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1 Introduction and summary

The purpose of this paper is to explore the connections between three topics:

1. Integrable Kondo defects in products of chiral SU(2) WZW models
∏
i ŝl(2)ki

[1–19].

These are families of mutually commuting line defects parameterized by a conformal

symmetry-breaking scale eθ ≡ λ−1.

2. Bethe equations for an affine SU(2) Gaudin model [20–22]. The Kondo lines can be

identified with a renormalized version of the quantum transfer matrices for the affine

Gaudin model. The corresponding Bethe equations (and Bethe vectors) should thus

control the spectrum of the transfer matrices.

3. Solutions of the affine ŝl(2) Bethe equations can be used to produce PSU(2) λ-opers

with singularities of trivial monodromy [20, 21, 23–27]. We identify the spectrum of

the transfer matrices with the Stokes data of the λ-opers. This provides a complete

ODE/IM correspondence for integrable Kondo problems.

– 1 –
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We will begin by a quick review of the affine Gaudin model in section 2. We then define

λ-opers with singularities of trivial monodromy and derive the affine Bethe equations in

section 3. We analyze the Stokes data at large and small λ in sections 5 and 6, respectively,

and compare it with direct calculations for the Kondo defects.

In the large λ regime, the Stokes data are obtained with the help of (exact) WKB anal-

ysis [28–38]. The examples under study have some unusual features that require us to gener-

alize the standard WKB analysis in order to evaluate the complete collection of the Stokes

data. In order not to clutter the main body, we will only quote the results in section 6 while

leaving the detailed review of the WKB analysis and our generalizations in the appendix B.

We will also see that the construction automatically includes integrable defects in coset

models

∏
i
ĝki

ĝ∑
i

ki

. We discuss briefly some alternative semiclassical limits in section 7.

Although we focus on SU(2) examples in the main body of the paper, we expect the

results to extend to general affine ADE Lie algebras and will comment on that in section 8.

We conclude the paper with a list of open questions in section 9.

2 Affine Gaudin models, classical and quantum

The affine Gaudin model, first studied in [21], is a somewhat conjectural integrable system

which quantizes the classical affine Gaudin model, in a manner analogous to the relation

between the classical and quantum KdV integrable systems [39–41].1

The classical affine Gaudin model is defined by a collection of Poisson-commuting

Hamiltonians built from classical currents J ai with Kac-Moody Poisson brackets. The latter

are organized into a Lax matrix

ϕ(z)La(z;σ) =
N∑

i=1

J ai (σ)

z − zi
(2.1)

where the zi are couplings and we use the auxiliary 1-form

ϕ(z)dz =

(
1 +

1

2

N∑

i=1

ki
z − zi

)
dz (2.2)

where ki are the levels for the currents J ai .

The Lax matrix is used to define both the Poisson-commuting transfer matrices

T [z] = TrP exp

(∮
La(z;σ)tadσ

)
, (2.3)

and families of local Hamiltonian densities H(n)
u (σ) labelled by exponents n of the affine

Kac-Moody algebra and zeros ζu of the twist function (2.2). In classical types, the H(n)
u are

given by specific homogeneous polynomials [42–45] in

Tr
(
ϕ(z)La(z;σ)ta

)r∣∣
z=ζu

, (2.4)

of total degree n+ 1 in the currents J ai .

1We will actually find that the quantum KdV integrable system can be recovered in a certain decoupling

limit from the affine Gaudin model, adjusting parameters in such a way that the total Kac-Moody currents

decouple and leave behind a coset model.

– 2 –
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One of our main proposals is that the correct quantization of the affine Gaudin model

involves Kondo line defects defined by coupling a spin to a collection of quantum Kac-Moody

currents Jai . These Kondo lines are defined in the UV in the same manner as the classical

transfer matrices:

T [z] = TrP exp

(∮ ∑

i

gi[z]J
a
i (σ)tadσ

)
. (2.5)

The couplings gi[z] need to be renormalized and acquire a scale dependence. It was

conjectured in [19] that the RG flow factors through a flow of the spectral parameter, so

that the spectral parameter may be identified with the (complexified) renormalization scale

eθ via dimensional transmutation. In other words, the RG flow defines a one-parameter

family of commuting line defects. The specific functional form of the couplings gi[z] along

the commuting family depends on the chosen renormalization scheme.

The RG flow is physically rich and depends sensitively on the spin of the auxiliary sl2

generators ta and on the relative UV couplings. The endpoints is some IR-free line defect

whose nature can be predicted with the help of the ODE/IM correspondence. For special

choices of spin and couplings, the endpoint is an irrelevant deformation of a single identity

line defect. Such a deformation must take the form

TrP exp

(∮ ∑

n

e−nθO(n)
u (σ)dσ

)
(2.6)

for some collection of bulk quasi-primaries O(n)
u (σ) of dimension n+ 1.

Now we denote with u the choice of UV line defect flowing to the identity line. We

will see that this generalizes naturally the choice of a zero ζu for ϕ(z) above. A special

property of such deformations by bulk chiral currents is that there exists a renormalization

scheme where the path-ordered exponential becomes effectively integration along separate

contours. Therefore the path-ordered exponential is essentially Abelian, and reduces to the

exponential of the zero-modes of the O(n)
u (σ).

These IR effective line defects commute with the transfer matrices by construction and

thus the zero-modes of O(n)
u can be identified with the quantum version of the classical

Hamiltonians H(n)
u . With the help of a WKB analysis of the ODE/IM solution, we will

match the vevs of the zero-modes of O(n)
u on eigenstates with the conjectural eigenvalues of

the quantum version of the H(n)
u proposed in [46].

3 Opers, λ-opers and affine opers

In this section, for simplicity, we specialize to the case of sl2. The generalisation to sl3 will

be discussed in section 8. The main objective of this section is to introduce the family of

Schrödinger operators which provides the conjectural full ODE/IM solution of the Kondo

defects spectrum problem:

∂2
x − λ−2P (x)− t(x), (3.1)

where P (x) = e2αx∏N
a=1(x − za)ka and t(x) is an auxiliary meromorphic classical stress

tensor which will be determined by a solution of the Bethe equations.

– 3 –
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We will motivate some of our definitions in analogy to the well-known correspon-

dence between the (non-affine) Gaudin model and opers with singularities of trivial mon-

odromy [47–49]. The latter is one of the most basic manifestations of the Geometric

Langlands correspondence and can be investigated with the help of supersymmetric gauge

theory [50, 51]. It would be very nice to give a similar derivation of the ODE/IM proposal

based on gauge theory or string theory constructions.

3.1 sl2 opers

An sl2 oper is a complexified Schrödinger operator

∂2
x − t(x) (3.2)

with a natural transformation law under a change of coordinate

∂2
x − t(x) = (∂xx̃)

3
2

(
∂2
x̃ − t̃(x̃)

)
(∂xx̃)

1
2 . (3.3)

This implies that t(x) transforms as a classical stress tensor

t(x) = (∂xx̃)2t̃(x̃) +
3

4

(
∂2
xx̃

∂xx̃

)2

− 1

2

∂3
xx̃

∂xx̃
. (3.4)

We will always consider sl2 opers for which t(x) is a rational function and only allow

coordinate transformations which preserve this property.

We will typically denote a solution/flat section of the Schrödinger equation as ψ(x):

∂2
xψ(x) = t(x)ψ(x) (3.5)

and the (constant) Wronskian of two solutions as

(ψ,ψ′) = ψ(x)∂xψ
′(x)− ψ′(x)∂xψ(x). (3.6)

The data of an sl2 oper (3.2) is equivalent to that of a flat connection

∂x +

(
0 t(x)

1 0

)
. (3.7)

More generally, see for instance [52], an sl2 oper can be described as a flat connection of

the form

∂x +

(
a(x) b(x)

1 −a(x)

)
(3.8)

where a(x) and b(x) are rational functions, modulo gauge transformations by unipotent

upper-triangular matrices whose entries are rational functions. We can fix the gauge

invariance completely by bringing (3.8) to its unique canonical form (3.7) with stress tensor

given by

t(x) = b(x) + ∂xa(x) + a(x)2. (3.9)

– 4 –
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3.2 sl2 λ-opers

An sl2 λ-oper, or simply λ-oper, is a complexified Schrödinger operator with standard

dependence on a quantization parameter ~, here denoted as λ, namely

∂2
x −

P (x)

λ2
− t(x). (3.10)

The coordinate transformations act in the same way as for an sl2 oper, so that t(x) is a

classical stress tensor and P (x) is a quadratic differential. We will always work with λ-opers

for which t(x) is a rational function on C but allow P (x) to be a more general analytic

function, typically with branch points or an essential singularity at infinity, but whose

logarithmic derivative is a rational function.

The data of a λ-oper can be encoded in a flat connection of the form

∂x +

(
0 P (x)λ−1 + t(x)λ

λ−1 0

)
. (3.11)

More generally, an sl2 λ-oper is a flat connection

∂x +

(
a(x) P (x)λ−1 + b(x)λ

λ−1 −a(x)

)
, (3.12)

where a(x) and b(x) are rational functions, modulo gauge transformations by upper-

triangular matrices of the form (
1 v(x)λ

0 1

)
, (3.13)

for some rational function v(x). Every λ-oper admits a unique canonical form as in (3.11)

with stress tensor as in (3.9).

Of course, we could equally describe a λ-oper using a flat connection of the form

∂x +

(
0 λ−1

P (x)λ−1 + t(x)λ 0

)
. (3.14)

This leads to another (equivalent) way of describing λ-opers, namely as a flat connection

∂x +

(
a(x) λ−1

P (x)λ−1 + b(x)λ −a(x)

)
(3.15)

modulo gauge transformations by lower-triangular matrices of the form
(

1 0

v(x)λ 1

)
. (3.16)

3.3 Miura opers and singularities of trivial monodromy

A Miura sl2 oper, or simply Miura oper for short, is a connection of the form (3.8) with

b(x) = 0, namely

∂x +

(
a(x) 0

1 −a(x)

)
. (3.17)

– 5 –
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Its equivalence class modulo gauge transformations by unipotent upper-triangular ma-

trices defines an oper, with stress tensor t(x) = a(x)2 + ∂xa(x), which we refer to as

the oper underlying (3.17). The corresponding Schrödinger operator (3.2) factorises as

(∂x + a(x))(∂x − a(x)) and has an obvious solution ψ(x) = e
∫
a(x)dx which is an eigenline of

the monodromy around each singularity of t(x).

It is useful to allow the Miura oper to have apparent singularities where the monodromy

eigenline ψ(x) has a simple zero but where t(x) is regular. At such an apparent singularity,

a(x) behaves as

a(x) =
1

x− w +O(x− w). (3.18)

Another important type of singularity is one of the form

a(x) = − l

x− z +O(1) (3.19)

for a non-negative half integer l. Then

t(x) =
l(l + 1)

(x− z)2
+ · · · (3.20)

and the Schrödinger operator (3.2) has a local solution with ±1 monodromy around z, of

the form

ψ(x) ∼ (x− z)−l + · · · (3.21)

The Miura condition then gives a second local solution with ±1 monodromy around z, of

the form

ψ′(x) ∼ (x− z)l+1 + · · · (3.22)

It follows that the monodromy of any flat section around z must be ±1. Therefore z is a

regular singularity of trivial monodromy for t(x). One can also see this by noting that the

Miura oper (3.17) is gauge equivalent to the connection

∂x +

(
r(x) 0

(x− z)2l −r(x)

)
(3.23)

where r(x) = a(x) + l
x−z , which is manifestly regular at z for non-negative l.

A quick discussion of the term “trivial monodromy” is in order here. If l is allowed to

be half-integral, we have to consider the monodromy as living in PSL(2), so that ±1 is a

trivial monodromy. If l is restricted to be integral, then we can take the monodromy to be

valued in SL(2), and will still be trivial. This binary choice is a manifestation of Geometric

Langlands duality: PSL(2) opers are dual to the SL(2) Gaudin model, and viceversa.

3.4 Miura λ-opers and singularities of trivial monodromy

A Miura sl2 λ-oper, or simply Miura λ-oper, is a connection of the form

∂x +

(
a+(x) P (x)λ−1

λ−1 −a+(x)

)
. (3.24)

– 6 –
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This is of the general form (3.12) and therefore a Miura λ-oper defines a λ-oper with stress

tensor t(x) = a+(x)2 + ∂xa+(x). We refer to this as the λ-oper underlying (3.24). It can be

described as a complex Schrödinger operator

(∂x + a+(x))(∂x − a+(x))− P (x)

λ2
. (3.25)

Crucially, the connection (3.24) is locally gauge equivalent (in PSL(2)) to a connection

of the following alternative form

∂x +

(
−a−(x) λ−1

P (x)λ−1 a−(x)

)
(3.26)

where a+(x) + a−(x) = −1
2
∂xP (x)
P (x) . We refer to this connection as the dual of the Miura

λ-oper (3.24). Since it is of the general form (3.14) it also defines a λ-oper, which we call

the dual λ-oper underlying (3.24), with stress tensor t̃(x) = a−(x)2 + ∂xa−(x). The latter

can also be described as a complex Schrödinger operator of the same form as in (3.25) with

a+(x)→ a−(x).

Since the Miura λ-oper (3.24) and its dual (3.26) are gauge equivalent, we therefore

identify a crucial property of λ-opers: the pair of λ-opers with stress tensors built from

a±(x), i.e. the λ-oper and the dual λ-oper underlying a given Miura λ-oper, have the same

monodromy (in PSL(2), unless P (x) is a perfect square).

If at some generic point w we have

a+(x) =
1

x− w +O(z − w) (3.27)

then it follows by the above arguments for singularities of Miura opers that the Miura

λ-oper built from a+(x) has an apparent singularity at w while the other Miura λ-oper built

from a−(x) has a regular singularity at w, which must necessarily have trivial monodromy

(in PSL(2)). The same argument applies if at a point w′ we have

a−(x) =
1

x− w′ +O(z − w′) (3.28)

with the roles of the two Miura λ-opers (3.24) and (3.26) interchanged.

If at a zero z of order k of P (x) we have

a+(x) = − l

x− z +O(1) (3.29)

then

a−(x) = −
k
2 − l
x− z +O(1). (3.30)

As long as 0 ≤ l ≤ k
2 , the pair of Miura λ-opers both have trivial monodromy around z.

Indeed, the Miura λ-oper (3.24) is gauge equivalent to the connection

∂x +

(
r(x) (x− z)k−2lq(x)λ−1

(x− z)2lλ−1 −r(x)

)

– 7 –
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where we wrote P (x) = (x − z)kq(x) with q(z) 6= 0 and r(x) = a+(x) + l
x−z , which is

manifestly regular at z when 0 ≤ l ≤ k
2 .

A quick discussion of the term “trivial monodromy” is again in order here. If l is allowed

to be half-integral and k integral, we have to consider the monodromy as living in PSL(2),

so that ±1 is a trivial monodromy and gauge transformations can have a sign ambiguity. If

l is restricted to be integral and k even, then we can take the monodromy to be valued in

SL(2). This binary choice is presumably a manifestation of an affine Geometric Langlands

duality: PSL(2) λ-opers are dual to the affine SL(2) Gaudin model, and viceversa.

3.5 Opers with singularities of trivial monodromy and Bethe equations

For a general oper, the condition for a regular singularity to have trivial monodromy is an

intricate polynomial constraint on the coefficients of the expansion of t(x) near the regular

singularity.

Given a Miura oper on C with a rank 1 irregular singularity at infinity and whose other

singularities are all regular with trivial monodromy, we can write

a(x) = −α−
∑

a

la
x− za

+
∑

i

1

x− wi
. (3.31)

The condition that each wi is an apparent singularity reduces to the Bethe equations

−
∑

a

la
wi − za

+
∑

j 6=i

1

wi − wj
= α. (3.32)

These are the Bethe equations for a sl2 quantum Gaudin model with sites of spectral

parameters za, supporting sl2 irreps of dimension 2la + 1.

We call the overall residue of a(x) at infinity the weight at infinity of the Miura oper.

Since the underlying oper has trivial monodromy at all the za and wi we refer to it as

an oper with singularities of trivial monodromy. The eigenvalues of the quantum Gaudin

Hamiltonians can be extracted from the expression of t(x).

3.6 λ-opers with singularities of trivial monodromy and affine Bethe equations

We are interested in the class of Miura λ-opers on C for which a±(x) take the same form

a+(x) = −α+ −
∑

a

la
x− za

+
∑

i

1

x− wi
−
∑

i

1

x− w′
i

, (3.33a)

a−(x) = −α− −
∑

a

ka
2 − la
x− za

+
∑

i

1

x− w′
i

−
∑

i

1

x− wi
(3.33b)

and satisfy the Bethe equations

−
∑

a

la
wi − za

+
∑

j 6=i

1

wi − wj
−
∑

j

1

wi − w′
j

= α+, (3.34a)

−
∑

a

ka
2 − la
w′
i − za

+
∑

j 6=i

1

w′
i − w′

j

−
∑

j

1

w′
i − wj

= α−. (3.34b)

– 8 –
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These ensure that the (dual) Miura λ-oper built from a+(x) (resp. a−(x)) has apparent

singularities at each wi (resp. w′
i). The weight at infinity of the Miura λ-oper is the pair of

residues of a±(x) at infinity.

These are the Bethe equations for an affine sl2 quantum Gaudin model with sites

of spectral parameters za, supporting s̃l2 Weyl representations induced from sl2 irreps of

dimension 2la + 1, for WZW current algebras of level ka.

The λ-oper (resp. the dual λ-oper) underlying a given Miura λ-oper has regular

singularities with trivial monodromies at the zeroes za of P (x) as well as at w′
i (resp. wi),

for all values of λ. We therefore refer to the λ-oper and its dual as a pair of λ-opers with

singularities of trivial monodromy. They have interesting Stokes data at x =∞ which we

call the monodromy data of the pair of λ-opers.

The eigenvalues of the affine sl2 quantum Gaudin model transfer matrices, as well

as the quantum local Hamiltonians, can be extracted from the Stokes data in a manner

described in the remainder of the paper.

3.7 Weyl reflections

Given some sl2 oper with trivial monodromy t(x) = a(x)2 + ∂xa(x) and α 6= 0, there must

be two canonical solutions which at infinity behave like e±αx times some analytic functions.

The one behaving as e−αx is the Miura eigenline, with logarithmic derivative a(x). The

other gives a second rational solution ã(x) of t(x) = ã(x)2 + ∂xã(x), namely

ã(x) = α−
∑

a

la
x− za

+
∑

i

1

x− w̃i
(3.35)

with opposite weight at infinity to a(x). This gives an action of the Weyl group of sl2 on

the collection of Miura opers with the same stress tensor t(x). In particular, it acts as a

Weyl transformation on the weight at infinity of the Miura oper.

In terms of connections of the form (3.17), the above transformation a(x) → ã(x) is

implemented as a gauge transformation by a unipotent upper-triangular matrix which

preserves the Miura form of the connection. Explicitly, a gauge transformation of the Miura

oper (3.17) by (
1 f(x)

0 1

)
(3.36)

transforms it as a(x) → ã(x) = a(x) + f(x) provided f(x) is a (rational) solution of the

Riccati equation

∂xf(x) + f(x)2 + 2a(x)f(x) = 0. (3.37)

If we have a Miura λ-oper with trivial monodromy, such that α± are sufficiently generic,

then we have two transformations, α+ → −α+ or α− → −α−, which map it to a different

Miura λ-oper, with the same P (x) and the same monodromy data, as either one of the

λ-opers is fixed by the transformations.

Explicitly, on a Miura λ-oper (3.24) or its dual Miura λ-oper (3.26) we can perform a

gauge transformation by, respectively,
(

1 f+(x)λ

0 1

)
or

(
1 0

f−(x)λ 1

)
. (3.38)
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This produces a new pair of Miura λ-opers with a+(x) → ã+(x) = a+(x) ± f±(x) and

a−(x)→ ã−(x) = a−(x)∓ f±(x) provided that the functions f±(x) are (rational) solutions

of the Riccati equation

∂xf±(x) + f±(x)2 + 2a±(x)f±(x) = 0. (3.39)

These two reflections can be iterated to generate an interesting group: the Weyl group

of s̃l2. It acts as a Weyl transformation on the weight at infinity of the Miura affine oper.

More precisely, repeated reflections act as

· · · ←→ (α+ + 2α−,−α−)←→ (α+, α−)←→ (−α+, 2α+ + α−)

←→ (3α+ + 2α−,−2α+ − α−)←→ · · · (3.40)

and similarly on the weight at infinity.

3.8 Conjectural count of Bethe solutions

For generic values of α, the relation between opers with singularities of trivial monodromy

and the Gaudin model suggests that the number of solutions of the Bethe equations should

coincide with the graded dimension of the Gaudin Hilbert space, which is the product of

sl2 irreps of dimension 2la + 1, graded by total weight. A priori, this statement is rather

not obvious.

We expect a similar statement for the affine opers with singularities of trivial monodromy:

for generic values of α the number of solutions of the Bethe equations should coincide with

the graded dimension of the affine Gaudin Hilbert space, which is the product of s̃l2 Weyl

representations induced from sl2 irreps of dimension 2la + 1, for WZW current algebras of

level ka.

3.9 Special values of α±

The Weyl reflection is not well-defined for an oper with singularities of trivial monodromy

when α = 0, essentially because there isn’t a canonical choice of a second solution. Any

choice of solution will do, so we really get a CP
1 family of opers with singularities of trivial

monodromy. Only one of these solutions is special, in the sense that it decreases at infinity

faster than the others, and will thus have a special weight.

In the dual Gaudin model, we are turning off a parameter which breaks the global

sl2 symmetry. A whole sl2 irrep of eigenstates is represented by a single special oper with

singularities of trivial monodromy.

Something similar happens if α+ = n(α+ + α−) for any integer n. One of the Weyl

reflections in the chain breaks down, and instead we get a continuous family of solutions. In

the dual affine Gaudin model, we are restoring one of the sl2 subgroups of the total affine

s̃l2 symmetry. A whole sl2 irrep of eigenstates is represented by a single special affine oper

with singularities of trivial monodromy.

If we set both α± = 0, the whole Weyl chain breaks down and we get an intricate

continuous family of solutions. In the dual affine Gaudin model, we are restoring the

whole total affine s̃l2 symmetry. Essentially, the transfer matrices commute with the total

Kac-Moody currents and thus secretly live in the coset CFT.
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Miura sl2

λ-oper
sl2 λ-oper

s̃l2 oper/WKB

momentum

Miura

s̃l2 oper
dual Miura

sl2 λ-oper

dual sl2
λ-oper

Figure 1. Different types of opers: the middle dotted arrows are local gauge transformations by

diagonal matrices. The right arrows correspond to working modulo gauge transformations by upper

and lower triangular matrices of the form (3.13) and (3.16), respectively. The left arrow corresponds

to working modulo gauge transformations by matrices of the form (3.42).

3.10 WKB expansion and quasi-canonical form

The Miura λ-oper (3.24) and its dual (3.26) are locally gauge equivalent to a connection of

the more symmetric form

∂x +

(
a0(x)

√
P (x)λ−1

√
P (x)λ−1 −a0(x)

)
(3.41)

where a0(x) = a+(x) + ∂xP (x)
4P (x) . Following [20, 21], we will refer to this as a Miura s̃l2 oper.

We can consider the equivalence class of such a connection under gauge transformations by

matrices of the form

exp

(
u(x;λ) v+(x;λ)

v−(x;λ) −u(x;λ)

)
(3.42)

for some formal power series

u(x;λ) =
∞∑

n=0

P (x)−nun(x)λ2n, v±(x;λ) =
∞∑

n=0

P (x)−n− 1
2 v±
n (x)λ2n+1 (3.43)

where un(x) and v±
n (x) are rational functions. This defines an affine sl2 oper, or more

precisely an s̃l2 oper for the untwisted affine Kac-Moody algebra s̃l2 associated with sl2.

We are working in the loop realisation of s̃l2 associated with the principal Z-gradation.

The relationship between the different opers described above is depicted in figure 1.

Note that the notions of λ-oper and dual λ-oper are naturally associated with the two roots

of the Dynkin diagram of s̃l2.

By allowing gauge transformations as in (3.42) one can bring the connection (3.41) to

a quasi-canonical form [46]

∂x +

(
0 p(x;λ)

p(x;λ) 0

)
(3.44)

for some formal Laurent series

p(x;λ) =

√
P (x)

λ
+

∞∑

n=1

P (x)−n+ 1
2 pn(x)λ2n−1. (3.45)

Unlike the canonical form (3.7) of an sl2 oper as in (3.8), however, the quasi-canonical

form (3.44) of an affine sl2 oper is not unique. Indeed, the quasi-canonical form is preserved
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by residual gauge transformations of the form (3.42) with u(x;λ) = 0 and v−(x;λ) =

v+(x;λ), the effect of which is

p(x;λ) 7−→ p(x;λ) + ∂xv+(x;λ). (3.46)

Now the quasi-canonical form (3.44) can be transformed to

∂x +


−

1
2
∂xp(x;λ)
p(x;λ) λp(x;λ)2

λ−1 1
2
∂xp(x;λ)
p(x;λ)


 (3.47)

and by a further gauge transformation we can bring it back to the form

∂x +


 0 λ

(
p(x;λ)2 + 3

4

(
∂xp(x;λ)
p(x;λ)

)2
− 1

2
∂2

xp(x;λ)
p(x;λ)

)

λ−1 0


 . (3.48)

In particular, by comparing this with the expression (3.11) for the λ-oper underlying the

Miura λ-oper we started with, we recognize the equation for the WKB momentum

P (x)

λ2
+ t(x) = p(x;λ)2 +

3

4

(
∂xp(x;λ)

p(x;λ)

)2

− 1

2

∂2
xp(x;λ)

p(x;λ)
(3.49)

which is used to study the λ→ 0 limit of the transport data of the λ-oper.

In particular, the contour integrals
∮
p(x;λ)dx (3.50)

control the WKB asymptotics of certain transport coefficients. They are also known to

match the eigenvalues of local integrals of motion for the affine Gaudin model [25, 46, 53].

4 Bethe states and transfer matrices

4.1 Some Kac-Moody conventions

We follow the convention from [19]. Our normalization convention for the spin basis of sl2 is

t± =
1√
2

(t1 ± it2), t0 =
1√
2
t3, (4.1)

which satisfy the relations

[t0, t±] = ±t±, [t+, t−] = 2t0. (4.2)

The relations in the corresponding untwisted affine Kac-Moody algebra s̃l2 read
[
J0
n, J

0
m

]
=
κn

2
δn+m,0 (4.3)

[
J0
n, J

±
m

]
= ±J±

n+m (4.4)
[
J+
n , J

−
m

]
= 2J0

n+m + κnδn+m,0, (4.5)

for n,m ∈ Z. Let |l, κ〉 denote the ground state in the spin l module at level κ.
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4.1.1 Action of the spectral flow

Spectral flow [54, 55] is an automorphism of ŝl2 given, for α ∈ R, by

Uα : J+
n 7→ J+

n+α, J−
n 7→ J−

n−α, J0
n 7→ J0

n +
k

2
αδn,0, (4.6a)

L0 7→ L0 + αJ0
0 +

k

4
α2. (4.6b)

There is also an involutive automorphism induced by the Weyl group W(sl2) = Z2

w1 : J+
n 7→ J−

n , J−
n 7→ J+

n , J0
n 7→ −J0

n (4.7)

which satisfy

UαUα′ = Uα+α′ , U0 = w2
1 = 1, Uαw1 = w1U−α. (4.8)

We therefore have Aut(ŝl2) = R⋊ Z2. In particular, the even part is inner and corresponds

to the affine Weyl group W(ŝl2) = (2Z) ⋊ Z2. Consequently, the induced action by U2Z

maps each integral highest weight representation into itself, whereas more general Uα maps

between the (twisted) modules. For example,

U1 : j 7→ k

2
− j, j = 0,

1

2
, 1, . . . ,

k

2
. (4.9)

4.2 The Bethe equations and Bethe vectors

Let us take the quadratic differential P (x) = e2xxκ. This should correspond to an affine

Gaudin model with a single site, i.e. an integrable Kondo problem in the SU(2)κ WZW

model. A generic state in the spin l module of the SU(2)κ WZW model which is singular

under the zero-mode sl2 subalgebra can be described by a pair of Miura λ-opers of the form

a+(x) = − l
x

+
∑

i

1

x− wi
−
∑

i

1

x− w′
i

, (4.10a)

a−(x) = −1−
κ
2 − l
x

+
∑

i

1

x− w′
i

−
∑

i

1

x− wi
(4.10b)

with the Bethe roots wi and w′
i satisfying the Bethe equations

− l

wi
+
∑

j 6=i

1

wi − wj
−
∑

j

1

wi − w′
j

= 0, (4.11a)

−1−
κ
2 − l
w′
i

+
∑

j 6=i

1

w′
i − w′

j

−
∑

j

1

w′
i − wj

= 0. (4.11b)

It is useful to denote the set of all Bethe roots {wi} ∪ {w′
i} collectively as {ti}. To each

Bethe root wi we associate the lowering operator Fwi = J−
0 in s̃l2 and to each Bethe root w′

i

the lowering operator Fw′
i

= J+
−1. By analogy with the finite-dimensional case [56] and based

on the expression for the Bethe vector in affine Gaudin models with regular singularities [57],
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we then conjecture that, associated with each solution of the Bethe equations (4.11) with

m Bethe roots, there is a corresponding Bethe vector in the spin l module given by

|{ti}〉 =
∑

σ∈Sm

Ftσ(1)
Ftσ(2)

. . . Ftσ(m)
|l, κ〉

(
tσ(1) − tσ(2)

)(
tσ(2) − tσ(3)

)
. . .
(
tσ(m−1) − tσ(m)

)
tσ(m)

. (4.12)

This state is singular under the zero-mode sl2 subalgebra. Moreover, its Virasoro level is

equal to the number #w′ of Bethe roots w′
i and its spin is l + #w′ −#w.

The leading non-trivial term in the UV expansion of the transfer matrix is proportional

to the zero-mode quadratic Casimir T (2) = Ja0J
a
0 . Since (4.12) has definite spin it is an

eigenvector of T (2) with eigenvalue 2(l+#w′−#w)(l+1+#w′−#w). From the subleading

term in the UV expansion we obtain the operator

T (3) =
∑

n>0

i

2n
fabcJ

a
−nJ

b
0J

c
n +

∑

n>0

2

n
Ja−nJ

a
n. (4.13)

We checked that this non-trivial operator is indeed diagonalized by the examples of Bethe

vectors in subsection 4.3. It would be very nice to derive the Bethe equations directly from

the diagonalization of T (3) with the Bethe vector ansatz (4.12). Moreover, we conjecture

that the expectation value of T (3) in the generic eigenstate (4.12) is

〈{ti}|T (3)|{ti}〉 = −2(l + 1 + #w′ −#w)

(
∑

i

w′
i −

∑

j

wj

)
. (4.14)

A similar conjecture was made in [22] for the eigenvalue of the first non-local integral of

motion of the affine s̃l2 Gaudin model describing quantum KdV theory as a coset CFT. We

also expect from the UV expansion of the corresponding λ-oper in appendix A.2 that the

eigenvalues of all the higher order UV expansion coefficients T (n) of the transfer matrix are

given by supersymmetric polynomials in the Bethe roots {wi}∪ {w′
j}. This was conjectured

in [22] for the higher non-local charges of quantum KdV theory.

The expression for the next subleading term T (4) is much more complicated. We did

check in appendix A that the Bethe vector expectation value of the UV expansion of transfer

matrices matches the Stokes data of the corresponding λ-opers.

The multichannel case can be treated similarly. For the product of WZW model we

take the quadratic differential P (x) = e2x∏
a(x − za)κa . We can then describe a generic

state in the tensor product of spin la modules which is singular under the total zero-mode

sl2 subalgebra using a pair of Miura λ-opers of the form

a+(x) = −
∑

a

la
x− za

+
∑

i

1

x− wi
−
∑

i

1

x− w′
i

, (4.15a)

a−(x) = −1−
∑

a

κa
2 − la
x− za

+
∑

i

1

x− w′
i

−
∑

i

1

x− wi
(4.15b)
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where wi and w′
i are the Bethe roots satisfying the Bethe equations

−
∑

a

la
wi − za

+
∑

j 6=i

1

wi − wj
−
∑

j

1

wi − w′
j

= 0, (4.16a)

−1−
∑

a

κa
2 − la
w′
i − za

+
∑

j 6=i

1

w′
i − w′

j

−
∑

j

1

w′
i − wj

= 0. (4.16b)

If we denote the set of all Bethe roots collectively as {ti} then we conjecture that the

corresponding Bethe vector in the tensor product of spin li modules is given by

|{ti}〉 =
∑

{ti,j}

⊗

a

Fta,1Fta,2 . . . Fta,ma
|la, κa〉(

ta,1 − ta,2
)(
ta,2 − ta,3

)
. . .
(
ta,ma−1 − ta,ma

)(
ta,ma − za

) (4.17)

where the sum is over all partitions of the set {ti} into N ordered subsets (ta,1, . . . ta,ma)

with m1 + . . .+mN = m. It has Virasoro level #w′ and spin
∑
a la + #w′ −#w.

In the two-point case, the leading term in the UV expansion of the transfer matrix

is proportional to the total zero-mode quadratic Casimir (Ja0,1 + Ja0,2)2 with eigenvalue

2(l1 + l2 + #w′ −#w)(l1 + l2 + 1 + #w′ −#w) on the Bethe vector (4.17). The next term

in the UV expansion is proportional, in a suitable renormalization scheme, to

T (3) =
∑

n>0

i

2n
fabc(J

a
−n,1 + Ja−n,2)(Jb0,1 + Jb0,2)(Jcn,1 + Jcn,2)

+
∑

n>0

2

n
(Ja−n,1 + Ja−n,2)(Jan,1 + Jan,2)− (z1J

a
0,1 + z2J

a
0,2)(Ja0,1 + Ja0,2).

We conjecture that its expectation value in the eigenstate (4.17) is given by the supersym-

metric polynomial in the Bethe roots

〈{ti}|T (3)|{ti}〉 = −2(l1 + l2 + 1 + #w′ −#w)

(
z1l1 + z2l2 +

∑

i

w′
i −

∑

j

wj

)
. (4.18)

4.3 Examples

In this subsection we study the solutions to the Bethe equation (4.11) in the vacuum and

spin 1
2 WZW modules.

4.3.1 Vacuum module

Level 1 states.

#w′ = 1, #w = 0: the Bethe equation (4.11) is just κ
w′ + 2 = 0. This is inconsistent if

κ = 0. When κ 6= 0 we have w′ = −κ
2 and the corresponding Bethe vector (4.12) is then

proportional to

|{w′}〉 ∝ J+
−1|0, κ〉.

This is singular when κ = 0, corresponding to the fact that there are no solutions to the

Bethe equations in this case.
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#w′ = 1, #w = 1: no solution, as it should be since there is no singlet state at level 1 in

the vacuum module: J0
−1|0, κ〉 = −1

2J
−
0 J

+
−1|0, κ〉 is a descendant.

Level 2 states.

#w′ = 2, #w = 0: the Bethe equations (4.11) have solutions if and only if κ 6= 0, 1. The

Bethe vector corresponding to the cases κ 6= 0, 1 is proportional to

|{w′
1, w

′
2}〉 ∝ J+

−1J
+
−1|0, κ〉,

which for κ = 1 is singular and for κ = 0 is a descendant of the singular vector J+
−1|0, 0〉.

#w′ = 2, #w = 1: the Bethe equations have a solution if and only if κ 6= 0,−1. The

corresponding Bethe vector is given by

|{w′
1, w

′
2, w1}〉 =

(
1

w′
1 − w′

2

1

w′
2 − w1

1

w1
+

1

w′
2 − w′

1

1

w′
1 − w1

1

w1

)
J+

−1J
+
−1J

−
0 |0, κ〉

+

(
1

w′
1 − w1

1

w1 − w′
2

1

w′
2

+
1

w′
2 − w1

1

w1 − w′
1

1

w′
1

)
J+

−1J
−
0 J

+
−1|0, κ〉

+

(
1

w1 − w′
1

1

w′
1 − w′

2

1

w′
2

+
1

w1 − w′
2

1

w′
2 − w′

1

1

w′
1

)
J−

0 J
+
−1J

+
−1|0, κ〉,

which is proportional to J+
−2|0, κ〉 =

(
1
2J

+
−1J

−
0 + J0

−1

)
J+

−1|0, κ〉. In particular, when κ = 0 it

is a descendant of the singular vector J+
−1|0, 0〉.

The situation when κ = −1 is more subtle since we see that the state J+
−2|0,−1〉 in the

spin 0 module of level −1 is not described by a solution of the Bethe ansatz. In the limit

κ→ −1 of a solution of the Bethe equations for κ 6= −1, all the Bethe roots collide with

the origin so that the Miura λ-oper (4.10) becomes

a+(x) = −1

x
, a−(x) = −1 +

3

2x
. (4.19)

This is no longer of the form (4.10) since the residues at the origin are not given by the

pair (−l,−κ
2 + l) = (0, 1

2) corresponding to the highest weight of the vacuum module at

level κ = −1. However, the residues of (4.19) do correspond to a shifted Weyl reflection of

this highest weight. Indeed, the simple roots of s̃l2 act by shifted Weyl reflections on the

residues at the origin as

· · · ←→ (0, 1
2)←→ (1,−1

2)←→ (−1, 3
2)←→ · · ·

Therefore the pair (4.19) describes a generalised Miura λ-oper in the sense of [20, 49]. We

conjecture that the state J+
−2|0,−1〉 is described by this generalised Miura λ-oper. This is

checked to fourth order in the UV expansion in appendix A.

#w′ = 2, #w = 2: the Bethe equations admit a solution if and only if κ 6= −2, 0. The

corresponding Bethe vector is proportional to

|{w′
1, w

′
2, w1, w2}〉 ∝ Ja−1J

a
−1|0, κ〉.

This is singular when κ = −2, the critical level, and for κ = 0 it is a descendant of the

singular vector J+
−1|0, 0〉 since it can be written as

Ja−1J
a
−1|0, 0〉 =

(
−1

2J
0
−1J

−
0 − 1

4J
+
−1J

−
0 J

−
0 + 1

2J
−
−1

)
J+

−1|0, 0〉.
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4.3.2 Spin 1

2
module

Level 1 states.

#w′ = 1, #w = 0: the Bethe equations (4.11) have a solution if and only if κ 6= 1, in

which case the Bethe vector is proportional to

|{w′
1}〉 ∝ J+

−1|12 , κ〉.

This becomes singular at κ = 1.

#w′ = 1, #w = 1: the Bethe equations (4.11) are inconsistent when κ = −2 and for

κ 6= −2 they have the unique solution w′
1 = −(κ+2) and w1 = −1

3(κ+2). The corresponding

Bethe vector reads

|{w′
1, w1}〉 =

1

w′
1 − w1

1

w1
J+

−1J
−
0 |12 , κ〉+

1

w1 − w′
1

1

w′
1

J−
0 J

+
−1|12 , κ〉

=
3

(κ+ 2)2
(J+

−1J
−
0 + J0

−1)|12 , κ〉.

The vector (J+
−1J

−
0 + J0

−1)|12 , κ〉 becomes singular when κ = −2.

Note that when κ = 1 we have the spin 1
2 state

|{w′
1, w1}〉 = 2

3(J+
−1J

−
0 + J0

−1)|12 , 1〉 = 2J0
−1|12 , 1〉+ 2

3J
−
0 J

+
−1|12 , 1〉. (4.20)

The second term on the right hand side is a descendant of the singular vector J+
−1|12 , 1〉 and

is therefore zero in the spin 1
2 module at level κ = 1.

Level 2 states.

#w′ = 2, #w = 0: the Bethe equations (4.11) have no solution unless κ 6= 1, 2, in which

case the corresponding Bethe vector is given by the spin 5
2 state

|{w′
1, w

′
2}〉 =

1

(κ− 1)(κ− 2)
J+

−1J
+
−1|12 , κ〉.

The state J+
−1J

+
−1|12 , κ〉 becomes singular when κ = 2. When κ = 1 it is a descendant of the

singular vector J+
−1|12 , 1〉.

#w′ = 2, #w = 1: the Bethe equations (4.11) have two inequivalent families of solutions:

(i) The first family is valid for κ 6= −1
2 and the Bethe vector is proportional to

w+ = − 1
6

(
3 + 8κ+

√
41 + 64κ+ 64κ2

)
J+

−1(J0
−1 + J+

−1J
−
0 )|12 , κ〉

+ 1
3(κ+ 2)J+

−2|12 , κ〉.

This is singular for κ = −1
2 . Moreover, it vanishes for κ = −2.
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(ii) The second family is valid for κ 6= 1,−2 with Bethe vector proportional to

w− = − 1
6

(
3 + 8κ−

√
41 + 64κ+ 64κ2

)
J+

−1(J0
−1 + J+

−1J
−
0 )|12 , κ〉

+ 1
3(κ+ 2)J+

−2|12 , κ〉.

When κ = 1 we can rewrite this vector as w− = 1
3

(
5J0

−1 + J−
0 J

+
−1

)
J+

−1|12 , 1〉 which is

thus a descendant of the singular vector J+
−1|12 , 1〉. Likewise, when κ = −2 we obtain

the state w− = 13
3 J

+
−1(J0

−1 + J+
−1J

−
0 )|12 ,−2〉 which is a descendant of the singular

vector (J0
−1 + J+

−1J
−
0 )|12 ,−2〉.

In conclusion, we have the following cases:

• For κ 6= −2,−1
2 , 1 we have two spin 3

2 Bethe vectors w±.

• For κ = 1 we have just one spin 3
2 Bethe vector

w+ = J+
−2|12 , 1〉 − 4J+

−1(J0
−1 + J+

−1J
−
0 )|12 , 1〉.

• For κ = −1
2 we also have just one spin 3

2 Bethe vector

w− = 1
2J

+
−2|12 , 1〉+ J+

−1(J0
−1 + J+

−1J
−
0 )|12 , 1〉.

• For κ = −2 there are no spin 3
2 Bethe vectors.

#w′ = 2, #w = 2: there are again two inequivalent families of solutions:

(i) The first family is valid for κ 6= −2,−7
3 and the corresponding Bethe vector is

proportional to

w+ =
(
(κ+ 2)

(
κ+ 2 +

√
κ2 + 16κ+ 32

)
J+

−2J
−
0

+
(
5κ+ 12−

√
κ2 + 16κ+ 32

)
(J+

−1J
−
−1 + J0

−1J
0
−1)

+ 1
2

(
κ+

√
κ2 + 16κ+ 32

)
J+

−1J
+
−1J

−
0 J

−
0

+
(
κ2 − κ− 8 + (κ+ 3)

√
κ2 + 16κ+ 32

)
J−

−2

)
|12 , κ〉.

This vanishes when κ = −2. On the other hand, when κ = −7
3 we find

w+ = −J+
−1J

+
−1J

−
0 J

−
0 |12 ,− 7

3〉

which has zero norm.

(ii) The second family is valid for κ 6= 1 with Bethe vector proportional to

w− =
(

1
2

(
7κ+ 16−

√
κ2 + 16κ+ 32

)
J+

−2J
−
0

− 1
2

(
3κ+ 8 + 3

√
κ2 + 16κ+ 32

)
(J+

−1J
−
−1 + J0

−1J
0
−1)

+ 2J+
−1J

+
−1J

−
0 J

−
0

+
(
5κ+ 12 +

√
κ2 + 16κ+ 32

)
J−

−2

)
|12 , κ〉.
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For κ = 1 this vector can be rewritten as

w− = 2
(
J−

0 J
−
0 J

+
−1 − 4J−

−1J
+
−1 + 8J0

−1J
−
0

)
J+

−1|12 , 1〉

which is thus a descendant of the singular vector J+
−1|12 , 1〉.

In conclusion, we have the following cases:

• For κ 6= −7
3 ,−2, 1 we have two spin 1

2 Bethe vectors w±.

• For κ = 1 we have just one spin 1
2 Bethe vector

w+ = 2
(
10J0

−2 + 2J+
−1J

+
−1J

−
0 J

−
0 + 5J0

−1J
0
−1 + 5J+

−1J
−
−1 + 15J+

−2J
−
0

)
|12 , 1〉.

• For κ = −2 or κ = −7
3 we also have just one spin 1

2 Bethe vector

w− = 2
(
2J0

−2 + J+
−1J

+
−1J

−
0 J

−
0 − 2J0

−1J
0
−1 − 2J+

−1J
−
−1

)
|12 , κ〉.

5 The UV expansion

Kondo line defects in
∏
i SU(2)ki

WZW models are defined as the trace of the path ordered

exponential

T̂R ({gi}) := TrR P exp

(
i

∫ 2π

0

∑

i

git
aJai (σ)dσ

)
(5.1)

where ta are the generators of the Lie algebra su(2) and the trace is taken in an su(2)

representation R, labeled by its dimension n from now on. The factor i in front of the

integral is
√
−1. The WZW currents are denoted as Jai (σ) for each SU(2) factor. The

integration is along the compact direction.

Following [19], we adopt the convention that the physical RG flows start from asymp-

totically free defects and the couplings grow in the positive real direction approaching the

infrared. Therefore the UV expansion is concerned with small positive gi. Perturbatively in

gi, we can expand the exponential

T̂n ({gi}) = n+
∞∑

N=1

iN T̂ (N)
n , (5.2)

where each T̂
(N)
n depend on the set {gi}, and perform the loop integral. In doing so,

one carries out a careful and lengthy renormalization procedure since the currents don’t

commute with each other. This was done [19] following the prescription given in [17]. We

are interested in the expectation value of the Kondo line operator in a generic state |ℓ〉, with

ℓ denoting the list of quantum numbers of the state. Details can be found in appendix A.

If the twist α+ is nonzero, the Kondo line defect comes with a twist,

T̂R ({gi} , α+) := TrR ei2πα+t0P exp

(
i

∫ 2π

0

∑

i

git
aJai (σ)dσ

)
. (5.3)
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Therefore the leading order is simply given by the character in the representation R of

dimension n, namely

TrR ei2πα+t0 =
sinnπα+

sin πα+
. (5.4)

Note that in order for (5.3) to make sense, the integrand inside the path ordered exponential

has to be single-valued. Therefore, the inclusion of the nonzero twist in the trace forces us

to work with the twisted affine Lie algebra. It is easy to see that this twisted affine algebra

is precisely the one we get by acting with Uα+ defined in (4.6b) on the untwisted affine

algebra ŝl2.

It was proposed2 in [19] that the expectation values in a state |ℓ〉 of such a Kondo line

defect will coincide with the transport coefficients of the Miura λ-oper, where the quadratic

differential is P (x) = e2x∏
i(x− zi)ki for

∏
i SU(2)ki

WZW and where t(x) is constructed

from solutions of the Bethe equations for the state |ℓ〉. The corresponding Schrödinger

equation reads

∂2
xψ(x) =

(
1

λ2
e2x

∏

i

(x− zi)ki + t(x)

)
ψ(x). (5.5)

The UV perturbative expansion is available whenever the Stokes data for the Schrödinger

equation becomes close to the Stokes data for the simpler equation

∂2
xψ(x) = e2xψ(x). (5.6)

In order to study the UV asymptotics (0 < gi ≪ 1), we rewrite this as

∂2
xψ(x) =

(
e2θe2x

∏

i

(1 + gix)ki + t(x)

)
ψ(x) (5.7)

where e2θ = 1
λ2

∏
i g

−ki
i is identified with an RG scale. When t(x) = 0, the Miura λ-oper

describes the vacuum state whereas non-trivial t(x) = a+(x)2 + ∂xa+(x) that we build from

the solution to the Bethe equations (3.34) describes a more general state |ℓ〉.
Let ψ(x; θ) be the unique small solution, whose precise meaning is defined in the next

section, that decays exponentially fast along the ray of large real positive x + θ. The

normalization is chosen to match asymptotically the WKB series in (6.5). By the ODE/IM

correspondence, we identify

Tn;ℓ(θ) ≡ 〈ℓ|T̂n|ℓ〉 = i

(
ψ
(
x; θ − iπn

2

)
, ψ
(
x, θ +

iπn

2

))
. (5.8)

As the transfer function Tn;ℓ(θ) is independent of x, we can evaluate the Wronskian in a con-

venient region where the explicit form of ψ is accessible. For the case of SU(2)k chiral WZW

model, this region is 1/g ≫ −x≫ 0. For
∏m
i=1 SU(2)ki

, one can define an overall scaling

parameter g defined as 1
g = 1

m

∑m
i=1

1
gi

for which the relevant region is 1/g ≫ −x≫ 0 (see

appendix F.3 of [19] for details). This allows for a systematic expansion in powers of the gi.

In the same vein as in [23, 65], we can also define Q-functions, essentially as the

coefficients of ψ(x) in an expansion at large negative x. If the twist α+ in a+(x) is zero,

2The vacuum module at k = 1 and other related ODEs have been proposed and studied in [58–64].
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then the construction of Q-functions is given in [19] and reviewed in appendix A. As a

result, (5.8) becomes expressible as a quantum Wronskian

Tn;ℓ(θ) =
i

2ℓ+ 1

[
Qℓ

(
θ +

iπn

2

)
Q̃ℓ

(
θ − iπn

2

)
−Qℓ

(
θ − iπn

2

)
Q̃ℓ

(
θ +

iπn

2

)]
, (5.9)

a form that is familiar from the integrability literature.

This turns out to be a useful tool in the perturbative calculations as well. We can find

the expression for Q and Q̃ to sufficient order in g by comparing to a direct perturbative

evaluation of (5.7). For the ground state in a generic spin l module, the above claim has

been verified in [19]. In this paper we will present a few examples of the claim for excited

states in appendix A.

5.1 The coset scaling limit

We can scale the variable x in the λ-oper to get a slightly different parameterization

∂2
xψ(x) =

(
α2+

∑
i
ki

λ2
e2αx

∏

i

(x− α−1zi)
ki + α2t(αx)

)
ψ(x). (5.10)

A scaling limit α → 0 while keeping α−1zi and α
2+
∑

i
ki

λ2 fixed will bring this to a λ-oper

which is naturally associated to integrable lines in a coset model.

Physically, we are sending the gi to infinity while keeping their ratios fixed and adjusting

the RG flow scale. We expect the Kondo lines RG flow in that limit to admit an intermediate

regime where the line defects become effectively transparent to the overall WZW currents,

so that they can be identified with defect lines in a coset model. It would be nice to explore

this limit more carefully.

6 The IR expansion

The Kondo line defects Lj [θ], where j is the spin that labels the SU(2) representation and

θ is the spectral parameter, are asymptotically free line defects defined in a product of

WZW models. They have a non-trivial, possibly non-perturbative RG flow which can be

explored by looking at their action on the circle Hilbert space with the help of the ODE/IM

correspondence. In the UV, the action is given perturbatively by the corresponding operator

T̂j , defined in (5.1).

In the IR, the defects will flow to conformally-invariant defects. Because of their chiral

nature, in the IR they will commute with both holomorphic and anti-holomorphic stress

tensor and define topological line defects. A rich CFT such as the product of WZW models

can have a very large variety of topological line defects, which commute with the stress

tensor but with little else.

The ODE/IM correspondence, though, gives immediate evidence that the IR limit of

Kondo defects should be more special than that, and commute with all the Kac-Moody

currents. Indeed, we will see that the far IR limit of the ODE/IM solution is controlled by

a WKB leading answer which depends very little on the details of t(z), up to the choice
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of li. In particular, they are blind to the details of the Bethe roots, which control which

current descendants one is taking expectation values on.

Line defects which commute with the whole current algebra of the product of WZW

models are referred to as Verlinde line operators. They are labeled by the Kac labels, i.e.

same as current algebra primary operator. They are products of individual Verlinde lines

in each WZW factor.

Denoted by Lj , with j = 0, 1
2 , 1, . . . ,

k
2 , their expectation value in the vacuum state,

often called the quantum dimension, is given by

〈Lj〉 = d
(k)
2j+1 ≡

sin π
k+2(2j + 1)

sin π
k+2

. (6.1)

In the ground state of spin l, or in any descendant of that, their expectation value is

〈l, k|Lj |l, k〉 = d
(k)
2j+1;l ≡

sin π
k+2(2l + 1)(2j + 1)

sin π
k+2(2l + 1)

. (6.2)

If we go to the IR, but not to the infinitely far IR, the Kondo line defects will be described

as IR free deformations of some sums of products of Verlinde lines. The deformation can

involve any SU(2)-invariant local operators supported on the Verlinde lines. For generic

Verlinde lines, there are many such operators, looking like descendants of chiral primary

fields of various spins. We will see that the subleading WKB corrections do generically

involve fractional powers of the scale eθ which can be explained by the conformal dimension

of these operators.

As we mentioned in section 2, something special happens when the far IR defect is the

identity line, or some other Verlinde line which does not support non-trivial chiral primaries.

In such a situation, the IR free deformation must involve the integral along the line of

SU(2)-invariant bulk chiral operators, starting with the stress tensor. The expectation

values of these deformed identity lines are simply the exponential of the zero-modes of these

bulk operators, which behave as local Hamiltonians for the affine Gaudin model.

We will see below that the ODE/IM correspondence predicts such IR destiny for line

defects associated with pairs of Stokes sectors which are joined by a generic WKB line.3 The

number of such pairs is precisely the same as the number of zeroes for ϕ(z), as expected from

the classical affine Gaudin model. The WKB expansion of these reproduce the expectation

values of the quantum local Hamiltonians.

6.1 Vacuum state t(x) = 0

Let us first focus on the case of single SU(2) and t(x) = 0. The Schrödinger equation takes

the form

∂2
xψ(x) = e2θe2x(1 + gx)kψ(x). (6.3)

In this section, we are interested in the IR limit λ−1 = eθ →∞, where Voros/GMN-style

WKB analysis is applicable. The analysis is essentially the same as in [19], except that we

are also interested in the sub-leading terms in the λ expansion.

3In the case of a single SU(2), there is one generic WKB line; see the end of section 6.1.
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We will briefly review the analysis and leave details in appendix B. One starts by

reading off the quadratic differential P (x)dx2 = e2x(1+gx)kdx2, which has a zero of order k

at x0 = −1/g and an exponential singularity at infinity. For any angle ϑ ∈ R/2πZ, ϑ-WKB

lines are curves in the complex plane where

Im

[
eiϑ
√
P (x)dx · ∂t

]
= 0, (6.4)

where ∂t is the tangent vector of the curve. One such line passes through any point in the x

plane. Generic WKB lines go to positive infinity in both directions, joining two Stokes sectors

there. Special WKB lines hit a zero of P (x) such as x = −1
g or flow to negative infinity.4

The union of special WKB lines is called WKB diagram/spectral network. ϑ is chosen

such that eθ lies in the half plane centered on eiϑ, where the WKB approximation gives the

correct e−θ → 0 asymptotics. The structure of the spectral network governs which solutions

of the Schrödinger equation have a specific WKB asymptotic expansion.

In our current example, the structure of the WKB diagram is shown in figure 2. Special

WKB lines go towards positive infinity along the positive real x+ θ + iπn, n ∈ Z direction.

There are k + 2 of them that are connected to the order k zero x0 = −1
g . The remaining

special WKB lines go towards negative infinity with imaginary part shifted by ±π
2k.

Next, one needs to find a set of solutions, referred to as small solutions, which decrease

exponentially fast along the Stokes lines towards positive infinity (and thus along WKB lines

asymptoting to them). In particular, we define ψ0(x) to be the small solution that decreases

fast along the line of large real positive x+ θ and agrees with the WKB asymptotics along

this line

ψ0(x; θ) ∼ 1√
2∂Sasym(x, eθ)

e−Sasym(x,eθ) (6.5)

where Sasym(x, eθ) is the primitive of the WKB momentum, given by an asymptotic series

in large x and small e−θ. Although the WKB momentum is uniquely defined, its primitive

needs a choice of integration constant. We choose the leading term to be

eθ
∫ x

− 1
g

ey(1 + gy)
k
2 dy = eθe

− 1
g g

k
2

∫ x+ 1
g

0
eyy

k
2 dy. (6.6)

Different choices clearly lead to different normalization of the Wronskians, namely T

functions (5.8). This choice has the nice property later on that the exponent of (6.8) is zero

at the leading order. In a practical calculation involving subleading terms, one also needs

to make a choice for every order in e−θ.

Then for all n ∈ Z, we have a small solution ψn(x) ≡ ψ0(x; θ + iπn) along the large

positive real x+ θ + iπn direction.

4Special WKB lines are also sometimes called Stokes lines. In the situation at hand, there are two

possible meaning for “Stokes”: it may refer to the asymptotic expansion of a solution at large positive x, as

in defining the Stokes data of the oper, or it may refer to the WKB asymptotic expansion at small λ. In

order to avoid confusion, we use the terms “WKB” exclusively for the latter and “Stokes” for the former.

– 23 –



J
H
E
P
0
1
(
2
0
2
2
)
1
7
5

Next, we want to use the WKB network to evaluate the WKB asymptotics of the

Wronskians. In the standard Voros/GMN-style WKB analysis, one studies Wronskians

between two of the small solutions joined by a generic WKB line. These Wronskians are

controlled by the contour integral along the WKB line of the WKB one form whose leading

term is
√
P (x)dx. This collection of Wronskians is incomplete, though, unless all zeroes of

P (x) are simple.

As has been developed in [19] and appendix B, WKB analysis can be generalized to

study non-simple zeros. Roughly speaking, one also needs the information around the

matching regions, which, in the current example, are the order k zero x0 = −1
g , and the large

negative x. Correspondingly, one can derive WKB asymptotics for Wronskians between two

of the small solutions joined by a special WKB line to the same zero, or to negative infinity.

Following from the WKB diagram shown in figure 2 let us suppose, for convenience,

that the numbering of the special WKB lines that are connected to the zero at x = −1
g

is n0, n0 + 1, n0 + 2, . . . , n0 + k + 1. The precise value of n0 depends on the parity of k

and Im θ, which are given in [19] and are not important to us. There are three different

scenarios:

• Wronskians between two of the k + 2 small solutions whose special WKB lines are

connected to the zero, namely i(ψn, ψn′) for n0 ≤ n < n′ ≤ n0 + k + 1.

• Wronskians between small solutions whose special WKB lines are connected to large

negative matching region (to be made precise below), namely i(ψn, ψn′) for n < n′ ≤ n0

or n0 + k + 1 ≤ n < n′ or n ≤ n0 < n0 + k + 1 ≤ n′.

• The remaining ones can be related to the first two scenarios using Plücker formula.

In particular, to deal with the first case, it is important to study the local behavior

around the zero x0 = −1
g . Locally around x0, a zero of order k, the stress tensor should

take the form yk + . . . , with y being the coordinate in the local coordinate system. Indeed,

one can always find the coordinate transformation x→ y(x) such that stress tensor takes

the form of

yk + ak−2γ
kyk−2 + · · ·+ ajγ

2+jyj + · · ·+ a0γ
2 (6.7)

where γ = e−θ 2
k+2 . Importantly there are k−1 coefficients aj = a

(0)
j +γk+2a

(2)
j +γ2(k+2)a

(4)
j +

. . . that are uniquely fixed in γk+2 asymptotics. One can find a set of nice solutions Ak;i(y)

to this local problem and evaluate the Wronskian perturbatively. The general procedure to

do this is described in appendix B. On the other hand, Wronskians between small solutions

ψn(x) are equal to the Wronskians between the corresponding local solutions Ak;i(y) with a

careful treatment on the normalization of the solutions. We will only quote the result here,

leaving the details in appendix B,

i (ψn, ψn′) ∼ e0+O(e−θ)
(
d

(k)
n′−n +O(γ2)

)
(6.8)

whose leading term is given by the quantum dimension defined as

d(k)
n =

e
πi

k+2
n − e− πi

k+2
n

e
πi

k+2 − e− πi
k+2

. (6.9)
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Subleading terms are computable order by order in γ. See appendix B for the general

prescription. There are two exceptions k = 1, 2 where we can calculate Wronskians exactly.

The important part is that the corrections to the Wronskians come in as integer power of γ

but start from γ2 order.

In the second scenario, the special WKB lines ‘meet’ at the large negative x. It turns

out, for some suitably chosen x−∞, a shift of the coordinate x→ δ = x−x−∞ will transform

the quadratic differential into

e2δ (1 + geff(θ)δ)k . (6.10)

The details are given in appendix B. Here, what matters to us is that x−∞ has a large

negative real part and in the IR limit θ →∞ we have

x−∞ ∼ −θ −
1

2
k log(−gθ)− k2

4

log(−gθ)
θ

+O
(1

θ

)
. (6.11)

The coupling geff(θ) is defined by the relation

x−∞(θ) =
1

geff(θ)
− 1

g
(6.12)

and goes to 0 in the IR limit θ →∞. This is precisely the effective coupling for the infrared

free line defect, whose physical meaning will be given below in section 6.3. For now, we

only need the fact that geff(θ)→ 0 as θ →∞. Therefore, we can study the Wronskians of

solutions in geff expansion.

In the leading order, the local solutions are given by Bessel functions. Therefore by

means of Bessel function identities and with normalization factors carefully taken into

account, the results are

i(ψn, ψn′) ∼ exp

(
(−1)n + (−1)n

′

2
ei

πk
2 mk(g)eθ +O(e−θ)

)[
(n′ − n) +O(g2

eff)
]

(6.13)

whenever n ≤ n0 and n′ ≤ n0,

i(ψn, ψn′) ∼ exp

(
(−1)n + (−1)n

′

2
e−iπk

2 mk(g)eθ +O(e−θ)

)[
(n′ − n) +O(g2

eff)
]

(6.14)

whenever n ≥ n0 + k + 1 and n′ ≥ n0 + k + 1, and

i(ψn, ψn′) ∼ exp

(
(−1)nei

πk
2 + (−1)n

′
e−iπk

2

2
eθmk(g) +O(e−θ)

)[
(n′ − n− k) +O(g2

eff)
]

(6.15)

whenever n ≤ n0 and n′ ≥ n0 + k + 1.

In the third scenario, we can just use Plücker formula to reduce to the previous two

scenarios. Details can be found in [19].

Recall that the leading order of the second term agrees with the one from the UV

expansion and intuitively just counts the number of spacing between different special WKB
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lines at the left hand side of the special WKB diagram, see e.g. figure 2. The exponential

factor is the non-perturbative ground state energy shift.

As we discussed in section 2 and at the beginning of this section, the vevs of local

integrals of motion for the affine Gaudin model are given by the Wronskians which correspond

to generic WKB lines. In the example at hand, there is only one such line depicted by the

dotted burgundy line in figure 2, corresponding to L k
2

in the infrared. Indeed, the L k
2

line

does not support nontrivial chiral WZW primaries. Since the corresponding Wronskian

i(ψ− k+1
2
, ψ k+1

2
) is controlled by the contour integral of the WKB momentum along the

generic WKB line, it doesn’t involve the local analysis around the zero or negative infinity,

hence it is simply organized by odd powers of e−θ.

6.2 t(x) 6= 0

When t(x) = a+(x)2 + ∂a+(x) 6= 0, the evaluation of the Wronskians via WKB analysis is

basically the same as the previous section except for the following modifications.

In the first scenario of the previous section, namely, for the Wronskians of two solutions

whose special WKB lines are connected at the zero x = −1
g , the local coordinate system in

general has an additional piece, compared to (6.7)

yk + ak−2γ
kyk−2 + · · ·+ ajγ

2+jyj + · · ·+ a0γ
2 +

l(l + 1)

y2
(6.16)

where −l is the residue of a+(x) at the zero. This will change the leading order of (6.8) to be

d
(k)
2j+1;l ≡

sin π
k+2(2l + 1)(2j + 1)

sin π
k+2(2l + 1)

. (6.17)

The nonzero regular part of a+(x) has smaller impact. It will change the coefficients

aj , the details of the map x 7→ y(x), and therefore the higher order corrections. But

importantly, the corrections are still organized by integer powers of γ.

In the second scenario, where two special WKB lines are connected at the negative infin-

ity, we can again go to the coordinate in δ = x− x−∞ where the quadratic differential reads

e2δ (1 + geff(θ)δ)k + t

(
x 7→ δ +

1

geff

)
. (6.18)

We are then in a situation very similar to the UV expansion. Therefore, the higher order

corrections of the Wronskians come in powers of geff .

6.3 Physical interpretation

According to the ODE/IM correspondence (5.8), which we repeat here, the expectation

value of the Kondo line operator in the state |ℓ〉 is given by

Tn;ℓ(θ) ≡ 〈ℓ|T̂n|ℓ〉 = i

(
ψ0

(
x; θ − iπn

2

)
, ψ0

(
x, θ +

iπn

2

))
(6.19)

where n = 2j + 1. We showed in section 5 that the leading term in the UV expansion is

given by the dimension n of the representation, Tn;ℓ ∼ n+ . . . .
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We now provide the physical implication of the IR expansion we evaluated using WKB

analysis previously in this section. The IR expansion of Tn;ℓ(θ) reviews an interesting

infrared structure. The leading order has been demonstrated in [19]. We will review briefly

now and explain how the structure of higher order corrections we obtained in this section

fits in the paradigm.

Depending on the imaginary part of θ, and whether 0 ≤ 2j ≤ k or 2j > k, the RG flow

takes the Kondo line operator Lj [θ] to different IR line operators.

Firstly, if θ is real, or more precisely, valued in a strip around the real θ axis of width

about5 (n− k − 1)π, we have the physical RG flow:6

• For 0 ≤ j ≤ k
2 , over/exact-screening,7 Tn;ℓ(θ) ∼ d(k)

2j+1;l, Lj flows to Lj ,

• For j > k
2 , under-screening, Tn;ℓ(θ) ∼ e−E(n,ℓ,k)eθ

d
(k)
k+1;l(n− k), Lj flows to Lk/2⊗LIRj−k/2.

Second, if we increase the imaginary part of θ either positively or negatively, there is an

interesting sequence of transitions starting from | Im θ| ∼ (n−k−1)π
2 , the edge of the strip

mentioned above. Every time | Im θ| increases by π, we trade one unit of spin for the

topological defect with one unit of spin for the internal degrees of freedom. More precisely,

Lj flows to LIR
j− s

2
⊗ L s

2
, s = k, k − 1, . . . , 0. After s decreases to zero, i.e. when | Im θ| is

large enough, we will have the circular RG flows where Lj flows to LIR
j .

Since eθ labels the RG scale and θ →∞ is the deep infrared, we have just demonstrated

that the leading term of Tn;ℓ(θ) simply tells us which infrared line defects we flow to starting

from Lj defined in the UV. Correspondingly, the far IR destiny of UV line defects can be

determined from some simple combinatorics from the topology of WKB network.

Subleading terms are obviously due to the deformation that brings us away from the

deep IR. More precisely, we need to look at the RG flow a bit away from the deep IR.

In the case of the RG flow that flows to the Kondo line defect LIR
j , an infrared free line

defect, the effective coupling geff(θ) is negative and becomes smaller in the IR. Therefore,

the corrections are expected to come in powers of geff , which is small and negative.

On the other hand, topological lines in the infrared are not free and appear in the RG

flow as strongly coupled infrared fixed points.8 Nevertheless, we know a lot about the local

operators that are supported on the lines. Among them, it is the least irrelevant operator

that contributes the corrections the closest to the deep IR fixed point [12]. On a spin

0 < j < k
2 Verlinde line in chiral WZW, it is the WZW descendant of the spin 1 operator of

dimension 2
k+2 , denoted by Ja−1φ

a. It is a Virasoro primary of scaling dimension 1 + 2
k+2

and has zero one-point function. Then a simple dimensional analysis implies that there

will be corrections in powers of γ = e−θ( 2
k+2 ), starting from γ2. Another obvious candidate

JaJa has dimension 2, thus contributing corrections in integer powers of ~ = γ
k+2

2 , which is

5This is true up to ±π/2, depending on the parity of k and n.
6Recall that eθ labels the RG scale, so the physical RG flow corresponds to real θ.
7This terminology is based on the intuitive physical picture that Kondo defect disappears in the IR

because magnetic impurity spin is screened by the bulk fermions. See e.g. [14] for more details.
8Unless the levels ki are large, in which case the RG flow to a topological line can be perturbative. See

the next section.
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0

-1

-3

-4

1

2

3

Figure 2. Blue curves are the Stokes diagram for k = 3 and ϑ = 0. There are five special WKB

lines connected to the zero of order k = 3. The rest of the special WKB lines connect to the negative

infinity. Double headed arrows indicate which two solutions are used in the Wronskian i(ψn1
, ψn2

)

with n2 − n1 = n = 2j + 1 in different scenarios. The lower (upper) end points to the special WKB

lines associated to the small solution ψn2
(ψn1

). Solid lines (j = 1) depict scenarios 0 ≤ j ≤ k
2 .

Colors (black, green and red) of the lines indicate three scenarios as we shift Im θ: physical strip (Lj
flows to Lj), sequence of transitions (Lj flows to LIR

j− s
2

⊗ L s
2
, s = 2j − 1, . . . , 1) and LIR

j . Dashed

lines (j = 2) depict scenarios j > k
2 respectively. Colors (black, green and red) of the lines indicate

three scenarios as we shift Im θ: physical strip (Lj flows to Lk/2 ⊗ LIRj−k/2), sequence of transitions

(Lj flows to LIR
j− s

2

⊗ L s
2
, s = k − 1, . . . , 1) and LIR

j . The dotted burgundy line denotes the unique

generic WKB line that gives rise to the local integrals of motion.

more irrelevant. Note that the spin 1 operator φa is not supported on the Verlinde line L k
2
,

obtained in the exact screening case. This is precisely what we found in the WKB analysis

around (6.7) and (6.8).

7 Some comments about the semiclassical limit

The RG flow of the Kondo defects is often non-perturbative. An important exception occurs

when the levels ki are large: in an appropriate RG scheme the couplings remain small all

the way to the IR. It is useful to illustrate this in the N = 1 case.

We can start from the quadratic differential λ−2e2xxkdx2. The RG prescription we

used before for the couplings sets

λ = e
1
g g− k

2 (7.1)

– 28 –



J
H
E
P
0
1
(
2
0
2
2
)
1
7
5

so that the quadratic differential becomes e
2x− 2

g (gx)kdx2 which can be mapped by a

translation to e2x(1 + gx)kdx2 and treated perturbatively. In these conventions, g is small

as λ≫ 1 in the UV, but flows all the way to infinity in the IR as λ≪ 1.

When k ≫ 1, these RG conventions are not very good. For example, even if g ∼ k−1

is small, (1 + gx)k ∼ egkx is not close to 1. Consider, instead, a different definition of

g where we employ both a translation and a scale transformation of x to arrive to some

e2α(g)x(1 + gx)kdx2. We can map this back to e
2x− 2α(g)

g gkxkα(g)−k−2dx2 and thus to

λ = e
α(g)

g g− k
2α(g)1+ k

2 . (7.2)

If we select α(g) = 1 − k
2g, then e2α(g)x(1 + gx)kdx2 ∼ e2xdx2 up to corrections of order

g2k, which are small even if g ∼ k−1.

This seems a more reliable way to deal with the perturbative RG flow. Now we have

λ = e
1
g

− k
2 g

(
g−1 − k

2

)1+ k
2

, (7.3)

which flows from g = 0 to g = 2
k from the UV to the IR, so that the coupling is perturbatively

small all the way.

This RG scheme also seems appropriate to make contact with the classical affine Gaudin

model in a k →∞ semiclassical limit. In general, define

gi =
1

ϕ(z)

1

z − zi
. (7.4)

This definition is inspired by the classical affine Gaudin Lax matrix (2.1).

Then

e
2x

ϕ(z)
∏

i

(1 + gix)kidx2 (7.5)

can be mapped to

e2x
∏

i

(
1 +

1

z − zi
x

)ki

ϕ(z)2dx2 (7.6)

and then to
e−2zϕ(z)2

∏
i(z − zi)ki

e2x
∏

i

(x− zi)kidx2 (7.7)

so that we have a z RG flow controlled by

λ = ϕ(z)−1ez
∏

i

(z − zi)
ki
2 (7.8)

and fixed points at z ∼ zi where gi is finite and small, while all other gj vanish.

8 Generalizations: sl3

The discussion in section 3 of the affine sl2 opers, the Bethe equations and WKB solutions

can be easily generalized to higher rank Lie algebras. We demonstrate the case of sl3 in this

section. We leave a proper discussion of the corresponding Kondo defects and ODE/IM

solutions to future work.
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8.1 Basic definitions

An sl3 oper is a complexified third order differential operator

∂3
x − t2(x)∂x + t3(x) (8.1)

with a natural transformation law under a change of coordinate

∂3
x − t2(x)∂x + t3(x) = (∂xx̃)2

(
∂3
x̃ − t̃2(x̃)∂x̃ + t̃3(x̃)

)
(∂xx̃). (8.2)

We will work with sl3 opers for which both t2(x) and t3(x) are rational functions.

The data of an sl3 oper is equivalent to that of a flat connection

∂x +




0 t2(x) t3(x)

1 0 0

0 1 0


 . (8.3)

More generally, an sl3 oper can be described as a flat connection of the form

∂x +



a(x) b(x) c(x)

1 ã(x) b̃(x)

0 1 −a(x)− ã(x)


 , (8.4)

modulo gauge transformations by unipotent upper-triangular matrices. Any sl3 oper has a

unique canonical form (8.3) where

t2(x) = a(x)2 + a(x)ã(x) + ã(x)2 + 2∂xa(x) + ∂xã(x) + b(x) + b̃(x), (8.5a)

t3(x) = −(a(x) + ã(x))
(
a(x)ã(x) + ∂xa(x) + 2∂xã(x)− b(x)

)

− ∂2
xa(x)− ∂2

xã(x)− a(x)b̃(x)− ∂xb̃(x) + c(x). (8.5b)

An sl3 λ-oper is a complexified third order differential operator with a particular

dependence on the auxiliary complex parameter λ of the form

∂3
x − t2(x)∂x + t3(x) +

P (x)

λ3
, (8.6)

where t2(x) and t3(x) are rational functions. Equivalently, we can describe this as a flat

connection

∂x +




0 t2(x)λ P (x)λ−1 + t3(x)λ2

λ−1 0 0

0 λ−1 0


 . (8.7)

More generally, an sl3 λ-oper is defined as a connection of the form

∂x +



a(x) b(x)λ P (x)λ−1 + c(x)λ2

λ−1 ã(x) b̃(x)λ

0 λ−1 −a(x)− ã(x)


 (8.8)
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where a(x), ã(x), b(x), b̃(x) and c(x) are rational functions, modulo gauge transformations

by upper-triangular matrices of the form




1 v(x)λ w(x)λ2

0 1 ṽ(x)λ

0 0 1


 (8.9)

where v(x), ṽ(x) and w(x) are rational functions. Every sl3 λ-oper has a unique canonical

form as in (8.7).

If we conjugate the connection (8.8) by cyclic permutation matrices then we obtain two

alternative formulations of the differential operator (8.6), leading to two alternative (but

equivalent) formulations of sl3 λ-opers. Specifically, an sl3 λ-oper can equally be described

as a flat connection of the form

∂x +



−a(x)− ã(x) 0 λ−1

P (x)λ−1 + c(x)λ2 a(x) b(x)λ

b̃(x)λ λ−1 ã(x)


 (8.10)

modulo gauge transformations by matrices




1 0 0

w(x)λ2 1 v(x)λ

ṽ(x)λ 0 1


 . (8.11)

Equivalently, an sl3 λ-oper can also be described as a connection of the form

∂x +



ã(x) b̃(x)λ λ−1

λ−1 −a(x)− ã(x) 0

b(x)λ P (x)λ−1 + c(x)λ2 a(x)


 (8.12)

modulo gauge transformations by matrices




1 ṽ(x)λ 0

0 1 0

v(x)λ w(x)λ2 1


 . (8.13)

The unique canonical form of an sl3 λ-oper in the second description (8.10) is given by

∂x +




0 0 λ−1

P (x)λ−1 + t3(x)λ2 0 t2(x)λ

0 λ−1 0


 , (8.14)

and that of an sl3 λ-oper in the third description (8.12) reads

∂x +




0 0 λ−1

λ−1 0 0

t2(x)λ P (x)λ−1 + t3(x)λ2 0


 . (8.15)

– 31 –



J
H
E
P
0
1
(
2
0
2
2
)
1
7
5

8.2 Miura λ-opers and singularities of trivial monodromy

A Miura sl3 oper is a connection of the form

∂x +



a(x) 0 0

1 ã(x) 0

0 1 −a(x)− ã(x)


 (8.16)

with a(x) and ã(x) rational. Since it is of the general form in (8.4) it defines an sl3 oper

which corresponds to the differential operator (∂x + a(x))(∂x + ã(x))(∂x − a(x)− ã(x)).

There are two types of apparent singularities, corresponding to the two nodes of the

Dynkin diagram of sl3. These can be points w where

a(x) =
1

x− w + d+O(x− w), ã(x) = − 1

x− w + d+O(x− w) (8.17)

so that, in particular, the constant term of a(x)− ã(x) is zero, or points w′ where

a(x) =
0

x− w′ − 2d+O(x− w′), ã(x) =
1

x− w′ + d+O(x− w′) (8.18)

so that, in particular, the constant term of a(x) + 2ã(x) vanishes.

If at a singularity z the Miura sl3 oper is of the form

a(x) = −1

3

2n1 + n2

x− z +O(1), ã(x) =
1

3

n1 − n2

x− z +O(1) (8.19)

for some non-negative integers n1 and n2, then z is a regular singularity of the sl3 oper of

trivial monodromy. Indeed, one can bring the Miura sl3 oper to the form

∂x +




r(x) 0 0

(x− z)n1 r̃(x) 0

0 (x− z)n2 −r(x)− r̃(x)


 (8.20)

where r(x) = a(x) + 1
3

2n1+n2
x−z and r̃(x) = ã(x)− 1

3
n1−n2
x−z , which are regular at z.

A Miura sl3 λ-oper is a connection of the form

∂x +



a1(x) 0 P (x)λ−1

λ−1 ã1(x) 0

0 λ−1 −a1(x)− ã1(x)


 (8.21)

where a1(x) and ã1(x) are rational functions. This is of the general form (8.8) and so a

Miura sl3 λ-oper defines an sl3 λ-oper with

t2(x) = a1(x)2+a1(x)ã1(x)+ã1(x)2+2∂xa1(x)+∂xã1(x), (8.22a)

t3(x) =−(a1(x)+ã1(x))
(
a1(x)ã1(x)+∂xa1(x)+2∂xã1(x)

)
−∂2

xa1(x)−∂2
xã1(x). (8.22b)

We refer to this as the sl3 λ-oper underlying (8.21). It can be described as a third order

differential operator of the form

(
∂x + a1(x)

)(
∂x + ã1(x)

)(
∂x − a1(x)− ã1(x)

)
− P (x)

λ3
. (8.23)
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There are two other gauge equivalent ways of presenting the same Miura sl3 λ-oper as

in (8.21), namely

∂x +



−a2(x)− ã2(x) 0 λ−1

P (x)λ−1 a2(x) 0

0 λ−1 ã2(x)


 (8.24)

with a2(x) = ã1(x)− ∂xP (x)
3P (x) and ã2(x) = −a1(x)− ã1(x)− ∂xP (x)

3P (x) , or

∂x +



ã3(x) 0 λ−1

λ−1 −a3(x)− ã3(x) 0

0 P (x)λ−1 a3(x)


 (8.25)

with a3(x) = −a1(x)− ã1(x)− 2∂xP (x)
3P (x) and ã3(x) = a1(x) + ∂xP (x)

3P (x) .

The Miura sl3 λ-oper (8.24) is of the particular form (8.10) so it defines a second sl3

λ-oper. Likewise, the Miura sl3 λ-oper (8.25) is of the form (8.12) and thus it also defines a

third sl3 λ-oper. Crucially, all three sl3 λ-opers share the same monodromy data since they

are gauge equivalent. This triality generalises the duality of sl2 λ-opers associated with a

given Miura sl2 λ-oper discussed in section 3.4.

There are three types of apparent singularities, corresponding to the three nodes of the

Dynkin diagram of s̃l3. In particular, we can have the same types of singularities as for a

Miura sl3 oper in (8.17), namely points w where, cf. (8.17),

a1(x) =
1

x− w + d+O(x− w), ã1(x) = − 1

x− w + d+O(x− w) (8.26)

so that a1(x)− ã1(x) has vanishing constant term, or points w′ where, cf. (8.18),

a1(x) =
0

x− w′ − 2d+O(x− w′), ã1(x) =
1

x− w′ + d+O(x− w′) (8.27)

so that a1(x) + 2ã1(x) has no constant term. Both of these singularities are absent from the

sl3 λ-oper underlying (8.21). The third type of apparent singularity is at points w′′ where

a1(x) = − 1

x− w′′ + d+O(x− w′′), ã1(x) =
0

x− w′′ − 2d+O(x− w′′) (8.28)

so that 2a1(x) + ã1(x) has no constant term. The singularity (8.28) is not erased in the

canonical form of the Miura sl3 λ-oper (8.21). However, since it is of the form (8.19) with

n1 = n2 = 1, by the above arguments for Miura sl3 opers it follows that the sl3 λ-oper

underlying (8.21) has trivial monodromy at w′′.

In fact, singularities of both types (8.26) and (8.28) are absent in the canonical form

of the second Miura sl3 λ-oper in (8.24). Likewise, both singularities (8.27) and (8.28) are

absent in the canonical form of the third Miura sl3 λ-oper (8.24).

If P (x) has a zero of order k at a singularity z of the Miura sl3 λ-oper with

a1(x) = −1

3

2n1 + n2

x− z +O(1), ã1(x) =
1

3

n1 − n2

x− z +O(1) (8.29)
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then provided n1, n2 ≥ 0 and n1 + n2 ≤ k, the underlying sl3 λ-oper has trivial monodromy.

Indeed, one can bring (8.21) to the form

∂x +




r1(x) 0 (x− z)k−n1−n2q(x)λ−1

(x− z)n1λ−1 r̃1(x) 0

0 (x− z)n2λ−1 −r1(x)− r̃1(x)


 (8.30)

where we have written P (x) = (x − z)kq(x) with q(z) 6= 0, r1(x) = a1(x) + 1
3

2n1+n2
x−z and

r̃1(x) = ã1(x)− 1
3
n1−n2
x−z , which are clearly regular at z.

The behaviour of the second Miura sl3 λ-oper (8.24) at z is given by

a2(x) =
1

3

−k + n1 − n2

x− z +O(1), ã2(x) =
1

3

−k + n1 + 2n2

x− z +O(1) (8.31)

while the third Miura sl3 λ-oper (8.25) behaves as

a3(x) =
1

3

−2k + n1 + 2n2

x− z +O(1), ã2(x) =
1

3

k − 2n1 − n2

x− z +O(1). (8.32)

8.3 λ-opers with singularities of trivial monodromy and affine Bethe equations

A Miura sl3 oper on C with a rank 1 irregular singularity at infinity and whose other

singularities are all regular with trivial monodromy is of the form

a(x) = −2α1 + α2

3
− 1

3

∑

a

2n1,a + n2,a

x− za
+
∑

i

1

x− wi
, (8.33)

ã(x) =
α1 − α2

3
+

1

3

∑

a

n1,a − n2,a

x− za
−
∑

i

1

x− wi
+
∑

i

1

x− w′
i

(8.34)

where the apparent singularities wi and w′
i satisfy the Bethe equations

−
∑

a

n1,a

wi − za
+
∑

j 6=i

2

wi − wj
−
∑

j

1

wi − w′
j

= α1 (8.35)

−
∑

a

n2,a

w′
i − za

−
∑

j

1

w′
i − wj

+
∑

j 6=i

2

w′
i − w′

j

= α2. (8.36)

We are interested in the case of a Miura sl3 λ-oper with a rank 1 irregular singularity

at infinity and whose other singularities are all regular with trivial monodromy. This can

be written as

a1(x) = −2α1 + α2

3
− 1

3

∑

a

2n1,a + n2,a

x− za
+
∑

i

1

x− wi
−
∑

i

1

x− w′′
i

, (8.37a)

ã1(x) =
α1 − α2

3
+

1

3

∑

a

n1,a − n2,a

x− za
−
∑

i

1

x− wi
+
∑

i

1

x− w′
i

. (8.37b)

With P (x) = e(α1+α2+α3)x∏
a(x− za)ka , the second Miura sl3 λ-oper then reads

a2(x) = −2α2 + α3

3
+

1

3

∑

a

−ka + n1,a − n2,a

x− za
−
∑

i

1

x− wi
+
∑

i

1

x− w′
i

, (8.38a)

ã2(x) =
α2 − α3

3
+

1

3

∑

a

−ka + n1,a + 2n2,a

x− za
−
∑

i

1

x− w′
i

+
∑

i

1

x− w′′
i

. (8.38b)
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The condition that wi and w′
i are apparent singularities for the first Miura sl3 λ-oper (8.37)

and that w′′
i are apparent singularities for the second Miura sl3 λ-oper (8.38) leads to the

Bethe equations

−
∑

a

n1,a

wi − za
+
∑

j 6=i

2

wi − wj
−
∑

j

1

wi − w′
j

−
∑

j

1

wi − w′′
j

= α1, (8.39)

−
∑

a

n2,a

w′
i − za

−
∑

j

1

w′
i − wj

+
∑

j 6=i

2

w′
i − w′

j

−
∑

j

1

w′
i − w′′

j

= α2, (8.40)

−
∑

a

ka − n1,a − n2,a

w′′
i − za

−
∑

j

1

w′′
i − wj

−
∑

j

1

w′′
i − w′

j

+
∑

j 6=i

2

w′′
i − w′′

j

= α3. (8.41)

8.4 WKB expansion and quasi-canonical form

The three Miura sl3 λ-opers (8.21), (8.24) and (8.25) are locally gauge equivalent to a

connection of the more symmetric form

∂x +




a(x) 0 P (x)
1
3λ−1

P (x)
1
3λ−1 ã(x) 0

0 P (x)
1
3λ−1 −a(x)− ã(x)


 (8.42)

where a(x) = a1(x) + ∂xP (x)
3P (x) and ã(x) = ã1(x). We refer to (8.42) as a Miura s̃l3 oper. The

underlying s̃l3 oper, or affine sl3 oper, is then defined as its equivalence class under gauge

transformations by matrices of the form

exp



u(x;λ) v+(x;λ) w+(x;λ)

v−(x;λ) ũ(x;λ) ṽ+(x;λ)

w−(x;λ) ṽ−(x;λ) −u(x;λ)− ũ(x;λ)


 (8.43)

where the various functions have the following formal power series expansions

u(x;λ) =
∞∑

n=0

P (x)−nun(x)λ3n, ũ(x;λ) =
∞∑

n=0

P (x)−nũn(x)λ3n,

v+(x;λ) =
∞∑

n=0

P (x)−n− 1
3 v+
n (x)λ3n+1, ṽ+(x;λ) =

∞∑

n=0

P (x)−n− 1
3 ṽ+
n (x)λ3n+1,

v−(x;λ) =
∞∑

n=0

P (x)−n− 2
3 v−
n (x)λ3n+2, ṽ−(x;λ) =

∞∑

n=0

P (x)−n− 2
3 ṽ−
n (x)λ3n+2,

w+(x;λ) =
∞∑

n=0

P (x)−n− 2
3w+

n (x)λ3n+2, w−(x;λ) =
∞∑

n=0

P (x)−n− 1
3w−

n (x)λ3n+1

with un(x), ũn(x), v±
n (x), ṽ±

n (x) and w±
n (x) rational functions. As we will show below,

the s̃l3 oper controls the WKB asymptotics of the λ-oper (8.6) underlying the Miura sl3

λ-oper (8.21); see figure 3.

Recall first that an s̃l3 oper can be brought to the quasi-canonical form [46]

∂x +




0 q1(x;λ) q2(x;λ)

q2(x;λ) 0 q1(x;λ)

q1(x;λ) q2(x;λ) 0


 (8.44)
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Miura sl3

λ-oper I
sl3 λ-oper I

s̃l3 oper/WKB

momenta

Miura

s̃l3 oper

Miura sl3

λ-oper II
sl3 λ-oper II

Miura sl3

λ-oper III
sl3 λ-oper III

Figure 3. The three different types of (Miura) sl3 λ-opers, labelled I, II and III, associated with

the three nodes of the Dynkin diagram of s̃l3. They all share a common s̃l3 oper which describes

the WKB momenta of the third order differential operator (8.6).

where the coefficients are given by the formal Laurent series

q1(x;λ) =
∞∑

n=0

P (x)−n− 1
3 q1,n(x)λ3n+1, (8.45a)

q2(x;λ) =
P (x)

1
3

λ
+

∞∑

n=0

P (x)−n− 2
3 q2,n(x)λ3n+2. (8.45b)

In the case of the s̃l3 oper underlying (8.42), the first few orders explicitly read

q1,0(x) =
t2(x)

3
+

(
∂xP (x)

)2

27P (x)
, q2,0(x) =

t3(x)

3
+
t2(x)∂xP (x)

9P (x)
(8.46a)

where t2(x) and t3(x) are given by (8.22).

Just as in the sl2 case considered in section 3.10, the quasi-canonical form (8.44) of an

affine sl3 oper is not unique. Indeed, it is preserved by residual gauge transformations of

the form (8.43) with u(x;λ) = ũ(x;λ) = 0 and v±(x;λ) = ṽ±(x;λ) = w∓(x;λ), the effect of

which is to transform the quasi-canonical form as

q1(x;λ) 7−→ q1(x;λ) + ∂xv+(x;λ), (8.47a)

q2(x;λ) 7−→ q2(x;λ) + ∂xv−(x;λ). (8.47b)

We look for flat sections of the sl3 λ-oper (8.6), i.e. solutions of the third order differential

equation (
∂3
x − t2(x)∂x + t3(x) +

P (x)

λ3

)
ψ(x;λ) = 0

in the form of the WKB ansatz

ψ1(x;λ) =
1

3
√
A(x;λ)

e
∫
p1(x;λ)dx, ψ2(x;λ) =

1
3
√
A(x;λ)

e
∫
p2(x;λ)dx,

ψ3(x;λ) =
1

3
√
A(x;λ)

e−
∫
p1(x;λ)dx−

∫
p2(x;λ)dx
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where the normalization factor, fixed by requiring the Wronskian of the three solutions ψ1,

ψ2 and ψ3 to be 1, is given by

A(x;λ) = 2p1(x;λ)3 − 2p2(x;λ)3 + 3(p1(x;λ)− p2(x;λ))p1(x;λ)p2(x;λ)

+ 3p2(x;λ)∂xp1(x;λ)− 3p1(x;λ)∂xp2(x;λ). (8.48)

Working perturbatively in λ we find WKB momenta of the form

p1(x;λ) = −P (x)
1
3

λ
−

∞∑

n=1

p1,n(x)λn (8.49a)

p2(x;λ) = − P (x)
1
3

e− 2πi
3 λ
−

∞∑

n=1

p2,n(x)
(
e− 2πi

3 λ
)n
. (8.49b)

The first few coefficients of the expansion (8.49a) are given explicitly by

p1,1(x) = P (x)− 1
3 q1,0(x) + ∂x

(
2∂xP (x)

9P (x)
4
3

)
, (8.50a)

p1,2(x) = P (x)− 2
3 q2,0(x)− ∂x

(
∂2
xP (x)

9P (x)
5
3

− 7
(
∂xP (x)

)2

54P (x)
8
3

)
, (8.50b)

p1,3(x) = ∂x

(
2∂xt2(x)

9P (x)
− 4t2(x)∂xP (x)

27P (x)2
+

4∂3
xP (x)

27P (x)2

− 16∂xP (x)∂2
xP (x)

27P (x)3
+

112
(
∂xP (x)

)3

243P (x)4

)
(8.50c)

and those of the expansion (8.49b) read

p2,1(x) = P (x)− 1
3 q1,0(x) + ∂x

(
2∂xP (x)

9P (x)
4
3

)
, (8.51a)

p2,2(x) = P (x)− 2
3 q2,0(x) + ∂x

(
t2(x)

3P (x)
2
3

+
∂2
xP (x)

9P (x)
5
3

− 7
(
∂xP (x)

)2

54P (x)
8
3

)
, (8.51b)

p2,3(x) = e− πi
6 ∂x

(
∂xt2(x)

3
√

3P (x)
− 2t2(x)∂xP (x)

9
√

3P (x)2
+

2∂3
xP (x)

9
√

3P (x)2

− 8∂xP (x)∂2
xP (x)

9
√

3P (x)3
+

56
(
∂xP (x)

)3

81
√

3P (x)4

)
. (8.51c)

From this we find that the pair of WKB momenta p1(x;λ) and p2(x;λ) are related to

the coefficients of the quasi-canonical form (8.44) by

p1(x;λ) = −q1(x;λ)− q2(x;λ) + ∂xf1(x;λ), (8.52a)

p2(x;λ) = −q1
(
x; e− 2πi

3 λ
)
− q2

(
x; e− 2πi

3 λ
)

+ ∂xf2(x;λ) (8.52b)

for some functions f1(x;λ) and f2(x;λ).
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9 Future directions and open problems

1. Higher rank. It would be natural to extend our work to other Lie algebras [66–68]. The

definition of the Kondo defects is valid for any Lie algebra, with an important caveat: the

matrices ta do not have to be generators of the Lie algebra, they only need to transform

in the adjoint representation of the global symmetry group. The RG flow will thus

involve extra couplings, controlling the specific choice of ta. 4d Chern-Simons gauge

theory predicts integrability for choices of couplings related to representations of the

Yangian. It would be nice to understand how these structures manifest themselves in

the affine Gaudin description. The definition of affine opers with singularities of trivial

monodromy should be possible for general gauge groups and straighforward in type A.

The precise correspondence between the Stokes data and the UV labels of Kondo defects

is less obvious. The IR WKB analysis is still possible, but will likely require some more

refined technology such as spectral networks [38].

2. Non-integral levels. In sections 5 and 6, we made the assumption that all the level ki in

P (x) = e2x
∏

i

(x− xi)ki (9.1)

are non-negative integers, which corresponds to the WZW model for the product group∏
i SU(2)ki

. We can generalize to Kac-Moody algebras via replacing ki by κi ∈ C. This

forces us to study opers on a logarithmic covering space of the complex plane. (It reduces

to a finite covering when κi is rational.) Consequently, we have more Wronskians of

small solutions to study, both between the small solutions on the same sheet and across

different sheets. It would be interesting to work out some examples and understand their

relationship with the expectation values of the local integrals of motions in the affine

Gaudin model, which are conjecturally given by the integrals of the WKB momentum [46].

3. Bulk deformation. Throughout this article, we considered Kondo line defects in CFTs in

the bulk. It is well-known, however, that the bulk theory can be deformed in such a way

that the integrable structure remains. Examples of such deformations are given by JaJ̄a

in the WZW model and Φ1,3 in minimal models. The transfer matrices T̂j [θ] can be

naturally extended as well in such a way that commutativity and the fusion rules are still

satisfied. Furthermore, there is evidence [69–71] that the ODE/IM correspondence can

be generalized as well to the so-called ‘massive ODE/IM correspondence’. It is natural

to expect that the P -sinh-Gordon equation with an appropriate generalization of the

potential P (x) = e2x∏
i(x−xi)ki should correspond to the integrable Gross-Neveu model.

4. Coset limits and other models. We only sketched the limiting procedure e2x∏
i(x−xi)ki →∏

i(x−xi)ki mapping the Kondo problems to integrable defects in coset models. It would

be nice to develop the relation further. Other choices of P (x) should be relevant for

integrable line defects in other 2d CFTs. A dictionary may be developed along the lines

of [72] from a 4d Chern-Simons gauge theory perspective, or equivalently [73], along the

lines of [74] from the point of view of affine Gaudin models.
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5. Non-isotropic generalization. Here we only considered the case of Kondo problems which

preserve the global SU(2) symmetry of the WZW models. Anisotropic Kondo problems

are also very interesting and often still integrable. In [62], an ODE/IM solution was

proposed for the ground states of the anisotropic defects in a single WZW model. It

would be very interesting to find a full solution to the problem.
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A Details of UV expansion

In this appendix, we verify the claim (5.8) for a few examples explicitly by working

perturbatively in g to O(g4). Next, based on these examples, we summarize a general recipe

in the case of zero twist α+ = 0. We then end this section with some remarks and checks

with nonzero twist.

A.1 Examples of UV perturbative matching

Let us perform a perturbative UV analysis of the proposed excited state Schrödinger

equations and compare them to SU(2)k WZW line defects evaluated between certain excited

states. We use the Chevalley basis rather than the orthonormal basis used in [19]. To

establish notation, we write the change of basis explicitly:

JanJ
a
m = J+

n J
−
m + J−

n J
+
m + 2J0

nJ
0
m (A.1)

fabcJanJ
b
mJ

c
l = 12i(J [+

n J−
mJ

0]
l ). (A.2)

We will consider the following states as examples:

J+
−1|0, k〉, J+

−2|0, k〉. (A.3)

From the discussion in subsection 4.3.1, for generic values of k, they are described by Miura

λ-opers with

a
(1)
+ (x) = − 1

x− w′ , (A.4)

a
(2)
+ (x) =

1

x− w −
1

x− w′
1

− 1

x− w′
2

, (A.5)

respectively. Note, however, that the state J+
−2|0,−1〉 is a special case of (A.4) since, as we

conjectured in 4.3.1, it corresponds to the generalized Miura λ-oper

a+(x) = −1

x
. (A.6)
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The left hand side of the claim (5.8) is an obvious, alebit tedious, task, namely to

compute the g expansion of the expectation value of the operator T̂n(θ) in a certain state.

This operator was calculated in the appendix E of [19]. Note that if we normalize the

expectation values of the line defect as9

〈Tn(θ)〉r :=
1

rκ
〈0, k|J−

r T̂n(θ)J+
−r|0, k〉 (A.7)

then the ordinary form of the Hirota bilinear relations

〈
Tn
(
θ +

iπ

2

)〉

r

〈
Tn
(
θ − iπ

2

)〉

r
= 1 + 〈Tn+1(θ)〉r〈Tn−1(θ)〉r (A.8)

holds.10

Finding the g expansion of the Wronskian on the right hand side of (5.8) is not obvious.

In [19], we proposed an approach based on a combination of various limits. The basic idea

consists of two steps: (1) analyze the solution of the Schrödinger equation in the regime

1/g ≫ −x and −x≫ 0 separately and (2) match the solutions in the intermediate region

1/g ≫ −x≫ 0.

We can recycle many of the result from [19] as modifications of the Schrödinger

equation by the potential terms do not contribute to the perturbative expansion of the

differential equation at O(1) and O(g). Hence, we may use the direct evaluation result of

the wavefunction in [19] given by

ψ = ψ(0) + gψ(1) + · · · (A.9)

with

ψ(0)(x; θ) ∼ − 1√
π

(x+ θ + γ − log 2)

ψ(1)(x; θ) ∼ − k

4
√
π

(x− θ − 2− γ + log 2)

at large negative x. Also, we introduce the effective coupling geff(θ) defined by [19]

geff(θ)k/2e−1/geff(θ) = gk/2e−1/geθ (A.10)

with the g expansion

geff(θ) = g + θg2 + θ

(
θ − k

2

)
g3 + θ

(
θ2 − 5

4
kθ +

k2

4

)
g4 + · · · . (A.11)

9In this appendix only, we write the excited expectation values with angled brackets to emphasize

that 〈Tn(θ)〉r are quantities which are directly evaluated from the defect operator computed in [19]. The

quantities we write as Tn(θ) in the perturbative analysis below correspond to the Wronskian result we obtain

from the Schrödinger equation.
10One could choose not to use the normalization 1

rk
in (A.7), but the Hirota relations would then have

(rk)2 in place of 1 and the following perturbative analyses acquire extra normalization factors.
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A.1.1 J
+
−1|0, k〉, one w′, no w

For the case with one w′ and no w, the excited state equation is

∂2
xψ(x; θ) =

[
e2θge−2/gxke2x +

8

(k + 2x)2

]
ψ(x; θ). (A.12)

We propose that this equation encodes the excited line defect expectation value 〈Tn(θ)〉1.

The perturbative analysis as an expansion in g is done after shifting x→ x+ 1/g.

The asymptotics of ψ can be determined by carefully analyzing the solutions of the

Schrödinger equation in the regime 1/g ≫ −x ≫ 0. Doing so, the wavefunction can be

parametrized as

ψ(x; θ) ∼ − 1

3g2
Q(geff)[1 + (k + 2x)g]− g

3
Q̃(geff)

[
1− 1

2
(k + 2x)g

]
, (A.13)

where

Q(geff) =
geff(θ)√

π
(1 + q1geff(θ) + · · · ), (A.14a)

Q̃(geff) =
geff(θ)−1

√
π

(
− 1

geff(θ)
+ q̃0 + q̃1geff(θ) + · · ·

)
. (A.14b)

Before the shift x→ x+ 1/g, the dependence of ψ on g and θ combine into geff(θ) such that

ψ becomes a function of x and geff only. The explicit g dependence in the parametrization

of ψ above comes purely from the shift x→ x+ 1/g.

As the general analysis in the next subsection will suggest, the difference #w′ −#w

is responsible for the various factors present above. The overall coefficient 1/3 in the

asymptotics of ψ arises via the combination (2(#w′−#w) + 1)−1, as does the overall power

of g
±(#w′−#w)
eff

in the expression of Q, Q̃.

As usual, the T-function can be expressed as the quantum Wronskian

Tn(θ) =
i

3

[
Q
(
θ +

iπn

2

)
Q̃
(
θ − iπn

2

)
−Q

(
θ − iπn

2

)
Q̃
(
θ +

iπn

2

)]
. (A.15)

The coefficients qi can be expressed in terms of q̃i by imposing the condition T1 = 1. The

explicit expression of Tn(θ) up to O(g4) requires the knowledge of q̃0 and q̃1. Comparing

the parameterization of ψ in terms of Q, Q̃ with the direct perturbative evaluation up to

O(g), we obtain

q̃0 =
1

4
(−5k + 8γ − 8 log 2)

q̃1 = −15k2

32
− 1

4
k(5 + log 2) + γ

(
k

4
+ log 4

)
− π2

6
− γ2 − (log 2)2.

The full expression for Tn(θ) to O(g4) is then

Tn(θ) = n− g2
[

1

3
π2n

(
n2 − 1

)]
+ g3

[
1

12
π2n(n2 − 1)(7k − 8θ − 8γ + log 256)

]

− g4
[

1

288
π2n(n2 − 1)[195k2 − 120k(5θ + 1− 5 log 2)− 24γ(25k

− 24θ + log 16777216) + 8π2(10− 3n2) + 288(θ − log 2)2 + 288γ2]

]
+O(g5).
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This expression satisfies the Hirota bilinear relations and has been verified to match the

perturbative line defect computation for 〈Tn(θ)〉1 in a suitable renormalization scheme,

where g is shifted as

g → λg + λ2g2
[
k − 2 log ǫ− 2γ − 2 log π

]

+ λ3g3
[
2 log ǫ(−3k + 2 log ǫ+ 4γ + 4 log π) + (k − 4)k

− 6k log π + γ(8 log π − 6k) +
1

6
π2(n2 + 1) + 4γ2 + 4(log π)2

]
+O(g4)

with λ = −1/2.

A.1.2 J
+
−2|0, k〉, two w′, one w

For the case with two w′ and one w, the excited state equation is

∂2
xψ(x; θ) =

[
e2θge−2/gxke2x +

8(k2 + k(4x+ 5) + 4(x2 + x+ 1))

(k2 + 4kx+ k + 4x(x+ 1))2

]
ψ(x; θ). (A.16)

We propose that this equation encodes the excited line defect expectation value 〈Tn(θ)〉2.

As in the previous case, the wavefunction can be parametrized

ψ(x; θ) ∼ − 1

3g2
Q(geff)[1 + (1 + k + 2x)g]− g

3
Q̃(geff)

[
1− 1

2
(1 + k + 2x)g

]
, (A.17)

where Q(geff) and Q̃(geff) are as in (A.14). The expression for Tn(θ) in terms of Q, Q̃

remains the same as in (A.15). Comparing the parameterization of ψ in terms of Q, Q̃ with

the direct perturbative evaluation up to O(g), we obtain

q̃0 =
1

4
(−5k + 8γ − 4− 8 log 2),

q̃1 = γ

(
k

4
+ 1 + log 4

)
+

1

96

(
− 3k(15k + 64 + log 256)− 8

(
2π2 + 3(1 + log 4)2))− γ2.

The full expression for Tn(θ) to O(g4) is

Tn(θ) = n− 1

3
π2g2n

(
n2 − 1

)
+

1

12
π2g3n

(
n2 − 1

)
(−8γ − 8θ + 7k + 4 + log 256)

+
1

288
π2g4n

(
n2 − 1

) (
− 72(−2γ − 2θ + 1 + log 4)2 − 195k2

+ 120k(5γ + 5θ − 1− 5 log 2) + 8π2
(
3n2 − 10

) )

This expression satisfies the Hirota bilinear relations and has been verified to match the

perturbative line defect computation for 〈Tn(θ)〉2 in a suitable renormalization scheme,

where g is shifted as

g → λg + λ2g2
[
k − 2 log(πǫ)− 2γ −

(
1 +

i

2

)]

+ λ3g3
[
k2 +

1

24

(
(−198 + 3i)k + 4π2(n2 + 1) + 3

(
32(log π)2 + (59 + 52i)

))

+
(
− 6k + 8γ + (4 + 2i)

)
log(πǫ)− 6γk + 4 log(ǫ) log(π2ǫ) + 4γ2 + (4 + 2i)γ

]
+O(g4)

with λ = −1/2.
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A.1.3 J
+
−2|0, −1〉

With

a+(x) = −1

x
(A.18)

we have the ODE

∂2
xψ(x; θ) =

[
e2θge−2/gxke2x +

2

x2

]
ψ(x; θ). (A.19)

ψ(x; θ) ∼ − 1

3g2
Q(geff)[1 + 2gx]− g

3
Q̃(geff)[1− gx], (A.20)

where again Q(geff) and Q̃(geff) are as in (A.14). We can similarly find the Wronskian

Tn(θ) = n− 1

3
π2g2n

(
n2 − 1

)
− 1

12
π2g3n

(
n2 − 1

)
(8γ + 8θ + 3− 8 log 2)

1

288
π2g4n

(
n2 − 1

) [
+ 8π2

(
3n2 − 10

)
− 288γ2 − 24γ(24θ + 13− 24 log 2)

+ 3
(
−104θ − 96(θ − log 2)2 − 49 + 104 log 2

) ]

with

q̃0 =
1

4
+ 2(γ − log 2),

q̃1 =
1

96

(
−16

(
6(log 2− γ)2 + π2

)
+ 24(3γ + 5− 3 log 2) + 3

)
.

A.2 A general perturbative prescription

One can easily see the pattern of the steps in the previous example and might wonder if

it is possible to perform the perturbative analysis in a uniform way without specifying

particular values for w′
i and wi, i.e. without solving the Bethe equations explicitly. Here in

this section, we provide such a recipe for zero spin and zero twist.

In considering the Schrödinger equation in the regime 1/g ≫ −x≫ 0, one first solves

the equation with just the potential terms and then expands in g until one has O(x)

contributions. That is, for (#w′,#w) = (p, q) we take (after shifting x 7→ x+ 1/g) the g

expansion of the solution to

∂2
xψ(x; θ) =

[
a(x)2 + a′(x)

]
ψ(x; θ) (A.21)

where

a(x) = −
p∑

a=1

1

x− w′
a

+
q∑

i=1

1

x− wi
. (A.22)

Notice that one exact solution of such an equation is

∏q
i=1(x+ 1/g − wi)∏p
a=1(x+ 1/g − w′

a)
= gp−q

[
1− g

(
(p− q)x−

p∑

a=1

w′
a +

q∑

i=1

wi

)
+ · · ·

]
. (A.23)

Expanding up to the order shown is sufficient for p > q, but one needs to consider an O(g2)

term for p = q. Here, we concern ourselves with just the p > q cases as the p = q case is

treated in a similar but more involved way.
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The solution above is that proportional to Q̃ of the previous subsection. An exact

second solution turns out to be more elusive, but this can be overcome by the fact that

we only need the perturbative form of second solution. The second solution can then be

determined by imposing that

Tn(θ) = i

(
ψ
(
x; θ − iπn

2

)
, ψ
(
x; θ +

iπn

2

))
, (A.24)

i.e. the shifted Wronskian of the wavefunction, is normalized as

Tn(θ) =
i

2(p− q) + 1

[
Q
(
θ +

iπn

2

)
Q̃
(
θ − iπn

2

)
−Q

(
θ − iπn

2

)
Q̃
(
θ +

iπn

2

)]
. (A.25)

Doing so, one finds that the parametrization of the wavefunction for the cases p > q

becomes

ψ(x; θ) ∼ − 1

2(p− q) + 1

{
Q(geff)

gp−q+1

[
1 +

p− q + 1

p− q g

(
(p− q)x−

p∑

a=1

w′
a +

q∑

i=1

wi

)]

+ gp−qQ̃(geff)

[
1− g

(
(p− q)x−

p∑

a=1

w′
a +

q∑

i=1

wi

)]}

with

Q(geff) =
gp−q

eff√
π

(1 + q1geff(θ) + · · · )

Q̃(geff) =
g

−(p−q)
eff√
π

(
− 1

geff(θ)
+ q̃0 + q̃1geff(θ) + · · ·

)
.

We see that q̃0 and q̃1, determined by comparison to the direct perturbative g expansion of

the Schrödinger equation, will only depend on the difference of sums of w′’s and w’s.

The analysis in this subsection can be generalized to other spin modules and those

with twists.

A.3 Nonzero twist α+ 6= 0

Mimicking the case of α+ = 0, we proceed with the UV expansion as follows. We are

interested in the ODE

∂2
xψ(x) =

[
e2x+2θ(1 + gx)k + t(x)

]
ψ(x) (A.26)

Consider the matching region 1
g ≫ −x≫ 0. The first inequality means we are reduced to

∂2
xψI(x) =

[
e2x+2θ + α2

+

]
ψI(x) (A.27)

The solution is given by

ψI(x) = Kα+(ex+θ) ∼ Γ(−α+)2−1−α+eα+(x+θ) + Γ(α+)2α+−1e−α+(x+θ), x→ −∞
(A.28)
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Recall Miura part t(x) = a+(x)2 + ∂xa+(x), takes the form

a+(x) = −α+ −
l

x+ 1/g
+ . . . (A.29)

where α+ is generic enough.

The second inequality means

∂2
xψII(x) =

[
a+(x)2 + ∂xa+(x)

]
ψII(x) (A.30)

whose solutions are given by

ψII(x) = c1Γ(α+)2α+−1e
∫ x

dx′ a+(x′) + c2Γ(−α+)2−1−α+e
∫ x

dx′ ã+(x′) (A.31)

where ã+(x) is defined to be the Weyl reflection of a+(x), i.e. ã+(x) = a+(x) + f [a+(x)],

where for any given function a(x), we define

f [a(x)] ≡ e−2
∫ x

dx′a(x′)

∫ x dx′e−2
∫ x′

dx′′a(x′′)
. (A.32)

Since both ψI(x) and ψII(x) are approximate solutions to (A.26) in the matching region
1
g ≫ −x≫ 0, we can take the coefficient

c1 ∼ eα(θ− 1
g

)
gl, (A.33)

c2 ∼ e−α(θ− 1
g

)
g−l. (A.34)

Recall that 1
geff

= 1
g − θ + . . . . Thus it is very natural to define

Q[geff ] = e
− α+

geff gleff

[
1 + q1geff + q2g

2
eff + . . .

]
,

Q̃[geff ] = e
α+
geff g−l

eff

[
− 1 + q̃1geff + q̃2g

2
eff + . . .

]
,

Tn =
i

2 sin πα+

(
Q(+n)[geff ]Q̃(−n)[geff ]−Q(−n)[geff ]Q̃(+n)[geff ]

)
.

(A.35)

One can calculate Tn;l = 〈l|T̂n|l〉 to be

Tn;l =
sin(nπα+)

sin πα+
+ g

(
nπ(2l − kα+) cos(nπα+) + 2(q1 − q̃1) sin(nπα+)

)
+ . . . (A.36)

Note that the leading term is precisely the character

TrR ei2πα+t0 =
sinnπα+

sin πα+
. (A.37)

B WKB analysis

B.1 General remarks and organizations

Given a sl2 λ-oper, the goal of this appendix is to develop techniques to evaluate the Stokes

data, namely the Wronskians between certain solutions (referred to as small solutions
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defined below) to the corresponding Schrödinger equation. Our formalism is based on the

WKB analysis, which culminates in the Voros analysis [28–38]. We refer readers to the

appendix of [19] and references therein for a review of WKB analysis and other related

recent progress. Contrary to the common wisdom, we will find that in the general situation

including the examples in this article, the standard WKB analysis will not provide a

complete collection of Stokes data, which we briefly review below.

The WKB analysis is concerned with the holomorphic differential equation

∂2
xψ =

[
P (x)

~2
+ t(x)

]
ψ ≡ T (x)ψ(x) (B.1)

defined on a Riemann surface by using the oper coordinate transformation between patches

ψ(x) =
1√

∂xx̃(x)
ψ̃(x̃(x)). (B.2)

Here we start with brief definitions of two main players, Stokes diagrams and small solutions.

Other relevant notions will be explained wherever needed.

T (x) and P (x)dx2 are referred to as the stress tensor and the quadratic differential

respectively. We will briefly review the analysis. For any angle ϑ ∈ R/2πZ, ϑ-WKB lines

are curves in the complex plane where

Im
[
eiϑ
√
P (x)dx · ∂t

]
= 0 (B.3)

where ∂t is the tangent vector of the curve. One such line passes through any point in the

x plane. a WKB curve is special if it ends on a zero of P or on an asymptotic region of

exponentially fast decrease for P . The union of all special WKB lines is called a WKB

diagram/spectral network. See footnote 4.

For each singularity of P (x), we can define a set of small solutions. In particular,

for each special WKB line coming into the singularity, we define a small solution to be

the unique solution (up to normalization) that decays exponentially fast approaching the

singularity along the corresponding special WKB line. We will choose the normalization

such that asymptotically near the singularity, it matches with the WKB solutions ψWKB
± (x).

The definition of the WKB solutions and the associated WKB coordinate system will be

given in section B.2.1.

We would like to find the Wronskians between small solutions. The standard

GMN/Voros-style WKB analysis is interested in contour integrals along the generic WKB

lines connecting every pairs of Stokes sectors, while, importantly, staying away from the

zeros of the quadratic differential P (x). They are indeed all we need to provide a complete

collection of Wronskians when all zeroes of the quadratic differential P (x) are simple.

However, more generally, the collection is not complete and we also need information from

the local analysis of the matching region.

An example where we need a generalized WKB analysis would be a polynomial oper

with non-simple zeros. And the zeros are the matching region we need to understand. More

precisely, for each zero of P (x), we can define a local coordinate system and nice local
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solutions therein. Let’s consider first t(x) = 0. For each zero x0 of order n, we want to find

a coordinate system ỹ(x) such that the oper of interest

P (x)

~2
(B.4)

becomes
ỹn

~2
+O(~0) (B.5)

where ỹ(x0) = 0 +O(~2). We also require the (possibly nonzero) subleading ~ terms in ỹ(x)

are regular at x0.

Generically one can’t find ỹ(x) such that the stress tensor takes exactly the form ỹn

~2 .

Instead, it turns out the best one can do is

ỹn

~2
+ an−2ỹ

n−2 + · · ·+ a1ỹ + a0. (B.6)

The constant coefficients can be determined order by order in ~,

am = a(0)
m + ~

2a(2)
m + ~

4a(4)
m + . . . (B.7)

In particular when n = 1, namely, around a simple zero, there always exists a coordinate

system such that the stress tensor takes the form ỹ
~2 . We can also write y = ~

− 2
n+2 ỹ, in

which the stress tensor takes the form

yn + an−2~
2n

n+2 yn−2 + · · ·+ aj~
2j+4
n+2 yj + · · ·+ a0~

4
n+2 . (B.8)

We will discuss how to find such a local coordinate system and nice local solutions defined

in there, as well as the cases with t(x) 6= 0, in subsection B.2.2.

Another example of the matching region is the negative infinity of the oper with

exponential potential. The details on how to deal with such matching region is given in

subsection B.7.3.

We will first describe three different coordinate systems in detail and the transformation

between them in section B.2. Next in section B.3, we will explain why the WKB analysis

away from the zeros is not enough and what information from the local analysis is crucial

to give a complete collection of Wronskians/Stokes data. We then give a general recipe for

evaluating the Wronskians by incorporating the missing local information while deferring

the local perturbative analysis of extracting the local information to section B.5.

In order to verify our proposed recipe, we carry out numerical computations. The

method of numerical implementation is given in section B.4.

Finally, we apply the generalized WKB analysis to the nice examples at hand including

polynomial oper with non-simple zeros in section B.6 and the exponential case that describes

the chiral WZW model in section B.7.
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B.2 Coordinate systems

We would like to define interesting local coordinate systems with good ~→ 0 asymptotics.

There are a few useful coordinate systems we will use frequently in this paper:

• the original one, denoted as x, where T = 1
~2P (x) + t(x),

• the local coordinate around a zero, y or ỹ, where T = yn + . . . or ỹn

~2 + . . . ,

• the WKB coordinate sab where T = 1
4 .

B.2.1 WKB coordinate systems

Near each (Stokes sector of a) singularity a of the quadratic differential P (x)dx2 we can

find a solution ψWKB
a which decreases exponentially fast approaching the singularity. It is

given as a specific asymptotic expansion near the singularity,

ψWKB
a =

1√
±∂xsasy

a (x)
e∓ 1

2
sasy

a (x) (B.9)

where sasy
a (x) is a primitive of twice the WKB momentum pasy

a (x) = 1
2∂xs

asy
a (x), which

satisfies the differential equation

pasy
a (x)2 +

3

4

(
∂xp

asy
a (x)

pasy
a (x)

)2

− 1

2

∂2
xp

asy
a (x)

pasy
a (x)

= T (x). (B.10)

The one form pasy
a (x)dx is also referred to as the WKB one form. If we write pasy

a (x) in ~

asymptotics as

pasy
a (x; ~) =

pasy
−1 (x)

~
+ ~pasy

1 (x) + ~
3pasy

3 (x) + · · · (B.11)

the equation (B.10) can then be written as a recursive equation for pn(x). The leading

term is given by pasy
−1 (x) ∼

√
P (x).

For a polynomial singularity at x = ∞, the asymptotic expansion sasy
a (x) involves

increasingly negative powers of x, with coefficients which are Laurent polynomials in ~. In

order to fix the normalization at x =∞ we only need to worry about powers of x greater

than −1, so the last two terms are unimportant. For a singularity of odd degree, the

expansion involves fractional powers of x and thus sasy
a (x) can be chosen unambiguously

to have no constant term. For a singularity of even degree, there will be a log x term and

we will have to make some choice. Of course, sometimes there are some natural nonzero

choices of the constant as well. See, for example, section B.6.1. For more generic cases, we

will fix the constant terms of sasy
a (x) on a case-by-case basis.

Once we fix the constant term in sasy
a (x), the normalization of the WKB solutions

ψWKB
a is then fixed. This then further fixes the normalization of the small solutions, which,

as we defined in section B.1, are normalized to match the WKB solutions asymptotically

near the singularity.
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Although we defined sasy
a (x) only as an asymptotic series, it is easy to produce actual

functions which have such an asymptotic expansion: given any other solution11 ψ∗ which is

not proportional to ψa, we could define

esa,∗(x) =
1

(ψa, ψ∗)

ψ∗(x)

ψa(x)
(B.12)

Redefinitions of ψ∗ by multiples of ψa would just shift esa,∗(x) by an x-independent constant.

For generic x, we sit along a generic WKB line associated to a pair of small solutions

ψa(x) and ψb(x), with some normalization determined at the corresponding directions at

infinity or singularities.

These solutions have good ~→ 0 asymptotics in a certain sector of width π in the ~

plane. So does their ratio, which defines an useful local coordinate

zab(x) ≡ esab(x) =
1

(ψa, ψb)

ψb(x)

ψa(x)
(B.13)

Then

∂xzab =
1

ψ2
a

(B.14)

so that the solutions ψa and ψb map to 1 and (ψa, ψb)zab in the zab coordinate. Or

equivalently, the stress tensor in zab coordinate is T (zab) = 0.

Also,

∂xsab ≡ 2pab(x) =
(ψa, ψb)

ψa(x)ψb(x)
(B.15)

and thus the solutions ψa and ψb map to e− 1
2
sab(x) and (ψa, ψb)e

1
2
sab(x) in the sab coordinate.

Equivalently, the stress tensor in sab coordinate is T (sab) = 1
4

sab(x) can be determined in the following way. Similar to (B.10), the WKB momentum

pab(x) ≡ 1
2∂xsab satisfies the differential equation

pab(x)2 +
3

4

(
∂xpab(x)

pab(x)

)2

− 1

2

∂2
xpab(x)

pab(x)
= T (x) (B.16)

which can be solved recursively to find the WKB expansion of p(x) away from zeroes of

P (x):

p(x) =
1

~

√
P (x) + ~

16P 2(x)t(x)− 5P ′(x)2 + 4P (x)P ′′(x)

32P (x)
5
2

+ · · · (B.17)

It is easy to see that pn>0(x) will involve increasingly negative powers of p−1(x) =
√
P (x).

Therefore the zeros of P (x) remain the places where the WKB approximation breaks down,

regardless of t(x).

In order to compute sab from pab, we need to fix the integration constants. This is done

by expanding p(x) near the singularity and comparing term-by-term with sasy
a (x).

11Unless we state explicitly otherwise, by a solution, we mean an actual function, as opposed to a WKB

solution, which is an asymptotic expansion.
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It is easy to express sab as a regularized contour integral. We can write

sab(x) = sab(x̄) +

∫ x

x̄
pab(u)du (B.18)

and send x̄ towards the singularity xa:

sab(x) = limx̄→xa

[
sasy
a (x̄) +

∫ x

x̄
pab(u)du

]
. (B.19)

Another useful observation is that

esab(x)+sba(x) =
1

(ψa, ψb)(ψb, ψa)
(B.20)

and pab + pba = 0, so that

log [(ψa, ψb)(ψb, ψa)] = −limx̄→xa limx̄′→xb

[
sasy
a (x̄) + sasy

b (x̄′) +

∫ x̄′

x̄
pab(u)du

]
(B.21)

with the integral taken along a path equivalent to the WKB line between xa and xb. The

overall sign can be determined by computing the Wronskian explicitly:

(ψa, ψb) = e− 1
2
sab(x)− 1

2
sba(x)

√
pab(x)√
pba(x)

. (B.22)

B.2.2 Local coordinate system around zeros

Here in this section, we explain how one can find explicitly the coordinate system in which
1
~2P (x) around a zero of order n takes the form of

ỹn

~2
+ an−2ỹ

n−2 + · · ·+ a1ỹ + a0 (B.23)

where ai = a
(0)
i + a

(2)
i ~

2 + a
(4)
i ~

4 + . . . . Or with y = ~
− 2

n+2 ỹ,

yn + an−2~
2n

n+2 yn−2 + · · ·+ aj~
2j+4
n+2 yj + · · ·+ a0~

4
n+2 . (B.24)

In this section, we will mostly use ỹ so that only integer power of ~ will appear.

When we have nontrivial t(x) = a(x)2 + ∂xa(x), and a(x) has residue −l at x0,

ỹn

~2
+ an−2ỹ

n−2 + · · ·+ a1ỹ + a0 +
l(l + 1)

ỹ2
(B.25)

or

yn + an−2~
2n

n+2 yn−2 + · · ·+ aj~
2j+4
n+2 yj + · · ·+ a0~

4
n+2 +

l(l + 1)

y2
(B.26)

In particular if t(x) is nontrivial but regular at the zero of interest x0, we should find the

stress tensor takes the local form (B.6) and (B.8).

Below we will see that ỹ(x) can be uniquely determined with no ambiguity and that it

is unavoidable to have the coefficients ai by providing two different ways of finding such

ỹ(x). By doing so we will explain why the coefficients am are unavoidable. (1) In comparing

the local coordinate and other coordinates, we need to have some parameters to adjust

so that the cross ratios defined from the local solutions coincide with the same cross-ratio

built from ψn(x). (2) am need to be specific values to make the coordinate transformation

ỹ(x) non-divergent at the interested zero.
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Local coordinate transformation. We call this a local map since it is only valid in the

neighborhood of the zero

~≪ ỹ2 ≪ ỹ ∼ (x− x0)≪ 1. (B.27)

Suppose we are interested in the zero of order n, then apparently one can always do a shift

in the coordinate such that

P (x) = t1x+ t2x
2 + t3x

3 + · · ·+ tNx
N (B.28)

where t1 = t2 = · · · = tn−1 = 0 and x = 0 is the order n zero of interest. By solving the

following equation
(
∂ỹ

∂x

)2 ( ỹn

~2
+ an−2ỹ

n−2 + · · ·+ a1ỹ + a0

)
− 1

2
{ỹ, x} =

P (x)

~2
(B.29)

order by order in ~ and x, we can determine the coordinate transformation ỹ(x) and more

importantly {am} explicitly as functions of {tn, tn+1, . . . , tN}.

Non-local coordinate transformation. To state again, we want to find a coordinate

transformation ỹ(x) with respect to a zero x0 of order n satisfying
(
∂ỹ

∂x

)2 ( ỹn

~2
+ an−2ỹ

n−2 + · · ·+ a1ỹ + a0

)
− 1

2
{ỹ, x} =

P (x)

~2
(B.30)

where ỹ(x) = ỹ0(x) + ~ỹ1(x) + ~
2ỹ2(x) + . . . . This equation can be solved recursively order

by order in ~, and at each order we have a first order differential equation. The leading

order equation ỹ′2
0 ỹ

n
0 = P (x) is solved by

ỹ0(x) =

(
n+ 2

2

∫ x

x0

√
P (x′)dx′

) 2
n+2

. (B.31)

The integration constant is fixed by choosing the integration starting point from the

interested zero x0 of order n, such that locally around x0, ỹ0(x) start from linear order in

(x− x0) and vanishes at x0.

At the order of ~−1, we have a homogeneous differential equation nỹ1y
′
0 + 2ỹ0ỹ

′
1 = 0,

which is solved by

ỹ1(x) =
c1

ỹ0(x)n/2
. (B.32)

Since ỹ0(x) vanishes at the zero x0 and we require ỹ(x) to be regular there, the only choice

is to choose c1 = 0, hence ỹ1(x) = 0. The same is true for ever odd order in ~.

At the order of ~0, we end up with the an inhomogeneous first order differential equation

for ỹ2(x). We fix the homogeneous part 1
ỹ0(x)n/2 of the solution by choosing the lower limit

of the integral at x0. This renders ỹ2(x) regular, and in general nonzero, at x0. For example

simple zero: ỹ2(x) =
1√
ỹ0(x)

∫ x

x0

√
ỹ0(x′)

−3(ỹ′′
0)2 + 2ỹ′

0ỹ
′′′
0

8ỹ0(ỹ′
0)3

dx′, (B.33)

double zero: ỹ2(x) =
1

ỹ0(x)

∫ x

x0

ỹ0(x′)
−4a

(0)
0 (ỹ′

0)4 − 3(ỹ′′
0)2 + 2ỹ′

0ỹ
′′′
0

8ỹ2
0(ỹ′

0)3
dx′, (B.34)

cubic zero: ỹ2(x) =
1

ỹ0(x)3/2

∫ x

x0

ỹ
3/2
0

−4a
(0)
0 ỹ′4

0 − 4a
(0)
1 ỹ0ỹ

′4
0 − 3ỹ′′2

0 + 2ỹ′
0ỹ

′′′
0

8ỹ3
0 ỹ

′3
0

. (B.35)
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Furthermore, one can also understand the necessity of the coefficients ai in (B.24) from the

fact that we need them in order to have ỹ2(x) non-divergent at x0.

B.2.3 Relating two coordinate systems

Near a simple zero. There are three special WKB lines emanating from a simple zero.

Therefore, near a simple zero, we can access three small solutions ψa, ψb, ψc, decaying

exponentially along the three special WKB lines respectively. Apparently there must be a

linear relation among them, sometimes referred to as Plücker relations.

(ψa, ψb)ψc + (ψc, ψa)ψb + (ψb, ψc)ψa = 0. (B.36)

On the other hand, there exists a local coordinate system y associated to this simple

zero, in which the stress tensor reads T (y) = y. The coordinate y satisfies the differential

equation
(
∂y(x)

∂x

)2

y(x) +
3

4

(
∂2
xy(x)

∂xy(x)

)2

− 1

2

∂3
xy(x)

∂xy(x)
= T (x) (B.37)

and can be expanded as ~→ 0 to be y(x) = ~
− 2

3 (ỹ0 + ~
2ỹ2 + ~

4ỹ4 + . . . ). Then the nice

local solutions in this local coordinate system are given by (B.86),

Aia(y) =
√

2πe− πia
3 Ai(e

2πia
3 y). (B.38)

In particular, we have

Ai−1(y)−Ai0(y) + Ai1(y) = 0. (B.39)

Define y(x) by
Ai1(y(x))

Ai−1(y(x))
=

(ψc, ψa)ψb
(ψa, ψb)ψc

. (B.40)

This obviously satisfies also

− Ai0(y(x))

Ai−1(y(x))
=

(ψb, ψc)ψa
(ψa, ψb)ψc

, −Ai1(y(x))

Ai0(y(x))
=

(ψc, ψa)ψb
(ψb, ψc)ψa

(B.41)

which gives us the relation between small solutions ψ•(x) and the local solutions Ai•(y(x)).

For example,

∂xy(x)ψ2
a(x) =

(ψc, ψa)(ψa, ψb)

i(ψb, ψc)
Ai0(y(x))2. (B.42)

We can now relate y to sab and to the other WKB coordinates nearby:

Ai1(y(x))

Ai0(y(x))
= −(ψa, ψb)(ψc, ψa)

(ψb, ψc)
esab(x). (B.43)

The coordinate sab(x) depend on the normalization of the local solutions Aia(y) and small

solutions ψa(x). One can define an alternative local WKB coordinate, i.e. an alternative

primitive of pab(x), that is independent of the normalization of the solutions, given as follows

esabc(x) ≡ (ψc, ψa)ψb
(ψb, ψc)ψa

=
(ψa, ψb)(ψc, ψa)

(ψb, ψc)
esab(x) = −Ai1(y(x))

Ai0(y(x))
. (B.44)
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If we expand the right hand side −Ai1(y(x))
Ai0(y(x)) in an asymptotic expansion at large y(x) using

Aia(y) ∼ 1√
±2∂yS(y)

e∓S(y) (B.45)

where the function S(y) = 2
3y

3/2 + 5
48

1
y3/2 + . . . . we get

S(y) ∼ 2ỹ
3/2
0

3~
+ ~

(
5

48ỹ
3/2
0

+ ỹ
1/2
0 ỹ2

)
+ ~

3 · · · = 1

~

∫ x

x0

√
P (x′)dx′ + ~(. . . ) (B.46)

then we can obtain the ~ expansion of sabc(x),

sabc(x) =
π

2
+ 2

(
2

3
y(x, ~)3/2 +

5

48

1

y(x, ~)3/2
+

1105

9216

1

y(x, ~)9/2
+ . . .

)
(B.47)

=
π

2
+ 2

(
2ỹ0(x)3/2

3~
+

(
5

48ỹ0(x)3/2
+ ỹ0(x)1/2ỹ2(x)

)
~ + . . .

)
. (B.48)

We can think about this as a regularized version of the integral of 2pab from the zero to x.

More precisely, as all the ingredients of the definition above have good WKB asymptotics,

we will show below that the ~ expansion exactly coincide with the contour integral of 1
2pab

from x to x along a path γabc which winds around the zero while keeping away from it:

namely, up to some multiple of iπ2 we have

sabc(x) =

∫

γabc(x)
pab(u)du. (B.49)

We should really keep track of factors of ±i in front of the exponents:

esabc(x) =

√
pab(x)√
pba(x)

√
pca(x′)√
pac(x′)√

pbc(x′′)√
pcb(x′′)

e
1
2
sab(x)− 1

2
sac(x′)e− 1

2
sca(x′)+ 1

2
scb(x′′)e

1
2
sbc(x′′)− 1

2
sba(x). (B.50)

We now show explicitly why (B.49) is true at the first two orders. Recall that the WKB

momentum is

p(x, ~) =
1

~

√
P (x) + ~

[
−5P ′2 + 4PP ′′

32P 5/2

]
+ . . . (B.51)

The leading order is easy since
√
P (x) is integrable at the zero and we can just pinch the

contour to the zero

2
2ỹ0(x)3/2

3~
=

2

~

∫ x

x0

√
P (x′)dx′. (B.52)

The order ~ is not as obvious

5

48
ỹ0(x)−3/2 + ỹ0(x)1/2ỹ2(x) =

5

48

1∫ x
x0

√
P (x)

+

∫ x

x0

ỹ
−1/2
0 (x′)Q(x′)dx′ (B.53)

where

Q(x) =
−3ỹ′′2

0 + 2ỹ′
0ỹ

′′′
0

8ỹ′3
0

(B.54)
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is generically nonzero and regular as x→ x0. Let’s now try to understand how this realizes

a primitive of the WKB one form at the order of ~, which is 4PP ′′−5P ′2

32P 5/2 . Apparently, it is

not integrable at the zero x0 because it is divergent there. However, we can rewrite it as

p1(x) =
4PP ′′ − 5P ′2

32P 5/2
=

[
4PP ′′ − 5P ′2

32P 5/2
+

5

32

√
P (x)

ỹ3
0

]
− 5

32

√
P (x)

ỹ3
0

(B.55)

=
Q(x)√
ỹ0
− 5

32

√
P (x)

ỹ3
0

. (B.56)

Note that generically around the zero x0, the behavior of ỹ0(x) is

ỹ0(x) =

(
3

2

∫ x

x0

√
P (x′)dx′

) 2
3 x→x0→ #(x− x0) + . . . (B.57)

So the first term in (B.56) is integrable, and we can shrink the contour γabc(x) to the zero.

The second term is badly divergent but a total derivative

− 5

32

√
P (x)

ỹ3
0

=

(
5

48

1

ỹ
3/2
0

)′
=

(
10

72

1∫ x
x0

√
P (x′)dx′

)′
. (B.58)

Therefore, we have found a good primitive of p1(x), which is the order ~ part of p(x, ~)

∫ x

x0

Q(x′)√
ỹ0

dx′ +
5

48

1

ỹ0(x)3/2
. (B.59)

This finishes the proof of (B.49) at the order of ~. This way of separating divergent total

derivative from the less divergent part in (B.56) is very reminiscent of a more well-known

way [75, 76] to evaluate the contour integral, which goes as follows. Write P (x) = V (x)−E.

p1(x) =
4PP ′′ − 5P ′2

32P 5/2
=

4(V − E)V ′′ − 5V ′2

32(V − E)5/2
(B.60)

=

[
1

8

V ′′

(V − E)3/2
− 5

48

V ′′

(V − E)3/2

]
+

5

48

d

dx

V ′

(V − E)3/2
(B.61)

=
1

24

d

dE

V ′′

(V − E)1/2
+

5

48

d

dx

V ′

(V − E)3/2
. (B.62)

Notice that the first term is integrable at the zero and the second term is a total derivative.

Near a double zero. If the quadratic differential P (x) has a double zero at x0, then

there are four special WKB lines emanating from x0, around which we can access four small

solutions, which are denoted as ψa, ψb, ψc, ψd in the figure 4. We now have linear relations

(ψa, ψb)ψc + (ψc, ψa)ψb + (ψb, ψc)ψa = 0,

(ψb, ψc)ψd + (ψd, ψb)ψc + (ψc, ψd)ψb = 0,

(ψc, ψd)ψa + (ψa, ψc)ψd + (ψd, ψa)ψc = 0,

(ψd, ψa)ψb + (ψb, ψd)ψa + (ψa, ψb)ψd = 0.

(B.63)
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Figure 4. The Stokes diagrams in the local coordinate system around the simple zero and the

double zero. The numbers close to the origin label the numbering for the nice local solutions Ai(y)

we use in this section, whereas ψ• label the corresponding small solutions.

One can define a nontrivial cross-ratio out of the four solutions χ = (ψa,ψb)(ψc,ψd)
(ψb,ψc)(ψd,ψa) , which

is close to 1 as ~→ 0. Note that the Wronskians between non-adjacent solutions are not

accessible to the standard WKB analysis. One of the goals of this section is to provide a

way to evaluate such Wronskians by relating to the local coordinate system around this

double zero.

Recall that from the general expression (B.24), the Schrödinger equation in this local

coordinate system takes the form

∂2
yA(y) =

[
y2 + ~a(~)

]
A(y) (B.64)

with a(~) = a0 + ~
2a2 + ~

4a4 + . . . being some function of ~ that can be determined in

~→ 0 asymptotics from the differential equation

(∂xy(x))2
[
y(x)2 + ~a(~)

]
+

3

4

(
∂2
xy(x)

∂xy(x)

)2

− 1

2

∂3
xy(x)

∂xy(x)
= T (x). (B.65)

Nice local solutions to (B.64) are given in (B.79), (B.81) and (B.101), which we denote

as Ai, i ∈ Z. To relate these local solutions to the small solutions ψa, ψb, ψc, ψd, we now

require
(A2, A0)A1(y(x))

(A1, A2)A0(y(x))
=

(ψc, ψa)ψb
(ψb, ψc)ψa

≡ esabc(x) (B.66)

which also implies easily

(A2, A0)A1(y(x))

(A0, A1)A2(y(x))
=

(ψc, ψa)ψb
(ψa, ψb)ψc

≡ escba(x). (B.67)

On the other hand, if the cross-ratio of Ai is adjusted to be χ, that can be written as

(A2, A3)A1(y(x))

(A3, A1)A2(y(x))
=

(ψc, ψd)ψb
(ψd, ψb)ψc

≡ escbd(x) (B.68)

etcetera.
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In short, we have a good coordinate in all four sectors. In particular, that means we

could determine this way the asymptotic expansion of the cross-ration χ. On the other

hand, that asymptotic expansion is already computable from a contour integral of p(x) on

a contour wrapping around the double zero while keeping away from it.

We can now relate y to sab and to the other WKB coordinates nearby:

(A2, A0)A1(y(x))

(A1, A2)A0(y(x))
= esabc(x) =

(ψc, ψa)ψb
(ψb, ψc)ψa

. (B.69)

If we expand the left hand side in an asymptotic expansion at large y(x), we can obtain the

~ expansion of esabc(x) as follows. Asymptotically at large y, A0(y) ∼ 1√
2∂yS(y)

e−S(y), with

S(y) ∼ y2

2
+

1

2
a~ log y +

3 + a2
~

2

16
y−2 +

(
−19a~

64
− a3

~
3

64

)
y−4 +O(y−6) (B.70)

∼ ỹ2
0

2~
+ ~

[
3

16

1

ỹ2
0

+ ỹ0ỹ2 +
1

2
a(0) log ỹ0 −

1

4
a(0) log ~

]
+O(~3) (B.71)

where we have parameterized the ~→ 0 asymptotics y(x) = ~
−1/2(ỹ0(x) + ~

2ỹ2(x) +O(~4))

and a(~) = a(0) + ~
2a(2) +O(~4). We then obtain the ~ expansion of sabc(x)

log
(A2, A0)

(A1, A2)
− πi

2
+ 2

(
ỹ0(x)2

2~
+ ~

[
3

16

1

ỹ0(x)2
+ ỹ0(x)ỹ2(x)

+
1

2
a(0) log ỹ0(x)− 1

4
a(0) log ~

]
+O(~3)

)
.

Let’s note a crucial point of (B.69). While (ψc, ψa) cannot be computed by a naive

WKB contour integral away from the zeroes, everything else in (B.69) can be in principle

evaluated: (A1, A2) is normalized to be −i; (A2, A0) will be computed in (B.104); (ψb, ψc) is

controlled by a WKB contour integral. Therefore (B.69) provides an interesting prediction

of (ψc, ψa). So the relation above should really be written as

(ψc, ψa) = (A2, A0)
(ψb, ψc)

(A1, A2)

A1(y(x))

ψb(x)

ψa(x)

A0(y(x))
(B.72)

Note that A1(y(x)) and A0(y(x)) have to be proportional to
√
y′(x)ψb(x) and

√
y′(x)ψa(x),

respectively. Therefore to figure out (ψc, ψa), which is x independent, we just need to figure

out the constants of proportionality. We can do so by comparing the ~ expansions and read

out the x independent terms.

B.3 Recipe for evaluating Wronskians

1. If we have ψ(x) either exact or numerical solution, we can just evaluate (ψn, ψm).

Normalization of the solutions are not important if one is only interested in the cross

ratios.

2. If two solutions ψn and ψm are connected to the same zero of order k, we have to

choose a branch of ỹ0 =
(
k+2

2

∫ √
Pdx

) 2
k+2 . This is equivalent to choosings how
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the local solutions Ak;a(y) correspond to the small solutions ψa(x). For each pair

ψn(x) ∝ [∂xy(x)]−1/2Ak;a(y), ψn(x) ∝ [∂xy(x)]−1/2Ak;a(y), we can just read out

the constant of proportionality from the large x asymptotics in the corresponding

directions. If we denote the constants of proportionality as Cn(~) and Cm(~), the

Wronskians are just

(ψn, ψm) = Cn(~)Cm(~)(Ak;a, Ak,b). (B.73)

3. If two solutions ψn and ψm are not connected via special WKB lines to the same zero,

we can use Plücker relation to reduce to the previous case.

4. What remains is to figure out the Wronskians between local solutions (Ak;a, Ak,b).

This will be done via perturbation theory in section B.5.

B.4 Numerical implementation

Here in this section, we explain how we implement the numerics. In particular, given

an ODE

∂2
xψ(x) =

(
P (x)

~2
+ t(x)

)
ψ (B.74)

we would like to find the corresponding small solutions and evaluate the Wronskians

between them.

Let’s first consider the case where P (x) is a polynomial of degree n and t(x) = 0.

In this case the ODE is regular everywhere on the complex plane with n+ 2 asymptotic

direction towards the irregular singularity at infinity. Then the task would be to find the

decaying solutions along each asymptotic direction. However, initial value problems are

more natural in numerics, where one usually specifies the initial condition (the value of

ψ and ∂xψ at a chosen initial point) and numerically integrate outward along a certain

direction. An obvious way to proceed is the so-called shooting method, which reduces the

boundary value problems to initial value problems and one adjusts the initial condition

until the desired decaying asymptotics is reached. However, it turns out that, in practice,

large x asymptotics is very sensitive to the initial condition at small x thus it is very hard

to reach a decent accuracy.

Instead, we employ the inward integration approach where the boundary condition

at a certain large value of x is provided by the chosen WKB solutions. Intuitively this

works better for us because the unwanted dominant solution is suppressed by the inward

integration. Indeed, as shown in figure 6, numerical error is greatly reduced this way. We

will see more examples of the numerical calculation below.

It’s not hard to imagine that dealing with small ~ is challenging for numerics since

it exponentially suppresses the solution. This can be easily resolved by a rescaling of the

coordinate. For example, under a change of coordinate y = ~
−2/5x

x3 − ax2

~2
⇔ y3 − a~− 2

5 y2 (B.75)

Therefore, the result only depends on the combination a~− 2
5 . In the numerics we will study

the latter and vary a. Wronskians and cross ratios will be invariant under the rescaling
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of the coordinate. If one wants to study the wavefunctions, we can easily restore the ~

dependence by going back to the original coordinate.

There are other numerical implementation methods available.12 See, e.g. [77] for a

recent study.

B.5 Solutions near zeros and their Wronskians

In general, given a local form around a zero of generic integer order k where the stress

tensor is regular
ỹk

~2
+ ak−2ỹ

k−2 + · · ·+ a1ỹ + a0 (B.76)

which becomes under ỹ = ~
2

k+2 y,

T local
k (y) = yk + ak−2γ

kyk−2 + · · ·+ ajγ
2+jyj + · · ·+ a0γ

2 (B.77)

where γ = ~
2

k+2 and

am = a(0)
m + γk+2a(2)

m + γ2(k+2)a(4)
m + . . . (B.78)

Let’s attempt to solve the ODE perturbatively in γ. At the leading order, the Schrödinger

operator is just ∂2
y − yk. A set of nice solutions has been given in [19], which we now review.

We choose the solution that decays along the positive real axis which takes the form

A
(0)
k;0(y) =

√
2y

π(k + 2)
K 1

k+2

(
2

k + 2
y1+ k

2

)
(B.79)

with large y asymptotics

A
(0)
k;0(y) ∼ 1√

2yk/4
e− 2

k+2
y1+ k

2
. (B.80)

We can produce more solutions by a rotation

A
(0)
k;a(y) = e− πi

k+2
aA

(0)
k;0(e

2πi
k+2

ay). (B.81)

It deserves some remarks here. The definition for (B.79) is obvious because we want
1√

2∂yS(y)
e−S(y) type of asymptotics. Because of the rotational symmetry y → e

2πi
k+2 y, the

definition (B.81) is equivalent to

A
(0)
k;a(y = e− 2πi

k+2
aR) ≡ e− πi

k+2
aA

(0)
k;0(R), R ∈ R+ (B.82)

The inclusion of the factor e− πi
k+2

a is such that asymptotically along the ray of e− 2πi
k+2

a

A
(0)
k;a(y) ∼ 1√

2eπiayk/2
e−eπia 2

k+2
y1+ k

2
. (B.83)

As a result, all neighbouring Wronskians (A
(0)
k;a, A

(0)
k;a+1) = −i. This brings a side effect that

A
(0)
k;a = −A(0)

k;a+k. Had we defined A
(0)
k;a(y) in (B.81) without the factor e− πi

k+2
a, we would

have A
(0)
k;a = A

(0)
k;a+k. Furthermore, thanks to the identity

A
(0)
k;a−1(y) +A

(0)
k;a+1(y) =

(
e

πi
k+2 + e− πi

k+2

)
A

(0)
k;a(y) (B.84)

12We thank Andy Neitzke for the helpful correspondence.
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we can compute for any a and b, i(A
(0)
k;a, A

(0)
k;b) = d

(k)
b−a, where

d(k)
n =

e
πi

k+2
n − e− πi

k+2
n

e
πi

k+2 − e− πi
k+2

. (B.85)

Setting k = 1, we are reduced to the Airy functions

A
(0)
1;a(y) ≡ Ai(0)

a (y) ≡
√

2πe− πia
3 Ai

(
e

2πia
3 y

)
. (B.86)

To obtain higher order corrections, we parameterize the solution as

A(y) =
∑

n≥0

γnA(n)(y) (B.87)

where for now we suppressed the subscript. The differential equation ∂2
yA(y) = T local

k (y)A(y)

is expanded order by order in γ as

γ0 : ∂2A(0) − ykA(0) = 0,

γ1 : ∂2A(1) − ykA(1) = 0,

γ2 : ∂2A(2) − ykA(2) = a
(0)
0 A(0),

γ3 : ∂2A(3) − ykA(3) = a
(0)
1 yA(0) + a

(0)
0 A(1),

γ4 : ∂2A(4) − ykA(4) = a
(0)
2 y2A(0) + a

(0)
1 yA(1) + a

(0)
0 A(2).

(B.88)

We fix the normalization of the solutions by matching with the WKB asymptotics, which is

uniquely defined as
1√
±2∂yS

e∓S (B.89)

where S = 2
k+2y

k+2
2 + . . . is a (fractional) power series of y, with no constant term. When

the zero of even order, there is also log y, which we choose to be the principal branch. For

example,

T local
k (y) = y, S =

2

3
y3/2 +

5

48

1

y3/2
+

1105

9216

1

y9/2
+ . . .

T local
k (y) = y2 + aγ2, S =

1

2
y2 +

aγ2

2
log y +

3 + a2γ4

16

1

y2
+ . . .

T local
k (y) = y3 + bγ3y + aγ2, S =

2

5
y5/2 + bγ3y1/2 − aγ2 1

y1/2
+ . . .

T local
k (y) = y4 + cγ4y2 + bγ3y + aγ2, S =

1

3
y3 +

cγ4

2
y +

bγ3

2
log y +

c2γ8 − 4aγ2

8

1

y
+ . . .

(B.90)

We can now give the prescription for determining the solutions order by order in γ. The

small Ak;a(y), which decays along the ray of exp(− 2πi
k+2a), is given by

Ak;a(y; γ, {ai}) = A
(0)
k;a(y) + γA

(1)
k;a(y) + γ2A

(2)
k;a(y) + . . . (B.91)
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Ak;a can be obtained recursively in the following way. We already defined the leading order

A
(0)
k;a above. Obviously WKB solutions (B.89) expand in power of γ starting from γ2, so we

need to choose A
(1)
k;a = 0. And for each A

(n)
k;a with n ≥ 2, we need to solve an inhomogeneous

ODE with two integration constants to fix, one of which is fixed by requiring the solution

to decay along the chosen direction and the other one is fixed to match the normalization

of the WKB solution (B.89). In practice, as seen in the examples below, this is achieved by

choosing the lower limit of the integration to be at infinity.

Given two small solutions Ak;a = A
(0)
k;a+γ2A

(2)
k;a+γ3A

(3)
k;a+ . . . and Ak;b = A

(0)
k;b+γ2A

(2)
k;b+

γ3A
(3)
k;b + . . . , their Wronskian reads

(Ak;a, Ak;b) = (A
(0)
k;a, A

(0)
k;b) + γ2

[
(A

(2)
k;a, A

(0)
k;b) + (A

(0)
k;a, A

(2)
k;b)
]

+ γ3
[
(A

(3)
k;a, A

(0)
k;b) + (A

(0)
k;a, A

(3)
k;b)
]

+ γ4
[
(A

(4)
k;a, A

(0)
k;b) + (A

(0)
k;a, A

(4)
k;b) + (A

(2)
k;a, A

(2)
k;b)
]

+ . . . (B.92)

In particular, we can verify that (Ak;a, Ak;a+1) = (A
(0)
k;a, A

(0)
k;a+1) = −i with no higher order

corrections. More interesting ones are the Wronskians between non-consecutive small

solutions. We will give concrete examples below for the double zero and cubic zero, since it

is trivial for simple zero.

If, on the other hand, we are interested in the local coordinate system around a zero

that is a singularity of trivial monodromy, we would have

ỹk

~2
+ ak−2ỹ

k−2 + · · ·+ a1ỹ + a0 +
l(l + 1)

ỹ2
(B.93)

or

yk + ak−2~
2k

k+2 yk−2 + · · ·+ aj~
2j+4
k+2 yj + · · ·+ a0~

4
k+2 +

l(l + 1)

y2
(B.94)

where t(x) = a(x)2 + ∂xa(x), and a(x) has residue −l at x0. The perturbative solutions can

be found in a similar procedure as above except that we need to start with different solutions

at the leading order. Since the Schrödinger operator at the leading order is ∂2 − yk − l(l+1)
y2 ,

the solutions that agree with the asymptotics (B.80) and (B.83) are given by

A
(0)
k,l;0(y) =

√
2y

π(k + 2)
K 1+2l

k+2

(
2

k + 2
y1+ k

2

)
(B.95)

A
(0)
k,l;a(y) = e− πi

k+2
aA

(0)
k,l;0(e

2πi
k+2

ay) (B.96)

whose Wronskians are given by

i(A
(0)
k,l;a, A

(0)
k,l;b) =

sin π
k+2(2l + 1)(b− a)

sin π
k+2(2l + 1)

. (B.97)

One sanity check is to look at i(A
(0)
k;a, A

(0)
k;a+k+2). One would like this to be zero since there

is a unique decaying solution along a certain ray and therefore two must be proportional to

each other. This is indeed mostly true since 2l + 1 ∈ Z. It fails when 2l + 1 is an integer

multiple of k + 2, where we have

i(A
(0)
k;a, A

(0)
k;a+k+2) = (−1)(k+1) 2l+1

k+2 (k + 2). (B.98)

This is another manifestation of the requirement that 2l ≤ k.
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B.5.1 Example: double zero

Consider the ODE

∂2
ỹÃ(ỹ) =

(
ỹ2

~2
+ a

)
Ã(ỹ) (B.99)

where a = a(0) + ~
2a(2) + ~

4a(4) + . . . . To find perturbative solution, we rewrite using

γ = ~
1/2 and ỹ = γy, and we have

∂2
yA(y) =

(
y2 + γ2a

)
A(y). (B.100)

It is not hard to see that all the equations at the odd power of γ are homogeneous and

WKB solutions only involve even powers of γ, so solutions A =
∑
γjA(j) only involve even

powers of γ, namely A =
∑
γ2jA(j) =

∑
~
jA(j), where the leading order is given by

A
(0)
2;n =

√
y

2π
K 1

4

(
1

2
y2eπin

)
, (B.101)

One of the immediate consequences is that the Wronskians (An, Am) = (A
(0)
n , A

(0)
m ) + . . .

are corrected by integer powers of ~.

On the other hand, the ODE13 (B.99) can be solved exactly by using

Ã0(ỹ, ~) =

(
~

2

) 1−a~
4

D− 1+a~
2

(√
2ỹ√
~

)
(B.102)

Ãn(ỹ, ~) = ψ̃0(ỹ, ~e−iπn). (B.103)

Their Wronskians can be evaluated easily. For example, i(Ãn, Ãn+1) = 1,

i(Ã−1, Ã1) =

√
2π

Γ(1
2 − a~

2 )

(
~

2

)a~
2

, i(Ã−1, Ã2) = eiaπ~. (B.104)

The cross ratio

χ ≡ (Ã0, Ã1)(Ã−1, Ã2)

(Ã−1, Ã0)(Ã1, Ã2)
= eiπa~ (B.105)

which exactly coincides with the contour integral exp
∮
p(x, ~)dx around this double zero of

the WKB momentum which has a pole

p(x, ~) =
x

~
+
a~

2x
− 3~ + a2

~
3

8x3
+

19a~3 + a3
~

5

16x5
+ . . . (B.106)

B.5.2 Example: cubic zero

In the local coordinate system around a cubic zero, T (ỹ) = ỹ3

~2 + bỹ + a, where

b = b(0) + ~
2b(2) + ~

4b(4) + . . . (B.107)

a = a(0) + ~
2a(2) + ~

4a(4) + . . . (B.108)

13The reason we solve (B.99) instead of the one in y coordinate is because we have ~
2 in the former, so

that we can apply the trick ~ → ~e−iπn to find other solutions. Due to the same reason, we don’t shift

~ → ~e−iπn in the Jacobian part ~
−1/4 if one wants to go back to y coordinate.
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or equivalently the stress tensor is y3 +bγ3y+aγ2 with γ = ~
2/5. The leading order solutions

are defined in (B.79) and (B.81). Since here in this section we only flesh out details for

three solutions, for convenience we write φ0 = A
(0)
3;0, φ1 = A

(0)
3;1, φ−1 = A

(0)
3;−1.

Let’s now solve the ODE perturbatively using the prescription described in B.5. Let’s

denote the small solution along the ray e−i2πn/5 as

Ak;n(y) =
∑

n≥0

γjA
(j)
k;n(y) , (B.109)

which can be solved perturbatively order by order. We compare the analytic perturbative

solution with the numerical solution in figure 5. Wronskians between these functions are

easily evaluated

(A3,0, A3,1) = 1 (B.110)

(A3,−1, A3,1) = (A
(0)
3,−1, A

(0)
3,1) + γ2a(0)

[
(A

(0)
3,−1, A

(2)
3,1) + (A

(2)
3,−1, A

(0)
3,1)
]

+O(γ3) . . . (B.111)

B.6 Examples: polynomial oper

B.6.1 Ex: P (x) = x2 − 2a

The stress tensor is T (x) = x2−2a
~2 . There are four small solutions, given by the parabolic

functions

ψ0(x) =

(
~

2

) 1
4

+ a
2~

D− 1
2

+ a
~

(√
2x√
~

)
, ψn(x, θ) = ψ0(x, θ + iπn) (B.112)

with Wronskians i(ψn, ψn+1) = 1 and

i(ψ−1, ψ1) =

(
~

2

)−a/~√
2π

Γ
(

1
2 + a

~

) , i(ψ−1, ψ2) = e−2iπ a
~ . (B.113)

The normalization in (B.112) is such that in its large x asymptotic expansion 1√
±2∂xS(x)

e∓S(x),

there is no constant term in the primitive S(x).

In ~ asymptotics, i(ψ−1, ψ1) = (2e)1/~
(
1 + 1

24~ + 1
1152~

2 − 1003
414720~

3 +O(~4)
)
. Let us

try to reproduce this in two other ways: contour integral of WKB momentum and using

local coordinate systems.

The WKB momentum is p(x, ~) =
√
x2−2
~

+ p1(x)~ + p3(x)~3 + . . . . Since

∫ L√
x′2 − 2dx′ L→∞−→ L2

2
+ const− logL+O

(
1

L2

)
(B.114)

we can regularize the integral at infinity by defining

∫ x

∞
≡ lim

L→∞

∫ x

L
+

(
L2

2
+A− logL

)
. (B.115)
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Figure 5. Numerical and analytic evaluation in the local coordinate system around a cubic zero

defined at the beginning of subsection B.5.2. Parameters used are chosen in a rather generic way:

~ = 1
5 , a = − 4

21 , b = 1
2 . (Top) Various approximate evaluations of A3,0(y). Approximation gets

better with higher corrections included. (Bottom) ∆error ≡ ∂2

xψ(x)
ψ(x) − 1

~2P (x). We don’t show the

∆error for the WKB asymptotic solution since the error is too big. The legend of coloring is shared

in both diagrams.
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We will choose the constant A = 0 in this article to normalize the WKB solutions. With

this normalization, the large x asymptotics will take the form of only power of x without

any constant14

∫ x

∞

√
x′2 − 2dx′ ∼ x2

2
− log x+

1

4
x2 + . . . (B.116)

Therefore, the leading term of the integral of the WKB momentum is
∫ i∞

−i∞

√
x′2 − 2dx′ = log 2e,

∫ i∞

−i∞
p1(x)dx = − 1

24
,

∫ i∞

−i∞
p3(x)dx =

7

2880
. (B.117)

Therefore we get

i(ψ−1, ψ1) = e
−
∫ i∞

−i∞
p(x,~)

= (2e)1/~
(

1 +
1

24
~ +

1

1152
~

2 − 1003

414720
~

3 +O(~4)

)
. (B.118)

We can also find this result via going to the local coordinate system. Essentially one

needs to figure out the constant of proportionality in (∂xy(x, ~))−1/2A(y(x)) ∝ ψ(x). To

this end, we look at the large x asymptotics of both sides. By definition, the large x

asymptotics of ψ(x) is given by 1√
±2∂xS(x)

e∓S(x), where

S(x) =
x2

2~
− a

~
log x+

(
a2

4~
+

3~

16

)
1

x2
+

(
a3

8~
+

19a~

32

)
1

x4

+

(
5a4

48~
+

145a2
~

96
+

99~3

256

)
1

x6
+ . . . (B.119)

which has no constant term according to our definition. On the other hand, the large x

asymptotics of (∂xy(x, ~))−1/2A(y(x)) exactly matches with (B.119), modulo a possible

constant term in S(x). With y(x) = ~
−2/3(y0 + ~

2y2 + ~
4y4 + . . . ) and (B.46), we have

S̃(y) =
2y0(x)3/2

3~
+

(
5

48y0(x)3/2
+ y0(x)1/2y2(x)

)
~ + . . . (B.120)

=

(
x2

2
− log

√
2e− log x+

1

4

1

x2
+ . . .

)
1

~
+

(
− 1

48
+

3

16x2
+ . . .

)
~. (B.121)

Therefore S(x) = S̃(y(x)) + 1
2

(
1
~

log 2e+ 1
24~ + . . .

)
, and

ψ1(x) = e
1
2 ( 1

~
log 2e+ 1

24
~+... ) (∂xy(x, ~))−1/2A1(y(x)) (B.122)

hence

i(ψ−1, ψ1) = e
1
~

log 2e+ 1
24

~+...(A−1(y), A1(y)) = e
1
~

log 2e+ 1
24

~+.... (B.123)

There is one cross ratio defined by

χ =
(ψ0, ψ1)(ψ−1, ψ2)

(ψ−1, ψ0)(ψ1, ψ2)
= e−2πia

~ . (B.124)

Furthermore, the exact solutions are solved by parabolic cylinder functions, which we can

use to test our numerical calculation.
14There are some other natural choices as well. For example, we chose A = − log

√
2e in [19] such that

the regularized integral
∫ x

∞

√
x′2 − 2dx′ coincides with

∫ x
√

2

√
x′2 − 2dx′. With this,

∫ i∞

−i∞

√
x′2 − 2dx′ = 0,

and consequently we don’t have the prefactor (2e)1/~ in i(ψ−1, ψ1).
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Figure 6. Numerical error ∆error ≡ ∂2

xψ(x)
ψ(x) − 1

~2P (x). (Left) P (x) = x2 − 2 and ~ = 1 (Right)

P (x) = x3 − x2 and ~ = 1. This is just to illustrate numerical error is indeed very small.

Figure 7. Stokes diagram for (Left) P (x) = x2 − 2a, (Right) P (x) = x3 − x2.

B.6.2 Ex: P (x) = x3 − x2

There is one simple zero, one double zero and five asymptotic directions. The Stokes

diagram is shown in figure 7.

In the local coordinate system around the double zero,

T̃ (y, ~) = y2 − 2a(~), a(~) =
7i

64
~− 119119i~3

131072
+

10775385621i~5

268435456
+ . . . (B.125)

Recall that

y2(x) =
1

y0(x)

∫ x

x0

y0(x′)
8a

(0)
0 (y′

0)4 − 3(y′′
0)2 + 2y′

0y
′′′
0

8y2
0(y′

0)3
dx′ (B.126)

the integrand around x = 0 is

a(0) − 7i
64

x
+
−1687i− 960a(0)

5760
+ . . . (B.127)

therefore we have to choose a(0) = 7i
64 . And since typically y0(x) ∼ αx+ . . . , y2(x) will be

nonzero at the zero x = 0.
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With a suitably chosen branch cut, namely from 1 to positive infinity along the real

axis, the large x asymptotics is given by
∫ x

1
ix′√1− x′dx′ ∼ c1x

5/2 + c2x
3/2 + c3x

1/2 + 0 + c4x
−1/2 + . . . (B.128)

and
∫ 0

1 ix′√1− x′dx′ = − 4i
15 . Recall that we choose to regularize the integral at infinity

by removing the powers of divergence without adding any constant term. As a result, the

regularized contour integral of the WKB momentum

∫ e
2πi

5 ∞

e− 2πi
5 ∞

ix′√1− x′dx′ = 0. (B.129)

So the leading order of i(ψ−1, ψ1) is 1.

Let’s try to reproduce i(ψ−1, ψ1) using two local coordinate systems separately. We use

y±(x) to denote the local coordinate system around the simple/double zero, respectively.

At the leading order

S+(y+(x)) =
2y+,0(x)3/2

3~
+ · · · = 1

~

∫ x

1
ix′√1− x′dx′ + . . . (B.130)

S−(y−(x)) =
y−,0(x)2

2~
+ · · · = 1

~

∫ x

0
ix′√1− x′dx′ + . . . (B.131)

One might find this puzzling: since the constant term in the large x asymptotics of S+ is

zero but is nonzero in S−. This means that

(∂xy+(x))−1/2A+(y(x)) = ψ(x) = e± 4i
15~

+... (∂xy−(x))−1/2A−(y(x)). (B.132)

But this is not problematic because the nontrivial factor actually cancels in the Wronskian.

Therefore, they give the same i(ψ−1, ψ1) = 1 + . . . , as expected. This Wronskian actually

has nontrivial ~ corrections, which we will present below.

First, of course, we can integrate the WKB momentum along the generic WKB line

i(ψ−1, ψ1) = exp

∫ e
2πi

5 ∞

e− 2πi
5 ∞

p(x, ~)dx = exp

(
0 +

7π

32
~− 119119π

65536
~

3 . . .

)
(B.133)

S̃(y) =
2y0(x)3/2

3~
+

(
5

48y0(x)3/2
+ y0(x)1/2y2(x)

)
~ + . . . (B.134)

One can obtain the same result in local coordinate system around the simple zero and the

double zero.

As an example of Wronskians that cannot be evaluated by the contour integral of the

WKB momentum, let’s try to calculate i(ψ−1, ψ2). Again we go to the local coordiante

system around the double zero x− = 0 and we have

(
∂y−(x)

∂x

)−1/2

A−;a(y−(x)) ∝ ψ−1(x), (B.135)

(
∂y−(x)

∂x

)−1/2

A−;a+3(y−(x)) ∝ ψ2(x). (B.136)

– 66 –



J
H
E
P
0
1
(
2
0
2
2
)
1
7
5

0.1 0.2 0.3 0.4 0.5 0.6

- 1.5

- 1.0

- 0.5

0.0

0.5

1.0

1.5

Figure 8. Evaluations of the Wronskian i(ψ−1, ψ2). The red dots are the numerical result. The

blue line and the red line are the analytic prediction from the local coordinate system around the

double zero up to ~
−1 and ~ order respectively given in (B.139).

To find the proportionality constant, we can just look at the large x asymptotics along

the corresponding direction and compare both side term by term. The leading term is

exp
(
− 4i

15~

)
. The subleading terms can be found numerically.

We are now ready to calculate the cross ratios. There are two independent cross ratios

defined as follows

χ1 ≡
(ψ−1, ψ−2) (ψ1, ψ2)

(ψ−1, ψ1) (ψ2, ψ−2)
, χ2 ≡

(ψ0, ψ1) (ψ−1, ψ2)

(ψ0, ψ−1) (ψ1, ψ2)
. (B.137)

χ1 is easily evaluated in the local coordinate system around the double zero. It coincides

with the contour integral of the WKB momentum along a small circle around the double

zero. From the end of the subsection B.5.1, this evaluates to be

χ1 = e2πia(~). (B.138)

The second cross ratio boils down to −i(ψ−1, ψ2), namely

− χ2 = i(ψ−1, ψ2) =
√

2 exp

[
− 8i

15~
− ~

(
lim

R→+∞
S~(e

2πi
5 R) + S~(e

− 4πi
5 R)

)]
(B.139)

where

S~(x) =
3

16

1

y2
0

+ y0y2 − a(0) log y0 (B.140)

and we also parametrize the coordinate transformation as usual

y(x) = y0(x) + ~
2y2(x) + . . . (B.141)

This agrees quite well with the numerical evaluation shown in figure 8.
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Figure 9. Stokes diagram for P (x) = e2x, which corresponds to SU(2)0 trivial theory. There are

infinite number of special WKB lines depicted as red paralell lines.

B.7 Example: chiral WZW

B.7.1 Trivial theory

When the level k = 0, we have a trivial theory with central charge c = 0 and the only

primary operator being the vacuum

∂2
xψ(x) = e2θe2xψ(x). (B.142)

The WKB diagram takes the form of figure 9. By use of the asymptotics of the Bessel

function for large real positive argument

1√
π
Kν(z) ∼

1√
2z
e−z. (B.143)

Small solutions are given by

ψ0 =
1√
π
K0(eθ+x),

ψn = ψ0(x; θ + niπ) =
1√
π

(
K0(eθ+x)− iπnI0(eθ+x)

) (B.144)

with the Wronskians given by i(ψn, ψn′) = n′ − n from (K0(eθ+x), I0(eθ+x)) = 1.

B.7.2 Matching around the zero

When t(x) = 0, after shifting the coordinate, the stress tensor looks like

1

~2
e2xxk. (B.145)

In the local coordinate around the zero,

yk + ak−2γ
kyk−2 + · · ·+ ajγ

2+jyj + · · ·+ a0γ
2 (B.146)
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where γ = ~
2

k+2 . When k = 1, it just equals y without corrections in γ. When k ≥ 2, the

stress tensor in the local coordinate system generically have nonzero coefficients ai. For

example, when k = 2, we found that

a = −1

8
+

40911

1024
~

2 +O(~4). (B.147)

B.7.3 Matching around the negative infinity

Suppose δ = x− x−∞ is a local coordinate around x−∞, which has a large negative real

part. Then

P (x) = e2θ+2x(1 + gx)k (B.148)

= e2δe2θ+2x−∞+k log(1+gx−∞)

(
1 +

δ

x−∞ + 1
g

)k
. (B.149)

We would like to find x−∞ such that the exponent 2θ + 2x0 + k log(1 + gx−∞) = 0. And

hopefully in the IR limit θ →∞, the denominator in the parenthesis x−∞ + 1
g is large so

we can perform perturbation theory. This indeed can be done.

We can solve the equation 2θ + 2x−∞ + k log(1 + gx−∞) = 0 by15

x−∞ ∼ −θ −
1

2
k log(−gθ)− k2

4

log(−gθ)
θ

+O

(
1

θ

)
. (B.150)

Apparently the imaginary part of x−∞ is neither arbitrary nor unique, and depends on

the parity of k and the imaginary part of θ. However, importantly, it turns out that we

can always choose x−∞ to lie on one of the special WKB lines, though the precise choice

doesn’t matter.

On the other hand, we can also see this from a different perspective. Recall that our

system only depends on the geff , a particular combination of g and θ, given by

e
− 1

geff (θ) geff(θ)
k
2 ≡ e− 1

g g
k
2 eθ. (B.151)

It is not hard to see that this is indeed the same equation as the one for x−∞ once we

identify

x−∞(θ) =
1

geff(θ)
− 1

g
(B.152)

that satisfy

dx−∞(θ)

dθ
= − 1

1 + k
2

1
x−∞+ 1

g

,
dx−∞(θ)

dθ

∣∣∣∣
θ=∞

= −1, x−∞(∞) = −∞. (B.153)

15Note that the naive solution

x−∞ = −1

g
+
k

2
W

(
2

kg
e

2

k
( 1

g
−θ)

)
∼ − θ

1 + gk
2

+
2k

(2 + gk)3
(gθ)2 − 4k(4 − gk)

3(2 + gk)5
(gθ)3 + . . .

is not the one we want, since 0 > x−∞ > − 1
g

, and 0 ≪ θ < 1
g

.
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Figure 10. In the top figure, g is assumed to be a some order 1 constant, independent of θ. x−∞(θ)

is farther away from − 1
g as θ →∞. δ is the local variation around x−∞(θ) that is complex. So it

doesn’t have to be on the real axis. In the bottom figures, the red line is an example of geff discussed

in this section, namely an example of circular RG flow.

Or in terms of geff(θ), it starts with g = geff(θ = 0) that has some small imaginary part, and

circles around in the complex geff(θ) plane and goes back to the zero geff(θ → +∞)→ 0−.

Therefore the careful solution we found in (B.150), especially the imaginary part of x−∞ is

just to make sure we choose this circular type of RG flow, depicted as red lines in figure 10.

Using the definition (B.152), our quadratic differential is actually just

P (x) = e2δ (1 + geff(θ)δ)k . (B.154)

And with the above solution of x−∞ and geff(θ), we have geff(θ → +∞) → 0−, therefore

the perturbation in geff is valid in the IR.16 Note that geff(θ) expands in large θ as

− 1

θ
+
−2 + gk log(−gθ)

2gθ2
+ . . . (B.155)

16Of course we also have to make sure

|δ| ≪ − 1

geff
.
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