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Two-level Graph Neural Network
Xing Ai, Chengyu Sun, Zhihong Zhang∗, and Edwin R Hancock, Fellow, IEEE

Abstract—Graph Neural Networks (GNNs) are recently pro-
posed neural network structures for the processing of graph-
structured data. Due to their employed neighbor aggregation
strategy, existing GNNs focus on capturing node-level information
and neglect high-level information. Existing GNNs therefore
suffer from representational limitations caused by the Local
Permutation Invariance (LPI) problem. To overcome these limi-
tations and enrich the features captured by GNNs, we propose
a novel GNN framework, referred to as the Two-level GNN
(TL-GNN). This merges subgraph-level information with node-
level information. Moreover, we provide a mathematical analysis
of the LPI problem which demonstrates that subgraph-level
information is beneficial to overcoming the problems associated
with LPI. A subgraph counting method based on the dynamic
programming algorithm is also proposed, and this has time
complexity is O(n3), n is the number of nodes of a graph.
Experiments show that TL-GNN outperforms existing GNNs and
achieves state-of-the-art performance.

Index Terms—Graph representation, Graph neural networks,
Local permutation invariance, Attention mechanism.

I. INTRODUCTION

G
RAPH Neural Networks (GNNs) have attracted increas-

ing interest in graph-structured data such as social

networks, recommender systems, bioinformatics and combi-

natorial optimization. Scarselli et al. [1] first introduced the

concept of the GNN by extending recursive neural networks.

Veličković et al. [2] proposed the Graph Attention Network

(GAT), which leverages masked self-attentional layers to

address the shortcomings of prior methods based on graph

convolutions. Xu et al. [3] present a theoretical framework to

analyze the representational capability of GNNs, and develop

a simple neural architecture referred to as the Graph Isomor-

phism Network (GIN).

Although the existing neighborhood aggregation strategy

used in GNNs is relatively efficient from the viewpoint of

graph isomorphism classification, recent studies [4] [5] [6]

show that such a procedure brings some inherent problems.

Namely, most existing GNNs suffer from local permutation in-

variance (LPI), which leads them to confuse specific structures.

In fact, invariance is very common in many learning tasks.

Data can produce identical embeddings in a reduced low-

dimensional space after symmetric transformations or rotations

are applied [7], [8]. As for graph-structured data, Garg et

al. [4] have found that existing GNNs have representational
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limitations caused by the translation of graph-structured data.

To eliminate such an effect, Sato et al. [5] have exploited

a local port ordering of nodes referred to as the Consistent

Port Numbering GNN (CPNGNN). Moreover, Klicpera et al.

[6] have proposed DimeNet, which is a directional message

passing algorithm introduced in the context of molecular

graphs. However, Garg V et al. [4] prove that all existing

GNN variants have representational limits caused by LPI, and

propose a novel graph-theoretic formalism.

In the meantime, studies show that complex networks can be

succinctly described using graph substructures (also referred

to as subgraphs, graphlets, or motifs). Subgraph methods have

been well-studied and widely used in chemistry [9], biology

[10], and social network graph tasks [11]. For example,

specific patterns of atoms or modes of interaction can be

discovered by identifying specific subgraph topologies. Bai et

al. [12] propose a general subgraph-based training framework

referred to as Ripple Walk Training (RWT). This can not

only accelerate the training speed on large graphs but also

solve problems associated with the memory bottleneck. Emily

et al. [13] propose SUBGNN to propagate neural messages

between the subgraph components and randomly sampled

anchor patches. These methods extract node features and

subgraph features separately. Moreover, they characterize only

the number of different subgraphs, which ignore the learning

of their representation.

For the sake of the above mentioned problems, we propose

a novel model which merges subgraph-level information into

the node-level representation. First, we merge subgraph-level

information at the node-level to enrich the features. And

secondly, we theoretically verify the model to demonstrate

its performance with real-world datasets. The results show

that our approach is significantly more effective than state-

of-the-art baselines. Our main contributions are summarized

as follows:

1. We propose a novel GNN approach, the Two-level

GNN (TL-GNN), which captures both microscopic (small

scale) and macroscopic (large scale) structural informa-

tion simultaneously and thus enriches the representation

of a graph.

2. We provide a mathematical definition and analysis of

the effects of LPI on GNNs. Furthermore, we prove that

subgraph-level information offers benefits in overcoming

these limitations.

3. We verify our method on seven different benchmarks and

a synthetic dataset. The results show that TL-GNN is

more powerful than existing GNN’s.

4. A subgraph counting method based on dynamic pro-

gramming is also proposed. The time complexity and

space complexity of this algorithm are O(n3) and O(n3)
respectively, where n is the number of nodes in the graph.

ar
X

iv
:2

20
1.

01
19

0v
1 

 [
cs

.L
G

] 
 3

 J
an

 2
02

2



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

The remainder of this paper is organized as follows. Sec-

tion. II provides an overview of the related work. Section. III

introduces the proposed method, including theoretically prov-

ing the capacity of our model to solve the LPI problem.

Section. IV describes our experimental setting and demonstrate

empirically the performance of TL-GNN. Finally, Section. V

concludes the paper and offers directions for future work.

II. RELATED WORK

GNNs have achieved state-of-the-art results on graph clas-

sification, link prediction and semi-supervised node classifi-

cation.However, recent studies [4] [5] [6] have demonstrated

one of the severe representational limitations of GNNs, namely

Local Permutation Invariance (LPI). In this section, we will

briefly review these interrelated topics.

A. Graph Neural Networks.

Graph Neural Networks (GNNs) have proved to be an

effective machine learning tool for non-Euclidean structure

data for several years. Since the GNN was first presented in

[1], a set of more advanced approaches have been proposed,

including but not limited to GraphSAGE [14], Graph Attention

Networks (GAT) [2], Graph Isomorphism Network (GIN) [3],

edGNN [15]. These methods learn local structural information

by recursively aggregating neighbor representations.

In a macroscopic view, the above models follow the same

pattern. For each node v ∈ V within a graph G = (V,E),
GNNS capture k-hop neighbor information hk

N (v), and then

learn a representational vector hk
v after k layers of processing.

On this basis, tasks such as graph classification can be accom-

plished. In fact, the critical difference between GNN variants is

how they design and implement the neighbor aggregation func-

tion. Xu et al. [3] summarized some of the most common GNN

approaches and proposed a general framework referred to as

the Graph Isomorphism Network (GIN). The GIN approach

defines the above steps as three related functions, namely

AGGREGATE (AGG), COMBINE (COM), and READOUT

(READ),





hk
N (v) = AGG({h

(k−1)
µ , ∀µ ∈ N (v)}),

hk
v = COM(hk−1

v , hk
N (v)),

hG = READ({hk
v |v ∈ G}),

(1)

The initialization is h0
v = Xv , and Xv represents the initial

features of the nodes. The quantity N (v) represents the set of

nodes adjacent to v and hG is the graph representation vector.

Xu et al. [3] indicate that what makes GNN so powerful is

the injective aggregation strategy, which maps different nodes

to different representational units. They also demonstrate that

when the above three functions are all injective functions, for

example a sum, then the GNN can be as powerful as the WL

test [16] on the graph isomorphism problem.

B. Local Permutation Invariance

Even though the precise form of the aggregation or com-

bination strategy varies across different GNN architectures,

most share the same neighborhood aggregation concept. This

characteristic leads to an underlying graph isomorphism prob-

lem, the so-called local permutation invariance (LPI). A more

common LPI example in the real world is edge rewiring

[17] [18]. For a graph G = (V,E), edge rewiring operation

alters the graph structure and leads to a new graph G
′

=
(V

′

, E
′

) by exchanging a pair of edges, for instance removing

edges eAB , eCD between nodes A,B,C,D and adding edges

eAC , eBD. After changing, G and G
′

are non-isomorphic

graphs but have identical representation in GNNs: hG = hG
′ .

Garg et al. [4] analyze specific cases of LPI for the GNNs

aggregation function and provide generalization bounds for

message passing in GNNs. As shown in Fig. 1, the graphs are

obviously non-isomorphic, but their node-level characteristics

are identical. Unfortunately, existing GNNs focus on extracting

node-level information and neglect high-level information, so

they suffer representational limitations. Recent studies have

attempted to overcome these limitations by providing addi-

tional information to the nodes. Consistent Port Numbering

GNN (CPNGNN) [5] assigns port numbers to nodes and

treats their neighbors differently. Klicpera et al. [6] propose

DimNet for molecular graphs. This embeds whole atoms

using a collection of edge embeddings and takes advantage

of directional information by modifying messages based on

their angle. However, Garg et al. [4] demonstrate that there

are some graphs that both CPNGNN and DimeNet can not

distinguish. This means that these approaches fail to overcome

the representational limitations caused by LPI.

C. Subgraph Methods.

Subgraphs can be regarded as the basic structural elements

or building blocks of the larger graph, including paths [19]

and subtrees [20]. Subgraph frequency was studied as a

local feature in social networks by Ugander et al. [21], who

discovered that it can provide unique insights for recognizing

both social organization and graph structure in very large

networks. Ugender et al. [21] propose a novel graph homomor-

phism algorithm based on subgraph frequencies. They define a

coordinate system that is beneficial both to the representation

and understanding of large sets of dense graphs. Grochow

et al. [22] introduce a symmetry-breaking technique into the

motif (subgraph) discovery process and develop a novel motif

discovery algorithm that can achieve an exponential speed-

up. More recently, significant effort has been expended in the

design of subgraph-based GNNS for graph classification. The

role of substructures has been explored empirically by Ying et

al. [23] and used to interpret the predictions made by GNNs.

In this paper, we propose an architecture which we refer to

as the Two-level Graph Neural Network (TL-GNN), which is

designed to make the association between the neighbor node

and subgraph structural information. Our model mitigates the

negative impacts of the LPI problem and is verified to be

efficient on real-world datasets.
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𝐺1 𝐺2 𝐺1 𝐺2
𝑎 𝑏 𝑣𝜇 𝑎 𝑣𝑏 𝜇 𝑎 𝑏 𝑣𝜇 𝑎

𝑏
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𝜇
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e1 e2 e1
e2

𝑒1′
𝑒2′ 𝑒1′

𝑒2′

Fig. 1. Two LPI examples, G1 and G2 have identical node-level information but different structures. In other words, they are non-isomorphic graphs. The
nodes of the same colour have the same features. The numbers of nodes and edges number together with the node features are identical. The only difference

between them is that a pair of edges of G1: e1 = (a, b), e2 = (µ, v), change their nodes and transform the edges of G2: so that e
′

1
= (a, v), e

′

2
′ = (b, µ).

(a) path

(b) tree (c) circuit

Fig. 2. Subgraphs example

III. PROPOSED METHOD

In order to extract subgraph-level information from a graph,

we first count all subgraphs within a certain size range of a

graph and then generate a new graph, namely generated graph,

whose nodes (or supernodes) represent subgraphs in the orig-

inal graph. We develop a novel subgraph counting algorithm

for this purpose. After the generated graph is to hand, we

develop a novel GNN framework, that significantly extends the

existing GNN framework. We also develop two key operators

for the novel framework that facilitate the effective merging

of subgraph and node information. This Section will introduce

the proposed subgraph counting algorithm and the new GNN

framework.

A. Constructing the Generated Graph

Consider an undirected graph G = (V,E), where V and

E ⊆ (V ×V ) respectively denote the set of nodes and the set

of edges. The element (vi, vj) in E is an unordered pair of

nodes vi and vj , i, j = 1, 2, 3...N , where N is the number of

nodes in the graph, i.e. the size of the network.

1) Subgraph Counting Algorithm : We aim to identify three

different types of subgraph structures, namely trees, paths, and

circuits (cycles). These represent the different basic classes

of subgraph structure, and structures such as triangles or

quadrilaterals can be regarded as different specific cases as

shown in Fig.2. Finding all subgraphs within a graph is an

NP-hard problem. To implement our method, it is unnecessary

to find all subgraphs. For each node in turn, we identify

all subgraphs that are contained within its D-hop neighbors.

Algorithm 1 Tree counting

1: Input: input original graph G(V,E) and its adjacency

matrix A, hyper parameter tree threshold.

2: Output: output subgraph set S
3: Initialize subgraphset S, tree set Tree , neighbor set

{N(v)|t = 0, 1, 2...2T , ∀v ∈ V }, and path from v to

µ : {Pv(µ)|∀v, µ ∈ V }
4: for v ∈ V do

5: for µ ∈ V do

6: if Avµ = 1 then

7: add µ into N(v)
add v into N(µ)
Pv(µ)← v
Pµ(v)← µ

8: end if

9: end for

10: if |N(v)| > tree threshold then

11: add (N(v) + [v]) into Tree
12: end if

13: end for

14: add Tree into S
15: return S

We design a dynamic programming algorithm to achieve this

goal. Our algorithm consists of three steps for tree, path, and

circuit location. Firstly, we store the neighbor set of each

node v ∈ V and select those tree-shaped subgraphs which

have more than three nodes (tree threshold = 3). A 3-

node tree or a 2-node tree is essentially a 3-node path or a

2-node path. This step is shown in Algorithm. 1. Secondly,

we find all path-shaped and circuit-shaped subgraphs based

on the dynamic programming algorithm. This step is realized

using Algorithm. 2 and Algorithm. 3. If the node µ is one

of the 2d-hop neighbors of the node v and the node a is

one of the i-hop neighbors of the node µ (i ≤ 2d), then the

node a is one of the (2d + i)-hop neighbors of the node v.

After Algorithm. 1 locates the 1-hop neighbors of each node,

Algorithm. 2 and Algorithm. 3 can locate the 2-hop neighbors

of each node by two sequential 1-hop searches. After locating

the 2-hop neighbors of each node, the 3-hop neighbors and
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Algorithm 2 Path and circuit counting

1: Input: input original graph G(V,E), depth D, subgraph

set S and d-hop adjacency matrix set {Ad ∈ R
|V |×|V ||d =

2...2D} and path from v to µ : {Pv(µ)|∀v, µ ∈ V }
2: Output: output subgraph set S
3: for d = 0, 1, 2...D do

4: for v ∈ V do

5: for µ ∈ V do

6: for a ∈ V do

7: Circuit, Path=Algorithm3

8: end for

9: end for

10: end for

11: end for

12: add Circuit, Path to S
13: return S

4-hop neighbors of each node can be found. Besides, we store

all nodes on the path from the node v to the node µ. If the

node µ’s i-hop neighbor a is not on the path from the node

v to the node µ and the node v has a path to the node a, a

circuit can be found. Otherwise, a path can be obtained.

The main advantage of the proposed algorithm is low

complexity. Early subgraph counting algorithms [24] [25]

[20] required exponential time complexity. The current best-

known algorithm [26] for exact subgraph counting, which

requires O(n
ωD
3 ), where ω and D are exponent of fast matrix

multiplication and nodes number of subgraphs. Due to ω can

be neglected, the time complexity of this algorithm is O(nD).
However, the proposed method only requires O(n3). As for

the proposed methods, the time complexity of Algorithm. 1

is O(n2), n = |V |. The time complexity of Algorithm. 2 and

Algorithm. 3 is O(2Dn3). Due to the fact that D is a scalar

no larger than 10, the factor of 2D can be neglected. The time

complexity of the proposed method is therefore O(n3).

As for space complexity, space complexities of Pu(v) and

Ad are O(n3) and O(2Dn2) respectively. As a result the

space complexity of the proposed subgraph counting method

is O(n3).

2) Generating Graphs: After the subgraph counting is

complete, we generate a new graph to represent the subgraph

relationships. Given a network G(V,E), the generated graph

G∗(V ∗, E∗) consists of the set of supernodes representing the

detected subgraphs V ∗ and the set of edges E∗ ⊆ (V ∗× V ∗)
representing the relationships between them. Two subgraphs

are connected if they share common nodes or links in the orig-

inal network. The features associated with the supernodes are

represented by a two-dimensional vector, whose components

are the node counts and the subgraph type respectively. Fig.

3 provides an example.

Algorithm 3 Path and subgraph sifting

1: Input: input original graph G(V,E), adjacency matrix A,

subgraph set S, path from v to µ : {Pv(µ)|∀v, µ ∈ V }
and {Ad|d = 2...2D}

2: Output: output circuit set Circuit and path set Path
3: for i = 1, 2, ..., 2d do

4: if A
(2d)
vµ = 1 and A

(i)
µa = 1 then

5: if a /∈ Pµ(v) and Pv(a) 6= ∅ then

6: add Pv(µ) + Pµ(a) + Pa(v) to Circuit
7: end if

8: if a /∈ Pµv and Pva = ∅ then

9: A
(2d+i)
av = 1

10: A
(2d+i)
va = 1

11: Pa(v) = Pa(µ) + Pµ(v)
12: Pv(a) = Pv(µ) + Pµ(a)
13: add Pv(a) to Path
14: end if

15: end if

16: end for

17: return Circuit, Path

We also record the appearances of each node in V ∗ by

constructing a transformation matrix T ∈ R
N×M , |V | =

N, |V ∗| = M . The transformation matrix T indicates the cor-

respondences between nodes and subgraphs (i.e. supernodes),

i.e. which supernodes subsume each node. The elements of

the transformation matrix are defined as follows:

Tij =

{
1, if node i in subgraph j

0, else
(2)

B. The LPI problem and subgraphs

Garg et al. [4] indicate the limitations of GNNs caused by

Local Permutation Invariance (LPI). Specifically, changing a

pair of edges in a graph leads to structure changing, while

node-level information of the graph is maintained. The existing

aggregation strategy, which extracts node-level information

only is unable to distinguish structure change. Garg et al.

[4] provide several example structures which can not be

distinguished by existing methods, as illustrated in Fig. 1.

Specifically, two non-isomorphic graphs, G and G
′

have

identical node-level information which confuses GNNs to

distinguish them. G and G
′

can be transformed into each other

by exchanging a pair of edges. It means their only difference

is endpoints of the pair of edges.

However, Garg et al. [4] provide examples only, without

giving mathematical definitions for the ambiguities encoun-

tered.

Without loss of generality, we firstly indicate the general

characteristics of graphs that existing GNNs can not distin-

guish due to the LPI ambiguity. Secondly, we demonstrate

that for those graphs that GNNs can not distinguish due to

ambiguities, our generated graphs behave in a different and

useful manner. Finally, we demonstrate mathematically the

effectiveness of our method in Section III-C.
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Fig. 3. Example of the graph generation process. The red supernode corresponds to a 6-node circuit in the graph. The green and blue supernodes correspond
to a 4-node path and a 4-node tree in the graph respectively.

These results concerning LPI lead us to propose a new

neighborhood aggregation strategy for GNNs. While the ex-

isting neighborhood aggregation strategy is effective, it some-

times fails to distinguish non-isomorphic graphs. To demon-

strate this we give a definition of Permutation Non-isomorphic

Graphs(PNG):

Definition 1. Permutation Non-isomorphic Graphs (PNG)

are non-isomorphic graphs that have the same node set and

the same node features but swap the nodes of two edges.

Assume G = {V,E} and G
′

= {V
′

, E
′

} are PNG. v ∈
V, v

′

∈ V
′

, e1, e2 ∈ E, e
′

1, e
′

2 ∈ E
′

, then they must satisfy the

following conditions:





|V | = |V
′

|, (a)

|E| = |E
′

|, (b)
h0
v = h0

v
′ ∀v ∈ V, (c)

N(v) = N(v
′

), ∀v ∈ V, (d)

e1 = {a, b}, e2 = {i, j}, e
′

1 = {a
′

, j
′

}, e
′

2 = {i
′

, b
′

}, (e)
(3)

The above conditions indicate that the only difference

between G = {V,E} and G
′

= {V
′

, E
′

} is a single pair

of edges. The remaining characteristics of G = {V,E} and

G
′

= {V
′

, E
′

} are identical.

Due to LPI, the GNNs based neighbor aggregation strategy

can not distinguish permutation non-isomorphic graphs, which

we state in Theorem 2:

Theorem 2. GNNs based on Eq(1) can not distinguish

permutation non-isomorphic graphs.

We give a proof of this theorem as follows. For two permu-

tation non-isomorphic graphs G = (V,E) and G
′

= (V
′

, E
′

),
their neighbourhood aggregation from the 0-th GNN layer are:

h0
N (v) = AGG({h(0)

µ |µ ∈ N (v)}), ∀v ∈ V, (4)

h0
N (v′ )

= AGG({h(0)
µ |µ ∈ N (v

′

)}), ∀v
′

∈ V
′

. (5)

Due to the conditions (d) given in Definition 1:

h0
N (v) = h0

N (v′ )
, h1

v = h1
v
′ , (6)

According to the above equations and the mathematical

inductive. the representations of v ∈ V, v
′

∈ V
′

of the l-th
layer meet the condition:

hl
v = hl

v
′ , (7)

For a GNN with K layers, the representations of G and G
′

are identical:

hG = READ({hk
v |v ∈ G}), hG

′ = READ({hk
v
′ |v

′

∈ G
′

}).
(8)

hG = hG
′ . (9)

Obviously, existing GNN provides identical representation

for a pair of PNG: hG = hG
′ . The reason that GNNs

are confused by PNGs is due to their adopted neighbor

aggregation strategy, which captures node-level information

only. Unfortunately, PNGs share identical characteristics at

the node-level but have different global structures. As a result,

GNNs can not distinguish PNGs effectively.

Garg et al. [4] have indicated that the LPI problem limits the

representational power of GNNs. Theorem 2 further indicates

how the LPI problem affects the graph classification perfor-

mance of GNNs from the perspective of graph isomorphism.

Another interesting question is how the LPI problem influ-

ences the node classification task. Unlike the graph structure

which is implicated in the LPI problem, the node classification

task is unaffected by global structural information from the

whole graph. Therefore, to what extent and precisely how

the LPI problem influences node classification needs deeper

mathematical analysis and associated proofs, which are beyond

the scope of this paper we will we hope to investigate in more

detail in further work. In this paper, we simply focus on the

LPI problem for the graph classification task.

However, although PNGs have identical node-level charac-

teristics, their subgraph-level characteristics are different. The

following lemmas demonstrate that the structural differences

between PNGs can be learned from their generated graphs.

In other words, the subgraph-level information is helpful in

distinguishing PNGs.
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Lemma 3. For two permutation non-isomorphic graphs

G = (V,E) and G
′

= (V
′

, E
′

), their generated graphs Gg =
(V g,Eg) and Gg

′

= (V g
′

, Eg
′

) are structurally distinct.

We provide a proof of Lemma 3. by analyzing the relation-

ship between edges and subgraphs. For the edges:

ei ∈ E, e
′

i ∈ E
′

, (i = 1, 2), (10)

e1 = (a, b), e2 = (i, j), e
′

1 = (a, i), e
′

2 = (b, j), (11)

there are four types of relations between them.

Relation 1:

As shown in Fig. 4 (1), for the subgraphs Si and their nodes

Vi and edges Ei:

Si = (Vi, Ei), S
′

i = (V
′

i , E
′

i), (i = 1, 2). (12)

Relation 1 can be written as:

ei ∈ Ei, e
′

i /∈ E
′

i , i = 1, 2. (13)

Due to the features of supernodes (subgraphs) include node

counts and the subgraph type respectively (Section. III-A2),

the edges change must lead to node counts or subgraph change

of subgraphs. We thus have:

Ei 6= E
′

i , h
0
S1
6= h0

S
′

1

, (14)

and so, V g 6= V g
′

, Gg and Gg
′

are different.

Relation 2:

As shown in Fig. 4 (2), consider the subgraphs:

Si = (Vi, Ei), S
′

i = (V
′

i , E
′

i), (i = 1, 2, 3). (15)

Relation 2 can be written as:

e1 ∈ E1, e
′

i /∈ E
′

j , e2 /∈ Ej , (16)

i = 1, 2 j = 1, 2, 3. (17)

Due to the relation:

e1 ∈ E1, e
′

1 /∈ E
′

1. (18)

We have:

Vi = V
′

i , (i = 1, 2, 3), (19)

E1 6= E
′

1, Ej = E
′

j , (j = 2, 3). (20)

So, S1 6= S
′

1, h0
S1
6= h0

S
′

1

. Gg and Gg
′

are different.

Relation 3:

As shown in Fig. 4 (3), for the subgraphs:

Si = (Vi, Ei), S
′

i = (V
′

i , E
′

i), (i = 1, 2, 3, 4). (21)

Relation 3 can be written as:

ei /∈ Ej , e
′

i /∈ E
′

j , Ej = E
′

j . (22)

i = 1, 2 j = 1, 2, 3, 4. (23)

Gg = Gg
′

if and only if:





h0
S1

= h0
S

′

1

= h0
S3

= h0
S

′

3

h0
S2

= h0
S

′

2

= h0
S4

= h0
S

′

4

∃e3 = (S1, S4), ∃e4 = (S2, S3),
∃e5 = (S1, S2), ∃e6 = (S3, S4)

(24)

Obviously, G = G
′

when Gg = Gg
′

. Because swapping

the nodes constituting edges does not change the connection

structure of the subgraphs and their nodes, the structures are

identical.

Else, Gg 6= Gg
′

, because of the super-node features or

connections of super-nodes.

Relation 4:

As shown in Fig. 4 (4), for the subgraphs:

S1 = (V1, E1), S
′

1 = (V
′

1 , E
′

1), e1 ∈ S1, e
′

1 ∈ S
′

1. (25)

Obviously, S1, S
′

1 /∈ Tree. If S1 ∈ Path, S
′

1 ∈ Cir
′

or

S1 ∈ Cir, S
′

1 ∈ Path
′

:

h0
S1
6= h0

S
′

1

. (26)

There is a special case of Lemma 3 which deserves com-

ment. If S1 is a Path or a Cir, changing a pair of edges would

divide S1 into two subgraphs or lead to a subgraph identical

to S1 but with a different node sequence. We will discuss this

situation in Lemma 4.

Lemma 4. GNNs can distinguish the structural variance

caused by the node sequence.

In summary, because GNN adopts a hierarchical aggrega-

tion strategy, different node sequences will lead to different

information aggregated by GNN in different layers.

As shown in Fig. 5. If u, v are i-hop and j-hop neighbors

of node a respectively, then u
′

, v
′

are respectively j-hop and

i-hop neighbors of node a
′

. Then as a result hi
a 6= hi

a
′ and

hj
a 6= hj

a
′ . Therefore, GNNs can distinguish them.

Lemma 5. As for Lemma 3, if Gg = (V g,Eg) and

Gg
′

= (V g
′

, Eg
′

) are different in terms of their supernode

features or subgraph connections, then a GNN can distinguish

the generated graphs.

Lemma 3 and Lemma4 lead to Lemma 5. Due to the

properties of GNNs, Lemma 5 can be demonstrated easily.

Suppose S
′

is the permuted subgraph of S ∈ Vg . Under

relations 1,2 and 4, ∃S ∈ V g, S
′

∈ V g
′

and let the equation

below be tenable:

h0
S 6= h0

S
′ . (27)

Similar to the proof of Theorem. 2, we can demonstrate

hGg
6= hG′

g
via the mathematical inductive.

For relation 3, we have:

N (S) 6= N (S
′

), (28)
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𝑮𝒈
S𝟏 S𝟐 S𝟏 S𝟐S𝟑

𝒆𝟏′
𝒆𝟐′𝑮𝒈′

𝑺𝟏′ 𝑺𝟐′ 𝑺𝟏′ 𝑺𝟐′𝑺𝟑′

𝒆𝟏 𝒆𝟐
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𝑮𝒈′𝑮𝒈
S𝟏 S𝟐

S𝟑
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𝑺𝟑′S𝟒 𝑺𝟒′
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S𝟏𝒆𝟏 𝒆𝟐
𝒆𝟏′
𝒆𝟐′

𝑺𝟏′𝒆𝟏′
𝒆𝟐′𝑮𝒈′𝑮𝒈

Fig. 4. Four relations between edges and subgraphs. Si is the subgraph with the index i. Blue and green points are nodes. The same color nodes share the
same feature.

a b 𝜇𝐒 a′ 𝑣′ 𝑏′ 𝜇′𝑣… …𝑒1′ 𝑒2′𝑒1 𝑒2 𝐒′
Fig. 5. A special case. Changing a pair of edges, e1 and e2, leads to different

node sequences. Subgraphs S and S
′

have identical structure but different
node sequences.

which means:

hN (S) 6= hN (S′ ), (29)

After combining operations, we have:

h1
S = COM(h0

S , hN(S)), h1
S

′ = COM(h0
S

′ , hN(S′ )).
(30)

Due to COM is an injective function, different inputs will

be mapped into different points in the feature space. It means

that graph representations after iterations are different:

h1
S 6= h1

S
′ , hGg

6= hG′

g
. (31)

Eq. (31) shows that PNGs can be distinguished by the

differences between subgraphs, which proves the Lemma 5.

According to the above theoretical analysis, we propose the

framework of TL-GNN and discuss it in the next subsection.

C. The TL-GNN Framework

As noted above the LPI of GNNs lead to serious represen-

tational limitations. Existing GNNs are therefore sometimes

compromised in their performance by PNGs. Fortunately and

as we have shown, the subgraph-level information can be bene-

ficial in distinguishing the PNGs. To overcome the limitations

caused by the LPI problem and enrich the representational

capacity of GNNs, we propose a novel GNN approach which

we refer to as the Two-level Graph Neural Network(TL-GNN).

In this section, we present details of the TL-GNN framework.

Due to the neighbor aggregation strategy, existing GNNs

focus on capturing node-level information and ignore higher

level structural arrangement information. Unlike existing

GNNs, the TL-GNN can capture both node-level information

and subgraph-level arrangement information simultaneously.

This is achieved by merging subgraph-level information into

supernode-level information.

Specifically, the TL-GNN accepts both a graph and its

generated graph (as described in Section III-A) as inputs.

In each layer, the two separate GNN components capture

information concerning the graph (node-level) and generated

graph (subgraph-level) respectively, as illustrated in Fig.6.

The node-level propagation process can be described as:





hk
N (v) = AGG({h

(k−1)
µ , ∀µ ∈ N (v)}),

h̃k
v = COM(hk−1

v , hk
N (v)),

(32)

On the other hand, the subgraph-level propagation can be

described as:





hk
N (s) = AGG({h

(k−1)
γ , ∀γ ∈ N (s)}),

hk
s = COM(hk−1

s , hk
N (s)),

(33)

Here N (v) and N (s) are the neighbor sets of node v and

supernode s respectively. These two information propagation

processes are discrete and do not share parameters.

1) The AGG SUB and MERG functions: With a two-

level representation to hand, we merge the subgraph-level

representation into the node-level representation. We design

two functions AGG SUB and MERG for this process.

For a graph containing N nodes, assume that its generated

graph contains M supernodes. The outputs of the k−th layer
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Layer 1

+

GNN
layer

GNN
layer

Layer 2
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layer

node-level 
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Subgraph-level 
representation

attention

Graph 
representation

GNN
layer

Original graph

Generated graph

𝒉𝒏 ∈ 𝑹𝑵×𝒅

𝒉𝒔 ∈ 𝑹𝑴×𝒅

𝒉𝒏ᇱ ∈ 𝑹𝑵×𝒅

𝑻 ∈ 𝑹𝑵×𝑴 𝒉𝒔ᇱ = 𝑻 ȉ 𝒉𝒔

Layer K

GNN
layer

GNN
layer ……

+ + ……

𝒉𝒔ᇱ = 𝑻 ȉ 𝒉𝒔 𝒉𝒔ᇱ = 𝑻 ȉ 𝒉𝒔
Transformation 

matrix

Fig. 6. Visual illustration of the TL-GNN framework. The model takes both the original graph and generated graph as input, then aggregates them with
the same strategy. Each TL-GNN layer has two separate GNN blocks for graph and generated graph to capture node-level and subgraph-level information
respectively. At the end of each layer, the subgraph-level representation hs would be converted into h′

s via the transformation matrix T , which could be aligned
with node-level representation hn. On this basis, two independent representations can be merged together with the attention mechanism. The summation h′

n

would be the input of the next layer.

of TL-GNN are the node-level representation h̃k
N and the

subgraph-level representations hk
S respectively:

h̃k
N ∈ R

N×d, hk
S ∈ R

M×d, (34)

Here h̃k
N and hk

S are matrices that contain the node and

supernode (subgraph-level) representations respectively. Each

row of hk
N or hk

S corresponds to the representation of an

individual node or supernode.

We merge (or concatenate) the matrices hk
N and hk

S into a

single matrix h̃k
N using the MERG function. Then h̃k

N and hk
S

become the inputs into the next layer of the GNN. Each layer

has an identical matrix structure. After applying the merging

step, the representations of the nodes are merged with the

available subgraph-level information.

Next, we define two more functions for the TL-GNN,

namely AGG SUB and MERG:

Hk
s = AGG SUB(hk

S), hk
N = MERG(h̃k

N , Hk
S), (35)

The AGG SUB operator aggregates all of the subgraph

representations which contain a given node v. The output

of the MERG function is the matrix hk
N , which merges

the node-level and subgraph-level information into a single

representation.

Finally, the representation of the graph G is obtained from

the representations of its nodes.

hG = READ({h̃k
v |v ∈ G}), (36)

In order to distinguish PNGs, the AGG SUB and MERG

need to fulfill conditions specified in Lemma 6:

Lemma 6. If AGG SUB and MERG are both injective

multiset functions, then the representation of G is distinct from

that of G
′

.

To demonstrate Lemma 6, We define C(v), which is a set

of subgraphs that contain node v. According to Lemma 5:

∃S ∈ C(v), S
′

∈ C(v′), h1
S 6= h1

S
′ , (37)

As

h0
v = h0

v′ , h0
c(v) 6= h0

c(v′ )
, (38)

h1
v = MERG(h0

v, h
0
c(v)), h1

v
′ = MERG(h0

v
′ , h0

c(v′ )
),
(39)

h1
v 6= h1

v′ , (40)

The above equations are satisfied if and only if MERG is

an injective function. When the above equations are satisfied,

we can obtain hG 6= hG′ , which means G and G′ can be

distinguished. Lemma 6 is proved.
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There are several choices available for the AGG SUB and

MERG functions, which include summation and concatena-

tion. We chose summation for AGG SUB of TL-GNN.

Due to the fact that the graph size and generated graph

size are different, the subgraph-level representations need to be

transformed into node-level representations of identical size.

The translation matrix mentioned in Section III-A translates

the matrix hk
S into the matrix Hk

S ∈ R
N×d:

Hk
S = T · hk

S , (41)

Due to the definition of T , the i-th row of Hk
S is the

summation of representations of those supernodes that contain

node i. Assume i-th line of Hk
S is (Hk

s )i:

(Hk
s )i =

∑

s∈C(i)

hk
s , (42)

where C(i) is the set of supernodes (subgraphs) that contain

node i.
As for the MERG operation, we use an attention mechanism

to define the MERG function. The attention mechanism for

TL-GNN is essentially a weighted summation. Therefore,the

MERG operation can be rewritten as:

hk
v = αk · h̃k

v + βk ·Hk
s , (43)

αk =
exp(α̂k)

exp(α̂k) + exp(β̂k)
, βk =

exp(β̂k)

exp(α̂k) + exp(β̂k)
,

(44)

where α̂k and β̂k are randomly initialized scales. α and

β satisfy the condition αk + βk = 1. The parameters αk

and βk can be learned during training. The parameter αk is

large if the node-level representation is more important for the

classification of graphs, and vice versa.

Finally, the effectiveness of TL-GNN in distinguishing

PNGs can be stated mathematically.

Theorem 7. TL-GNN has the ability to distinguish the PNG.

We provide the proof of Theorem 7 using the above Lem-

mas.

For permutation non-isomorphic graphs G = (V,E) and

G
′

= (V
′

, E
′

), According to Lemma 6, we have:

h1
v 6= h1

v′ v ∈ V v
′

∈ V
′

. (45)

According to mathematical induction, the representations of

v ∈ V, v
′

∈ V
′

of l-th layer meet condition:

hl
v = hl

v
′ . (46)

For a GNN with K layers, the representations of G and G
′

are different:

hG = READ({hk
v |v ∈ G}), hG

′ = READ({hk
v
′ |v

′

∈ G
′

}),
(47)

hG 6= hG
′ . (48)

So, TL-GNN can distinguish permutation non-isomorphic

graphs G and G
′

.

Theorem 7 indicates that the TL-GNN can distinguish those

ambiguous graphs that confuse existing GNNs. In other words,

TL-GNN is more powerful than GNNs.

IV. EXPERIMENTS

In this section, we perform experimental evaluations of our

TL-GNN method on the graph classification task. We compare

the TL-GNN to several state-of-the-art deep learning and graph

kernel methods, and conduct experiments on seven standard

graph classification benchmarks together with synthetic data.

A. Datasets

Datasets of this paper include MUTAG [27], PTC [28],

NCI1 [29], PROTEINS [30], COX2 [31], IMDB M [32] and

IMDB B [33]. The IMDB M and IMDB B datasets have no

node features. The remaining datasets have categorical node

features. In order to verify the ability to distinguish PNGs,

we have prepared a synthetic PNG dataset named SPNG. The

details of these datasets are shown in Appendix.

B. Baselines for Comparison

The baselines used for comparison include state-of-the-art

methods which are applied to the graph classification task:

(1) The kernel based methods: Weisfeiler-Lehman(WL) [34]

and subgraph Matching Kernel (CSM) [35], Deep Graph

Kernel (DGK) [36].

(2) The state-of-the-art GNNs: Graph convolution network

(GCN) [37], Deep Graph CNN (DGCNN) [38], Graph Iso-

morphism Network (GIN) [3], Random Walk Graph Neural

Network (RW-GNN) [39], Graph Attention Network (GAT)

[2], Motif based Attentional Graph Convolutional Neural

Network (MA-GCNN) [40].

C. Experimental Setup

For our experimental comparison, we set the GNN layers

of GIN so as to have the same structure but with no parameter

sharing. These layers aggregate and combine the original

graph and its generated graph. There are independent attention

parameter pairs for merging operations between the GNN

layers. Each GNN layer has several MLP layers. More details

about experimental setup are shown in Appendix.

D. Results and Discussion

Comparison with existing GNNs on real-world datasets:

The results in Table I indicate that TL-GNN achieves the

best results on 6 out of 7 benchmarks, often with a clear

improvement over alternative GNN methods studied. The

performances for the classical GNNs are quoted from their

indicated reference. We perform 10-fold cross-validation to

compute the GIN, GCN and RW-GNN accuracies on COX2.

The parameters for the deep learning methods are as suggested

by their authors. For fairness, all the methods run on the

same computing device. For cases where accuracy cannot be

obtained, we use the ”-” tag in Table I.
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TABLE I
CLASSIFICATION ACCURACY (IN % ± STANDARD ERROR)

Datasets MUTAG PTC NCI1 IMDB-M IMDB-B COX2 PROTEINS

WL 90.4± 5.7 59.9± 4.3 86± 1.8 50.9± 3.8 73.8± 3.9 83.2± 0.2 75.0± 3.1

CSM 85.4 63.8 65.5 63.3 58.1 80.7± 0.3 -

DGK 87.4± 2.7 60.1± 2.6 80.3± 0.5 43.9± 0.4 65.9± 1.0 - 71.7± 0.6

GCN 85.6± 5.8 64.2± 4.3 80.2± 2.0 51.9± 3.8 74.0± 3.4 - 76.0± 3.2

DGCNN 85.8± 1.7 58.6± 2.5 74.4± 0.5 47.8± 0.9 70.0± 0.9 - 70.9± 2.8

GIN 89.4± 5.6 64.6± 7.0 82.7± 1.7 52.3± 2.8 75.1± 5.1 83.3± 5.3 76.2± 2.8

FDGNN 88.5± 3.8 63.4± 5.4 77.8± 2.6 50.0± 1.3 72.4± 3.6 83.4± 2.9 76.8± 2.9

RW-GNN 89.2± 4.3 61.6± 9.5 − 47.8± 3.8 70.8± 4.8 81.6± 4.7 74.7± 3.3

GAT 89.4± 6.1 66.7± 5.1 75.2± 3.3 47.8± 3.1 70.5± 2.3 - 74.7± 2.2

HA-GCNN 93.9± 5.2 71.8± 6.3 81.8± 2.4 53.8± 3.1 77.2± 3.0 - 79.4± 1.7

TL-GNN sm 90.9± 6.4 68.1± 5.0 81.9± 3.3 54.3± 4.7 77.5± 2.0 86.7± 3.5 77.3± 2.6

TL-GNN ms 91.2± 3.9 67.0± 7.9 82.1± 4.2 53.4± 4.7 77.5± 3.5 86.2± 4.6 78.9± 2.3

TL-GNN mm 90.8± 5.4 66.3± 7.6 81.0± 3.6 52.2± 3.8 76.6± 3.3 85.6± 2.3 77.5± 2.6

TL-GNN(w/o S) 92.4± 6.3 70.0± 7.9 82.2± 4.9 54.4± 3.0 77.8± 2.1 87.8± 2.7 79.4± 3.0

TL-GNN 95.7± 3.4 74.4± 4.8 83.0± 2.1 55.1± 3.2 79.7± 1.9 88.6± 2.7 79.9± 4.4

We found that TL-GNN always achieves the best results

on datasets containing sparse graphs. For PTC and COX2,

TL-GNN achieves 2.6% and 5.2% margins of improvements

over the second-best method. The accuracies of TL-GNN on

MUTAG and IMDB-M are 95.7% and 55.1% respectively.

This represents a slight but consistent improvement over the

alternative methods studied. TL-GNN also achieves the best

performance on PROTEINS. Although TL-GNN gives only a

slight improvement compared to the second-best method. The

average degree of PROTEINS is more than 3. which is dense

compared with the remaining datasets. For this kind of dense

graph, TL-GNN can capture a large number of subgraphs and

enrich the learned information. Even in the cases where TL-

GNN does not achieve the best performance, its accuracy is

close to that of the best performing method. For NCI1, TL-

GNN achieves 0.3% more accuracy than the second best deep

learning method.

GIN and TL-GNN have identical GNN layers. However,

TL-GNN achieves better performances on most of the datasets.

For example, TL-GNN achieves 6.3% and 9.8% improvements

on MUTAG and PTC compared to GIN. Moreover, the stan-

dard errors for TL-GNN on MUTAG and PTC are lower than

those for GIN. NCI1 is the only dataset on which TL-GNN

can not surpass the performance of WL. It is worth noting that

all deep learning methods are also do not outperform WL on

NCI1.

It is worth noting that both GAT and TL-GNN apply

the attention mechanism. The difference is that GAT assigns

attention weights to the neighbors of nodes. This means that

GAT pays different attention to node-level information. Unlike

GAT, TL-GNN assigns attention weights to different levels of

information (both node-level and subgraph-level). The results

show that TL-GNN outperforms GAT on all datasets, and it

also achieves significant improvements on several datasets.

For example, on NCI and IMDB, TL-GNN achieves 6 − 9%

improvement compared to GAT.

Performance comparison on SPNG

An interesting observation that can be made from Table. II

is that the TL-GNN easily achieves 100% training accuracy

while the alternative methods studied do not. None of the

methods can perfectly fit the training data with the exception

of TL-GNN. Due to the fact that both GIN and GCN with

K layers can capture K−hop information, they do offer some

robustness to the LPI problem and can achieve 95.6% and

91.1% training accuracy respectively. However, the remaining

GNN training accuracies are no more than 80%. The results on

SPNG show that the TL-GNN can distinguish PNGs perfectly.

As shown in Fig. 10, the TL-GNN training accuracy after 50

epochs reaches 90%, which represents the fastest convergence

rate. Finally, the TL-GNN converged at a stable 100% training

accuracy after 220 iterations. The training accuracies of RW-

GNN, DGCNN, DAGCN no longer increase after 100 epochs.

The reason for this is that these methods focus on capturing the

local neighborhood information, which leads to less robustness

to the LPI problem.

As for GIN, its convergence rate is slower than the TL-

GNN. According to the curve shown in Fig. 10, as the training

proceeds, GIN saturated at 95.6%. We believe that the TL-

GNN is benefited significantly from the subgraph merging

strategy described in Section III-C because both GIN and

TL-GNN have the same GNN layers, but TL-GNN’s overall

performance is better.

Variants of supernode-based subgraph representation

To demonstrate the effectiveness of supernode-based

subgraph-level representation used by the proposed methods,

we provide a similar TL-GNN architecture, TL-GNN(w/o S)

that accepts separated subgraphs as the input sequentially and

regards each subgraph as a separated graph to capture its fea-

ture, instead of a generated graph containing supernodes. The

results of this experiment are shown in Table. I. It is obvious

that TL-GNN achieves better performance than TL-GNN (w/o
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Fig. 7. Variation of the two-level attention parameters on real-world datasets. The number of histograms represents the weight coefficient.

TABLE II
TRAINING ACCURACY ON SYNTEHTIC DATASET(IN % ±

STANDARD ERROR)

Model Training Accuracy

DGCNN 64.0

DAGCN 72.0

GIN 95.6

GCN 91.1

RW-GCN 70.37

TL-GNN 100

S) because TL-GNN(w/o S) neglects connections between

subgraphs. The reason for this observation is supernode-

based subgraph-level representation provides connections be-

tween subgraphs, which is beneficial to capture subgraph-

level information. However, TL-GNN (w/o S) achieves better

performances than other baselines on most datasets, because

of the subgraph-level information captured by TL-GNN (w/o

S).

Variants of AGG SUB and MERG

In order to verify the theory described in Section. III-C,

we select both non-injective function and injective functions

for the AGG SUB and MERG operators and then compare

their performance. We chose the sum function as the injective

function. For the non-injective function, we chose the max

function. Although there is a large potential choice for the

non-injective function, the max is the most convenient for

use with our method. The specific TL-GNN variants used are

summarised in Table. III. The performances of the four TL-

GNN variants are shown in Table. I. As shown in Table. I,

TL-GNN achieves a better performance than the remaining

variants of TL-GNN on most of the datasets studied. For

TL-GNN mm, on all the datasets except PROTEINS, TL-

GNN mm is the weakest performing TL-GNN variant. This

observation demonstrates the correctness of Lemma 6. When

AGG SUB and MERG are not injective functions, the TL-

GNN can not effectively capture and retain subgraph-level

information. For TL-GNN ms and TL-GNN sm, the perfor-

mance is better than TL-GNN mm but poorer than TL-GNN.

We believe this is because a non-injective function leads to

information loss.

TABLE III
DETAILED CONFIGURATION OF TL-GNN VARIANCES

TL-GNN variances AGG SUB MERG

TL-GNN sum sum

TL-GNN sm sum max

TL-GNN ms max sum

TL-GNN mm max max

Attention weight visualization and analysis

We provide visualization results of each layer on each

dataset in Fig. 7. The blue and orange represent attention

weights of node-level and subgraph-level respectively. Num-

bers of the vertical axis are layers. We applied 3 layers

on MUTAG, PTC, COX2, SPNG and 5 layers on NCI1,

PROTEINS, IMDB-B, IMDB-M, PROTEINS. An observation

is that TL-GNN pays more attention to node-level on all

datasets. However, in most cases, the attention weights of

subgraph-level increased with the increasing of the layer. A

possible reason is that node features become identical with

the layer increasing, namely the oversmoothing problem. So,

the TL-GNN pays more attention to subgraph-level in high

layers. The ratios of node-level attention weight to subgraph-

level attention weight are around 7:3. This observation shows

that node-level information is more important to the graph

classification task and little subgraph-level information is

beneficial to graph classification.

Comparison of computational complexity

We report the average running times per iteration after

training or test of TL-GNN and the baselines Fig. 8. For a

fair comparison, all of the methods are run on a system with
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Fig. 8. Running time comparison.
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Fig. 9. Variation of the parameter D on real-world datasets. The horizontal axis shows number of D.

an Intel Xeon CPU E3-1270 v5 processor. Due to RW-GNN

cannot accept NCI1 as input [39], the running time of RW-

GNN on NCI1 dataset is vacant. Obviously, TL-GNN requires

more time than GIN because of the extra computation of

subgraph-level and attention mechanisms. Although GIN and

TL-GNN have identical GNN layers, TL-GNN costs more

time on both training and test than GIN. The main reason is

that TL requires additional subgraph convolution operations.

However, the training and test time of TL-GNN is less than

several baselines such as DGCNN and RWGNN, because of

the simple but effective architecture of TL-GNN.

Variation of the depth

In order to find the optimal value of D, we have carried out

experiments on all of the real-world datasets, and compute

time and accuracies for both training and test are presented.

From Fig.9 the compute time consumed in training and testing

increases with an increasing value of D on most of the datasets

studied. A large value of D leads to a large number of

subgraphs and thus increases the compute time required.

When D reaches a critical value, the compute time con-

sumed in both training and testing ceases to increase. This

is because when D is large enough, then 2D is greater

than the number of nodes in the graph. This means that all

subgraphs within a graph have been located. For example, on

the MUTAG dataset, the training becomes stable when D is

greater than 5, and this is because the mean node degree of

MUTAG is less than 18. For most of the datasets studied,

the maximum test accuracy is reached when D is 3 or 4.

This indicates that aggregating the subgraph information for

the 8-hop or 16-hop neighbors of a node adds the greatest

benefits to the graph classification task. It is clear that too

small a D value leads to an insufficient number of subgraphs,

thus TL-GNN can not capture the subgraph-level information

well. Conversely, too large a value of D leads to subgraphs

that are distant from the node in question being included. The

correlation between these subgraphs and the node in question

is low, and this is not conducive to improved performance.

Comparison of training performance

We compare the effect of training for several GNNs for

which the authors have made their code available. This study

is summarised in Fig. 10. From the table, it is clear that

TL-GNN can better fit all of the datasets studied than the
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Fig. 10. Training performances comparison.

alternative GNNs. For example, TL-GNN is the only method

which achieves 100% training accuracy on MUTAG. The same

observation applies to SPNG. As for the NCI1 and PTC

datasets, GIN and TL-GNN are the best performing methods,

and their training accuracies are roughly identical. On PTC,

the convergence speed of TL-GNN is slower than that of GIN,

but faster than that of the remaining methods. On the COX2

dataset, the convergence rates of TL-GNN and GIN are close,

but the final training accuracy of TL-GNN is slightly higher

than that of GIN. On the PROTEINS dataset, the training

accuracy of TL-GNN does not outperform that of DGCNN,

which is equal to that of the other methods studied. On the two

variants of IMDB, TL-GNN and GCN achieve the best training

performance. However, TL-GNN is slightly, but consistently

better than GCN. We also observe that TL-GNN achieves a

higher training accuracy than GIN on many of the datasets

studied. Due to the fact that they have the same GNN layer

structure, these improvements come from the richer sources of

information exploited by TL-GNN. It is worth noting that the

convergence speed of TL-GNN on the SPNG dataset is much

faster than the remaining deep learning methods. The above

observations demonstrate that the subgraph-level information

captured by TL-GNN is not only helpful in distinguishing

PNGs, but also beneficially enriches the graph representation.

V. CONCLUSION

In this paper, we presented a novel deep learning method for

graph-structured data, the so-called Two-level Graph Neural

Network (TL-GNN). Considering the representational limi-

tations on GNNs caused by the LPI problem, we introduce

subgraph-level information into our framework and propose

two novel operators, AGG SUB and MERG to implement

our method. Moreover, we provide distinct mathematical def-

initions for permutation non-isomorphic graphs (PNGs) and

also provide a theoretical analysis of the role of subgraphs in

solving the LPI problem. A novel subgraph counting algorithm

is also proposed, which can locate all subgraphs of a n−node

graph within a D−hop neighborhood of each node; this has

O(Dn3) time complexity and O(Dn3) space complexity.

Experimental results show that TL-GNN achieves state-of-the-

art performance on most real-world datasets and distinguishes

all the data perfectly on the synthetic PNG dataset. As for

further work, we plan to extend the method to heterogeneous

graphs and further enrich the macroscopic information cap-

tured by GNNs. Specifically, we will treat the different types

of subgraphs as heterogeneous nodes within a heterogeneous

graph and then exploit a discriminative attention mechanism

to differentiate between these nodes. Besides, we will further

discuss and explore the influence of the LPI problem on the

node classification task.
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