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Here, we describe a systematic derivation of the general form of the optical helicity density of ellipticaly-
polarised paraxial Laguerre-Gaussian modes LGℓ,p,σ. The treatment incorporates the contributions of
the longitudinal field components for both the paraxial electric E and magnetic B fields, which satisfy
Maxwell’s self-consistency condition in the sense that E is derivable from B and vice versa. Contributions
to the helicity density, to leading order in (k2w2

0)
−1 (where k is the axial wavenumber and w0 the beam

waist), include terms proportional to optical spin σ, topological charge ℓ as well as a spin-orbit σ|ℓ| term.
However, evaluations of the space integrals leading to the total helicity confirm that the space integral of
the ℓ-dependent term in the density (which is due entirely to the longitudinal fields) vanishes identically
for all ℓ and p, so that, in general, only σ determines the Hopf index, with the optical vortex LGℓp character
only featuring in the action constant. © 2022 Optical Society of America

http://dx.doi.org/10.1364/ao.XX.XXXXXX

There is currently much interest in the emerging field of topological photonics, which deals with the topological aspects of light and
how they can be put to good use in controlling its properties in diverse physical contexts [1–5]. Optical helicity is prominent among
the properties of light that display topological features [6–14]. For monochromatic light of frequency ω in free space the form of the
optical helicity density that has recently been investigated is the cycle-averaged form [15, 16] which is given by

η̄(r) = − ϵ0c

2ω
ℑ[E∗ · B] (1)

where E and B are the electric and magnetic vector fields of the light and ℑ[...] indicates taking the imaginary part of [...]. The total
cycle-averaged helicity C̄ is as defined by Ranada [6] as the volume integral of the helicity density. It is this property that displays
explicit topological features characterised by the topological invariant N and an action constant Q

C̄ =
∫

d3r η̄(r) = NQ (2)

N is called the Hopf index and is an invariant real number characteristic of the specific light field. By contrast, the constant Q is not
invariant but depends on the parameters controlling the specific light field. Topological invariance here means that if the light field
parameters are modified, for example by focusing, or by a change of frequency, or by a change of the applied field intensity, then the
Hopf index does not change, while the action constant adjusts accordingly.

Recent research has sought to explore and clarify the role of the longitudinal (axial) component of the electric field of the light
[17]. This component was previously regarded as insignificant and so invariably dropped from most treatments involving the optical
beam properties and its interaction with matter. It has recently been established that the longitudinal electric field component and its
associated magnetic field components can acquire magnitudes comparable to those of the transverse components. Its inclusion in the
analysis has been shown to give rise to new effects, including the realisation of transverse angular momentum and its relation to the
optical Spin Hall effect [18, 19] and has recently been shown to play a role in the trapping potential for atoms via a spin-orbit coupling
mechanism [20]. Its role in quantised vortex beams has also been explored [21]. Among the explored beam properties of interest in
the context of polarised paraxial light fields are the vector components of the volume densities as well as their space-integrals of the
optical angular momentum and the Poynting vector [22–27].
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The aim of this article is to find out what effect the inclusion of the longitudinal component has on the helicity of the light, its
Hopf index, and its action integral. We consider the general realisable form of the light field, namely an elliptically-polarised paraxial
Laguerre-Gaussian mode, labelled LGℓ,p,σ.

We assume that the beam has a waist w0 and a Rayleigh range zR, and we neglect all convergence phases, namely the Gouy and
curvature phases. Lax et al. [28] have shown that such a beam is characterised by the diffraction length d in the longitudinal direction
where d = kw2

0 ≡ 2zR and it is anticipated that all problems of interest are such that w0 < d, which means kw0 > 1, Then to leading
order in the expansion in powers of 1/kw0 such a beam can be represented by a transverse field, along with a longitudinal field [29]
which emerges by use of the Lorentz gauge with a vector potential A and a scalar potential proportional to ∇ · A. This leads first to
the magnetic field B = ∇× A and from it we derive E using the Maxwell equation involving ∇× B. Self-consistency demands that
once the form of E is determined from B it is crucial that we must obtain B from E. We therefore focus on the derivation of vortex LG
fields which starts from the Lorentz gauge

B = ∇× A; E = iωA −∇Φ (3)

We assume an elliptically-polarised beam, so we write

A = (αx̂ + βŷ)Fℓ,p(ρ, ϕ)eikz (4)

where Fℓ,p(ρ, ϕ) is the amplitude function of the Laguerre-Gaussian mode. Explicitly for an LGℓ,p mode Fℓ,p takes the following form
[30]

Fℓ,p(ρ, ϕ) = E0

√

p!

(p + |ℓ|)! e
− ρ2

w2
0

(√
2ρ

w0

)|ℓ|
L
|ℓ|
p

(

2ρ2

w2
0

)

eiℓϕ (5)

where L
|ℓ|
p is the associated Laguerre polynomial of indices |ℓ| and p, with E0 an overall normalisation factor which is fixed by the

requirement that its value is consistent with input power of known magnitude P . The derivation of E0 is given in Appendix A.
The Lorentz gauge involves the continuity equation

∇ · A +
1

c2

∂Φ

∂t
= 0 (6)

This determines the scalar potential Φ in terms of A. We obtain

Φ =
c2

iω
∇ · A (7)

which yields

Φ =
c2

iω

(

α
∂F
∂x

+ β
∂F
∂y

)

eikz (8)

where for ease of notation we have dropped the ℓ, p subscripts in F . These will be restored when the need arises. The paraxial fields in
this general case are as follows. The magnetic field emerges from the vector potential Eq.(4) directly using B = ∇× A in the form

B = ik(αŷ − βx̂)F eikz + ẑ

(

β
∂F
∂x

− α
∂F
∂y

)

eikz (9)

while the electric field, to the same level of paraxial approximation, is

E = ick(αx̂ + βŷ)F eikz − c

{

α
∂F
∂x

+ β
∂F
∂y

}

eikz
ẑ (10)

Note that the fields E and B we are dealing with are in the paraxial regime [31] emerging from the vector potential A in the Lorentz
gauge. We identify the z-components of the fields as the longitudinal components whose influence on the helicity properties of the
light are of concern here. It is straightforward to show that once having found E we may proceed to derive B from the Maxwell
equation iωB = ∇× E to the same level of approximation. Similarly from B we should again derive E. This self-consistency condition
ensures that Maxwell’s equations are satisfied in this paraxial regime. Note also that the case of a linearly-polarised beam corresponds
to setting α = 1 and β = 0 in Eqs.(9) and (10) which yields the corresponding expressions given by Haus [31]. However, our concern
here is to consider the most general elliptically-polarised Laguerre-Gaussian light beam LGℓ,p,σ for arbitrary ℓ and p and from this
general case we can retrieve results for physically distinct beams including the simplest beams, namely Gaussian (ℓ = 0) and doughnut
(any ℓ, but p = 0) and both cases can be linearly or circularly-polarised.

Having now at our disposal expressions for the paraxial electric and the magnetic fields, our primary tasks here consist of the
following (i) first evaluating the cycle-averaged helicity density η̄ of the polarised Laguerre-Gaussian light beam; (ii) next evaluating
the total helicity C̄ as the space integral of the helicity density η̄; (iii) finally proceeding to discuss topological invariance in this context
and determining the Hopf index.

We are interested in the most general cycle-averaged helicity density of the LG light field. This is now labelled as η̄ℓ,p,σ to emphasise
the LG beam generality in terms of its winding number ℓ and radial number p along with the general elliptical polarisation σ. The
helicity density is defined in Eq.(1) and from this we obtain the total helicity as the space integral.

C̄ℓ,p,σ =
∫ d/2

−d/2
dz
∫ ∞

0
ρdρ

∫ 2π

0
dϕ η̄ℓ,p,σ(r) (11)
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We have assumed that the beam length is equal to the diffraction length d = w2
0k [28]. Working out the dot product E∗ · B we find

E∗ · B = ck2(αβ∗ − βα∗)|F |2 − c

(

β
∂F
∂x

− α
∂F
∂y

){

α∗
(

∂F
∂x

)∗
+ β∗

(

∂F
∂y

)∗}
(12)

We identify the derivative terms as contributions to the helicity density due to the longitudinal field. Multiplying out in the second
term we obtain

E∗ · B = ck2(αβ∗ − βα∗)|F |2 − c

{

βα∗
∣

∣

∣

∣

∂F
∂x

∣

∣

∣

∣

2

− αβ∗
∣

∣

∣

∣

∂F
∂y

∣

∣

∣

∣

2

+ |β|2
(

∂F
∂x

)(

∂F
∂y

)∗
− |α|2

(

∂F
∂x

)∗ ( ∂F
∂y

)

}

(13)

The evaluation of the partial derivatives is straightforward we have

(

∂F
∂x

)

= (R cos ϕ − iT sin ϕ)F (14)

and
(

∂F
∂y

)

= (R sin ϕ + iT cos ϕ)F (15)

where R and T depend on the form of the LG mode. For the general LGℓ,p mode we have for R

R =











−2ρ

w2
0

+
|ℓ|
ρ

− 4ρ

w2
0

L
|ℓ|+1
p−1

(

2ρ2

w2
0

)

L
|ℓ|
p

(

2ρ2

w2
0

)











(16)

and for T we have

T =
ℓ

ρ
(17)

Note that the third term in R in Eq.(16) can have zeros in the denominator Lℓ
p and so the third term on its own becomes infinite.

However, as will be shown in what follows, this function will always appear multiplied by |F |2 which is proportional to [Lℓ
p]

2. The

denominator of the third term then cancels with one of [Lℓ
p]

2 and the resulting expression then has no zeros in the denominator.
The complex parameters α and β have the following properties

|α|2 + |β|2 = 1; αβ∗ − βα∗ = 2iℑ[αβ∗] (18)

So we then have
σ = i(αβ∗ − α∗β) = 2αβ′ (19)

where we have set β = iβ′. Consider next the terms involving the modulus squares. We have

βα∗
∣

∣

∣

∣

∂F
∂x

∣

∣

∣

∣

2

− αβ∗
∣

∣

∣

∣

∂F
∂y

∣

∣

∣

∣

2

= iαβ′
{

∣

∣

∣

∣

∂F
∂x

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂F
∂y

∣

∣

∣

∣

2
}

= iαβ′(R2 + T 2)|F |2 (20)

Consider finally the mixed terms. We have

|β|2
(

∂F
∂x

)(

∂F
∂y

)∗
− |α|2

(

∂F
∂x

)∗ ( ∂F
∂y

)

=
1

2

{(

∂F
∂x

)(

∂F
∂y

)∗
−
(

∂F
∂x

)∗ ( ∂F
∂y

)}

= −iRT |F|2 (21)

Collecting terms and using 2αβ′ = σ, we have for the dot product E∗ · B

E∗ · B = −2iαβ′ck2|F |2 − c
{

iαβ′(R2 + T 2)− iT R
}

|F |2

= −iσck2|F |2 − c

{

1

2
iσ(R2 + T 2)− iT R

}

|F |2

(22)

Thus for a general beam LGℓ,p,σ we find for the cycle averaged helicity density

η̄ℓ,p,σ =
ϵ0c2

4ω

{

σ(2k2 +R2 + T 2)− 2RT
}

|Fℓ,p|2 (23)
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We can see that the derivative terms due to the longitudinal fields result in adding the terms (R2 + T 2)|Fℓ,p|2 to the sigma-dependent

part of the helicity density and it introduces a σ-independent but ℓ-dependent contribution to the density as the term −2RT |Fℓ,p|2 It
is convenient at this stage to substitute for T and obtain

η̄ℓ,p,σ =
ϵ0c2

4ω

{

σ

[

2k2 +R2 +

(

ℓ

ρ

)2
]

− ℓ

(

2R
ρ

)

}

|Fℓ,p|2 (24)

With R given by Eq.(16), the result (24) is the first of three main results of this article. It represents the general form of the helicity
density of the elliptically-polarised LGℓp,σ beam, applicable for any winding number ℓ and radial number p. A close inspection
of the helicity density shows that it receives two distinct contributions: the first, denoted η̄σ is associated with polarisation and is
proportional to σ. The second, denoted η̄ℓ,p,0 given by the second term, is a the σ-independent contribution associated with the orbital
angular momentum (OAM) vortex. Characteristically, it is proportional to the vortex winding number ℓ. Thus we can write the helicity
density of the most general LG beam as the sum of two contributions

η̄ = η̄σ + η̄ℓ,p,0 (25)

where η̄σ is the expression in Eq.(24) that is proportional to σ. We have

η̄σ =
ϵ0c2

4ω
σ

[

2k2 +R2 +

(

ℓ

ρ

)2
]

|Fℓ,p|2 (26)

The rest of the expression in Eq.(24) defines η̄ℓ,p

η̄ℓ,p,0 = −ℓ
ϵ0c2

4ω

(

2R
ρ

)

|Fℓ,p|2 (27)

For a general mode LG mode the function R is as defined in Eq.(16).
The helicity density term η̄ℓ,p,0 is the one that survives when σ = 0, i.e.for a linearly-polarised beam. This term is entirely due to the

inclusion of the longitudinal component. It is proportional to ℓ which changes sign when ℓ changes sign. For example the helicity
density distribution η̄3,0,0(ρ) and η̄−3,0,0(ρ) of two linearly-polarised Laguerre-Gaussian beams which differ only in their winding
number ℓ are such that η̄3,0,0(ρ) = −η̄−3,0,0(ρ). This is a signature of chirality. However, although the helicity density distribution is
non zero, its integration over all space yields the exact result for all ℓ and p. Substituting for R from Eq.(16), with F given by Eq.(5)
we obtain the exact result that the total helicity for a linearly polarised LGℓ,p mode (σ = 0) vanishes identically due to the radial
integration. Thus

C̄ℓ,p,0 =
∫ d/2

−d/2
dz
∫ 2π

0
dϕ
∫ ∞

0
ρ dρ η̄ℓ,p = 0; (σ = 0) (28)

The steps leading to this result are displayed in Appendix B. Eq.(28) is the second of our main results showing that the total helicity of
any linearly-polarised LG beam is zero for all ℓ and p. The corresponding density arises entirely from the inclusion of the longitudinal
fields. Figure 1 displays the variations with ρ of the integrands ρη̄±3,0,0. It is seen that the areas under and above the ρ axis add up to
zero in each case, confirming that the total helicity vanishes in this case.

When both ℓ and σ are non-zero, the helicity density is given by the general form Eq.(24) and for illustration, Fig. 2 displays four
cases involving the set (ℓ, σ) = (±3,±1). In each figure, the density is determined by the σ component with modifications arising due
to the inclusion of the longitudinal field components.

The general expression for the total helicity is obtained as the space integral of the helicity density Eq.(24). We obtain, keeping in
mind the null result in (28) which represents a vanishing OAM contribution to the total helicity,

C̄ℓ,p,σ =
∫ d/2

−d/2
dz
∫ 2π

0
dϕ
∫ ∞

0
ρ dρ η̄σ; (σ ̸= 0) (29)

Substituting for η̄σ from Eq.(26) with R given by Eq.(16) and F given by Eq.(5) we obtain the result for the total helicity of an
elliptically-polarised LG mode for arbitrary values of ℓ and p. The integrals in Eq.(29) are dealt with in Appendix C and the final result
is as shown in Appendix C is

C̄ℓ,p,σ = σQ0

{

1 +
2p + |ℓ|+ 1

k2w2
0

}

(30)

where Q0 (as shown in Appendix C) is given by

Q0 = k2w2
0

( P
ω2

)

(31)

Q0 is thus a constant which has the dimensions of angular momentum (Js). Writing C̄ℓ,p,σ as the product of the Hopf index N and the
action constant Q, we obtain at once

N = σ; Q = Q0

(

1 +
2p + |ℓ|+ 1

k2w2
0

)

(32)
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Fig. 1. Variations with ρ (in units of w0) of the integrands ρη±3,0,0 (arbitrary units) for two paraxial (kw0 > 1) linearly-polarised doughnut beams
(σ = 0). The areas enclosed by each curve add up to zero confirming the null result for the total helicity in these special cases. The figure also
demonstrates the chirality displayed by these beams which differ only in the sign of their winding number. Here kw0 = 5.

Fig. 2. Variations with ρ of the helicity densities based on Eq.(24) (arbitrary units) for four circularly-polarised paraxial (kw0 > 1) Laguerre Gaus-
sian (doughnut) beams. Here kw0 = 5.
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This is the third of the main results of this work. The first term (unity) inside the brackets is such that Q = Q0. We have checked by
explicit evaluations that Q0 is the action constant associated with a transverse elliptically-polarised Gaussian beam in the absence of
the longitudinal fields, while the second term is due entirely to the inclusion of the longitudinal field components. The numerator
in this second term is, by coincidence, reminiscent of the factor involved in the form of the Gouy phase of the LG light beam, while
the magnitude of the denominator k2w2

0 signifies the extent of the paraxiality of the beam. As explained above in most cases we are
concerned with the case kw0 > 1. The second term between the brackets in Q becomes equal to or greater than unity for a beam waist
w0 given by

w0 ≤ λ̄
√

2p + |ℓ|+ 1 (33)

Thus the second term in Q can become significant relative to unity for smaller beam waists which indicates strong focusing. For a
Gaussian beam ℓ = 0, p = 0 and the total helicity becomes

C̄0,0,σ = σQ0

(

1 +
1

k2w2
0

)

(34)

in which case the condition w0 = λ̄ leads to the second term equal to unity. For p ≫ 0 and/or ℓ ≫ 0, the second term inside the
brackets becomes greater than unity even for larger w0 ≫ λ̄, so there is no need for tight focusing.

In conclusion, we have evaluated the helicity density and the total helicity of circularly-polarised paraxial Laguerre-Gaussian beams
and determined from that the topologically invariant Hopf integer index N . In our analysis, we have made use of electromagnetic
fields in the paraxial limit which incorporate the longitudinal components and to the same level of the paraxial regime the fields
conform with the requirement of duality in the sense that E can be derived from B and B can be derived from E using Maxwell’s
equations. We proceeded to evaluate the cycle-averaged helicity density, as Eq.(24) and shown that it receives separate contributions,
one proportional to σ and a second proportional to ℓ and there is also a spin-orbit term proportional to σ|ℓ|2 within the σ contribution.

Our general result in Eq.(24) for the helicity density includes the contributions arising entirely from the inclusion of the longitudinal
components. This general form applies to the various cases, namely linearly-polarised as well as circularly-polarised doughnut beams;
circularly-polarised Gaussian beams as well as linearly-polarised LG beams for which σ = 0. In this latter case only the ℓ-dependent
helicity density (which derives entirely from the longitudinal field) survives and this displays chirality in the sense that a change
of the sign of ℓ changes the sign of the helicity density. Although a linearly-polarised LG beam has a non-zero helicity distribution,
it gives rise to a null contribution to the total helicity, which continues to be determined solely by the elliptical polarisation. The
vanishing of the total helicity for a linearly polarised LG beam (σ = 0) is consistent with the vanishing of the total optical spin (SAM)
of the same linearly-polarised beam, despite the fact that the spin density distribution is non-zero. The spin density and SAM of
the linearly-polarised LG mode is discussed in Appendix D. Here we have shown that in all cases the Hopf index is conserved as
N = σ and that the effect of the optical vortex is only to enhance the action constant Q by the additive factor (2p + |ℓ|+ 1)/(k2w2

0).
This factor can equal or exceed unity even for moderate focusing for which λ̄ < w0 ≤ sλ̄ where s can be much greater than unity,
depending on the choice of ℓ and p.

In short, we have demonstrated that an elliptically-polarised Laguerre-Gaussian beam LGℓ,p,σ displays topological invariance in
that it always has the Hopf index σ and we have clarified the roles of the winding number ℓ and the radial number p in the presence
and absence of σ. The finding that the Hopf index is determined solely by σ is significant, with ℓ-dependent terms originating from the
longitudinal fields playing no role in the Hopf index. The only topological feature of the inclusion of the longitudinal components is a
modification of the action constant Q of the total helicity. Another outstanding problem arising from this work is to determine what
topological properties one would expect to find when considering vortex beams with fractional orbital angular momentum [32, 33].
However, this matter will not be pursued any further here.
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APPENDIX A

The normalisation factor E0

The overall normalisation factor which appears in the form of the paraxial LG beam in Eq.(5) is such that the average power of the
beam P (average energy per unit area per second) is conserved. The formal definition of the power is the surface integral of the
average Poynting vector E∗ × B/2µ0 over a plane for which the surface element is dΣ = dΣẑ, so only the z-component of the Poynting
vector enters the integration. The power P is the integral of the z-component of the Poynting vector over the beam cross-section

P =
1

2µ0

∫ 2π

0
dϕ
∫ ∞

0
|(E∗ × B)z|ρdρ (35)

The evaluation of the z-component of the Poynting vector is straightforward using Eq.(10)and (9) and yields |(E∗ · B)z| = ck2|Fℓ,p|2.
Thus we have

P =

(

πck2

µ0

)

∫ ∞

0
|Fℓ,p|2ρdρ

=

(

πck2

µ0

)

1

4
w2

0E2
0

=

(

πω2ϵ0cw2
0

4

)

E2
0 (36)

where we have substituted for Fℓ,p from eq.(5) and made use of the standard integral

∫ ∞

0
x|ℓ|e−x[L

|ℓ|
p (x)]2dx =

(p + |ℓ|)!
p!

(37)
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We obtain finally for the normalisation constant E0

E2
0 =

4P
ϵ0cπω2w2

0

(38)

APPENDIX B

VERIFICATION OF EQ.(29)

In this appendix we show that the space integral of η̄ℓ,p,0 which is the same as total helicity of the linearly-polarised LG beam (σ = 0)
is identically zero. On substituting for F from Eq.(5) in Eq.(27), we find that the relevant expression for radial integration is

Iℓ,p =
∫ ∞

0

R
ρ̃

e−2ρ̃2
(2ρ̃2)|ℓ|

[

L
|ℓ|
p (2ρ̃2)

]2
ρ̃dρ̃

=
∫ ∞

0







−ρ̃2 +
|ℓ|
ρ̃

− 4ρ̃2
Lℓ+1

p−1(2ρ̃2)

L
|ℓ|
p (2ρ̃2)







1

ρ̃
e−2ρ̃2

(2ρ̃2)|ℓ|
[

L
|ℓ|
p (2ρ̃2)

]2
ρ̃dρ̃ (39)

where ρ̃ = ρ/w0 and we have inserted the expression for R from Eq.(16). We are left with three integrals to deal with. The denominator

L
|ℓ|
p (2ρ̃2) in the third term between the brackets cancels with one of

[

L
|ℓ|
p (2ρ̃2)

]2
, rendering the integrand well-behaved with no zeros

in the denominator. It is then convenient to change variable using the substitution x = 2ρ̃2, we now have

Iℓ,p = −
∫ ∞

0
e−xx|ℓ|

[

L
|ℓ|
p (x)

]2
dx

+ |ℓ|
∫ ∞

0
e−xx|ℓ|−1

[

L
|ℓ|
p (x)

]2
dx − 2

∫ ∞

0
L
|ℓ|+1
p−1 (x)L

|ℓ|
p (x)e−xx|ℓ|dx (40)

The last two integrals can be combined into one integral on making use of the identity

d

dx
L
|ℓ|
p (x) = −L

|ℓ|+1
p−1 (x) (41)

We thus have

Iℓ,p = −
∫ ∞

0
e−xx|ℓ|

[

L
|ℓ|
p (x)

]2
dx +

∫ ∞

0
e−x d

dx

{

x|ℓ|
[

L
|ℓ|
p (x)

]2
}

dx (42)

The last integral can be integrated by parts to yield

Iℓ,p = −
∫ ∞

0
e−xx|ℓ|

[

L
|ℓ|
p (x)

]2
dx +

{

e−xx|ℓ|
[

L
|ℓ|
p (x)

]2
∣

∣

∣

∣

∞

0

+
∫ ∞

0
e−xx|ℓ|

[

L
|ℓ|
p (x)

]2
dx (43)

The second term vanishes at both limits and we are left with the final result Iℓ,p = 0. This proves that the space integral of the helicity
density η̄ℓ,p vanishes on the basis of a vanishing radial integral and we can write

C̄ℓ,p,0 = 0; (σ = 0) (44)

APPENDIX C

EVALUATION OF TOTAL HELICITY OF LGℓ,P FOR σ ̸= 0

The total helicity in this general case is given by the volume integral of the helicity density, Eq.(26). We have after performing the ϕ
and the z integrals

C̄ℓ,p,σ = 2πd
∫ ∞

0
ρdρ η̄σ

=

(

ϵ0c2πd

2ω

)

σ
∫ ∞

0

[

2k2 +R2 + (ℓ/ρ)2
]

|Fℓ,p|2ρdρ

(45)

where Fℓ,p is as is given by Eq.(5) and R by Eq.(16). On inserting these functions we find that we have to deal with seven ρ integrals
as follows

C̄ℓ,p,σ =

(

ϵ0c2πd

2ω

)

σ
7

∑
j=1

Ij (46)
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We have the following results, some of which require considerable manipulations

I1 =
∫ ∞

0
2k2|Fℓ,p|2ρdρ =

1

2
E2

0 k2w2
0 (47)

I2 =
4|ℓ|
w2

0

∫ ∞

0
|Fℓ,p|2ρdρ = E2

0 |ℓ| (48)

I3 =
4

w2
0

∫ ∞

0
ρ̃2|Fℓ,p|2ρdρ =

1

2
E2

0 |(2p + |ℓ|+ 1) (49)

I4 =
8p!

(p + |ℓ|)!E
2
0

∫ ∞

0
ρ̃2x|ℓ|e−x[L

|ℓ|+1
p−1 (x)]2dρ̃ = 2E2

0 p (50)

I5 = |ℓ|2
∫ ∞

0

1

ρ̃2
|Fℓ,p|2ρ̃dρ̃ =

1

2
|ℓ|E2

0 (51)

I6 =
16

w2
0

∫ ∞

0
ρ̃2

L
|ℓ|+1
p−1 (x)

L
|ℓ|
p (x)

|Fℓ,p|2ρdρ = −2pE2
0 (52)

I7 = −8|ℓ|
w2

0

∫ ∞

0

L
|ℓ|+1
p−1 (x)

L
|ℓ|
p (x)

|Fℓ,p|2ρdρ = 0 (53)

In the above integrals the variables ρ̃ = ρ/w0 and x = 2ρ̃2 . The evaluations make use of a number of standard integrals involving
associated Laguerre polynomials. In particualar:

∫ ∞

0
x|ℓ|+1e−x[Lℓ

p(x)]2 =
(p + |ℓ|)!

p!
(2p + |ℓ|+ 1) (54)

and
∫ ∞

0
x|ℓ|e−x L

|ℓ|+1
p−1 (x)L

|ℓ|
p (x)dx = 0 (55)

Collecting terms from the results of the integrals we have

C̄ℓ,p =

(

ϵ0c2πd

2ω

)

σ

{

1

2
(k2w2

0E2
0 ) +

1

2
E2

0 (2p + |ℓ|+ 1) + |ℓ|E2
0 + 2pE2

0 − |ℓ|E2
0 − 2pE2

0 + 0

}

=

(

k2w2
0ϵ0c2πd

4ω

)

E2
0

{

1 +
2p + |ℓ|+ 1

k2w2
0

}

σ

=

(

k2w2
0ϵ0c2πd

4ω

)(

4P
ϵ0cπω2w2

0

){

1 +
2p + |ℓ|+ 1

k2w2
0

}

σ

=
k2cdP

ω3

{

1 +
2p + |ℓ|+ 1

k2w0

}

σ

= k2w2
0

( P
ω2

)

{

1 +
2p + |ℓ|+ 1

k2w2
0

}

σ (56)

where we have substituted for the diffraction length d = w2
0k. Thus we have

Q0 = k2w2
0

( P
ω2

)

(57)

APPENDIX D

OPTICAL SPIN AND SPIN DENSITY OF A LINEARLY-POLARISED LG

The cycle-averaged optical spin angular momentum (SAM) density is given by

s̄ =
ϵ0

ω
ℑ[E∗ × E] (58)

Consider a linearly-polarised Laguerre-Gaussian beam LGℓ,p which has the following electric field

E = ickx̂F eikz − c

{

∂F
∂x

}

eikz
ẑ (59)



Research Article Journal of the Optical Society of America B 10

where for a linearly-polarised mode we set β = 0 and α = 1 in Eq.(10) and dropped the labels ℓ, p in F . The x-derivative of F is as
follows

(

∂F
∂x

)

= (R cos ϕ − iT sin ϕ)F (60)

where R and T are as given in Eqs.(16) and (17).
The cycle averaged z-component sz of the spin density is proportional to E∗

x Ey − E∗
y Ex and since Ey = 0 this component is zero.

Similarly the x-component sx is proportional to E∗
y Ez − E∗

z Ey and so this is also zero. The only surviving component of the optical spin
density is thus the y-component which is proportional to ExE∗

z − EzE∗
x . Thus we have

sy = ℑ
{

iϵ0c2k

ω

(

F ∗
[

∂F
∂x

]

+F
[

∂F
∂x

]∗)}
(61)

We obtain on substituting from Eq.(60)

sy =
ϵ0c2k

ω
(F ∗RF +FRF ∗) cos ϕ

=
2ϵ0c2k

ω
R|F|2 cos ϕ (62)

This spin density is in the direction of y, orthogonal to both the linear polarisation along x and the longitudinal component along z. It
has a spatial distribution, which can be displayed.

The volume integral of the density sy is zero because of a vanishing angular integration. Hence the total spin S vector is clearly zero
since also sx and sz are both zero We then have

S =
∫ d/2

−d/2
dz
∫ 2π

0
dϕ
∫ ∞

0
ρdρs = 0 (63)

which confirms that the total cycle-averaged spin angular momentum is zero despite the fact that there is a finite spin density
distribution.
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