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Abstract. We study the probability that one beta-distributed random vari-

able exceeds the maximum of two others, allowing all three to have general

parameters. This amounts to studying Euler transforms of products of two

incomplete beta functions. We provide a closed form for the general problem

in terms of Kampé de Fériet functions and a variety of simpler closed forms

in special cases. The results are applied to derive the moments of the maxi-

mum of two independent beta-distributed random variables and to find inner

products of incomplete beta functions. Restricted to positive integer param-

eters, our results are applied to determine an expected exit time for a con-

ditioned random walk and also to a combinatorial problem of enumerating

strings comprised of three different letters, subject to constraints.

1 Introduction

In this note, we investigate and document various integrals of incomplete beta functions,

of interest in their own right, which have applications to probability theory and combina-

torics. Among other things, we will provide formulae for: (a) all moments of the maximum

of two independent random variables following beta distributions with arbitrary parameters,

(b) inner products of incomplete beta functions, and (c) solutions to a combinatorial problem

involving the enumeration of strings of certain type.

For parameters μ,μ′ > 0, we write Xμ,μ′ ∼ Beta(μ,μ′) for the random variable with

density proportional to sμ−1(1 − s)μ
′−1 for s ∈ [0,1]. The cumulative distribution function

of Xμ,μ′ is given for t ∈ [0,1] by the regularized incomplete beta function

I
(

μ,μ′; t
)

= P(Xμ,μ′ ≤ t) =
1

B(μ,μ′)

∫ t

0
sμ−1(1 − s)μ

′−1 ds,

where B(μ,μ′) is the beta function

B
(

μ,μ′) =
Ŵ(μ)Ŵ(μ′)

Ŵ(μ + μ′)
=

∫ 1

0
sμ−1(1 − s)μ

′−1 ds.

We are interested in calculating integrals of the following type:

B
(

λ,λ′,μ,μ′, ν, ν′) :=
1

B(λ,λ′)

∫ 1

0
tλ−1(1 − t)λ

′−1I
(

μ,μ′; t
)

I
(

ν, ν′; t
)

dt, (1)

and will provide a closed form for the general case, in terms of Kampé de Fériet functions

(Kampé de Fériet (1921a, 1921b)), and a variety of special cases in terms of hypergeomet-

ric and elementary functions. When the six parameters are all positive reals, the integrals

converge and have the probabilistic interpretation

B
(

λ,λ′,μ,μ′, ν, ν′) = P
(

Xλ,λ′ > max{Yμ,μ′,Zν,ν′}
)

, (2)
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where Xλ,λ′ , Yμ,μ′ , Zν,ν′ are independent beta random variables, as is clear on noting that

I (μ,μ′; t)I (ν, ν′; t) is the cumulative distribution function for max{Yμ,μ′,Zν,ν′}. In conse-

quence, the following identities are obvious:

B
(

λ,λ′,μ,μ′, ν, ν′) = B
(

λ,λ′, ν, ν′,μ,μ′) (3)

and

B
(

λ,λ′,μ,μ′, ν, ν′) +B
(

μ,μ′, ν, ν′, λ, λ′) +B
(

ν, ν′, λ, λ′,μ,μ′) = 1. (4)

Furthermore, setting λ′ = 1 yields

B
(

λ,1,μ,μ′, ν, ν′) = λ

∫ 1

0
tλ−1I

(

μ,μ′; t
)

I
(

ν, ν′; t
)

dt

= 1 −
∫ 1

0
tλ

d

dt

(

I
(

μ,μ′; t
)

I
(

ν, ν′; t
))

dt

= 1 −E
[

max{Yμ,μ′,Zν,ν′}λ
]

, (5)

and so all moments of the random variable max{Yμ,μ′,Zν,ν′} may be deduced from the family

of integrals in (1). Thanks to the invariance of the beta distribution under the transformation

(s,μ) ↔ (1 − s,μ′), B(λ,λ′,μ,μ′, ν, ν′) may equivalently be expressed as

B
(

λ,λ′,μ,μ′, ν, ν′) = P
(

Xλ′,λ < min{Yμ′,μ,Zν′,ν}
)

; (6)

hence our results can just as well be used to determine properties of the minimum of two

independent beta random variables.

A closed form for B(λ,1,μ,μ′, ν, ν′) in terms of 3F2 hypergeometric functions at unit

argument (defined in (13)) is given in (19) below and immediately yields the following ex-

pectation values.

Proposition 1. Let Yμ,μ′ and Zν,ν′ be independent beta random variables as defined above.

Then for any λ ≥ 0 the λ’th moment of max{Yμ,μ′,Zν,ν′} is given by

E
[

max{Yμ,μ′,Zν,ν′}λ
]

=
B(λ + μ + ν,μ′)

νB(μ,μ′)B(ν, ν′)
3F2

(

1 − ν′, ν, λ + μ + ν

ν + 1,μ′ + λ + μ + ν
;1

)

+
B(λ + μ + ν, ν′)

μB(μ,μ′)B(ν, ν′)
3F2

(

1 − μ′,μ,λ + μ + ν

μ + 1, ν′ + λ + μ + ν
;1

)

. (7)

The random variable max{Yμ,μ′,Zν,ν′} does not follow a standard distribution, yet partic-

ular cases of the integral in (1) arise in a number of rather diverse situations. For example, the

Program Evaluation and Review Technique (PERT) is a widely-used method for analysing

the time-to-completion of a project involving multiple subtasks. Independent beta random

variables are commonly used to model the time taken for each individual subtask to be com-

pleted; the maximum of two such distributions is then sometimes approximated by another

beta distribution with (numerically approximated) matching first and second moments (Sculli

and Wong (1985)).

Calculating properties of the maximum of a set of independent random variables falls, of

course, under the more general umbrella of determining their order statistics. In the case of

beta random variables, methods are provided in Thomas and Samuel (2008) and Abdelkader

(2010) for computing moments of order statistics in the case where the parameters of the beta

distribution(s) are all integer-valued. However, the resulting equations are either recursive

(Thomas and Samuel (2008)) or quite complicated nested sums of ‘inclusion exclusion’ type

(Abdelkader (2010)). For example, in Thomas and Samuel (2008) (in which it is also assumed
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that the random variables are all identically distributed) the expectation of the maximum of

two Beta(m,n) random variables is expressed as a linear combination of the first m + n

moments of a single Beta(m,n). The work of Nadarajah (2008) drops the assumption of

integer-valued parameters but, unlike the problem considered in the present paper, once again

requires that the random variables are identically distributed. In that setting, it is shown that

the moments of beta order statistics may be expressed as a sum of Kampé de Fériet functions.

By contrast, in Section 2.2 we shall show that in the case of two i.i.d. random variables,

Proposition 1 leads to the simple result

E
[

max{Yμ,ν,Zμ,ν}
]

= 1 −B(1,1,μ, ν,μ, ν) =
μ

μ + ν
+

2B(2μ,2ν)

(μ + ν)B(μ, ν)2
(8)

for arbitrary real μ,ν > 0 (see (25)); we note that the first term here is equal to E[Yμ,ν],
and the second to 1

2
E[|Yμ,ν − Zμ,ν |]. Similarly, when Y and Z both follow symmetric beta

distributions we have the following formula:

E
[

max{Yμ,μ,Zν,ν}
]

=
1

2
+

(μ + ν)B(μ + ν,μ + ν + 1)

4μνB(μ,μ + 1)B(ν, ν + 1)
. (9)

Cordeiro et al. (2011) introduce a number of beta generalized distributions and study their

properties. This family includes the so-called beta beta distribution BB(a, b,μ,μ′), with

density

tμ−1(1 − t)μ
′−1

B(μ,μ′)B(a, b)
I
(

μ,μ′; t
)a−1(

1 − I
(

μ,μ′; t
))b−1

, t ∈ [0,1].

When a = b = 2 this density is similar to the integrand in (1), but requires the three beta

(or incomplete beta) functions to have identical parameters. It is shown by Cordeiro et al.

(2011) that the moments of the beta beta distribution may be expressed as infinite sums of

generalized Kampé de Fériet functions. The particular case where a = b = 2 may be rewritten

(and, in some cases, greatly simplified) using our results. Indeed, if W ∼ BB(2,2,μ,μ′) then

for any λ ≥ 0,

1

6
E

[

Wλ]

=
∫ 1

0

tλ+μ−1(1 − t)μ
′−1

B(μ,μ′)
I
(

μ,μ′; t
)(

1 − I
(

μ,μ′; t
))

dt

= P(Yμ,μ′ < Xλ+μ,μ′ < Zμ,μ′)

= P(Yμ,μ′ < Xλ+μ,μ′) −B
(

λ + μ,μ′,μ,μ′,μ,μ′),

and these two terms may be computed using results derived below (Remark 3 and Proposi-

tion 2, respectively).

The integrals B(λ,λ′,μ,μ′, ν, ν′) are of course interesting in their own right as properties

of special functions. For general positive real parameters, we will first of all give a formula

in (17) exhibiting B(λ,λ′,μ,μ′, ν, ν′) as a series of terms involving 4F3 hypergeometric

functions at unity that terminates if μ′ ∈ N (by symmetry (3), there is a similar formula

terminating if ν′ ∈ N). We then show that a little more work yields the following slightly

simpler general formula involving 3F2 hypergeometric functions.

Proposition 2. For any set of positive real-valued arguments, the integral B(λ,λ′,μ,μ′,
ν, ν′) is given by

B
(

λ,λ′,μ,μ′, ν, ν′) = 1 −
C(λ,λ′,μ,μ′, ν, ν′) + C(λ,λ′, ν, ν′,μ,μ′)

B(λ,λ′)B(μ,μ′)B(ν, ν′)
,
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where

C
(

λ,λ′,μ,μ′, ν, ν′)

:=
∞
∑

k=0

(1 − λ′)kB(λ + k + μ + ν,μ′)

k!(λ + k)ν
3F2

(

1 − ν′, ν, k + λ + μ + ν

ν + 1, k + μ′ + λ + μ + ν
;1

)

(10)

terminates if λ′ ∈ N, and for general parameters can be written in terms of a Kampé de Fériet

function:

C
(

λ,λ′,μ,μ′, ν, ν′) =
B(λ + μ + ν,μ′)

λν
F

1:2;2
1:1;1

(

λ + μ + ν : λ,1 − λ′ ; ν,1 − ν′

λ + μ + ν + μ′ : λ + 1 ; ν + 1
;1,1

)

.

We will also show that there is a similar expansion that terminates if λ ∈ N; in the light of

(4) it follows that any B(λ,λ′,μ,μ′, ν, ν′) in which {μ,μ′} and {ν, ν′} both contain at least

one natural number may be expressed in terms of a finite sum of 3F2’s at unit argument. The

general definition of the Kampé de Fériet function is given in (22). It is easily implemented,

for instance, in the high precision Python library mpmath using the hyper2d function;

sample code for the function C is given below:

import mpmath as mp

def C(l,lpr,m,mpr,n,npr):

lmn=l+m+n

return mp.beta(lmn,mpr)/(l*n)*mp.hyper2d({’m+n’:[lmn], ’m’:[1-lpr,l],

’n’:[1-npr,n]},{’m+n’:[lmn+mpr], ’m’:[l+1], ’n’:[n+1]}, 1,1)

When λ = λ′ = 1, our results may alternatively be interpreted as the inner product of

I (μ,μ′; t) and I (ν, ν′; t) in L2((0,1), dt), with Proposition 1 showing that

∫ 1

0
I
(

μ,μ′; t
)

I
(

ν, ν′; t
)

dt = 1 −
B(1 + μ + ν,μ′)

νB(μ,μ′)B(ν, ν′)
3F2

(

1 − ν′, ν,1 + μ + ν

ν + 1,μ′ + 1 + μ + ν
;1

)

−
B(1 + μ + ν, ν′)

μB(μ,μ′)B(ν, ν′)
3F2

(

1 − μ′,μ,1 + μ + ν

μ + 1, ν ′ + 1 + μ + ν
;1

)

. (11)

Inner products of this type have useful applications. For example, our original motivation

to study this problem arose from the second author’s desire to calculate the L2-norm of

the function pμ(t) = I (μ,μ; t)2 (Fewster and Kontou (2020)). In that application—which

concerned singularity theorems in general relativity generalising those of Hawking (1966)—

incomplete beta functions enter as mollified step functions. If μ = m ∈ N, one has pm(t) =
O(tm) as t → 0+ and pm(t) = 1 − O((1 − t)m) as t → 1−, with pm monotone increasing

on [0,1]. Extending by zero to the left and unity to the right, one obtains a Cm−1 mollified

step function; concatenating with a reflected version of itself, one obtains a bump function

belonging to the Sobolev space Wm
0 (R). The application required ‖pm‖, ‖p′

m‖ and ‖p(m)
m ‖,

where the norms are those of L2((0,1), dt). The formulae

∥

∥p′
m

∥

∥

2 =
B(2m − 1,2m − 1)

B(m,m)2
,

∥

∥p(m)
m

∥

∥

2 =
(2m − 2)!(2m − 1)!

(m − 1)!2

are straightforward (Fewster and Kontou (2020), Appendix), while the formula

‖pm‖2 = B(1,1,m,m,m,m) =
1

2
−

(2m)!4

4(4m)!m!4
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(stated but not proved in Fewster and Kontou (2020)) is obtained by the methods of the

present note. Indeed, writing (9) for integer parameters one has the inner product

〈pm,pn〉 = B(1,1,m,m,n,n) =
1

2
−

1

4

(m+n
m

)2

(2m+2n
2m

)

(m,n ∈N), (12)

from which the formula for ‖pm‖2 given above follows immediately.

As will be shown in Section 2, B(λ,λ′,μ,μ′, ν, ν′) may be recouched using generalised

hypergeometric functions. A recent paper of Conway (2017) deals with some related indef-

inite integration formulae, but unfortunately these do not include our integral of interest.

The methods we will use are essentially standard, the main tool being the Euler transform

of hypergeometric functions, but some of the special cases are evaluated using ‘contigu-

ous’ generalisations of the classical Whipple and Dixon identities for hypergeometric func-

tions derived by Lavoie et al. (1994) and Lavoie, Grondin and Rathie (1996). In Section 3,

we specialise to integer parameters and give two applications of our results. The first con-

cerns exit times in a conditioned random walk. Specifically, we consider a random walk

on a rectangular lattice, starting from the origin, taking northward or eastward steps with

equal probability. Conditioned on the path passing through some point (M,N), we show

that the expected exit time from the rectangle with corners (0,0) and (M − m,N − n) is

(M + N + 1)B(1,1,m,M − m + 1, n,N − n + 1), where 1 ≤ m ≤ M , 1 ≤ n ≤ N . Second,

we show that B(ℓ, ℓ′,m,m′, n, n′) determines the number of strings that can be constructed

using three characters X, Y, Z, repeated ℓ + ℓ′ − 1, m + m′ − 1 and n + n′ − 1 times

respectively, subject to the constraint that the ℓ’th X appears after at least m Y’s and n Z’s.

Thus, our results provide closed form solutions to this combinatorial problem. Various inte-

ger sequences that emerge from special cases of this analysis are presently unknown to the

On-Line Encyclopedia of Integer Sequences,1 indicating the novelty of our results.

2 Main results

2.1 General formulae

We begin by recalling some basic facts concerning generalised hypergeometric functions,

defined as usual by

pFq

(

a1, . . . , ap

b1, . . . , bq
; t

)

=
∞
∑

k=0

(a1)k . . . (ap)k

(b1)k . . . (bq)k

tk

k!
, (13)

where the Pochhammer symbol (a)k = a(a+1) · · · (a+k−1) denotes the kth rising factorial

of a. The Euler transform (NIST, Eq. 16.5.2) states that
∫ 1

0
uc−1(1 − u)d−c−1

pFq

(

a1, . . . , ap

b1, . . . , bq
; tu

)

du

=
Ŵ(c)Ŵ(d − c)

Ŵ(d)
p+1Fq+1

(

a1, . . . , ap, c

b1, . . . , bq, d
; t

)

. (14)

Starting with 1F0(−a; t) = (1 − t)a the Euler transform immediately yields one of the hyper-

geometric representations of the regularized incomplete beta function:

I
(

μ,μ′; t
)

=
1

B(μ,μ′)

∫ t

0
sμ−1(1 − s)μ

′−1 ds =
tμ

B(μ,μ′)

∫ 1

0
uμ−1

1F0

(

1 − μ′; tu
)

du

=
tμ

μB(μ,μ′)
2F1

(

1 − μ′,μ
μ + 1

; t
)

. (15)

1https://oeis.org/
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Accordingly, our integral B(λ,λ′,μ,μ′, ν, ν′) may be expressed in terms of an Euler trans-

form of a product of hypergeometric functions

B
(

λ,λ′,μ,μ′, ν, ν′)

=
1

μνB(λ,λ′)B(μ,μ′)B(ν, ν′)

×
∫ 1

0
tλ+μ+ν−1(1 − t)λ

′−1
2F1

(

1 − μ′,μ
μ + 1

; t
)

2F1

(

1 − ν′, ν
ν + 1

; t
)

dt. (16)

A product of 2F1 hypergeometric functions of t can be represented as a series in t with

coefficients involving values of 4F3 hypergeometric functions evaluated at 1 (Erdélyi et al.

(1953), 4.3(14)), giving, in this case,

2F1

(

1 − μ′,μ
μ + 1

; t
)

2F1

(

1 − ν′, ν
ν + 1

; t
)

=
∞
∑

n=0

μ(1 − μ′)ntn

(μ + n)n! 4F3

(

1 − ν′, ν,−μ − n,−n

1 + ν,μ′ − n,1 − μ − n
;1

)

.

The two 2F1 series converge absolutely on the unit circle (see NIST, 16.2(iii)), and so their

product in turn has an absolutely convergent Taylor series on the unit circle. Fubini’s theorem

thus permits the interchange of sum and integral once the series above has been substituted

into (16), yielding the general formula

B
(

λ,λ′,μ,μ′, ν, ν′) =
1

νB(λ,λ′)B(μ,μ′)B(ν, ν′)

∞
∑

n=0

(1 − μ′)n
(μ + n)n!

B
(

λ + μ + ν + n,λ′)

× 4F3

(

1 − ν′, ν,−μ − n,−n

1 + ν,μ′ − n,1 − μ − n
;1

)

, (17)

which terminates if μ′ ∈N.

Although its derivation was very direct, the final expression (17) is somewhat unwieldy.

The simpler formula given in Proposition 2 is better adapted to closed form evaluation in

special cases and can be obtained as follows. First, consider the case when ν′ = 1, with the

other five parameters arbitrary. Since I (ν,1; t) = tν , using (15) we see that

B
(

λ,λ′,μ,μ′, ν,1
)

=
1

B(λ,λ′)

∫ 1

0
tλ+ν−1(1 − t)λ

′−1I
(

μ,μ′; t
)

dt

=
1

μB(μ,μ′)B(λ,λ′)

∫ 1

0
tλ+μ+ν−1(1 − t)λ

′−1
2F1

(

1 − μ′,μ
μ + 1

; t
)

dt

=
B(λ + μ + ν,λ′)

μB(λ,λ′)B(μ,μ′)
3F2

(

1 − μ′,μ,λ + μ + ν

μ + 1, λ′ + λ + μ + ν
;1

)

, (18)

with the final equality following from a second application of the Euler transform. Using (4)

and (3) one has

B
(

λ,1,μ,μ′, ν, ν′) = 1 −B
(

μ,μ′, ν, ν′, λ,1
)

−B
(

ν, ν′,μ,μ′, λ,1
)

= 1 −
B(λ + μ + ν,μ′)

νB(μ,μ′)B(ν, ν′)
3F2

(

1 − ν′, ν, λ + μ + ν

ν + 1,μ′ + λ + μ + ν
;1

)

−
B(λ + μ + ν, ν′)

μB(μ,μ′)B(ν, ν′)
3F2

(

1 − μ′,μ,λ + μ + ν

μ + 1, ν′ + λ + μ + ν
;1

)

. (19)

In passing, we have proved Proposition 1 as a trivial consequence of (19) and (5).
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Now consider the more general case of the integral in (1), in which all parameters are real

and positive. Using the binomial theorem,

B
(

λ,λ′,μ,μ′, ν, ν′) =
1

B(λ,λ′)

∫ 1

0

∞
∑

k=0

(1 − λ′)k
k!

tλ+k−1I
(

μ,μ′; t
)

I
(

ν, ν′; t
)

dt.

The summands are integrable functions which, for sufficiently large k, all have a common

sign; we may therefore interchange sum and integral by Tonelli’s theorem, to give

B
(

λ,λ′,μ,μ′, ν, ν′) =
1

B(λ,λ′)

∞
∑

k=0

(1 − λ′)k
k!(λ + k)

B
(

λ + k,1,μ,μ′, ν, ν′). (20)

Using (19), together with the identity

∞
∑

k=0

(1 − λ′)k
k!(λ + k)

= B
(

λ,λ′), (21)

which arises from a binomial expansion of the beta function integral, we see that our integral

of interest can be expressed as a linear combination of 3F2 hypergeometric functions:

B
(

λ,λ′,μ,μ′, ν, ν′) = 1 −
C(λ,λ′,μ,μ′, ν, ν′) + C(λ,λ′, ν, ν′,μ,μ′)

B(λ,λ′)B(μ,μ′)B(ν, ν′)
,

where C(λ,λ′,μ,μ′, ν, ν′) is as defined by the series given in (10), which obviously termi-

nates in the case λ′ ∈ N.

For general (real positive) parameters, the series (10) may be evaluated in terms of a

Kampé de Fériet function (Kampé de Fériet (1921a, 1921b)), on noting that

λνC(λ,λ′,μ,μ′, ν, ν′)

B(λ + μ + ν,μ′)

=
∞
∑

k=0

(1 − λ′)k(λ)k(λ + μ + ν)k

k!(λ + 1)k(λ + μ + ν + μ′)k
3F2

(

1 − ν′, ν, k + λ + μ + ν

ν + 1, k + μ′ + λ + μ + ν
;1

)

=
∞
∑

k=0

∞
∑

j=0

(1 − λ′)k(λ)k(λ + μ + ν)k(λ + μ + ν + k)j (1 − ν′)j (ν)j

(λ + 1)k(λ + μ + ν + μ′)k(λ + μ + ν + μ′ + k)j (ν + 1)jk!j !

=
∞
∑

k=0

∞
∑

j=0

(λ + μ + ν)j+k(1 − λ′)k(λ)k(1 − ν′)j (ν)j

(λ + μ + ν + μ′)j+k(λ + 1)k(ν + 1)jk!j !

from which

C
(

λ,λ′,μ,μ′, ν, ν′) =
B(λ + μ + ν,μ′)

λν
F

1:2;2
1:1;1

(

λ + μ + ν : λ,1 − λ′ ; ν,1 − ν′

λ + μ + ν + μ′ : λ + 1 ; ν + 1
;1,1

)

follows by the definition of the Kampé de Fériet function. Here, we recall that the general

Kampé de Fériet function in 2 variables is given by

F
A:C;F
B:D;G

(

(a) : (c) ; (f )

(b) : (d) ; (g)
;x, y

)

=
∞
∑

m=0

∞
∑

n=0

((a))m+n((c))m((f ))n

((b))m+n((d))m((g))n

xmyn

m!n!
, (22)

where (a), (c) etc are sequences of length A, C etc, and the notation ((c))m =
∏C

i=1(ci)m
denotes the product of Pochhammer symbols. Thus, the proof of Proposition 2 is complete

and we have evaluated the full family of integrals B(λ,λ′,μ,μ′, ν, ν′) in terms of two Kampé

de Fériet functions.
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Remark 3. At this point, it is useful to note the simpler problem of calculating the probability

that one beta random variable exceeds another:

P(Xλ,λ′ ≥ Yμ,μ′) =
1

B(λ,λ′)

∫ 1

0
tλ−1(1 − t)λ

′−1I
(

μ,μ′; t
)

dt

=
1

μB(λ,λ′)B(μ,μ′)

∫ 1

0
tλ+μ−1(1 − t)λ

′−1
2F1

(

1 − μ′,μ
μ + 1

; t
)

dt

=
B(λ + μ,λ′)

μB(λ,λ′)B(μ,μ′)
3F2

(

1 − μ′,μ,λ + μ

μ + 1, λ + λ′ + μ
;1

)

, (23)

which follows by a simple application of first (15) and then (14). As ν → 0+ the random vari-

able Zν,1 converges in probability to 0, and (23) agrees as expected with the corresponding

limit of B(λ,λ′,μ,μ′, ν,1) in (18).

To conclude our general discussion, we note that (6) implies that

B
(

λ,λ′,μ,μ′, ν, ν′) = P
(

Xλ′,λ < min{Yμ′,μ,Zν′,ν}
)

= 1 − P(Xλ′,λ ≥ Yμ′,μ) − P(Xλ′,λ ≥ Zν′,ν)

+ P
(

Xλ′,λ ≥ max{Yμ′,μ,Zν′,ν}
)

= 1 − P(Xλ′,λ ≥ Yμ′,μ) − P(Xλ′,λ ≥ Zν′,ν)

+B
(

λ′, λ,μ′,μ, ν′, ν
)

,

and, combined with Remark 3, one may obtain from Proposition 2 an expression for

B(λ,λ′,μ,μ′, ν, ν′) involving a series of 3F2’s that terminates if λ ∈ N. Combining these ob-

servations with the identity in (4) shows that any B(λ,λ′,μ,μ′, ν, ν′) in which both {μ,μ′}
and {ν, ν′} contain at least one natural number may also be expressed as a finite sum of 3F2’s,

as claimed in Section 1. We refrain from writing these expressions explicitly.

2.2 Some special cases

We conclude this section by considering some particular sets of parameter values for which

the integral B(λ,λ′,μ,μ′, ν, ν′) can be expressed in terms of a small number of hypergeo-

metric or simpler functions.

Case 1: λ = λ′ = 1, μ′ = μ, ν′ = ν.

We first consider the situation in which the random variables Yμ,μ and Zν,ν both follow

symmetric beta distributions. Here the hypergeometric functions in (19) take the form

3F2

(

a, b, c

e, f
;1

)

,

where a + b = 1 + i + j , e + f = 2c + 1 + i, i = −1, j = 1. Consequently, they may be

evaluated using a contiguous generalization of Whipple’s theorem proved in Lavoie, Grondin

and Rathie (1996): that is, for a + b = 1, e + f = 2c

3F2

(

a, b, c

e, f
;1

)

=
Ŵ(e)Ŵ(f )

4a(c − 1)Ŵ(e − a)Ŵ(f − a)

×
(

Ŵ(1
2
(e − a + 1))Ŵ(1

2
(f − a))

Ŵ(1
2
(e + a + 1))Ŵ(1

2
(f + a))

+
Ŵ(1

2
(f − a + 1))Ŵ(1

2
(e − a))

Ŵ(1
2
(f + a + 1))Ŵ(1

2
(e + a))

)

.
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After rearrangement in (19), this gives the result leading to (9):

B(1,1,μ,μ, ν, ν) =
1

2
−

Ŵ(μ + 1
2
)Ŵ(ν + 1

2
)Ŵ(μ + ν + 1)

4
√

πŴ(1 + μ)Ŵ(1 + ν)Ŵ(μ + ν + 1
2
)

=
1

2
−

(μ + ν)B(μ + ν,μ + ν + 1)

4μνB(μ,μ + 1)B(ν, ν + 1)
.

Case 2: λ = λ′ = 1, μ′ = μ + 1, ν′ = ν + 1.

Similarly to Case 1, this can be evaluated using the i = 0, j = −1 case of Lavoie, Grondin

and Rathie (1996): that is, for a + b = 0, e + f = 2c + 1

3F2

(

a, b, c

e, f
;1

)

=
Ŵ(e)Ŵ(f )

22a+1Ŵ(e − a)Ŵ(f − a)

×
(

Ŵ(1
2
(e − a))Ŵ(1

2
(f − a))

Ŵ(1
2
(e + a))Ŵ(1

2
(f + a))

+
Ŵ(1

2
(e − a + 1))Ŵ(1

2
(f − a + 1))

Ŵ(1
2
(e + a + 1))Ŵ(1

2
(f + a + 1))

)

.

After rearrangement, this gives

B(1,1,μ,μ + 1, ν, ν + 1)

=
4μν + 3(μ + ν) + 2

2(2μ + 1)(2ν + 1)
−

(μ + ν)Ŵ(μ + ν + 1)Ŵ(μ + 1
2
)Ŵ(ν + 1

2
)

4
√

πŴ(μ + 1)Ŵ(ν + 1)Ŵ(μ + ν + 3
2
)

=
4μν + 3(μ + ν) + 2

2(2μ + 1)(2ν + 1)
−

(μ + ν)B(μ + ν + 1,μ + ν + 2)

μνB(μ,μ + 1)B(ν, ν + 1)
,

which may be written for integer parameters as

B(1,1,m,m + 1, n, n + 1) =
4mn + 3(m + n) + 2

2(2m + 1)(2n + 1)
−

m + n

4(m + n) + 2

(m+n
m

)2

(2m+2n
2m

)

. (24)

Case 3: λ = λ′ = 1, ν = μ, ν′ = μ′.
Here we consider the situation in which the random variables Yμ,μ′ and Zν,ν′ are identically

distributed. The corresponding hypergeometric functions in (19) may be computed using the

i = −1, j = 1 case of a contiguous generalization of Dixon’s theorem presented in Lavoie

et al. (1994): that is, for e = a − b, f = a − c + 1

3F2

(

a, b, c

e, f
;1

)

=
Ŵ(e)Ŵ(f )

4cŴ(f − c)Ŵ(f − b)

×
(

Ŵ(1
2
(f − c))Ŵ(a

2
− b − c + 1)

Ŵ(1
2
(a + 1))Ŵ(1

2
(e − b))

+
Ŵ(1

2
(f − c + 1))Ŵ(a

2
− b − c + 1

2
)

Ŵ(a
2
)Ŵ(1

2
(e − b + 1))

)

.

Taking a = 2μ + 1, b = μ and c = 1 − μ′, a little rearrangement gives

B
(

1,1,μ,μ′,μ,μ′) =
1

μ + μ′

(

μ′ −
2B(2μ,2μ′)

B(μ,μ′)2

)

, (25)

and the moment result in (8) follows immediately.
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Case 4: ν = μ, μ′ = ν′ = 1
2
.

For our final example we return to (16) and note that for this particular set of parameters one

may use an instance of Clausen’s formula (NIST, 16.12.2)

2F1

(

1
2
,μ

μ + 1
; t

)2

= 3F2

(

1,μ + 1
2
,2μ

μ + 1,2μ + 1
; t

)

to obtain

B

(

λ,λ′,μ,
1

2
,μ,

1

2

)

=
B(λ + 2μ,λ′)

μ2B(λ,λ′)B(μ, 1
2
)2

4F3

(

1,μ + 1
2
,2μ,λ + 2μ

μ + 1,2μ + 1, λ + λ′ + 2μ
;1

)

.

References (Lavoie et al. (1994), Lavoie, Grondin and Rathie (1996)) contain numerous

contiguous generalizations of the Dixon and Whipple theorems respectively, so it is clear

that many more special cases could be derived. For instance, if λ′ = 1 and the parameters

i1 = μ′ − μ − λ, i2 = ν′ − ν − λ and j = μ + ν − (μ′ + ν′) + λ are integers in the interval

[−3,3], the hypergeometric functions in (19) can be evaluated using the (i1, j) and (i2, j)

generalizations of Whipple’s theorem obtained in Lavoie, Grondin and Rathie (1996). Details

are left to the reader.

3 Applications

In this final section, we restrict attention to the case when all six parameters in our integral

(1) are positive integers, and show that the integrals are related to some attractive problems

involving a random walk and string enumeration. Let us now write B(ℓ, ℓ′,m,m′, n, n′) to

emphasise this restriction.

It is well known that the order statistics of the uniform distribution on [0,1] follow

beta distributions: the m’th smallest of m + m′ − 1 independent Uniform[0,1] random

variables is distributed as Beta(m,m′). As in Section 1, let Xℓ,ℓ′ ∼ Beta(ℓ, ℓ′), Ym,m′ ∼
Beta(m,m′) and Zn,n ∼ Beta(n,n′) be independent. Then we see that the probability

P(Xℓ,ℓ′ > max{Ym,m′,Zn,n′}) concerns L + M + N i.i.d. uniform draws from [0,1] taken

in three batches, which we will label ‘lime’, ‘magenta’ and ‘navy’, of sizes L = ℓ + ℓ′ − 1,

M = m + m′ − 1 and N = n + n′ − 1 respectively, and each ordered from smallest to largest.

Our interest is in the event that the ℓ’th lime value should exceed the maximum of the m’th

magenta and n’th navy values. As the individual draws from [0,1] are i.i.d., every reordering

of the L + M + N values obtained is equally probable. Therefore (recalling (2))

B
(

ℓ, ℓ′,m,m′, n, n′) =
(

L + M + N

L,M,N

)−1

T
(

ℓ, ℓ′,m,m′, n, n′), (26)

where T (ℓ, ℓ′,m,m′, n, n′) is the number of permutations of L lime, M magenta and N

navy counters (distinguishable only by their colour) placed in a line, in which the ℓ’th lime

counter lies to the right of at least m magenta and n navy counters. We now present our two

applications.

3.1 Exit time of a random walk on the lattice

Consider the case where ℓ = ℓ′ = 1 and we only have one lime counter. Conditional upon

the order of the magenta and navy counters, the lime counter is uniformly distributed on

the set of ‘gaps’ between them. The arrangements of the magenta and navy counters are in

bijection with paths on a M ×N square lattice, starting from position (0,0) and terminating at

(M,N), in which single steps may only be taken to the East (magenta counter) or North (navy
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counter). Coordinates are specified with the eastward position first. These can be thought of

as paths of a random walk on the lattice, started from the origin, which at each step moves

either East or North with equal probability and which is conditioned to pass through the point

(M,N).

Let A = (A0,A1, . . . ,AM+N ) be a path chosen uniformly at random from the set of all

such paths, and let U be uniformly distributed on the set {0,1, . . . ,M + N} (independently

of A). Recalling equation (6), B(1,1,m,m′, n, n′) is the probability that the lime counter

lies to the left of at least m magenta and n navy counters. Let R denote the rectangle with

corners (0,0) and (m′ − 1, n′ − 1); once a path has left R it can never re-enter, because only

northward or eastward steps are permitted. Thanks to the correspondence outlined above, we

see that

B
(

1,1,m,m′, n, n′) = P(AU ∈ R) = P(TR > U),

where TR = min{k : Ak /∈ R} is the time at which the random walk exits R. Since U is

uniform this may equivalently be written as

B
(

1,1,m,m′, n, n′) =
1

M + N + 1

M+N
∑

k=0

P(TR > k) =
E[TR]

M + N + 1
,

and so we see that our formulae for B(1,1,m,m′, n, n′) may be used to calculate the expected

exit time of this conditioned random walk.

For example, in the case m = n = m′ −1 = n′ −1 we may obtain the asymptotic behaviour

as n → ∞ of the exit time from the set [0, n]2 of a random walk conditioned to pass through

the point (2n,2n):

E[T[0,n]2] = (4n − 1)B(1,1, n, n + 1, n, n + 1)

= (4n − 1)

(

4n2 + 6n + 2

2(2n + 1)2
−

n

4n + 1

(2n
n

)2

(4n
2n

)

)

= 2n −

√

2n

π
+ O(1),

thanks to (24) and an application of Stirling’s formula. This can be compared to a simple

random walk on the lattice which at each step moves either East or North but which is not

conditioned to pass through the point (2n,2n). The corresponding expected exit time is given

by:

2n+1
∑

k=n+1

2k

(k−1
n

)

2k
= 2(n + 1) −

2Ŵ(n + 3/2)
√

πŴ(n + 1)
= 2n − 2

√

n

π
+ O(1),

as is easily seen by counting the number of paths which occupy a boundary point of R at time

k − 1 and subsequently exit at time k.

3.2 String enumeration

It follows from the discussion leading to (26) that formulae for B(ℓ, ℓ′,m,m′, n, n′) yield

solutions to a natural combinatorial problem, which may also be expressed as the enumer-

ation of strings of certain types. Specifically, T (ℓ, ℓ′,m,m′, n, n′) is the number of strings

comprised of L X’s, M Y’s and N Z’s, in which the ℓ’th X appears after at least m Y’s and n

Z’s.

To conclude, we give closed formulae for various cases of this problem, drawing upon

some of the special cases considered in Section 2.2. For example, T (1,1,m,m,n,n) is the

number of distinct strings consisting of 2m − 1 Y’s, 2n − 1 Z’s and one X in which the
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Table 1 Values of T (1,1,m,m,n,n) for small

integer values

m

m + n 1 2 3 4 5

2 2

3 7 7

4 15 52 15

5 26 192 192 26

6 40 510 1086 510 40

Table 2 Values of T (1,1,m,m+ 1, n,n+ 1) for

small integer values

m

m + n 1 2 3 4 5

2 16

3 53 53

4 124 306 124

5 240 1103 1103 240

6 412 3043 5664 3043 412

character X lies to the right of more than half of the Y’s and more than half of the Z’s; using

(12) one has

T (1,1,m,m,n,n) =
(2m + 2n − 1)!

(2m − 1)!(2n − 1)!

(

1

2
−

1

4

(m+n
m

)2

(2m+2n
2m

)

)

=
1

2B(2m,2n)
−

1

2B(m,n)

(

m + n

m

)

.

We tabulate some values in Table 1. The left-most column forms the sequence T (1,1,1,1,

n, n) = 1
2
n(3n + 1) of second pentagonal numbers, A005449(n) in the On-Line Encyclope-

dia of Integer Sequences (OEIS), but the full triangle is not presently known to the OEIS, nor

is the subsequence

T (1,1, n, n,n,n) =
1

2B(2n,2n)
−

1

2B(n,n)

(

2n

n

)

= 2,52,1086,20,840,382,510, . . . (n = 1,2, . . .)

obtained when there is an equal number (2n − 1) of Y’s and Z’s.

Similarly, using (24) and rearranging, one has

T (1,1,m,m + 1, n, n + 1) =
4mn + 3(m + n) + 2

4(m + n + 1)

(

2(m + n + 1)

2m + 1

)

−
m + n

2

(

m + n

m

)2

which counts the number of distinct strings consisting of 2m Y’s, 2n Z’s and one X in which

the character X lies to the right of at least half of the Y’s and at least half of the Z’s, tabulated

in Table 2. We also have

T (1,1, n, n + 1, n, n + 1) =
n + 1

2

(

4n + 2

2n + 1

)

− n

(

2n

n

)2

= 16,306,5664,101,950,1,798,776, . . . (n = 1,2, . . .)

for the case where there is an equal number (2n) of Y’s and Z’s.
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Table 3 Values of T (1,1,m,n,m,n) for small

integer values

m

m + n 1 2 3 4 5

2 2

3 16 6

4 90 52 20

5 448 306 180 70

6 2100 1568 1086 644 252

For a final example we use (25) to count the number of distinct strings of m + n − 1 Y’s,

m + n − 1 Z’s and one X in which the character X lies to the right of at least m of the Y’s and

m of the Z’s:

T (1,1,m,n,m,n) =
(2m + 2n − 1)!
(m + n − 1)!2

1

m + n

(

n −
2B(2m,2n)

B(m,n)2

)

= n

(

2m + 2n − 1

m + n

)

−
2mn

m + n

(

2m − 1

m

)(

2n − 1

n

)

.

We table some values of T (1,1,m,n,m,n) in Table 3. The left-most column forms the se-

quence T (1,1,1, n,1, n) = 2n
( 2n
n−1

)

= A253487(n − 1), and the leading diagonal forms

the sequence T (1,1,m,1,m,1) =
(2m

m

)

= A000984(m) of central binomial coefficients, but

once again the full triangle is not presently known to the OEIS.

These special cases have been picked out because the final answers are particularly simple.

However, any of the formulae given for B(ℓ, ℓ′,m,m′, n, n′) provide an answer to a corre-

sponding combinatorial problem; other instances are left to the reader.
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