Han, X. Tao, D. Zhu, and L. T. Yang. Resource sharing in multicore mixed-criticality

systems: Utilization bound and blocking overhead. IEEE Transactions on Parallel and Dis-

tributed Systems, 28(12):3626–3641, 2017. 29

[292] Z. Hanzálek, T. Tunys, and P. Sucha. An analysis of the non-preemptive mixed-criticality

match-up scheduling problem. Journal of Scheduling, pages 1–7, 2016. 41

[293] J. Harbin, A. Burns, R.I. Davis, L.S. Indrusiak, I. Bate, and D. Griffin. The airtight protocol

for mixed criticality wireless cps. ACM Transactions on Cyber-Physical Systems, 4(2):1–28,

2019. 28

[294] J. Harbin, T. Fleming, L.S. Indrusiak, and A. Burns. GMCB: An industrial benchmark for use

in real-time mixed-criticality networks-on-chip. In Proc. WATERS, 27th ECRTS, 2015. 48

[295] J. Harbin, D. Griffin, A. Burns, I. Bate, R.I. Davis, and L.S. Indrusiak. Supporting critical

modes in airtight. In Jing Li and Zhishan Guo, editors, Proc. 6th Workshop on Mixed Criti-

cality Systems (WMC), RTSS, pages 7–12, 2018. 28

[296] P. Haririan and A. Garcia-Ortiz. A framework for hardware-based DVFS management

in multicore mixed-criticality systems. In Proc. 10th Symposium on Reconfigurable

Communication-centric Systems-on-Chip (ReCoSoC), pages 1–7. IEEE, 2015. 20

[297] M. Hassan. Heterogeneous MPSoCs for mixed criticality systems: Challenges and opportu-

nities. CoRR, abs/1706.07429, 2017. 32

74

[298] M. Hassan and H. Patel. Criticality-and requirement-aware bus arbitration for multi-core

mixed criticality systems. In Proc. RTAS, pages 1–11. IEEE, 2016. 25

[299] M. Hassan, H. Patel, and R. Pellizzoni. A framework for scheduling dram memory accesses

for multi-core mixed-time critical systems. In Proc. RTAS, pages 307–316. IEEE, 2015. 26

[300] F. Hebbache, F. Brandner, and L. Pautet. Work-conserving dynamic time-division multiplex-

ing for multi-criticality systems. Real-Time Syst., 2019. 19

[301] C. Herber, A. Richter, H. Rauchfuss, and A. Herkersdorf. Spatial and temporal isolation of

virtual can controllers. In Proc. VtRES, RTCSA, 2013. 28

[302] J. Herman, C. Kenna, M. Mollison, J. Anderson, and D. Johnson. RTOS support for multicore

mixed-criticality systems. In Proc. of the 18th IEEE Real-Time and Embedded Technology

and Applications Symposium (RTAS), 2012. 14, 21

[303] F. Herrera, S.H.A. Niaki, and I. Sander. Towards a modelling and design framework for

mixed-criticality socs and systems-of-systems. In Proc. 16th Euromicro Conf. on Digital

Systems Design, pages 989–996, 2013. 49

[304] F. Herrera, P. Penil, and E. Villar. A model-based, single-source approach to design-space

exploration and synthesis of mixed-criticality systems. In Proc. SCOPES, pages 88–91, 2015.

49

[305] M. Hikmet, M.M. Kuo, P.S. Roop, and P. Ranjitkar. Mixed-criticality systems as a service for

non-critical tasks. In Proc. ISORC, pages 221–228, 2016. 30

[306] M.G. Hill and T.W. Lake. Non-interference analysis for mixed criticality code in avionics sys-

tems. In Proc. of the 15th IEEE international conference on Automated software engineering,

pages 257–260. IEEE Computer Society, 2000. 5, 44

[307] T. Hollstein, S.P Azad, T. Kogge, and B. Niazmand. Mixed-criticality NoC partitioning based

on the NoCDepend dependability technique. In Proc. 10th Symposium on Reconfigurable

Communication-centric Systems-on-Chip (ReCoSoC), pages 1–8. IEEE, 2015. 27

[308] P. Holman and J.H. Anderson. Adapting Pfair scheduling for symmetric multiprocessors.

Journal of Embedded Computing, 1(4):543–564, 2005. 23

[309] S. Hosseinimotlagh, A. Ghahremannezhad, and H. Kim. On dynamic thermal conditions in

mixed-criticality systems. Techical report, University of California, Riverside, 2020. 49

[310] S. Hounsinou, A. Vasu, and H. Ramaprasad. Hardware implementation of a multi-mode-

aware mixed-criticality scheduler: Work-in-progress. In Proc. of the International Conference

on Hardware/Software Codesign and System Synthesis, CODES, pages 8:1–8:2. IEEE Press,

2018. 47

[311] B. Hu, Z. Cao, and L. Zhou. Adaptive real-time scheduling of dynamic multiple-criticality ap-

plications on heterogeneous distributed computing systems. In Proc. 15th IEEE International

Conference on Automation Science and Engineering (CASE), pages 897–903, 2019. 43

[312] B. Hu, G. Chen, and K. Huang. Semi-slack scheduling arbitrary activation patterns in mixed-

criticality systems. IEEE Access, 6:68507–68524, 2018. 14, 30, 37

[313] B. Hu, K. Huang, G. Chen, L. Cheng, and A. Knoll. Adaptive runtime shaping for mixed-

criticality systems. In Proc. 12th International Conference on Embedded Software, EMSOFT,

pages 11–20. IEEE Press, 2015. 30, 37

[314] B. Hu, K. Huang, G. Chen, L. Cheng, and A. Knoll. Adaptive workload management in

mixed-criticality systems. ACM Transactions on Embedded Computing Systems (TECS),

16(1):14, 2016. 30, 37

75

[315] B. Hu, K. Huang, P. Huang, L. Thiele, and A. Knoll. On-the-fly fast overrun budgeting for

mixed-criticality systems. In Proc. International Conference on Embedded Software (EM-

SOFT), pages 1–10. IEEE, 2016. 14

[316] B. Hu, L. Thiele, P. Huang, K. Huang, C. Griesbeck, and A. Knoll. FFOB: efficient on-

line mode-switch procrastination in mixed-criticality systems. Real-Time Systems Journal,

55:471–513, 2019. 30, 37

[317] Z. Hu, J. Luo, X. Fang, K. Xiao, B. Hu, and L. Chen. Real-time schedule algorithm with

temporal and spatial isolation feature for mixed criticality system. In Proc. 7th International

Symposium on System and Software Reliability (ISSSR), pages 99–108, 2021. 46

[318] H-M. Huang, C. Gill, and C. Lu. Implementation and evaluation of mixed criticality schedul-

ing approaches for periodic tasks. In Proc. Real-Time and Embedded Technology and Appli-

cations Symposium (RTAS), pages 23–32, 2012. 14, 47

[319] H-M. Huang, C. Gill, and C. Lu. Implementation and evaluation of mixed criticality schedul-

ing approaches for sporadic tasks. ACM Trans. Embedded Systems, 13:126:1– 126:25, 2014.

12, 48

[320] L. Huang, I. Hou, S. S. Sapatnekar, and J. Hu. Improving qos for global dual-criticality

scheduling on multiprocessors. In Proc. 25th IEEE International Conference on Embedded

and Real-Time Computing Systems and Applications (RTCSA), pages 1–11, 2019. 37, 38

[321] L. Huang, I-H. Hou, S.S. Sapatnekar, and J. Hu. Graceful degradation of low-criticality tasks

in multiprocessor dual-criticality systems. In Proc. of the 26th International Conference on

Real-Time Networks and Systems, RTNS, pages 159–169. ACM, 2018. 38

[322] P. Huang, G. Giannopoulou, R. Ahmed, D.B. Bartolini, and L. Thiele. An isolation scheduling

model for multicores. In Proc. IEEE Real-Time Systems Symposium (RTSS), pages 141–152,

2015. 27

[323] P. Huang, G. Giannopoulou, N. Stoimenov, and L. Thiele. Service adaptions for mixed-

criticality systems. Technical Report 350, ETH Zurich, Laboratory TIK, 2013. 37

[324] P. Huang, G. Giannopoulou, N. Stoimenov, and L. Thiele. Service adaptions for mixed-

criticality systems. In Proc. 19th Asia and South Pacific Design Automation Conference (ASP-

DAC), Singapore, 2014. 37

[325] P. Huang, P. Kumar, G. Giannopoulou, and L. Thiele. Energy efficient DVFS scheduling for

mixed-criticality systems. In Proc. Embedded Software (EMSOFT), pages 1–10. IEEE, 2014.

20, 48

[326] P. Huang, P. Kumar, G. Giannopoulou, and L. Thiele. Run and be safe: mixed-criticality

scheduling with temporal processor speedup. In Proc. DATE, 2015. 20

[327] P. Huang, P. Kumar, N. Stoimenov, and L. Thiele. Interference constraint graph: A new

specification for mixed-criticality systems. In Proc. 18th Emerging Technologies and Factory

Automation (ETFA), pages 1–8. IEEE, 2013. 38

[328] P. Huang, H. Yang, and L. Thiele. On the scheduling of fault-tolerant mixed-criticality sys-

tems. Technical report, Technical Report 351, ETH Zurich, Laboratory TIK, 2013. 31

[329] P. Huang, H. Yang, and L. Thiele. On the scheduling of fault-tolerant mixed-criticality sys-

tems. In Proc. Design Automation Conference (DAC), pages 1–6. IEEE, 2014. 31

[330] S. Huang, T. Li, Z. Ma, F. Xiao, and W. Zhang. EDF-Adaptive: A new semi-partitioned

scheduling algorithm for multiprocessor real-time. Journal of Sensors, X:X, 2021. 23

76

[331] B. Huber, C. El Salloum, and R. Obermaisser. A resource management framework for mixed-

criticality embedded systems. In 34th IEEE IECON, pages 2425–2431, 2008. 5

[332] A. Hughes and A. Awad. Quantifying performance determinism in virtualized mixed-

criticality systems. In Proc. 22nd IEEE International Symposium on Real-Time Distributed

Computing (ISORC), pages 181–184, 2019. 45

[333] I. Hussain, M. Ali Awan, P.F. Souto, K. Bletsas, and E. Tovar. Response time analysis of

memory-bandwidth-regulated multiframe mixed-criticality systems. Journal of Systems Ar-

chitecture, page 102346, 2021. 13

[334] I. Hussain, M.A. Awan, K. Bletsas, P.F. Souto, B. Akesson, and E. Tovar. Response time

analysis of multiframe mixed-criticality systems. In Proc. 27th International Conference on

Real-Time Networks and Systems, RTNS, pages 8–18, NY, USA, 2019. Association for Com-

puting Machinery. 13

[335] I. Hussain, M.A. Awan, K. Bletsas, P.F. Souto, B. Akesson, and E. Tovar. Response time

analysis of multiframe mixed-criticality systems with arbitrary deadlines. Real-Time Systems

Journal, 57:141–189, 2021. 13

[336] M. Hussein. Function allocation and bandwidth reservation for mixed-critical adaptive soft-

ware systems. Global Journal of Research in Engineering, 18(4), 2018. 22

[337] M. Hussein, A. Radermacher, and R. Nouacer. Model-based function mapping and bandwidth

reservation for mixed-critical adaptive systems. In Proc. Euromicro Conference on Digital

System Design (DSD), pages 435–439, 2017. 22

[338] S. Iacovelli and R. Kirner. A lazy bailout approach for dual-criticality systems on uniprocessor

platforms. Designs, 3(1), 2019. 37, 40

[339] S. Iacovelli, R. Kirner, and C. Menon. ATMP: An adaptive tolerance-based mixed-criticality

protocol for multi-core systems. In Proc. IEEE 13th International Symposium on Industrial

Embedded Systems (SIES), pages 1–9, 2018. 38

[340] L.S. Indrusiak, J. Harbin, and A. Burns. Average and worst-case latency improvements in

mixed-criticality wormhole networks-on-chip. In Proc. European/Euromicro Conference on

Real-Time Systems (ECRTS), pages 47–56. IEEE, 2015. 27

[341] S. Islam, R. Lindstrom, and N.Suri. Dependability driven integration of mixed criticality

SW components. In 9th IEEE International Symposium on Object and Component-Oriented

Real-Time Distributed Computing, ISORC 2006, page 11, 2006. 31

[342] P. Ittershagen, K. Gruttner, and W. Nebel. Mixed-criticality system modelling with dynamic

execution mode switching. Technical report, Technical Report OFFIS, Oldenburg, Germany,

2015. 48

[343] P. Ittershagen, K. Grüttner, and W. Nebel. An integration flow for mixed-critical embed-

ded systems on a flexible time-triggered platform. ACM Trans. Des. Autom. Electron. Syst.,

23(4):51:1–51:25, 2018. 49

[344] V. Izosimov and E. Levholt. Mixed criticality metric for safety-critical cyber-physical systems

on multicore archiectures. MEDIAN: Methods, 2(8), 2015. 33

[345] J. Jalle, E. Quinones, J. Abella, L. Fossati, M. Zulianello, and F.J. Cazorla. A dual-criticality

memory controller (DCmc): Proposal and evaluation of a space case study. In Proc. IEEE

Real-Time Systems Symposium, pages 207–217. IEEE, 2014. 26

[346] M. Jan, L. Zaourar, V. Legout, and L. Pautet. Handling criticality mode change in time-

triggered systems through linear programming. Ada User Journal, Proc of Workshop on

Mixed Criticality for Industrial Systems (WMCIS’2014), 35(2):138–143, 2014. 19

77

[347] M. Jan, L. Zaourar, and M. Pitel. Maximizing the execution rate of low criticality tasks in

mixed criticality system. In Proc. 1st WMC, RTSS, pages 43–48, 2013. 38

[348] Z. Jiang. How to build a mixed-criticality system in industry - from perspective of system

architecture. In J. Li and Z. Guo, editors, Proc. 7th Workshop on Mixed Criticality Systems

(WMC), RTSS, pages 9–14, 2019. 4

[349] Z. Jiang. How to build a mixed-criticality system in industry - from the perspective of system

architecture. In Proc. WMC Workshop, IEEE Real-Time Systems Symposium (RTSS), pages

510–517, 2020. 4

[350] Z. Jiang, N. Audsley, P. Dong, N. Guan, X. Dai, and L. Wei. MCS-IOV: Real-time I/O

virtualization for mixed-criticality systems. In Proc. IEEE Real-Time Systems Symposium

(RTSS), pages 326–338, 2019. 47

[351] Z. Jiang, X. Dai, and N. Audsley. HIART-MCS: High resilience and approximated comput-

ing architecture for imprecise mixed-criticality systems. In Proc. IEEE Real-Time Systems

Symposium (RTSS), pages 290–303, 2021. 38

[352] Z. Jiang, X. Dai, P. Dong, R. Wei, D. Yang, N. Audsley, and N. Guan. Towards an analysable,

scalable, energy-efficient I/O virtualization for mixed-criticality systems. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, pages 1–14, 2021. 47

[353] Z. Jiang, K. Yang, N. Fisher, N. Audsley, and Z. Dong. Pythia-MCS enabling quarter-

clairvoyance in I/O-driven mixed-criticality systems. In Proc. IEEE Real-Time Systems Sym-

posium (RTSS), 2020. 21

[354] Z. Jiang, S. Zhao, P. Dong, D. Yang, R. Wei, N. Guan, and N. Audsley. Re-thinking mixed-

criticality architecture for automotive industry. In Proc. IEEE 38th International Conference

on Computer Design (ICCD), pages 510–517, 2020. 4

[355] X. Jin, Y. Tian, C. Xu, C. Xia, D. Li, and P. Zeng. Mixed-criticality industrial data scheduling

on 5G NR. IEEE Internet of Things Journal, online, 2021. 29

[356] X. Jin, J. Wang, and P. Zeng. End-to-end delay analysis for mixed-criticality WirelessHART

networks. Automatica Sinica, 2(3):282–289, 2015. 28

[357] X. Jin, C. Xia, H. Xu, J. Wang, and P. Zeng. Mixed criticality scheduling for industrial

wireless sensor networks. Sensors, 16(9):1376, 2016. 28

[358] C.B. Jones. Tentative steps toward a development method for interfering programs. Transac-

tions on Programming Languages and System, 5(4):596–619, 1983. 43

[359] C.B. Jones and A. Burns. A rely-guarantee specification of mixed-criticality scheduling.

arXiv, 2020. 43

[360] D. Juhász and Jantsch A. Dynamic constraints for mixed-criticality systems. In Proc. Inter-

national Conference on Omni-Layer Intelligent Systems, page 25?30, New York, NY, USA,

2019. Association for Computing Machinery. 38

[361] D. Juhasz and A. Jantsch. Addressing the execution control problem in mixed-criticality

systems. Technical report, ResearchGate, 2018. 49

[362] N. Jung, H. Baek, D. Lim, and J. Lee. Incorporating zero-laxity policy into mixed-criticality

multiprocessor real-time systems. EICE Trans. on Fundamentals of Electronics, Communi-

cations and Computer Sciences, E101-A(11):1888–1899, 2018. 24

[363] N. Jung and J. Lee. Improved Schedulability Analysis of Fixed-Priority for Mixed-Criticality

Real-Time Multiprocessor Systems, pages 1403–1409. Springer Singapore, Singapore, 2018.

24

78

[364] M. Kadar, G. Fohler, D. Kuzhiyelil, and P. Gorski. Safety-aware integration of hardware-

assisted program tracing in mixed-criticality systems for security monitoring. In Proc. 27th

IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 292–

305. IEEE, 2021. 32

[365] T. Kadeed, B. Nikolic, and R. Ernst. Safe online reconfiguration of mixed-criticality real-time

systems. In Proc. IEEE 25th Pacific Rim International Symposium on Dependable Computing

(PRDC), pages 140–149, 2020. 31

[366] R. Kahil, P. Poplavko, D. Socci, and S. Bensalem. Revisiting the computational complexity of

mixed-critical scheduling. In Agrawal and Easwaran, editors, Proc. 5th Workshop on Mixed

Criticality Systems (WMC), RTSS, pages 25–30, 2017. 41

[367] R. Kahil, P. Poplavko, D. Socci, and S. Bensalem. Revisiting the computational complexity

of mixed-critical scheduling. Technical Report TR-2017-7, Verimag Research Report, 2017.

41

[368] R. Kahil, P. Poplavko, D. Socci, and S. Bensalem. Predictability in mixed-criticality systems.

Technical Report TR-2018-8, Verimag Research Report, 2018. 41

[369] R. Kahil, D. Socci, P. Poplavko, and S. Bensalem. Algorithmic complexity of correctness test-

ing in mc-scheduling. In Proc. of the 26th International Conference on Real-Time Networks

and Systems, RTNS, pages 180–190. ACM, 2018. 9, 41

[370] R. Kaiser. The PikeOS concept history and design,. Technical Report white paper, SYSGO,

2007. 45

[371] A. Kajmakovic, K. Diwold, N. Kajtazovic, R. Zupanc, and G. Macher. Flexible soft error

mitigation strategy for memories in mixed-critical systems. In Proc. IEEE International Sym-

posium on Software Reliability Engineering Workshops (ISSREW), pages 440–445, 2019. 31

[372] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance. Journal of the ACM

(JACM), 47(4):617–643, 2000. 42

[373] C. Kamienski, M. Jentsch, M. Eisenhauer, J. Kiljander, E. Ferrera, P. Rosengren, J. Thestrup,

E. Souto, W. S. Andrade, and D. Sadok. Application development for the internet of things: A

context-aware mixed criticality systems development platform. Computer Communications,

2016. 34

[374] A.M. Kaushik, P. Tegegn, Z. Wu, and H. Patel. CARP: A data communication mechanism for

multi-core mixed-criticality systems. In Proc. IEEE Real-Time Systems Symposium (RTSS),

2019. 47

[375] O.R. Kelly, H. Aydin, and B. Zhao. On partitioned scheduling of fixed-priority mixed-

criticality task sets. In IEEE 10th International Conference on Trust, Security and Privacy

in Computing and Communications, pages 1051–1059, 2011. 22

[376] F. Kempf, T. Hartmann, S. Baehr, and J. Becker. An adaptive lockstep architecture for mixed-

criticality systems. In Proc. IEEE Computer Society Annual Symposium on VLSI (ISVLSI),

pages 7–12, 2021. 31

[377] H. Kim, D. Broman, E. Lee, M. Zimmer, A. Shrivastava, and J. Oh. A predictable and

command-level priority-based DRAM controller for mixed-criticality systems. In Proc. Real-

Time and Embedded Technology and Applications Symposium (RTAS), pages 317–326. IEEE,

2015. 26

[378] N. Kim, S. Tang, N. Otterness, J.H. Anderson, F.D. Smith, and Donald E. D.E. Porter. Sup-

porting I/O and IPC via fine-grained OS isolation for mixed-criticality real-time tasks. In

Proc. of the 26th International Conference on Real-Time Networks and Systems, RTNS, pages

191–201. ACM, 2018. 47

79

[379] N. Kim, B.C. Ward, M. Chisholm, J.H. Anderson, and F.D. Smith. Attacking the one-out-of-m

multicore problem by combining hardware management with mixed-criticality provisioning.

Real-Time Systems, 53(5):709–759, Sep 2017. 21

[380] N. Kim, B.C. Ward, M. Chisholm, C-Y. Fu, J.H. Anderson, and F.D. Smith. Attacking the

one-out-of-m multicore problem by combining hardware management with mixed-criticality

provisioning. In Proc. RTAS, pages 1–12. IEEE, 2016. 21

[381] Y.-S. Kim and H.-W. Jin. Towards a practical implementation of criticality mode change in

RTOS. Technical report, Konkuk University, Korea, 2014. 46

[382] H. Koc, V. K. Karanam, and M. Sonnier. Latency constrained task mapping to improve

reliability of high critical tasks in mixed criticality systems. In Proc 10th Annual Information

Technology, Electronics and Mobile Communication Conference (IEMCON), pages 0320–

0324, 2019. 22

[383] L. Kohutka, L. Nagy, and V. Stopjakova. RED-based scheduler on chip for mixed-criticality

real-time systems. In Proc. 9th Mediterranean Conference on Embedded Computing (MECO),

pages 1–4, 2020. 47

[384] A. Kostrzewa, S. Saidi, and R. Ernst. Dynamic control for mixed-criticality networks-on-chip.

In Proc. IEEE Real-Time Systems Symposium (RTSS), pages 317–326, 2015. 27

[385] A. Kostrzewa, S. Tobuschat, L. Ecco, and R. Ernst. Adaptive load distribution in mixed-

critical networks-on-chip. In Proc. 22nd Asia and South Pacific Design Automation Confer-

ence (ASP-DAC), pages 732–737, 2017. 27

[386] O. Kotaba, J. Nowotschy, M. Paulitschy, S.M. Petters, and H. Theiling. Multicore in real-

time systems – temporal isolation challenges due to shared resources. In Proc. Conference on

Design, Automation and Test in Europe, WICERT, DATE, 2013. 25

[387] C. Kotronis, M. Nikolaidou, G. Dimitrakopoulos, D. Anagnostopoulos, A. Amira, and F. Ben-

saali. A model-based approach for managing criticality requirements in e-health iot systems.

In Proc. 13th Annual Conference on System of Systems Engineering (SoSE), pages 60–67,

2018. 34

[388] A. Kritikakou, O. Baldellon, C. Pagetti, C. Rochange, M. Roy, and F. Vargas. Monitoring

on-line timing information to support mixed-critical workloads. In WiP, RTSS, pages 9–10,

2013. 24

[389] A. Kritikakou, T. Marty, and M. Roy. DYNASCORE: Dynamic software controller to in-

crease resource utilization in mixed-critical systems. ACM Trans. Des. Autom. Electron. Syst.,

23(2):13:1–13:26, 2017. 24

[390] A. Kritikakou, C. Pagetti, O. Baldellon, M. Roy, and C. Rochange. Run-time control to

increase task parallelism in mixed-critical systems. In ECRTS, pages 119–128, 2014. 25

[391] A. Kritikakou, C. Pagetti, C. Rochange, M. Roy, M. Faugere, S. Girbal, and D.G. Perez.

Distributed run-time WCET controller for concurrent critical tasks in mixed-critical systems.

In Proc. RTNS, 2014. 24

[392] A. Kritikakou and S. Skalistis. Progress-aware dynamic slack exploitation in mixed-critical

systems: Work-in-progress. In Proc. International Conference on Embedded Software (EM-

SOFT), pages 10–12, 2020. 14

[393] N.G. Kumar, S. Vyas, R.K. Cytron, C.D. Gill, J. Zambreno, and P.H. Jones. Cache design for

mixed criticality real-time systems. In Proc. ICCD, pages 513–516. IEEE, 2014. 46

80

[394] M. Küttler, M. Roitzsch, C-J. Hamann, and M. Völp. Probabilistic analysis of low-criticality

execution. In Agrawal and Easwaran, editors, Proc. 5th Workshop on Mixed Criticality Sys-

tems (WMC), RTSS, pages 19–24, 2017. 36

[395] A. Lackorzynski, A. Warg, M. Voelp, and H. Haertig. Flattening hierarchical scheduling. In

Proc. ACM EMSOFT, pages 93–102, 2012. 33

[396] K. Lakshmanan, D. de Niz, and R. Rajkumar. Mixed-criticality task synchronization in zero-

slack scheduling. In IEEE RTAS, pages 47–56, 2011. 18

[397] K. Lakshmanan, D. de Niz, R. Rajkumar, and G. Moreno. Resource allocation in distributed

mixed-criticality cyber-physical systems. In ICDCS, pages 169–178, 2010. 21

[398] A. Larrucea, I. Martinez, V. Brocal, S. Peirò, H. Ahmadian, J. Perez, and R. Obermaisser.

DREAMS: Cross-domain mixed-criticality patterns. In Proc. 4th WMC (RTSS), page 6, 2016.

45

[399] S. Law, I. Bate, and B. Lesage. Industrial Application of a Partitioning Scheduler to Support

Mixed Criticality Systems. In Sophie Quinton, editor, Proc. 31st Euromicro Conference on

Real-Time Systems (ECRTS), volume 133 of Leibniz International Proceedings in Informatics

(LIPIcs), pages 8:1–8:22, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer

Informatik. 13

[400] S. Law, I. Bate, and B. Lesage. Justifying the service provided to low criticality tasks in a

mixed criticality system. In Proc 30th International Conference on Real Time Networks and

Systems, RTNS, pages 100–110. ACM, 2020. 40

[401] J. Lee. Probabilistic performance evaluation technique for mixed-criticality scheduling with

task-level criticality-mode. Journal of Society for e-Business Studies, 23(3):1–12, 2018. 13,

36

[402] J. Lee, H.S. Chwa, A. Easwaran, I. Shin, and I. Lee. Towards compositional mixed-criticality

real-time scheduling in open systems. In L. Almeida and D. de Niz, editors, Proc. 8th Work-

shop on Compositional Real-Time Systems (CRTS), RTSS, 2015. 34

[403] J. Lee, H.S. Chwa, A. Easwaran, I. Shin, and I. Lee. Towards compositional mixed-criticality

real-time scheduling in open systems: invited paper. ACM SIGBED Review, 13(3):49–51,

2016. 34

[404] J. Lee, H.S. Chwa, L.T.X. Phan, I. Shin, and I. Lee. MC-ADAPT: Adaptive task dropping in

mixed-criticality scheduling. ACM Trans. Embed. Comput. Syst., 16:163:1–163:21, 2017. 38

[405] J. Lee and M. Kim. Generalized models of mixed-criticality systems for real-time scheduling.

Trans Eng Comput Sci, 1:1–50, 2020. 51

[406] J. Lee and M. Kim. Real-time scheduling for mixed-criticality systems in the automotive

industry. Journal of Computer Science and Engineering, 14(1):9–18, 2020. 4, 51

[407] J. Lee and J. Lee. Mc-flex: Flexible mixed-criticality real-time scheduling by task-level mode

switch. IEEE Transactions on Computers, page online, 2021. 38

[408] J. Lee, K.-M. Phan, Z Gu, J. Lee, A. Easwaran, I. Shin, and I. Lee. MC-Fluid: Fluid model-

based mixed-criticality scheduling on multiprocessors. In Proc. IEEE Real-Time Systems

Symposium, pages 41–52. IEEE, 2014. 23

[409] J. Lee, S. Ramanathan, K.-M. Phan, A. Easwaran, I. Shin, and I. Lee. Mc-fluid: Multi-core

fluid-based mixed-criticality scheduling. IEEE Transactions on Computers, 67(4):469=483,

2018. 23

81

[410] K. Lee, M. Kim, H. Kim, H. S. Chwa, J. Lee, J. Lee, and I. Shin. Jmc: Jitter-based mixed-

criticality scheduling for distributed real-time systems. IEEE Internet of Things Journal,

6(4):6310–6324, 2019. 34

[411] K. Lee, M. Kim, T. Park, H. S. Chwa, J. Lee, S. Shin, and I. Shin. MC-SDN: Supporting

mixed-criticality real-time communication using software-defined networking. IEEE Internet

of Things Journal, 6(4):6325–6344, 2019. 28

[412] K. Lee, T. Park, M. Kim, H. S. Chwa, J. Lee, S. Shin, and I. Shin. MC-SDN: Support-

ing mixed-criticality scheduling on switched-ethernet using software-defined networking. In

Proc. IEEE Real-Time Systems Symposium (RTSS), pages 288–299, 2018. 28

[413] V. Legout, M. Jan, and L. Pautet. Mixed-criticality multiprocessor real-time systems: En-

ergy consumption vs deadline misses. In L. George and G. Lipari, editors, Proc. ReTiMiCS,

RTCSA, pages 1–6, 2013. 48

[414] J.P. Lehoczky and S. Ramos-Thuel. An optimal algorithm for scheduling soft-aperiodic tasks

fixed-priority preemptive systems. In Proc. 13th IEEE Real-Time Systems Symposium, pages

110–123, 1992. 29

[415] J.P. Lehoczky, L. Sha, and J.K. Strosnider. Enhanced aperiodic responsiveness in a hard real-

time environment. In Proc. 8th IEEE Real-Time Systems Symposium, pages 261–270, 1987.

29

[416] B. Lesage, I. Puaut, and A. Seznec. PRETI: Partitioned real-time shared cache for mixed-

criticality real-time systems. In Proc. 20th RTNS, pages 171–180, 2012. 46

[417] J. Y-T. Leung and J. Whitehead. On the complexity of fixed-priority scheduling of periodic

real-time tasks. Performance Evaluation (Netherlands), 2(4):237–250, Dec. 1982. 5

[418] H. Li. Scheduling Mixed-Criticality Real-Time Systems. PhD thesis, The University of North

Carolina at Chapel Hill, 2013. 42

[419] H. Li and S.K. Baruah. An algorithm for scheduling certifiable mixed-criticality sporadic

task systems. In Proc. of the Real-Time Systems Symposium, pages 183–192, San Diego, CA,

2010. IEEE Computer Society Press. 9

[420] H. Li and S.K. Baruah. Load-based schedulability analysis of certifiable mixed-criticality

systems. In Proc. EMSOFT, pages 99–107. ACM Press, 2010. 9, 42

[421] H. Li and S.K. Baruah. Global mixed-criticality scheduling on multiprocessors. In Proc,

ECRTS, pages 99–107. IEEE Computer Society Press, 2012. 24

[422] J. Li, D. Ferry, S. Ahuja, K. Agrawal, C. Gill, and C. Lu. Mixed-criticality federated schedul-

ing for parallel real-time tasks. In Proc. RTAS, pages 1–12. IEEE, 2016. 24

[423] J. Li, D. Ferry, S. Ahuja, K. Agrawal, C. Gill, and C. Lu. Mixed-criticality federated schedul-

ing for parallel real-time tasks. Real-Time Systems, 53(5):760–811, 2017. 24

[424] Y. Li, R. West, and E. Missimer. The quest-v separation kernel for mixed criticality systems.

In Proc. 1st WMC, RTSS, pages 31–36, 2013. 45

[425] Z. Li and S. He. Fixed-priority scheduling for two-phase mixed-criticality systems. ACM

Trans. Embed. Comput. Syst., 17(2):35:1–35:20, 2017. 28

[426] Z. Li, H. Wan, Y. Deng, X. Zhao, Y. Gao, M. Gu, and X. Song. A flattened priority framework

for mixed-criticality systems. IEEE Transactions on Industrial Electronics, 2019. 16

[427] Z. Li, H. Wan, Y. Deng, X. Zhao, Y. Gao, X. Song, and M. Gu. Model-based adaptation of

mixed-criticality multi-service systems for extreme physical environments. IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems, 2019. 49

82

[428] Z. Li and L. Wang. Memory-aware scheduling for mixed-criticality systems. In Proc ICCSA,

pages 140–156. Springer, LNCS 9787, 2016. 28

[429] J. Lin, A.M.K. Cheng, D. Steel, and M.Y.-C. Wu. Scheduling mixed-criticality real-time tasks

with fault tolerance. In L. Cucu-Grosjean and R. Davis, editors, Proc. 2nd Workshop on Mixed

Criticality Systems (WMC), RTSS, pages 39–44, 2014. 31

[430] P. Lindgren, D. Pereira, J. Eriksson, M. Lindner, and L. Miguel. Rtfm-lang static semantics

for systems with mixed criticality. Ada User Journal, Proc of Workshop on Mixed Criticality

for Industrial Systems (WMCIS’2014), 35(2):128–132, 2014. 43

[431] G. Lipari and S.K. Baruah. Greedy reclaimation of unused bandwidth in constant bandwidth

servers. In IEEE Proc. of the 12th Euromicro Conference on Real-Time Systems, Stokholm,

Sweden, June 2000. 29

[432] G. Lipari and E. Bini. A methodology for designing hierarchical scheduling systems. J.

Embedded Comput., 1(2):257–269, 2005. 33

[433] G. Lipari and G. Buttazzo. Resource reservation for mixed criticality systems. In Proc. of

Workshop on Real-Time Systems: the past, the present, and the future, pages 60–74, York,

UK, 2013. 17

[434] C.L. Liu and J.W. Layland. Scheduling algorithms for multiprogramming in a hard real-time

environment. JACM, 20(1):46–61, 1973. 5, 15

[435] D. Liu, N. Guan, J. Spasic, G. Chen, S. Liu, T. Stefanov, and W. Yi. Scheduling analysis of

imprecise mixed-criticality real-time tasks. IEEE Transactions on Computers, 67(7):975–991,

July 2018. 38

[436] D. Liu, J. Spasic, N. Guan, G. Chen, S. Liu, T. Stefanov, and W. Yi. EDF-VD scheduling

of mixed-criticality systems with degraded quality guarantees. In Proc. IEEE RTSS, pages

35–46, 2016. 38, 42

[437] G. Liu, Y. Lu, S. Wang, and Z. Gu. Partitioned multiprocessor scheduling of mixed-criticality

parallel jobs. In Proc. Embedded and Real-Time Computing Systems and Applications

(RTCSA). IEEE, 2014. 24

[438] J.W.S. Liu. Real-Time Systems. Prentice Hall, 2000. 29

[439] Y. Liu, G. Xie, X. Chen, L. Jin, Y. Tang, and R. Li. An active scheduling policy for automotive

cyber-physical systems. Journal of Systems Architecture, pages 1–2, 2018. 43

[440] D. Loche, A. Generes, M. Lauer, and J-C Fabre. Run-time monitoring and con- trol for tem-

poral fault prevention in mixed-criticality systems. In Proc. European Dependable Computing

Conference (EDCC), pages hal–03275605, 2021. 30

[441] J. López, J. Dı́az, J. Entrialgo, and D. Garcı́a. Stochastic analysis of real-time systems under

preemptive priority-driven scheduling. Real-Time Systems, pages 180–207, 2008. 35

[442] P. Lucas, K. Chappuis, M. Paolino, N. Dagieu, and D. Raho. VOSYSmonitor, a low latency

monitor layer for mixed-criticality systems on ARMv8-A. In Marko Bertogna, editor, Proc.

Euromicro Conference on Real-Time Systems (ECRTS), volume 76 of Leibniz International

Proc. in Informatics (LIPIcs), pages 6:1–6:18. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-

matik, 2017. 45

[443] A. Lyons and G. Heiser. Mixed-criticality support in a high-assurance, general-purpose micro-

kernel. In L. Cucu-Grosjean and R. Davis, editors, Proc. 2nd Workshop on Mixed Criticality

Systems (WMC), RTSS, pages 9–14, 2014. 46

83

[444] M. Mahdiani and A. Masrur. Introducing utilization caps into mixed-criticality scheduling. In

Proc. Digital System Design (DSD), pages 388–395. IEEE, 2016. 38

[445] M. Mahdiani and A. Masrur. On bounding execution demand under mixed-criticality EDF. In

Proc. of the 26th International Conference on Real-Time Networks and Systems, RTNS, pages

170–179. ACM, 2018. 17

[446] M. Mahdiani and A. Masrur. A novel view on bounding execution demand under mixed-

criticality EDF. Real-Time Systems Journal, 57:55–94, 2021. 17

[447] S.O. Marinescu, D. Tamas-Selicean, V. Acretoaie, and P. Pop. Timing analysis of mixed-

criticality hard real-time applications implemented on distributed partitioned architectures.

In 17th IEEE International Conference on Emerging Technologies and Factory Automation,

2012. 33

[448] A. Masrur. A probabilistic scheduling framework for mixed-criticality systems. In Proc. DAC,

page 132. ACM, 2016. 35

[449] A. Masrur, D. Muller, and M. Werner. Bi-level deadline scaling for admission control in

mixed-criticality systems. In Proc. 21st IEEE Embedded and Real-Time Computing Systems

and Applications (RTCSA), pages 100–109. IEEE, 2015. 17

[450] F.R. Massaro, E.L. Ursini, and P.O. Martins. Integrating proactive mode changes in mixed

criticality systems. arXiv [cs.OS], 2018. arXiv: 1806.11432. 39

[451] S. Maurer and R. Kirner. Cross-criticality interfaces for cyber-physical systems. In Proc.

1st IEEE Int’l Conference on Event-based Control, Communication, and Signal Processing,

2015. 34

[452] D. Maxim, R.I. Davis, L. Cucu-Grosjean, and A. Easwaran. Probabilistic analysis for mixed

criticality scheduling with SMC and AMC. In Proc. 4th WMC (RTSS), page 6, 2016. 36

[453] D. Maxim, R.I. Davis, L. Cucu-Grosjean, and A. Easwaran. Probabilistic analysis for mixed

criticality systems using fixed priority preemptive scheduling. In Proc International Confer-

ence on Real-Time Networks and Systems (RTNS), pages 237–246, 2017. 36

[454] R. Medina, E. Borde, and L. Pautet. Availability analysis for synchronous data-flow graphs in

mixed-criticality systems. In Proc. 11th IEEE Symposium on Industrial Embedded Systems

(SIES), pages 1–6, 2016. 36

[455] R. Medina, E. Borde, and L. Pautet. Directed acyclic graph scheduling for mixed-criticality

systems. In Johann Blieberger and Markus Bader, editors, Reliable Software Technologies –

Ada-Europe, pages 217–232. Springer International Publishing, 2017. 38, 43

[456] R. Medina, E. Borde, and L. Pautet. Availability enhancement and analysis for mixed-

criticality systems on multi-core. In Proc. Design, Automation Test in Europe Conference

Exhibition (DATE), pages 1271–1276, 2018. 36

[457] R. Medina, E. Borde, and L. Pautet. Scheduling multi-periodic mixed-criticality DAGs on

multi-core architectures. In Proc. IEEE Real-Time Systems Symposium, RTSS, pages 254–

264. IEEE Computer Society, 2018. 43

[458] R. Medina, E. Borde, and L. Pautet. Generalized mixed-criticality static scheduling for pe-

riodic directed acyclic graphs on multi-core processors. IEEE Transactions on Computers,

70(3):457–470, 2021. 43

[459] M. Mendez, J.L.G. Rivas, D.F. Garca-Valdecasas, and J. Diaz. Open platform for mixed-

criticality applications. In Proc. of the Conference on Design, Automation and Test in Europe,

WICERT, DATE, 2013. 47

84

[460] M-V. Micea, C-S. Stangaciu, V. Stangaciu, and D-I. Curiac. Novel hybrid scheduling tech-

nique for sensor nodes with mixed criticality tasks. Sensors, 17(7), 2017. 28

[461] Minstry of Defence. Requirements for safety related software in defence equipment. Defence

standard, 00-55, Minstry of Defence, 1997. 43

[462] A. Mirhosseini and T. Wenisch. Mu-steal: A theory-backed framework for preemptive work

and resource stealing in mixed-criticality microservices. In ACM International Conference

on Supercomputing, page 102–114, New York, NY, USA, 2021. Association for Computing

Machinery. 34

[463] E. Missimer, K. Missimer, and R. West. Mixed-criticality scheduling with i/o. In Proc.

ECRTS, pages 120–130, 2016. 45

[464] M. Mollison, J. Erickson, J. Anderson, S.K. Baruah, and J. Scoredos. Mixed criticality real-

time scheduling for multicore systems. In Proc. of the 7th IEEE International Conference on

Embedded Software and Systems, pages 1864–1871, 2010. 21

[465] B. Motruk, J. Diemer, R. Buchty, R. Ernst, and M. Berekovic. Idamc: A many-core platform

with run-time monitoring for mixed-criticality. Ninth IEEE International Symposium on High-

Assurance Systems Engineering (HASE’05), pages 24–31, 2012. 44

[466] S. Mubeen, M. Gålnander, J. Lundbäck, and K-L Lundbäck. Extracting timing models from

component-based multi-criticality vehicular embedded systems. In Shahram Latifi, editor, In-

formation Technology - New Generations, pages 709–718. Springer International Publishing,

2018. 29

[467] D. Muller and A. Masrur. The scheduling region of two-level mixed-criticality systems based

on EDF-VD. In Proc. of the Conference on Design, Automation and Test in Europe, Proc.

DATE, pages 978–981, 2014. 42

[468] V. Muttillo, L. Pomante, P. Balbastre, J. Simò, and A. Crespo. HW/SW co-design framework

for mixed-criticality embedded systems considering Xtratum-Based SW partitions. In Proc.

22nd Euromicro Conference on Digital System Design (DSD), pages 554–561, 2019. 22

[469] V. Muttillo, G. Valente, and L. Pomante. Criticality-aware design space exploration for mixed-

criticality embedded systems. In Companion of the ACM/SPEC International Conference on

Performance Engineering, ICPE, pages 45–46. ACM, 2018. 49

[470] K. Nagalakshmi and N. Gomathi. Criticality-cognizant clustering-based task scheduling on

multicore processors in the avionics domain. International Journal of Computational Intelli-

gence Systems, 11:219–238, 2018. 23

[471] M. Nager, M. Baunach, P. Priller, and J. Wurzinger. Real-time multiplexing of mixed-

criticality data streams for automotive multi-core test systems. In Proc. IEEE International

Conference on Vehicular Electronics and Safety (ICVES), pages 220–227, 2017. 28

[472] A. Naghavi, S. Safari, and S. Hessabi. Tolerating permanent faults with low-energy overhead

in multicore mixed-criticality systems. IEEE Transactions on Emerging Topics in Computing,

pages 1–1, 2021. 23, 32

[473] A.S. Nair, L.M. Colaco, B. Raveendran, and S. Punnekkat. TaskMUSTER: a comprehensive

analysis of task parameters for mixed criticality automotive systems. Sādhanā, 47:13, 2022.

51

[474] K. Napier, O. Horst, and C. Prehofer. Comparably evaluating communication performance

within mixed-criticality systems. In Proc. 4th WMC (RTSS), page 6, 2016. 48

[475] S. Narayana, P. Huang, G. Giannopoulou, L. Thiele, and R.V. Prasad. Exploring energy saving

for mixed-criticality systems on multi-cores. In Proc. IEEE RTAS, pages 1–12, 2016. 48

85

[476] S. Natarajan and D. Broman. Towards programming primitives for hard real-time constraints

and runtime monitoring in timed c. DiVA, diva2:1554367:X, 2021. 46

[477] M. Neukirchner, P. Axer, T. Michaels, and R. Ernst. Monitoring of workload arrival functions

for mixed-criticality systems. In Proc. IEEE 34th Real-Time Systems Symposium, pages 88–

96, 2013. 14

[478] M. Neukirchner, S. Quinton, and K. Lampka. Multi-mode monitoring for mixed-criticality

real-time systems. In Int’l Conf. on Hardware/Software Codesign and System Synthesis

(CODES+ISSS), 2013. 14

[479] M. Neukirchner, S. Stein, H. Schrom, J. Schlatow, and R. Ernst. Contract-based dynamic task

management for mixed-criticality systems, pages 18–27. IEEE, 2011. 44

[480] R. Nevalainen, U. Kremer, O. Slotosch, D. Truscan, and V. Wong. Impact of multicore plat-

forms in hardware and software certification. In Proc. of the Conference on Design, Automa-

tion and Test in Europe, WICERT, DATE, 2013. 47

[481] L.M. Ni and P.K. McKinley. A survey of wormhole routing techniques in direct networks.

Computer, 26(2):62–76, Feb 1993. 27

[482] D.de Niz, K. Lakshmanan, and R. Rajkumar. On the scheduling of mixed-criticality real-time

task sets. In Real-Time Systems Symposium, pages 291–300. IEEE Computer Society, 2009.

13, 18, 21, 40

[483] D.de Niz and L.T.X. Phan. Partitioned scheduling of multi-modal mixed-criticality real-time

systems on multiprocessor platforms. In Proc. Real-Time and Embedded Technology and

Applications Symposium (RTAS), pages 111–122, April 2014. 14, 40

[484] D.de Niz, L. Wrage, A. Rowe, and R. Rajkumar. Utility-based resource overbooking for

cyber-physical systems. In Proc. RTCSA, 2013. 14

[485] A. Novak, P. Sucha, and Z. Hanzalek. Efficient algorithm for jitter minimization in time-

triggered periodic mixed-criticality message scheduling problem. In Proc. RTNS, pages 23–

31. ACM, 2016. 26

[486] A. Novak, P. Sucha, and Z. Hanzalek. On solving non-preemptive mixed-criticality match-up

scheduling problem with two and three criticality levels. arXiv preprint arXiv:1610.07384,

2016. 26

[487] A. Novak, P. Sucha, and Z. Hanzalek. Scheduling with uncertain processing times in mixed-

criticality systems. European Journal of Operational Research, 279(3):687 – 703, 2019. 19,

36

[488] J. Nowotsch, M. Paulitsch, D. Bhler, H. Theiling, S. Wegener, and M. Schmidt. Multi-core

interference-sensitive WCET analysis leveraging runtime resource capacity enforcement. In

Proc. ECRTS, pages 109–118, 2014. 25

[489] J. Nowotsch, M. Paulitsch, A. Henrichsen, W. Pongratz, and A. Schacht. Monitoring and wcet

analysis in cots multi-core-soc-based mixed-criticality systems. In Design, Automation Test

in Europe Conference Exhibition (DATE), pages 1–5, 2014. 45

[490] R. Obermaisser, Z. Owda, M. Abuteir, H. Ahmadian, and D. Weber. End-to-end real-time

communication in mixed-criticality systems based on networked multicore chips. In Proc

17th Euromicro Conference on Digital Systems Design, pages 293–302. IEEE, 2014. 25

[491] R. Obermaisser and D. Weber. Architectures for mixed-criticality systems based on networked

multi-core chips. In Proc. ETFA, pages 1–10, 2014. 25

86

[492] S. Osmolovskiy, I. Fedorov, V. Vinogradov, E. Ivanova, and D. Shakurov. Mixed-criticality

scheduling in real-time multiprocessor systems. In Proc. Conference of Open Innovations

Association and Seminar on Information Security and Protection of Information Technology

(FRUCT-ISPIT), pages 257–265, 2016. 48

[493] A. Paolillo, P. Rodriguez, V. Svoboda, O. Desenfans, J. Goossens, B. Rodriguez, S. Gir-

bal, M. Faugère, and P. Bonnot. Porting a safety-critical industrial application on a mixed-

criticality enabled real-time operating system. In Agrawal and Easwaran, editors, Proc. 5th

Workshop on Mixed Criticality Systems (WMC), RTSS, pages 1–6, 2017. 46

[494] A.V. Papadopoulos, E. Bini, S. Baruah, and A. Burns. AdaptMC: A Control-Theoretic Ap-

proach for Achieving Resilience in Mixed-Criticality Systems. In Sebastian Altmeyer, editor,

30th Euromicro Conference on Real-Time Systems (ECRTS 2018), volume 106 of Leibniz

International Proc. in Informatics (LIPIcs), pages 14:1–14:22. Schloss Dagstuhl–Leibniz-

Zentrum fuer Informatik, 2018. 39

[495] E. Papastefanakis, X. Li, and L. George. A mixed criticality approach for the security of

critical flows in a network-on-chip. ACM SIGBED Review, 13(4):67–72, 2016. 27

[496] T. Park and S Kim. Dynamic scheduling algorithm and its schedulability analysis for certifi-

able dual-criticality systems. In Proc. ACM EMSOFT, pages 253–262, 2011. 9, 16

[497] R.M. Pathan. Schedulability analysis of mixed criticality systems on multiprocessors. In Proc.

of ECRTS, pages 309–320, 2012. 24

[498] R.M. Pathan. Fault-tolerant and real-time scheduling for mixed-criticality systems. Journal

of Real-Time Systems, 50(4):509–547, 2014. 31

[499] R.M. Pathan. Improving the quality-of-service for scheduling mixed-criticality systems on

multiprocessors. In Marko Bertogna, editor, Proc. Euromicro Conference on Real-Time Sys-

tems (ECRTS), volume 76 of Leibniz International Proc. in Informatics (LIPIcs), pages 19:1–

19:22. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017. 38

[500] R.M. Pathan. Improving the Schedulability and Quality of Service for Federated Scheduling

of Parallel Mixed-Criticality Tasks on Multiprocessors. In Sebastian Altmeyer, editor, 30th

Euromicro Conference on Real-Time Systems (ECRTS 2018), volume 106 of Leibniz Interna-

tional Proc. in Informatics (LIPIcs), pages 12:1–12:22. Schloss Dagstuhl–Leibniz-Zentrum

fuer Informatik, 2018. 24

[501] M. Paulitsch, O.M. Duarte, H. Karray, K. Mueller, D. Muench, and J. Nowotsch. Mixed-

criticality embedded systems–a balance ensuring partitioning and performance. In Proc. Eu-

romicro Conference on Digital System Design (DSD), pages 453–461. IEEE, 2015. 4, 47

[502] I. Pavic and H. Dazpo. Framework for evaluation of schedulability tests for mixed-criticality

systems. In Proc. 44th International Convention on Information, Communication and Elec-

tronic Technology (MIPRO), pages 886–891, 2021. 48

[503] I. Pavic and H. Dzapo. Commentary to: An exact schedulability test for fixed-priority pre-

emptive mixed-criticality real-time systems. Real-Time Systems Journal, 56:112–119, 2019.

11

[504] P. Pedro and A. Burns. Schedulability analysis for mode changes in flexible real-time systems.

In 10th Euromicro Workshop on Real-Time Systems, pages 172–179. IEEE Computer Society,

1998. 10, 39

[505] R. Pellizzoni, P. Meredith, M-Y. Nam, M. Sun, M. Caccamo, and L. Sha. Handling mixed-

criticality in soc-based real-time embedded systems. In Proc. of the 7th ACM international

conference on Embedded software, EMSOFT, pages 235–244. ACM Press, 2009. 25

87

[506] R. Pellizzoni, A. Schranzhofery, J. Cheny, M. Caccamo, and L. Thiele. Worst case delay

analysis for memory interference in multicore systems. In Design, Automation Test in Europe

Conference Exhibition (DATE), pages 741–746, 2010. 25

[507] H. Pérez, J.J. Gutiérrez, S. Peiró, and A. Crespo. Distributed architecture for developing

mixed-criticality systems in multi-core platforms. Journal of Systems and Software, 123:145–

159, 2017. 45

[508] J. Perez, D. Gonzalez, S. Trujillo, T. Trapman, and J. M. Garate. A safety concept for a wind

power mixed criticality embedded system based on multicore partitioning. In Proc. 1st WMC,

RTSS, pages 25–30, 2013. 33

[509] P. Petrakis, M. Abuteir, M.D. Grammatikakis, K. Papadimitriou, R. Obermaisser, Z. Owda,

A. Papagrigoriou, M. Soulie, and M. Coppola. On-chip networks for mixed-criticality sys-

tems. In Proc. Application-specific Systems, Architectures and Processors (ASAP, pages 164–

169. IEEE, 2016. 48

[510] P. Pop, L. Tsiopoulos, S. Voss, O. Slotosch, C. Ficek, U. Nyman, and A. Ruiz. Methods

and tools for reducing certification costs of mixed-criticality applications on multi-core plat-

forms: the RECOMP approach. In Proc. of the Conference on Design, Automation and Test

in Europe, WICERT, DATE, 2013. 47

[511] T. Pop, P. Eles, and Z. Peng. Holistic scheduling and analysis of mixed time/event-triggered

distributed embedded systems. In Proc. of the tenth international symposium on Hardware/-

software codesign, CODES ’02, pages 187–192. ACM, 2002. 25

[512] S. Punnekkat, R.I Davis, and A. Burns. Sensitivity analysis of real-time task sets. In Proc. of

the Conference of Advances in Computing Science - ASIAN ’97, pages 72–82. Springer, 1997.

14

[513] S. Quinton, M. Hanke, and R. Ernst. Formal analysis of sporadic overload in real-time sys-

tems. In Design, Automation Test in Europe Conference Exhibition (DATE), pages 515–520,

2012. 51

[514] V. Radulescu, S. Andrei, and A.M.K. Cheng. Work-in-progress abstract: A new criterion

for job switching in semi-clairvoyant systems. In Proc. IEEE 27th International Conference

on Embedded and Real-Time Computing Systems and Applications (RTCSA), pages 198–200,

2021. 21

[515] S. Ramanathan and A. Easwaran. MC-Fluid: rate assignment strategies. In L. Cucu-Grosjean

and R. Davis, editors, Proc. 3rd Workshop on Mixed Criticality Systems (WMC), RTSS, pages

6–11, 2015. 24

[516] S. Ramanathan and A. Easwaran. Utilization difference based partitioned scheduling of

mixed-criticality systems. In Design, Automation Test in Europe Conference Exhibition

(DATE), pages 238–243, 2017. 22

[517] S. Ramanathan, A. Easwaran, and H. Cho. Multi-rate fluid scheduling of mixed-criticality

systems on multiprocessors. Real-Time Systems, 54:247–277, 2018. 38

[518] S. Ramanathan, X. Gu, and A. Easwaran. The feasibility analysis of mixed-criticality systems.

In Proc. RTOPS, ECRTS, 2016. 24

[519] E. A. Rambo, Y. Shang, and R. Ernst. Providing integrity in real-time networks-on-chip. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, 27(8):1907–1920, 2019. 31

[520] E.A. Rambo and R. Ernst. Replica-aware co-scheduling for mixed-criticality. In Marko

Bertogna, editor, Proc. Euromicro Conference on Real-Time Systems (ECRTS), volume 76

of Leibniz International Proc. in Informatics (LIPIcs), pages 20:1–20:20. Schloss Dagstuhl–

Leibniz-Zentrum fuer Informatik, 2017. 31

88

[521] E.A. Rambo and R. Ernst. ASTEROID and the replica-aware co-scheduling for mixed-

criticality. In Jörg Henkel and Nikil Dutt, editors, Dependable Embedded Systems, pages

57–84. Springer International Publishing, 2021. 31

[522] S. Ramos-Thuel and J.P. Lehoczky. Algorithms for scheduling hard aperiodic tasks in fixed

priority systems using slack stealing. In Proc. 15th IEEE Real-Time Systems Symposium,

pages 22–35, 1994. 29

[523] B. Ranjbar, A. Hoseinghorban, S.S. Sahoo, A. Ejlali, and A. Kumar. Improving the timing be-

haviour of mixed-criticality systems using chebyshev’s theorem. In Proc. Design, Automation

Test in Europe Conference Exhibition (DATE), pages 264–269, 2021. 7

[524] B. Ranjbar, A. Hosseinghorban, S.S. Sahoo, A. Ejlali, and A. Kumar. BOT-MICS: Bounding

time using analytics in mixed-criticality systems. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 2021. 13

[525] B. Ranjbar, T.D.A. Nguyen, A. Ejlali, and A. Kumar. Power-aware runtime scheduler for

mixed-criticality systems on multicore platform. IEEE Transactions on Computer-Aided De-

sign of Integrated Circuits and Systems, 40(10):2009–2023, 2021. 49

[526] B. Ranjbar, B. Safaei, A. Ejlali, and A. Kumar. FANTOM: Fault tolerant task-drop aware

scheduling for mixed-criticality systems. IEEEAccess, 4, 2016. 38

[527] H. Rashtian and S. Gopalakrishnan. Balancing message criticality and timeliness in IoT net-

works. IEEE Access, 7:145738–145745, 2019. 34

[528] J. Real and A. Crespo. Mode change protocols for real-time systems: A survey and a new

protocol. Journal of Real-Time Systems, 26(2):161–197, 2004. 10, 39

[529] F. Reghenzani, G. Massari, and W. Fornaciari. Mixed time-criticality process interferences

characterization on a multicore linux system. In Proc. Euromicro Conference on Digital Sys-

tem Design (DSD), pages 427–434, 2017. 46

[530] F. Reghenzani, G. Massari, and W. Fornaciari. A probabilistic approach to energy-constrained

mixed-criticality systems. In IEEE/ACM International Symposium on Low Power Electronics

and Design (ISLPED), pages 1–6, 2019. 49

[531] P. Regnier, G. Lima, E. Massa, G. Levin, and S. Brandt. RUN: Optimal multiprocessor real-

time scheduling via reduction to uniprocessor. In Real-Time Systems Symposium (RTSS),

pages 104–115. IEEE, 2011. 22

[532] J. Ren and L.T.X. Phan. Mixed-criticality scheduling on multiprocessors using task grouping.

In Proc. 27th ECRTS, pages 25–36. IEEE, 2015. 38

[533] P. Rodriguez, L. George, Y. Abdeddaim, and J. Goossens. Multi-criteria evaluation of parti-

tioned EDF-VD for mixed criticality systems upon identical processors. In Proc. 1st WMC,

RTSS, pages 49–54, 2013. 22

[534] D. Roy, S. Ghosh, Q. Zhu, M. Caccamo, and S. Chakraborty. Goodspread: Criticality-aware

static scheduling of cps with multi-qos resources. In Proc. IEEE Real-Time Systems Sympo-

sium (RTSS), 2020. 24

[535] RTCA-EUROCAE. Software Considerations in Airborne Systems and Equipment Certifica-

tion DO-178B/ED-12B. RTCA, Inc, December 1992. 43

[536] S. Saewong, R. Rajkumar, J.P. Lehoczky, and M.H. Klein. Analysis of hierarchical fixed- pri-

ority scheduling. In Proc. of the 14th Euromicro Conference on Real-Time Systems (ECRTS),

pages 173–181, 2002. 33

89

[537] S. Safari, M. Ansari, G. Ershadi, and S. Hessabi. On the scheduling of energy-aware fault-

tolerant mixed-criticality multicore systems with service guarantee exploration. IEEE Trans-

actions on Parallel and Distributed Systems, 30(10):2338–2354, 2019. 49

[538] S. Safari, H. Khdr, P. Gohari-Nazari, M. Ansari, G. Ershadi, S. Hessabi, and J. Henkel.

Therma-mics: Thermal-aware scheduling for fault-tolerant mixed-criticality systems. IEEE

Transactions on Parallel and Distributed Systems, 33(7):1678–1694, 2021. 49

[539] S. Saidi, R. Ernst, S. Uhrig, H. Theiling, and B.D. de Dinechin. The shift to multicores in

real-time and safety-critical systems. In Proc. 10th International Conference on Hardware/-

Software Codesign and System Synthesis, pages 220–229. IEEE Press, 2015. 45

[540] M. Saksena and Y. Wang. Scaleable real-time systems design using preemption thresholds.

In Proc. 21st IEEE Real-Time Systems Symposium., pages 25–34, 2000. 11

[541] E. Salazar, A. Alejandro, and J. Garrido. Mixed-criticality design of a satellite software sys-

tem. In Proc. 19th World Congress The Federation of Automatic Control, pages 12278–12283,

2014. 33

[542] L. Santinelli, D. Doose, G. Durrieu, F. Boniol, C. Lesire-Cabaniols, and C. Grand. Schedula-

bility analysis for mixed critical cyber physical systems. In IEEE Industrial Cyber-Physical

Systems (ICPS), pages 297–303, 2018. 17

[543] L. Santinelli and L. George. Probabilities and mixed-criticalities: the probabilistic C-Space.

In L. Cucu-Grosjean and R. Davis, editors, Proc. 3rd Workshop on Mixed Criticality Systems

(WMC), RTSS, pages 30–35, 2015. 36

[544] L. Santinelli and Z. Guo. A sensitivity analysis for mixed criticality: Trading criticality with

computational resource. In IEEE 23rd International Conference on Emerging Technologies

and Factory Automation (ETFA), volume 1, pages 313–320, 2018. 14

[545] R. Santos, S. Venkataraman, A. Das, and A. Kumar. Criticality-aware scrubbing mechanism

for SRAM-based FPGAs. Technical report, Nanyang Technological University, Singapore,

2014. 47

[546] J. A. Santos-Jr, G. Lima, and K. Bletsas. Considerations on the least upper bound for mixed-

criticality real-time systems. In 5th Brazilian Symposium on Computing Systems Engineering

(SBESC), 2015. 41

[547] F. Santy, L. George, P. Thierry, and J. Goossens. Relaxing mixed-criticality scheduling strict-

ness for task sets scheduled with FP. In Proc. of the Euromicro Conference on Real-Time

Systems, pages 155–165, 2012. 14

[548] F. Santy, G. Raravi, G. Nelissen, V. Nelis, P. Kumar, J. Goossens, and E. Tovar. Two protocols

to reduce the criticality level of multiprocessor mixed-criticality systems. In Proc. RTNS,

pages 183–192. ACM, 2013. 39

[549] J. Schlatow, M. Möstl, and R. Ernst. Self-aware scheduling for mixed-criticality component-

based systems. In Proc. IEEE Real-Time and Embedded Technology and Applications Sym-

posium (RTAS), pages 267–278, 2019. 30

[550] R. Schmidt and A. Garcı́a-Ortiz. Implications of non-uniform deadline scaling to quality of

service under single errors. IEEE Access, 2022. 18

[551] R. Schneider, D. Goswami, A. Masrur, M. Becker, and S. Chakraborty. Multi-layered schedul-

ing of mixed-criticality cyber-physical systems. Journal of Systems Architecture, 59(10, Part

D):1215 – 1230, 2013. 33

90

[552] L. Schonberger, G. von der Bruggen, K-H Chen, B. Sliwa, H. Youssef, A. Ramachandran,

C. Wietfeld, M. ten Hompel, and J-J Chen. Offloading safety- and mission-critical tasks

via unreliable connections. In Marcus Völp, editor, 32nd Euromicro Conference on Real-

Time Systems (ECRTS 2020), volume 165 of Leibniz International Proceedings in Informatics

(LIPIcs), pages 18:1–18:22, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum

für Informatik. 38

[553] V. Sciandra, P. Courbin, and L George. Application of mixed criticality scheduling model to

intelligent transportation systems architecture. In Proc. WiP, RTSS, page 11, 2012. 14

[554] Y. Seddik and Z. Hanzálek. Match-up scheduling of mixed-criticality jobs: Maximizing the

probability of jobs execution. European Journal of Operational Research, 262(1):46 – 59,

2017. 9

[555] L. Sha. Resilient mixed criticality systems. CrossTalk – The Journal of Defense Software

Engineering, pages 9–14, October 2009. 18

[556] L. Sha, J.P. Lehoczky, and R. Rajkumar. Solutions for some practical problems in prioritizing

preemptive scheduling. In Proc. 7th IEEE Real-Time Sytems Symposium, 1986. 14

[557] L. Sha, J.P. Lehoczky, and R. Rajkumar. Task scheduling in distributed real-time systems. In

Proc. of IEEE Industrial Electronics Conference, 1987. 14

[558] L. Sha, R. Rajkumar, J. Lehoczky, and K. Ramamritham. Mode change protocols for priority-

driven premptive scheduling. Journal of Real-Time Systems, 1(3):244–264, 1989. 10, 39

[559] L. Sha, R. Rajkumar, and J.P. Lehoczky. Priority inheritance protocols: An approach to real-

time synchronisation. IEEE Transactions on Computers, 39(9):1175–1185, 1990. 18

[560] T. She, Z. Guo, Q. Gu, and K. Yang. Reserving processors by precise scheduling of mixed-

criticality tasks. In Proc. IEEE 27th International Conference on Embedded and Real-Time

Computing Systems and Applications (RTCSA), pages 103–108. IEEE, 2021. 24

[561] T. She, S. Vaidhun, Q. Gu, S. Das, Z. Guo, and K. Yang. Precise scheduling of mixed-

criticality tasks on varying-speed multiprocessors. In Proc. 29th International Conference

on Real-Time Networks and Systems (RTNS), page 134–143. Association for Computing Ma-

chinery, 2021. 20

[562] Z. Shi and A. Burns. Real-time communication analysis for on-chip networks with worm-

hole switching. In Proc. of the 2nd ACM/IEEE International Symposium on Networks-on-

Chip(NoCS), pages 161–170, 2008. 27

[563] L. Sigrist, G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele. Mapping mixed-

criticality applications on multi-core architectures. In Proc. DATE, pages 1–6, 2014. 44

[564] J. Simo, P. Balbastre, J-L Poza-Lujan, and A. Guasque. The role of mixed criticality technol-

ogy in Industry 4.0. Electronics, 10(226):1–16, 2021. 51

[565] J. Singh, L. Santinelli, D. Doose, J. Brunel, and G. Infantes. Mixed criticality probabilistic

real-time systems analysis using discretetime markov chain. In Jing Li and Zhishan Guo,

editors, Proc. 6th Workshop on Mixed Criticality Systems (WMC), RTSS, pages 13–18, 2018.

36

[566] J. Singh, L. Santinelli, F. Reghenzani, K K. Bletsas, D. Doose, and Z. Guo. Mixed criticality

scheduling of probabilistic real-time systems. In Proc. Dependable Software Engineering.

Theories, Tools, and Applications, SETTA, pages 1–10. Springer International Publishing,

2019. 36

[567] D. Socci, P. Poplavko, S. Bensalem, and M. Bozga. Mixed critical earliest deadline first.

Technical Report TR-2012-22, Verimag Research Report, 2012. 9

91

[568] D. Socci, P. Poplavko, S. Bensalem, and M. Bozga. Mixed critical earliest deadline first. In

Proc. Euromicro Conference on Real-Time Systems (ECRTS), 2013. 9

[569] D. Socci, P. Poplavko, S. Bensalem, and M. Bozga. Modeling mixed-critical systems in real-

time bip. In L. George and G. Lipari, editors, Proc. ReTiMiCS, RTCSA, pages 29–34, 2013.

43

[570] D. Socci, P. Poplavko, S. Bensalem, and M. Bozga. Time-triggered mixed critical scheduler.

In Proc. WMC, RTSS, pages 67–72, 2013. 19

[571] D. Socci, P. Poplavko, S. Bensalem, and M. Bozga. Multiprocessor scheduling of precedence-

constrained mixed-critical jobs. Technical Report TR-2014-11, Verimag, Research Report,

2014. 24

[572] D. Socci, P. Poplavko, S. Bensalem, and M. Bozga. Time-triggered mixed-critical scheduler

on single- and multi-processor platforms. In Proc. HPCC/CSS/ICESS, pages 684–687, 2015.

9, 19

[573] D. Socci, P. Poplavko, S. Bensalem, and M. Bozga. Time-triggered mixed-critical scheduler

on single- and multi-processor platforms. Technical Report TR-2015-8, Verimag, 2015. 19

[574] D. Socci, P. Poplavko, S. Bensalem, and M. Bozga. Priority-based scheduling of mixed-

critical jobs. Real-Time Systems, 55:709–773, 2019. 9

[575] B. Sprunt, J. Lehoczky, and L. Sha. Exploiting unused periodic time for aperiodic service

using the extended priority exchange algorithm. In Proc. 9th IEEE Real-Time Systems Sym-

posium, pages 251–258, 1988. 29, 30

[576] N. Sritharan, A. M. Kaushik, M. Hassan, and H. Patel. Enabling predictable, simultaneous

and coherent data sharing in mixed criticality systems. In Proc. IEEE Real-Time Systems

Symposium (RTSS), 2019. 47

[577] N. Sritharan, A.M. Kaushik, M. Hassan, and H.D. Patel. Hourglass: Predictable time-based

cache coherence protocol for dual-critical multi-core systems. CoRR, abs/1706.07568, 2017.

47

[578] S. Sruti, A. A. Bhuiyan, and Z. Guo. Work-in-progress: Precise scheduling of mixed-

criticality tasks by varying processor speed. In Proc. WiP, IEEE Real-Time Systems Sym-

posium (RTSS), pages 173–176, 2018. 20

[579] W. Steiner. Synthesis of static communication schedules for mixed-criticality systems. 2012

IEEE 15th International Symposium on Object/Component/Service-Oriented Real-Time Dis-

tributed Computing Workshops, pages 11–18, 2011. 25, 26

[580] H. Su, P. Deng, D. Zhu, and Q. Zhu. Fixed-priority dual-rate mixed-criticality systems:

Schedulability analysis and performance optimization. In Proc. Embedded and Real-Time

Computing Systems and Applications (RTCSA), pages 59–68. IEEE, 2016. 38

[581] H. Su, P. Deng, D. Zhu, and Q. Zhu. Fixed-priority dual-rate mixed-criticality systems:

Schedulability analysis and performance optimization. In IEEE International Conference

on Embedded and Real-Time Computing Systems and Applications (RTCSA), pages 59–68,

2016. 39

[582] H. Su, N. Guan, and D. Zhu. Service guarantee exploration for mixed-criticality systems. In

Proc. Embedded and Real-Time Computing Systems and Applications (RTCSA), pages 1–10.

IEEE, 2014. 38

[583] H. Su and D. Zhu. An elastic mixed-criticality task model and its scheduling algorithm. In

Proc. of the Conference on Design, Automation and Test in Europe, DATE, pages 147–152,

2013. 17, 38

92

[584] H. Su, D. Zhu, and D. Mosse. Scheduling algorithms for elastic mixed-criticality tasks in

multicore systems. In Proc. RTCSA, 2013. 17, 38

[585] V. K. Sundar and A. Easwaran. A practical degradation model for mixed-criticality systems.

In Proc. 22nd IEEE International Symposium on Real-Time Distributed Computing (ISORC),

pages 171–180, 2019. 38

[586] A. Taherin, M. Salehi, and A. Ejlali. Reliability-aware energy management in mixed-

criticality systems. IEEE Transactions on Sustainable Computing - online, 2018. 20

[587] D. Tamas-Selicean and P. Pop. Design optimisation of mixed criticality real-time applications

on cost-constrained partitioned architectures. In Real-Time Systems Symposium (RTSS), pages

24–33, 2011. 21, 22

[588] D. Tamas-Selicean and P. Pop. Optimization of time-partitions for mixed criticality

real-time distributed embedded systems. In 14th IEEE International Symposium on

Object/Component/Service-Oriented Real-Time Distributed Computing Workshops, pages 2–

10, 2011. 21, 22

[589] D. Tamas-Selicean and P. Pop. Task mapping and partition allocation for mixed criticality

real-time systems. In IEEE Pacific Rim Int. Sym. on Dependable Computing, pages 282–283,

2011. 21, 22

[590] D. Tamas-Selicean and P. Pop. Design optimisation of mixed criticality real-time applica-

tions on cost-constrained partitioned architectures. ACM Transactions on Embedded Systems,

14(3):50:1–50:29, 2015. 21

[591] J. Theis and G. Fohler. Mixed criticality scheduling in time-triggered legacy systems. In Proc.

WMC, RTSS, pages 73–78, 2013. 19

[592] J. Theis, G. Fohler, and S.K. Baruah. Schedule table generation of time-triggered mixed

criticality systems. In Proc. WMC, RTSS, pages 79–84, 2013. 19

[593] A. Thekkilakattil, R. Dobrin, and S. Punnekkat. Fault tolerant scheduling of mixed critical-

ity real-time tasks under error bursts. In The International Conference on Information and

Communication Technologies ICICT’14. Elsevier Procedia Computer Science, 2014. 31

[594] A. Thekkilakattil, R. Dobrin, and S. Punnekkat. Mixed criticality scheduling in fault-tolerant

distributed real-time systems. In Embedded Systems (ICES), 2014 International Conference

on, pages 92–97. IEEE, 2014. 31

[595] A Thekkilakattl, A. Burns, R. Dobrin, and S. Punnekkat. Mixed criticality systems: Beyond

transient faults. In L. Cucu-Grosjean and R. Davis, editors, Proc. 3rd Workshop on Mixed

Criticality Systems (WMC), RTSS, pages 18–23, 2015. 31

[596] H. Thompson. Mixed criticality systems. http://cordis.europa.eu/fp7/ict/embedded-systems-

engineering/documents/sra-mixed-criticality-systems.pdf, EU, ICT, February 2012. 5

[597] K. Tindell and A Alonso. A very simple protocol for mode changes in priority preemptive

systems. Technical report, Universidad Politecnica de Madrid, 1996. 10, 39

[598] K. Tindell, A. Burns, and A. J. Wellings. Mode changes in priority preemptive scheduled

systems. In Proc. Real Time Systems Symposium, pages 100–109, Phoenix, Arizona, 1992.

10, 39

[599] S. Tobuschat, P. Axer, R. Ernst, and J. Diemer. IDAMC: A NoC for mixed criticality systems.

In Proc. RTCSA, 2013. 27

[600] S. Tobuschat and R. Ernst. Efficient latency guarantees for mixed-criticality networks-on-chip.

In Proc. IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS),

pages 113–122, 2017. 27

93

[601] R. Trüb, G. Giannopoulou, A. Tretter, and L. Thiele. Implementation of partitioned

mixed-criticality scheduling on a multi-core platform. ACM Trans. Embed. Comput. Syst.,

16(5s):122:1–122:21, 2017. 27

[602] S. Trujillo, A. Crespo, and A. Alonso. MultiPARTES: Multicore virtualization for mixed-

criticality systems. In Digital System Design (DSD), 2013 Euromicro Conference on, pages

260–265, 2013. 44

[603] S. Trujillo, A. Crespo, A. Alonso, and J. Perez. MultiPARTES: Multi-core partitioning and

virtualization for easing the certification of mixed-criticality systems. Microprocessors and

Microsystems (online version), 2014. 44

[604] S. Vaidhun, S.A. Arefin, Z. Guo, H. Xiong, and S.K. Das. Response time in mixed-critical

pervasive systems. In Proc. IEEE International Conference on Ubiquitous Intelligence and

Computing, 2017. 30

[605] G. Valente, P. Giammatteo, V. Muttillo, L. Pomante, and T. Di Mascio. A lightweight,

hardware-based support for isolation in mixed-criticality network-on-chip architectures. Ad-

vances in Science, Technology and Engineering Systems, ASTES, 4(4):561–573, 2019. 47

[606] M. Vanga, H. Theiling, A. Bastoni, and B.B. Brandenburg. Supporting low-latency, low-

criticality tasks in a certified mixed-criticality OS. In Proc. RTNS, 2017. 45

[607] S. Vestal. Preemptive scheduling of multi-criticality systems with varying degrees of execu-

tion time assurance. In Proc. Real-Time Systems Symposium (RTSS), pages 239–243, 2007.

5, 7, 8, 14, 50, 51, 54

[608] J. Vetter, J. Fanguede, K. Chappuis, and D. Raho. VOSYSVirtualNet: Low-latency inter-

world network channel for mixed-criticality systems. Technical report, ResearchGate, 2018.

46

[609] E. Vitali and G. Palermo. Early stage interference checking for automatic design space ex-

ploration of mixed critical systems. In Proc. of the 9th Workshop on Rapid Simulation and

Performance Evaluation: Methods and Tools, RAPIDO, pages 3:1–3:8. ACM, 2017. 50

[610] M. Völp, M. Hähnel, and A. Lackorzynski. Has energy surpassed timeliness? scheduling

energy-constrained mixed-criticality systems. In Proc. RTAS, pages 275–284. IEEE, 2014. 49

[611] M. Völp, A. Lackorzynski, and H. Härtig. On the expressiveness of fixed priority scheduling

contexts for mixed criticality scheduling. In Proc. WMC, RTSS, pages 13–18, 2013. 33

[612] M. Völp, M. Roitzsch, and H. Härtig. Towards an interpretation of mixed criticality for

optimistic scheduling. In 21st IEEE RTAS, Work-in-Progress, pages 15–16, 2015. 14

[613] G. von der Brüggen, K-H. Chen, W-H. Huang, and J-J. Chen. Systems with dynamic real-

time guarantees in uncertain and faulty execution environments. In Proc. Real-Time Systems

Symposium (RTSS), pages 303–314. IEEE, 2016. 37

[614] P. Wagemann, T. Distler, H. Janker, P. Raffeck, and V. Sieh. A kernel for energy-neutral

real-time systems with mixed criticalities. In Proc. RTAS, pages 1–12. IEEE, 2016. 49

[615] J. Wang and H. Wang. Work-in-progress: Scheduling of graph-based end-to-end tasks for

distributed multi-criticality systems. In Proc. IEEE Real-Time and Embedded Technology

and Applications Symposium (RTAS), pages 129–132, 2017. 43

[616] W. Wang, C. Mao, S. Zhao, Y. Cao, Y. Yi, S. Chen, and Q. Liu. A smart semipartitioned real-

time scheduling strategy for mixed-criticality systems in 6g-based edge computing. Wireless

Communications and Mobile Computing, 2021, 2021. 23

94

[617] Y. Wang and M. Saksena. Scheduling fixed-priority tasks with preemption threshold. In 6th

Real-Time Computing Systems and Applications (RTCSA), pages 328–335. IEEE, 1999. 18

[618] A. Wasicek, C. El-Salloum, and H. Kopetz. A system-on-a-chip platform for mixed-criticality

applications. In 3th IEEE International Symposium on Object/Component/Service-Oriented

Real-Time Distributed Computing (ISORC), pages 210–216, 2010. 32

[619] R. West, Y. Li, E. Missimer, and M. Danish. A virtualized separation kernel for mixed-

criticality systems. ACM Transactions on Computer Systems (TOCS), 34(3):8, 2016. 45

[620] R. Wilhelm. Mixed Feelings About Mixed Criticality (Invited Paper). In Florian Brandner,

editor, 18th International Workshop on Worst-Case Execution Time Analysis (WCET), vol-

ume 63 of OpenAccess Series in Informatics (OASIcs), pages 1:1–1:9, Dagstuhl, Germany,

2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. 4

[621] B. Woolley, S. Mengel, and A. Ertas. An evolutionary approach for the hierarchical scheduling

of safety- and security-critical multicore architectures. Computers, 9:1–19, 2020. 32

[622] J. Wu and J-L Wang. A real-time embedded platform for mixed energy-criticality systems.

In Proc. 7th International Conference on Applied System Innovation (ICASI), pages 58–62,

2021. 49

[623] Y. Xiang and S. Pasricha. Mixed-criticality scheduling on heterogeneous multicore systems

powered by energy harvesting. Integration, 61:114–124, 2018. 49

[624] Q. Xiong, F. Wu, Z. Lu, and C. Xie. Extending real-time analysis for wormhole nocs. IEEE

Transactions on Computers, 2017. 27

[625] H. Xu and A. Burns. Semi-partitioned model for dual-core mixed criticality system. In 23rd

International Conference on Real-Time Networks and Systems (RTNS 2015), pages 257–266,

2015. 23, 38

[626] H. Xu and A. Burns. A semi-partitioned model for mixed criticality systems. Journal of

Systems and Software, 150:51 – 63, 2019. 38

[627] C. Yang, H. Wang, J. Zhang, and L. Zuo. Semi-partitioned scheduling of mixed-criticality

system on multiprocessor platforms. Journal of Supercomputers, online, 2021. 23

[628] K. Yang, A.A. Bhuiyan, and Z. Guo. F2VD: Fluid rates to virtual deadlines for precise mixed-

criticality scheduling on a varying-speed processor. In Proc IEEE/ACM International Confer-

ence On Computer Aided Design (ICCAD), pages 1–9, 2020. 20

[629] K. Yang and Z. Dong. Mixed-criticality scheduling with varying processor supply in composi-

tional real-time systems. In J. Li and Z. Guo, editors, Proc. 7th Workshop on Mixed Criticality

Systems (WMC), RTSS, pages 26–29, 2019. 39

[630] K. Yang and Z. Dong. Mixed-criticality scheduling in compositional real-time systems with

multiple budget estimates. In Proc. IEEE Real-Time Systems Symposium (RTSS), pages 25–

37, 2020. 33

[631] K. Yang and Z. Guo. EDF-based mixed-criticality scheduling with graceful degradation by

bounded lateness. In Proc. 25th IEEE International Conference on Embedded and Real-Time

Computing Systems and Applications (RTCSA), pages 1–6, 2019. 38

[632] T. Yang, Y. Tang, X. Jiang, Q. Deng, and N. Guan. Semi-federated scheduling of mixed-

criticality system for sporadic dag tasks. In Proc. 22nd IEEE International Symposium on

Real-Time Distributed Computing (ISORC), pages 163–170, 2019. 43

[633] C. Yao, L. Qiao, L. Zheng, and X. Huagang. Efficient schedulability analysis for mixed-

criticality systems under deadline-based scheduling. Chinese Journal of Aeronautics, 2014.

17

95

[634] E. Yip, M.M.Y Kuo, D. Broman, and P.S Roop. Relaxing the synchronous approach for

mixed-criticality systems. In Proc. Real-Time and Embedded Technology and Applications

Symposium (RTAS), pages 89–100. IEEE, 2014. 20

[635] M. Yoon, Junho J. Park, Y. Kim, JeongHoon J. Yi, and B. Koo. Research trends of mixed-

criticality system. The Journal of the Korea Contents Association, 18(9):125–140, 2018. 6

[636] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memory access control in multiproc-

cessor for real-time mixed criticality. In Proc. of ECRTS, pages 299–308, 2012. 25

[637] A. Zabos, R.I. Davis, A. Burns, and M. González Harbour. Spare capacity distribution using

exact response-time analysis. In 17th International Conference on Real-Time and Network

Systems, pages 97–106, 2009. 29

[638] L. Zeng, P. Huang, and L. Thiele. Towards the design of fault-tolerant mixed-criticality sys-

tems on multicores. In Proc. Compilers, Architectures and Synthesis for Embedded Systems,

page 6. ACM, 2016. 50

[639] L. Zeng, C. Xu, and R. Li. Partition and scheduling of the mixed-criticality tasks based on

probability. IEEE Access, 7:87837–87848, 2019. 36

[640] F. Zhang. Improvement to semi-partitioned cyclic executives for mixed-criticality scheduling

on multiprocessor platforms. IEEEAccess, 8:223606–223617, 2020. 23

[641] F. Zhang and A. Burns. Analysis of hierarchical EDF preemptive scheduling. In Proc. of

IEEE Real-Time Systems Symposium (RTSS), pages 423–435, 2007. 33

[642] F. Zhang and A. Burns. Schedulability analysis for real-time systems with EDF scheduling.

IEEE Transaction on Computers, 58(9):1250–1258, 2008. 17

[643] N. Zhang, C. Xu, J. Li, and M. Peng. A sufficient response-time analysis for mixed criticality

systems with pessimistic period. Journal of Computational Information Systems, 11(6):1955–

1964, 2015. 7, 13

[644] X. Zhang, J. Zhan, W. Jiang, Y. Ma, and K. Jiang. Design optimization of security-sensitive

mixed-criticality real-time embedded systems. In L. George and G. Lipari, editors, Proc.

ReTiMiCS, RTCSA, pages 12–17, 2013. 22, 48

[645] Y-W. Zhang. Energy-aware mixed-criticality sporadic task scheduling algorithm. IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems, 40(1):78–86, 2021. 48

[646] Y-W. Zhang. Energy-aware non-preemptive scheduling of mixed-criticality real-time task

systems. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 2021.

49

[647] M. Zhao, D. Liu, X. Jiang, W. Liu, G. Xue, C. Xie, Y. Yang, and Z. Guo. CASS: Criticality-

aware standby-sparing for real-time systems. Journal of Systems Architecture, 100:101661,

2019. 31

[648] Q. Zhao, Z. Al-Bayati, Z. Gu, and H. Zeng. Optimized implementation of multirate mixed-

criticality synchronous reactive models. ACM Trans. Des. Autom. Electron. Syst., 22(2):23:1–

23:25, 2016. 43

[649] Q. Zhao, Z. Gu, and H. Zeng. Integration of resource synchronization and preemption-

thresholds into EDF-based mixed-criticality scheduling algorithm. In Proc. RTCSA, 2013.

11, 18

[650] Q. Zhao, Z. Gu, and H. Zeng. PT-AMC: Integrating preemption thresholds into mixed-

criticality scheduling. In Proc. Design Automation and Test in Europe (DATE), pages 141–

146, 2013. 11

96

[651] Q. Zhao, Z. Gu, and H. Zeng. HLC-PCP: A resource synchronization protocol for certifiable

mixed criticality scheduling. Embedded Systems Letters, IEEE, 6(1), 2014. 18

[652] Q. Zhao, Z. Gu, and H. Zeng. Resource synchronization and preemption thresholds within

mixed-criticality scheduling. ACM Transactions on Embedded Computing Systems (TECS),

14(4):81, 2015. 18

[653] Q. Zhao, Z. Gu, H. Zeng, and N. Zheng. Schedulability analysis and stack size minimization

with preemption thresholds and mixed-criticality scheduling. Journal of Systems Architecture,

83:57–74, 2017. 11

[654] Q. Zhao, M. Qu, and H. Zeng. Schedulability analysis and stack size minimization for adap-

tive mixed criticality scheduling with semi-clairvoyance and preemption thresholds. Journal

of Systems Architecture, page 102383, 2022. 11, 21

[655] Y. Zhao and H. Zeng. An efficient schedulability analysis for optimizing systems with adap-

tive mixed-criticality scheduling. Real-Time Systems, 53(4):467–525, 2017. 11

[656] Y. Zhou, S. Samii, P. Eles, and Z. Peng. Partitioned and overhead-aware scheduling of mixed-

criticality real-time systems. In Proc. of 24th Asia and South Pacific Design Automation

Conference, ASPDAC, pages 39–44. ACM, 2019. 19

[657] Y. Zhou, S. Samii, P. Eles, and Z. Peng. Scheduling optimization with partitioning for mixed-

criticality systems. Journal of Systems Architecture, 98:191–200, 2019. 19

[658] L. Ziarek and E. Blanton. The Fiji MultiVM archiecture. In Proc. JTRES. ACM, 2015. 46

[659] M. Zimmer, D.Broman, C. Shaver, and E.A. Lee. FlexPRET: A processor platform for mixed-

criticality systems. In Proc. RTAS, pages 101–110, 2014. 46

[660] A. Zuhily and A. Burns. Exact scheduling analysis of non-accumulatively monotonic multi-

frame tasks. Real-Time Systems Journal, 43:119–146, 2009. 13

97

	Introduction
	Mixed Criticality Models
	Single Processor Analysis
	Job Scheduling
	Fixed Priority Scheduling
	RTA-Based approaches
	Slack scheduling
	Period transformation

	EDF Scheduling
	Shared Resources
	Static and Synchronous Scheduling
	Varying Speed Processors
	Semi-Clairvoyant Scheduling

	Multiprocessor Analysis
	Task Allocation
	Schedulability Analysis
	Communication and other Resources

	Links to other Research Topics
	Hard and Soft Tasks
	Fault Tolerant Systems (FTS)
	Security
	Hierarchical Scheduling
	Cyber Physical Systems and the Internet of Things
	Probabilistic Real-Time Systems

	More Realistic MCS Models
	More Formal Treatments
	Utilisation Bounds
	Speedup Factors
	Formal Language and Modelling Issues

	Systems Issues
	Run-Time Monitoring and Overheads
	Virtualisation and Operating System Support
	Hardware Aspects
	Benchmarks and Comparative Studies
	Criticality-Aware Power Consumption
	Issues Relating to Modelling and Tool Support

	Industry Practice and Standards
	Beyond Mixed-Criticality
	PhD Awards for Research within the Field of MCS
	Conclusion and Directions for Future Work
	Literature

