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Abstract

Bloodstream form African trypanosomes are thought to rely exclusively upon glycolysis,

using glucose as a substrate, for ATP production. Indeed, the pathway has long been con-

sidered a potential therapeutic target to tackle the devastating and neglected tropical dis-

eases caused by these parasites. However, plasma membrane glucose and glycerol

transporters are both expressed by trypanosomes and these parasites can infiltrate tissues

that contain glycerol. Here, we show that bloodstream form trypanosomes can use glycerol

for gluconeogenesis and for ATP production, particularly when deprived of glucose following

hexose transporter depletion. We demonstrate that Trypanosoma brucei hexose transport-

ers 1 and 2 (THT1 and THT2) are localized to the plasma membrane and that knockdown of

THT1 expression leads to a growth defect that is more severe when THT2 is also knocked

down. These data are consistent with THT1 and THT2 being the primary routes of glucose

supply for the production of ATP by glycolysis. However, supplementation of the growth

medium with glycerol substantially rescued the growth defect caused by THT1 and THT2

knockdown. Metabolomic analyses with heavy-isotope labelled glycerol demonstrated that

trypanosomes take up glycerol and use it to synthesize intermediates of gluconeogenesis,

including fructose 1,6-bisphosphate and hexose 6-phosphates, which feed the pentose

phosphate pathway and variant surface glycoprotein biosynthesis. We used Cas9-mediated

gene knockout to demonstrate a gluconeogenesis-specific, but fructose-1,6-bisphospha-

tase (Tb927.9.8720)-independent activity, converting fructose 1,6-bisphosphate into fruc-

tose 6-phosphate. In addition, we observed increased flux through the tricarboxylic acid

cycle and the succinate shunt. Thus, contrary to prior thinking, gluconeogenesis can operate

in bloodstream form T. brucei. This pathway, using glycerol as a physiological substrate,

may be required in mammalian host tissues.

Author summary

Trypanosomes are the etiological agents of human sleeping sickness and animal African

trypanosomiases, a range of diseases in cattle, other livestock and horses caused by several
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Trypanosoma subspecies. The mammalian stage of the parasite circulates in the blood-

stream, a nutrient-rich environment with constant temperature and pH and high glucose

concentration. Hence, it was unsurprising that bloodstream trypanosomes use glucose in

a low-efficiency manner and produce ATP mostly from glycolysis, with simplified mito-

chondria and metabolism. Recently though, T. brucei were found in abundance in adipose

tissue, and also in skin, suggesting the need for flexible and more elaborate metabolic

capacity. We show that trypanosomes synthesise sugars de novo from glycerol via gluco-

neogenesis. Depletion of glucose transporters is rescued by supplementation with glycerol.

Moreover, even wild-type parasites, grown in the presence of glucose and glycerol, use

both substrates and have active gluconeogenesis. Metabolome analysis also showed utili-

zation of glycerol to feed the pentose phosphate pathway, nucleotide biosynthesis and

glycerophospholipid biosynthesis. Trypanosomes do not accumulate storage polysaccha-

rides, but mammalian-infective parasites do assemble a dense surface glycoprotein coat,

the glycan components of which incorporate carbons from glycerol. Thus, gluconeogene-

sis can be used to drive intermediate metabolism and terminal metabolite biosynthesis.

Our results reveal metabolic flexibility and adaptability in trypanosomes, which is likely

required for survival in multiple host tissue environments. This should be considered

when devising metabolically targeted therapies.

Introduction

T. brucei is the causative agent of human and animal African trypanosomiases, devastating but

neglected tropical diseases. The mammalian-infective form of the parasite, typically referred to

as the bloodstream form (BSF), lives in blood of mammalian hosts and enters the central ner-

vous system (CNS), leading to a fatal disease if not treated. In addition, trypanosomes were

recently detected in adipose tissue in a mouse model [1] and the skin of both humans [2] and

mice [3]. Tsetse flies transmit the parasites; these procyclic forms (PCF) grow in the insect

mid-gut, differentiating through other adaptive life-cycle stages, and later migrating to the sali-

vary glands, for transmission in saliva as metacyclic forms. Each of the parasite’s stages is mor-

phologically and metabolically adapted to the respective environmental conditions. Nutrient

availability is variable in the tsetse mid-gut and PCF trypanosomes can utilize proline, and

generate the majority of their ATP in a reticulated mitochondrion containing canonical func-

tions; although the tricarboxylic acid (TCA) cycle appears to operate in a non-canonical man-

ner [4]. On the other hand, BSF trypanosomes in the bloodstream grow in a stable, nutrient

rich environment, with a constant and abundant glucose supply, producing ATP from glycoly-

sis; the mitochondrion, the electron transport chain and the TCA cycle are substantially

reduced in BSF cells [5]. The recent identification of trypanosomes in adipose tissue [1] and in

the skin of humans [2] and mice [3], indicated that the ‘bloodstream forms’ should now be

considered as bloodstream-resident, CNS-resident, adipose-resident or skin-resident forms,

potentially with differing metabolic capacities.

Glycolysis is the metabolic pathway with the highest flux in BSF T. brucei grown in culture

medium; this pathway has been thoroughly studied and has long been considered a promising

potential drug target [6]. The majority of the glycolytic enzymes are localized inside glyco-

somes, specialized peroxisomes harboring glycolysis and additional metabolic pathways [7].

The glycosome membrane is semi-permeable; hence only smaller metabolites can pass freely

[8], while ADP/ATP or NAD+/NADH regeneration must be balanced inside the organelle. It

has been proposed that compartmentalized glycolysis emerged to facilitate adaptation to

Gluconeogenesis in bloodstream T. brucei
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different environmental conditions [9]. Other metabolic pathways that are compartmentalized

inside glycosomes include the pentose phosphate pathway (PPP), nucleotide sugar biosynthe-

sis, nucleotide biosynthesis and salvage, lipid synthesis, and fatty acid β-oxidation, probably
due to their connection to glycolysis [10].

Gluconeogenesis (GNG) is a metabolic pathway that results in the generation of glucose

from non-carbohydrate carbon substrates such as glycerol, lactate or glucogenic amino acids.

In principle, it is the reverse of glycolysis, as many glycolytic enzymes are reversible, the direc-

tion depending on substrate and product concentrations. Only two steps are thought to be

unique to GNG in protozoa; requiring fructose-1,6-bisphosphatase (FbPase) and phospho-

enolpyruvate carboxykinase activity [11]. PCF T. brucei display GNG capacity fed by proline

[12] but GNG was thought to be absent from BSF T. brucei, since FbPase activity was not

detected [13]. Metabolomic analysis with labelled glucose also failed to reveal evidence for

GNG [11]. Consequently, it is often stated that BSF trypanosomes depend ‘exclusively’

[14,15,16,17] or ‘entirely’ [18,19] on glycolysis, using glucose as a substrate, for ATP produc-

tion (reviewed in [20,21]). For this reason, the glycolytic pathway has been considered to be a

promising target for antitrypanosomal drug discovery [6]. On the other hand, Ryley [22]

reported utilization of glycerol for respiration by both BSF and PCF T. b. rhodesiense in the

early 1960s. Furthermore, glycerol has been used routinely to sustain trypanosomes in glu-

cose-free media for several hours in radiolabelling experiments [23]. We also recently reported

the use of glycerol for ATP production by BSF T. brucei [24].

There are thought to be five copies of each trypanosome hexose transporters gene, THT1

(Tb927.10.8440–8480) and THT2 (Tb927.10.8490–8530), arranged in an array in the T. b. bru-

cei strain 927 reference genome, however the number of copies is variable across different

strains [25]. The two gene types are similar, containing some identical domains. THT1 tran-

scripts are substantially more abundant in BSF cells relative to PCF cells, while in PCF cells,

THT2 transcripts are substantially more abundant than THT1 transcripts [26,27]. Specific

regions in the 3’-untranslated regions contribute to this stage-specific expression pattern [28],

while only THT2 transcripts are upregulated after glucose depletion [27]. The THTs comprise

twelve trans-membrane domains and a cysteine-rich loop [26]. They are closely related to

mammalian hexose transporters, although some substrate selectivity was observed [29]. Over-

all, the substrate selectivity of THT1 and THT2 is similar, but THT1 is a high capacity, low

affinity transporter, whereas THT2 is a lower capacity, higher affinity transporter; this may

reflect the conditions under which each of the proteins is expressed (reviewed in [26]).

Here, we explore glycerol utilization for GNG in T. brucei depleted of THTs, and find GNG

operating even in wild-type cells that have access to glycerol. Carbons from stable isotope

labelled glycerol are detected in sugar phosphates, PPP intermediates, VSG glycans and other

metabolites. We also detect robust FbPase activity, even after deletion of the annotated FbPase

gene. Thus, contrary to prior thinking, GNG is available to mammalian stage T. brucei and may

operate in tissue environments where glycerol is available. This metabolic flexibility may be

essential for adaptation to environmental conditions and survival in mammalian host tissues.

Results

THT1 and THT2 are plasma membrane-localised and life cycle stage-
regulated

T. brucei hexose transporter 1 (THT1) transcripts are substantially more abundant than THT2

transcripts in the bloodstream stage, whereas the situation is reversed in the insect-stage [27].

Both proteins are thought to be localized to the plasma membrane. To determine whether this

is indeed the case, we assembled strains that express an N-terminal mNeonGreen (mNG)

Gluconeogenesis in bloodstream T. brucei
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tagged copy of each gene type; tags were inserted at the native loci. Both proteins were detected

by direct fluorescence microscopy. mNGTHT1 was localised on the surface plasma membrane

of bloodstream form cells, while mNGTHT2 was on the surface of insect stage cells (Fig 1A). To

assess transcript levels, we analyzed our recently published transcriptome data from blood-

stream and insect life cycle stages [30]. The region encompassing the five copies of THT1 and

the five immediately adjacent copies of THT2 is shown in Fig 1B and confirms higher THT1

transcript expression in the bloodstream stage (Fig 1B, top panel) and almost exclusive THT2

expression in the insect stage (Fig 1B, lower panel). As noted above, specific regions in the 3’-

untranslated regions contribute to this stage-specific expression pattern [28].

To explore developmental controls at the protein level, we assembled an additional BSF strain

that expressed mNGTHT2. Bloodstream strains expressing either mNGTHT1 or mNGTHT2 were

differentiated to insect stage cells. Subsequent protein blotting revealed an expression pattern that

mirrored the transcript levels seen above. Specifically, mNGTHT1 was expressed primarily in

bloodstream form cells, while mNGTHT2 was expressed primarily in insect stage cells (Fig 1C and

1D). Thus, we demonstrate plasma membrane localization of both hexose transporters and con-

firm the expected life-cycle stage regulated controls at both the transcript and protein levels.

The hexose transporters are required for glucose uptake and viability

THT1 and THT2 are closely related but contain multiple diverged domains (Fig 2A). For func-

tional assessment of THT1, we assembled an RNA interference (RNAi) construct targeting the

unique portions of the THT1 genes (Fig 2A) and used this construct to assemble knockdown

strains that also expressed a native tagged copy of mNGTHT1. We then induced specific knock-

down of THT1, which revealed a substantial growth defect; efficient mNGTHT1 knockdown

was confirmed by protein blotting (Fig 2B). Although growth was perturbed by THT1-specific

knockdown, cell growth continued, and increased over time (Fig 2B), possibly due to loss of

the RNAi construct [31] or low-level THT2 expression (see Fig 1B and S1A Fig). We, therefore,

assembled a second RNAi construct targeting the shared portions of both THT1 and THT2

simultaneously, and used this construct to assemble knockdown strains that again expressed a

native tagged copy of mNGTHT1. We induced simultaneous knockdown of THT1 and THT2,

which in this case revealed a severe and more pronounced growth defect; efficient mNGTHT1

knockdown was once again confirmed by protein blotting (Fig 2C). We also demonstrated the

capacity for mNGTHT2 knockdown using this approach in insect stage T. brucei (S1B Fig). Fail-

ure to grow after simultaneous THT1 and THT2 knockdown (Fig 2C) indicated that the hex-

ose transporters are essential for continued growth in BSF trypanosomes. This is consistent

with the idea that these transporters are essential uptake routes for glucose and also that glycol-

ysis is required for ATP production in these cells [4].

To directly measure glucose uptake in cells depleted for THT1 or for both THT1 and

THT2, we assessed the accumulation of the radiolabelled glucose analogue, 2-14C(U)-deoxy-

glucose, in wild-type and knockdown strains; knockdown was carried out in the presence of 5

mM glycerol (see Fig 3 below). We observed no uptake of label in cells incubated at 4˚C but

robust accumulation of label in wild-type cells incubated at 37˚C over a 2 min time-course;

428 ± 211 pmol/min/108 cells (Fig 2D). In contrast, accumulation of label was 20-fold lower in

knockdown cells; THT1-knockdown yielded only marginally (1.5-fold) higher labelling rela-

tive to THT1/THT2 knockdowns (Fig 2D).

Glycerol supplementation rescues the THT-knockdown defect

The growth medium typically used to propagate BSF T. brucei in culture is rich in (25 mM) glu-

cose [32]. This HMI-11 growth mediummay fail to reflect the full range of metabolic pathways

Gluconeogenesis in bloodstream T. brucei
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available to these parasites in their natural host environment. We were particularly interested in

the possible utilization of glycerol as a carbon source, since T. brucei express aquaglyceroporins

(AQPs) [24,33]. These AQPs appear to be important to remove glycerol from the cells, a product

of glycolysis under anaerobic conditions [34]. On the other hand, we recently demonstrated that

Fig 1. Glucose transporters localise to the cell surface and are developmentally regulated. (A) Fluorescence microscopy analysis. mNGTHT1 and mNGTHT2 localise
to the cell surface in bloodstream and insect stage T. brucei, respectively, as shown by direct mNeonGreen (mNG) fluorescence. (B) Differential RNA-seq expression
analysis of THT1 and THT2 genes in BSF and PCF showing developmental control. Total number of reads at the THT1/THT2 locus, applying an uniqueness filter of
MapQ>1, are depicted using the Artemis genome browser [66]; raw transcriptomic data was derived fromHutchinson et al [30]. (C) Western blot analyses indicating
stage specific expression of in situ tagged mNGTHT1 and mNGTHT2 in BSF (left) and PCF and cells differentiated in DTMmedium (right). WT, wild-type; EF1α serves
as a loading control. (D) Differentiation in DTMmedium of mNGTHT expressing cells (mNGTHT2 cells shown) was validated by immunofluorescence microscopy with
stage specific surface markers, VSG-2 for BSF and EP procyclin for PCF. In A and D, DNA was counter stained with DAPI; Scale bars 5 μm.

https://doi.org/10.1371/journal.ppat.1007475.g001
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T. brucei can use glycerol as an energy source, in an AQP-dependent manner [24]. In addition, T.

brucei have recently been shown to occupy adipose tissue in a mouse model [1], a tissue where the

glycerol concentration is four-fold higher than in blood (~200 μM) [35,36].

We, therefore, exploited the THT-knockdown strains to explore the ability of T. brucei to

use and to grow on glycerol as a carbon source. Supplementation of the standard HMI-11

growth medium with 5 mM glycerol had little impact on T. brucei growth (Fig 3A). Notably

though, the same supplementation, of cells in which THT1 and THT2 had been simulta-

neously knocked down, substantially rescued the severe growth defect observed above (Fig

3B). These results indicate that glycerol can serve as an alternative carbon source for BSF T.

brucei. It was previously observed that replacement of glucose with glycerol triggered differen-

tiation of BSF into PCF [37], however we did not observe such a phenotype with THT knock-

down cells; all cells continued to express variant surface glycoprotein 2 (VSG-2) and no cells

expressed EP procyclin following 5 days of knockdown (S1C Fig).

Exogenous glycerol is a substrate for gluconeogenesis

We next employed a liquid chromatography–mass spectrometry (LC-MS) metabolomics

approach to explore the utilization of stable heavy isotope labelled glycerol as a carbon source

in bloodstream form trypanosomes. For these experiments, wild-type and THT1/THT2

knockdown cells were grown in HMI-11 medium supplemented with 5 mMU-13C3-glycerol

(glycerol with heavy isotope labelled carbon in all three positions) for three days; knockdown

was induced over the three-day time-course in the latter case. Both samples cultured without

Fig 2. The glucose transporters are essential for growth in vitro. (A) The scheme shows the relationship between THT1 and THT2 genes.>90% identical regions
are depicted in plum and THT-specific regions are in green. The arrows indicate the regions used for RNAi. (B) The growth curves show the THT1 RNAi cell line
without and with tetracycline induction. Data points are means of two independent experiments with two biological replicates, error bars, SD. The protein blot
shows depletion of native tagged mNGTHT1 in the same cell line 24 h after tetracycline induction. (C) The growth curves show THT1/THT2 RNAi cell line without
and with tetracycline induction. Data points are means of two independent experiments with two biological replicates, error bars, SD. The protein blot shows
depletion of native tagged mNGTHT1 in the same cell line 24 h after tetracycline induction. (D) An uptake assay for [14C]2-deoxyglucose showing that this glucose
analogue is taken up by wild-type (WT), but not THT1 and THT1/THT2 induced RNAi cells after 3 days tetracycline induction (n = 3). Error bars, SD.

https://doi.org/10.1371/journal.ppat.1007475.g002
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any 13C label, but with 5 mM supplementary glycerol in the case of the knockdowns, were

grown and analysed in parallel. Subsequent metabolomic analyses allowed us to detect a num-

ber of intermediates of metabolism and also to trace the 13C-labelled metabolites.

Fig 4A indicates key steps in glycolysis and in the reverse pathway of gluconeogenesis,

including the metabolites that we detected and analysed by LC-MS. In terms of the exogenous
13C3 labelled glycerol, we see that this is taken up by both wild-type and THT1/THT2 knock-

down cells (Fig 4B; glycerol panel, green); two thirds (67%) of the glycerol in the knockdown

cells was 13C3 labelled. Notably, the glycerol content was increased in all three cases where exog-

enous glycerol was supplied, particularly following knockdown (Fig 4B). Next, in the knock-

down cells, we can see that the labelled glycerol was phosphorylated by glycerol kinase to form

glycerol 3-phosphate (Fig 4B; glycerol-P panel, green); half (50%) of the glycerol-phosphate in

the knockdown cells was 13C3 labelled. Labelled glycerol-phosphate was then channelled to fur-

ther gluconeogenic intermediates. For fructose 1,6-bisphosphate (Fig 4B; fructose 1,6bP panel),

almost a third (31%) was 13C3 labelled (green) and more than half (59%) was fully 13C6 labelled

(red). For hexose 6-phosphates (Fig 4B; hexose 6P panel), one fifth (20%) was 13C3 labelled

(green) and almost half (49%) was fully 13C6 labelled (red). For 2/3-phosphoglycerate (Fig 4B;

P-glycerate panel, green), almost three quarters (74%) was 13C3 labelled, and similar patterns

were observed in pyruvate (Fig 4B; pyruvate panel, green) and phosphoenolpyruvate (S2 Fig).

These labelled intermediates shown in Fig 4B were also detected, albeit at reduced levels (13C3-

labelled part comprised 10, 6, 7 and 16%, respectively), in wild-type cells. Thus, even wild-type

T. brucei take up glycerol, when available, and use it as a substrate for gluconeogenesis.

T. brucei appear to prefer to use glucose, when available, as a carbon source. The cells ana-

lysed here that use mostly glycerol instead of glucose do grow at a slower rate (Fig 3B). When

glycerol is used, pathway intermediates drop to approximately one third of the levels observed

in wild-type cells grown on glucose; fructose 1,6-bisphosphate drops to 32% (Fig 4B; fructose

1,6bP panel), hexose 6-phosphates drop to 33% (Fig 4B; hexose 6P panel) and 2/3-phospho-

glycerate drops to 29% (Fig 4B; P-glycerate panel). Even wild-type cells display decreased levels

of glycolytic intermediates when grown in the presence of glycerol, compared to levels

Fig 3. Glycerol rescues bloodstream form trypanosomes lacking glucose transporters. (A) Growth curve showing impact of glycerol without hexose
transporter knockdown. Addition of 5 mM glycerol triggers non-significant, but consistent mild growth defect. Data points are means of two independent
experiments with two biological replicates. Error bars, SD. (B) Growth curve showing impact of glycerol on THT1/THT2 knockdown cells. 5 mM glycerol
partially rescues the knockdown-associated growth defect. Data points are means of two independent experiments with two biological replicates. Error bars, SD.

https://doi.org/10.1371/journal.ppat.1007475.g003
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observed in wild-type cells grown on glucose: fructose 1,6-bisphosphate, 79% (Fig 4B; fructose

1,6bP panel); hexose 6-phosphates, 66% (Fig 4B; hexose 6P panel); phosphoglycerate, 61% (Fig

4B; P-glycerate panel). Thus, glycerol both inhibits the utilization of glucose for glycolysis and

is effectively channelled into gluconeogenesis under glucose deprivation.

De novo synthesised glucose 6-phosphate is utilised in other metabolic
pathways

We find that glucose 6-phosphate (G6P) synthesised from 13C3-glycerol is utilised in addi-

tional metabolic pathways, such as the pentose phosphate pathway (PPP) and for protein

Fig 4. Gluconeogenesis in trypanosomes growing on glycerol. (A) A scheme of glycolysis and gluconeogenesis with highlighted fructose-1,6-bisphosphatase. PPP,
pentose phosphate pathway; 1, hexokinase; 2 glucose-6-phosphate isomerase; 3, phosphofructokinase; 4, fructose-bisphosphate aldolase; 5, triose-phosphate isomerase;
6, glycerol-3-phosphate dehydrogenase; 7, glycerol kinase; 8, mitochondrial glycerol-3-phosphate dehydrogenase; 9, glyceraldehyde-3-phosphate dehydrogenase; 10,
phosphoglycerate kinase; 11, phosphoglycerate mutase; 12, enolase; 13, pyruvate kinase. (B) Metabolites from glycolysis/gluconeogenesis as detected in the LC-MS
analysis. The size of the bars represents the total abundance, and coloured parts indicate 13C labelling as depicted in the key. The samples are fromWT cells, WT
grown in 13C-glycerol, THT1/THT2 RNAi grown in 12C-glycerol and THT1/THT2 RNAi grown in 13C-glycerol. Glucose was also present for all experiments. Natural
abundance of 13C is 1%, hence the 1C labelling in ‘un-labelled’ samples that is proportional to the number of carbons in each metabolite. � identity of these metabolites
was confirmed using a match with a standard.

https://doi.org/10.1371/journal.ppat.1007475.g004
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glycosylation. The oxidative branch of the PPP is indispensable in BSF T. brucei, being the main

production route of reduced NADPH, a component essential for oxidative stress defence [38].

G6P is used as a substrate and since the non-oxidative branch of the pathway is missing in BSF T.

brucei, the final end product is ribose 5-phosphate [39]. 25% of pentose phosphate is fully 13C5

labelled in trypanosomes grown on glycerol (Fig 5A), and ribose 5-phosphate is further incorpo-

rated into ATP and GTP, as demonstrated with 23% and 22%, respectively, being 13C5 labelled

(Fig 5A). We did not detect sedoheptulose 7-phosphate, octulose 8-phosphate or erythrose

4-phosphate in the LC-MS data suggesting that transketolase activity is absent, as reported previ-

ously for BSF T. brucei [13,40]. Hence, the non-oxidative branch of the PPP is not activated under

hexose-transporter knockdown and glycerol-replete conditions and the labelling pattern of the

glycolytic end products is consistent with this activity being absent, i.e. all three or no carbons are

labelled in phosphoglycerate, phosphoenolpyruvate and pyruvate; carbon shuffling would have

been indicative of the non-oxidative branch of the PPP (Fig 4, S2 Fig, S1 Table).
13C carbons from glycerol are incorporated into numerous additional metabolic intermedi-

ates under hexose-transporter knockdown and glycerol-replete conditions (S1 Table). Alanine

is produced as an end product from pyruvate, and 13C3-alanine comprises 63% of the total

following THT1/THT2 knockdown; 17% in wild-type cells (S2 Fig, S1 Table). Orotate, an

intermediate of pyrimidine synthesis, comprises 50% fully labelled following THT1/THT2

knockdown (S2 Fig), and the label is further incorporated into pyrimidines. For example, UDP

contains a substantial proportion of 13C2 from orotate (32%) and 13C5 from ribose 5-phosphate

(14%), resulting in 13C7 (10%, S2 Fig). Glycerol is also incorporated into glycerophospholipids,

e. g. glycerol-3-phosphoinositol, glycerol-3-phosphocholine and glycerol-3-phosphoethanola-

mine (S2 Fig). We also detected a substantial proportion of N-acetylglucosamine with two,

three, six and eight carbons labelled following THT1/THT2 knockdown (S2 Fig).

G6P is the sole sugar precursor of UDP-galactose (UDP-Gal) [41] and, in the absence of

exogenously added mannose, of GDP-mannose (GDP-Man) [42,43]. These nucleotide sugars

Fig 5. Carbons from glycerol are incorporated into PPP intermediates and VSG glycans. (A) 13C from glycerol is incorporated into PPP intermediates, such as
pentose 5-phosphate which is further used for ATP and GTP synthesis. The samples and visualization are as in Fig 4B. (B) VSG was purified from wild-type and THT1/
THT2 RNAi knockdown parasites grown with and without 13C glycerol, as indicated, and subjected to monosaccharide compositional analysis by GC-MS. Following
correction for natural isotope abundance, the proportion of VSG-derived mannose and galactose residues containing 13C carbon from glycerol were determined. For all
analyses, n = 3; � p< 0.0001, Student’s t-test.

https://doi.org/10.1371/journal.ppat.1007475.g005
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are the Gal and Man donors for the glycosyltransferases involved in protein N-glycosylation

and glycosylphosphatidylinositol (GPI) anchor addition and processing in the parasite, includ-

ing for the major cell surface component, the variant surface glycoprotein (VSG). Thus VSG is

a convenient terminal metabolite with which to assess GNG. Soluble form VSG was purified

from wild-type and THT1/THT2 knockdown parasites grown in the presence of 13C glycerol

and subjected to monosaccharide composition analysis by GC-MS, following methanolysis

and trimethylsilyl- (TMS-) derivatization. Electron impact mass spectra of methyl-glycoside

TMS derivatives produce an intense [(CH3)3Si-O-CH = CH-O-Si(CH3)]
+ fragment ion atm/z

204, where the sugar-derived atoms are indicated in bold. The natural relative (tom/z 204)

abundance ofm/z 206 from this composition is 8.6%. We therefore interpret relative abun-

dance values ofm/z 206 of>8.6% as being synonymous with the appearance of 13C from glyc-

erol into the respective monosaccharides (S3 Fig). Our sample analyses indicated that 26 ± 7%

of Man and 21 ± 5% of Gal was 13C labelled following THT1/THT2 knockdown in the pres-

ence of 13C glycerol, whereas labelling in all the other samples was not statistically significant

(Fig 5B). The labelling of Man and Gal in the VSG N-linked and GPI glycans from 13C glycerol

shows that G6P from GNG is used to drive terminal metabolite biosynthesis, as well as inter-

mediate metabolism.

GNG-specific fructose-1,6-bisphosphatase activity from T. brucei

Most of the enzymatic steps of glycolysis are reversible and used in GNG. The fructose 6-phos-

phate to fructose 1,6-bisphosphate step, catalyzed by phosphofructokinase, is often irreversible,

however, such that the reverse reaction requires a GNG-specific fructose-1,6-bisphosphatase

(FbPase, EC 3.1.3.11, see Fig 4A) activity. Thus, utilization of glycerol to generate hexose

6-phosphates typically requires FbPase activity, and our metabolomics data above suggest the

presence of such an activity in T. brucei grown on glycerol and even in wild-type cells. It was

failure to detect this activity that previously suggested the absence of GNG in T. brucei, how-

ever [13]; with a limit of detection, 0.5 nmol/min/mg protein.

We measured FbPase activity using a coupled enzymatic assay (Fig 6A). FbPase enzyme

activity was indeed detected in both wild-type cells grown in the absence of glycerol and hex-

ose transporter knockdown cells grown in the presence of glycerol, at 10.6 ± 4.5 nmol/min/mg

protein (n = 3) and 15.6 ± 3.5 nmol/min/mg protein (n = 3), respectively (Fig 6B). These mea-

surements correspond with the metabolomic data, since FbPase activity is required for the

incorporation of carbons from glycerol into G6P. Thus, BSF T. brucei has the enzymatic capac-

ity to perform GNG, and the activity of the pathway appears to be specifically increased under

hexose-transporter knockdown and glycerol-replete conditions.

T. brucei express a glycosomal FbPase orthologue (Tb927.9.8720) [7] in both the BSF and

PCF life-cycle stages [44]. To further explore the source of the FbPase activity detected above,

we generated Tb927.9.8720-null cells in which the protein coding sequences were precisely

removed (Fig 6C), using a Cas9-based editing approach [45]. An FbPase activity at 11.2 ± 7.1

nmol/min/mg protein (n = 2 replicates of 2 populations) was also detected in these null cells

grown in the absence of glycerol (Fig 6D). Thus, T. brucei bloodstream form cells express a

Tb927.9.8720-independent source of FbPase activity.

Metabolic compensations for gluconeogenesis

The metabolomic analysis indicated other notable labelled metabolites under hexose-trans-

porter knockdown and glycerol-replete conditions, possibly indicating metabolic compensa-

tions for GNG (Fig 7A). Specifically, the total amount of fumarate and malate is two-fold

increased under these conditions (Fig 7A), suggesting higher flux in both the TCA cycle and
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the succinate shunt. Between 2–5% of malate, fumarate, and aspartate are 13C2 labelled in

wild-type cells, which increases three fold (to 8–10%) under hexose-transporter knockdown

and glycerol-replete conditions (Fig 7A and 7B). This may be due to increased activity of the

tricarboxylic acid (TCA) cycle, since 13C carbons from glycerol are passed into 13C2 labelled

acetyl-CoA, which is then incorporated into TCA cycle intermediates (Fig 7D). Acetyl-CoA

was not detected in the LC-MS analysis, but N-acetyl-lysine, GlucNAc (S2 Fig, S1 Table) and

other intermediates containing 13C2 indicate labelling from acetyl-CoA. Operation of the TCA

cycle was also suggested recently for adipose tissue resident T. brucei [1].

Fig 6. Fructose-1,6-bisphosphatase activity in bloodstream form trypanosomes. (A) A scheme showing the coupled enzymatic assay used for fructose-1,6-bisphosphatase
(FbPase) activity detection. F1,6bP is added to cell extract, and if FbPase is present, it converts F1,6bP into F6P. F6P is converted into G6P by glucose-6-phosphate isomerase
(PGI) and further into 6-phosphogluconolactone by glucose-6-phosphate dehydrogenase (G6PDH) producing NADPH. Further, 6-phosphogluconate is made by
6-phosphogluconolactonase, followed by a 6-phosphogluconate dehydrogenase reaction resulting in ribulose 5-phosphate and additional NADPH. PGI and G6PDHwere
added to the reaction, while the latter two enzymes are present in the cell extract. NADPH production is detected spectrophotometrically. (B) FbPase activity detected inWT
(no glycerol in growthmedium) and THT1/THT2 knockdown cells induced with tetracycline (plus 5 mM glycerol) for 3 days, and a negative control where F1,6bP was
omitted. The lines showmeans of replicates (n = 3) and shaded areas indicate SD. The slopes measured forWT and THT1/THT2 knockdown cells are significantly different
(p< 0.0001, linear regression). (C) Validation of the FbPase (Tb927.9.8720) knockout (KO); two independent populations. The gel shows the PCR assays and the schematic
maps indicate the native FbPase gene (lane 1), and alleles after precise replacement with a PAC (lane 2) orNPT cassette (lane 3). (D) FbPase activity detected in FbPase KO
cells. The lines showmeans of replicates (n = 2) for two independent FbPase KO populations. Other details as in A-B above.

https://doi.org/10.1371/journal.ppat.1007475.g006
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Under glycolysis, dihydroxyacetonephosphate (DHAP) is converted into glycerol 3-phos-

phate (Gly 3-P) by glycosomal glycerol-3-phosphate dehydrogenase (G3PDH), producing oxi-

dised NAD+, but during GNG this source of NAD+ is lost and must be compensated for. Since

the glycosomal membrane is impermeable to large metabolites such as NAD(H), NAD/H,

recycling has to be balanced within the glycosome [46]. Upregulation of the glycosomal succi-

nate shunt could compensate for this deficiency through malate dehydrogenase activity and

NADH dependent fumarate reductase activity. Consistent with this view, we observe similar

labelling for malate, fumarate and aspartate (Fig 7A), with relatively small proportions (8–

11%) of these metabolites containing 13C3 label (Fig 7C) in wild-type T. brucei in the presence

of glycerol, which increases under hexose-transporter knockdown and glycerol-replete condi-

tions; approximately three-fold, and reaching 36–47% (Fig 7C). These metabolites are likely

products of phosphoenolpyruvate (PEP) being converted into oxaloacetate, and further into

malate, fumarate and succinate. This suggests upregulation of the glycosomal succinate shunt

(Fig 7D) to compensate for NAD/H balance in the glycosome when glycosomal G3PDH is

Fig 7. Metabolic adjustments of trypanosomes growing on glycerol. (A) Profiles of fumarate, malate, aspartate and succinate as detected by LC-MSmetabolomics.
Samples and visualization as in Fig 4B. (B) Proportion of these metabolites with two 13C labelled carbons inWT and THT1/THT2 RNAi cells, � p< 0.001. (C)
Proportion of these metabolites with three 13C labelled carbons inWT and THT1/THT2 RNAi cells, � p< 0.001. (D) Scheme indicating potential explanation for the
labelling patterns observed. The 13C2 part may be produced by the TCA cycle activity fed by 13C2 labelled acetyl-CoA, advantageous for additional ATP production. The
13C3 part could be produced in the glycosomal succinate shunt, which is activated in order to maintain the NAD+/NADH balance inside the organelle.

https://doi.org/10.1371/journal.ppat.1007475.g007
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inactive (oxidising NADH to NAD+); although relatively low succinate labelling suggests that

succinate can also be derived from another pathway.

Thus, since use of glycerol produces only a single molecule of ATP per molecule of glycerol

when GNG is operative, the cells may compensate by producing ATP in the mitochondrion,

either by the TCA cycle activity or by acetate:succinyl-CoA shunt via succinyl-CoA synthetase

converting succinyl-CoA into succinate [47].

Discussion

It has been thought for decades that mammalian forms of T. brucei, the causative agents of

African sleeping sickness in humans and nagana in cattle, are exclusively dependent on glycol-

ysis, using glucose as a substrate, for ATP production. We now provide evidence that these

cells can utilise glycerol for gluconeogenesis (GNG) and for ATP production. Thus, metabo-

lism in these parasites is not as simplified and reduced as had been thought. Indeed, we dem-

onstrate some GNG even in wild-type cells grown on glycerol, even when glucose is also

available. Metabolism may indeed be simple and dependent on glycolysis in blood, but it now

seems likely that GNG can be activated in different environments.

Creek and colleagues [11] utilised metabolomic analyses to demonstrate extensive utiliza-

tion of glucose in a wide range of metabolic pathways. We now report the utilization of glyc-

erol for many of those same pathways. FbPase is considered to be one of the rate-limiting

activities of GNG in other systems [48], but this activity has not previously been detected in T.

brucei and therefore kinetic parameters have not been established. An annotated FbPase

(Tb927.9.8720) is present in trypanosome glycosomes [7] and is expressed at similar protein

levels in both bloodstream and insect life-cycle stages [44], the transcript levels are similarly

not significantly different between culture, blood, or adipose tissue derived BSF [1]. We now

show that FbPase activity is present in BSF T. brucei cells and increases when GNG is activated.

We also show, however, that this activity is Tb927.9.8720-independent. Thus, the dephosphor-

ylation of F1,6bP to F6P in T. bruceimay require reversal of the phosphofructokinase reaction

or sedoheptulose-1,7-bisphosphatase (Tb927.2.5800) activity [49].

In addition to FbPase, phosphoenolpyruvate carboxykinase (PEPCK) is the other enzyme

specific for GNG, and responsible for its regulation in mammals [48]; this enzyme is also

known to be present and active in T. brucei [11]. As expected, a third GNG-specific enzyme in

animals, glucose-6-phosphatase, is not present in T. brucei, nor in other protozoa, since loss of

the phosphate group would allow free glucose to diffuse out of the cells [48]. Previous model-

ling and metabolomics of glycolysis suggested high reverse flux of aldolase [11], however, simi-

lar information is lacking for the other enzymes. T. brucei glycerol kinase is unique in its

bidirectional activity, and is known to lack the classical allosteric regulation [50]. According to

canonical biochemistry, glycolysis and GNG cannot operate simultaneously, and the exclusive

regulatory mechanisms are well known in mammalian systems. However, this classical regula-

tion is missing in the T. brucei enzymes [34,51]. Compartmentalization in glycosomes would

not present a solution if both glycolysis and FbPase activity are localised inside glycosomes [7]

and we cannot exclude futile cycling in T. brucei, which has been suggested in Toxoplasma

gondii [52]. However, since we now demonstrate Tb927.9.8720-independent FbPase activity,

further work will be required to determine whether this FbPase activity is indeed compartmen-

talized within glycosomes in T. brucei.

GNG is essential in other unicellular pathogens. It is vital for the mammalian stage of Leish-

mania due to the need for mannogen biosynthesis [53]. GNG is also vital for Toxoplasma gon-

dii, regardless of whether infected host cells are rich or poor in glucose [52].Mycobacterium

tuberculosis is also dependent on GNG and harbours two independent FbPase genes [54].
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GNGmay be particularly important in mammalian form T. brucei to feed the essential pen-

tose-phosphate and glycoprotein glycosylation pathways, since even if the cells produce ATP

from the second half of glycolysis when glucose is limiting, G6P is required as a substrate for

these other essential pathways.

Aquaglyceroporins (AQPs) transport glycerol, but have generally been considered impor-

tant for glycerol efflux rather than acquisition [33]. AQPs can be used for glycerol uptake to

fuel T. bruceimetabolism, however [24]. Indeed, our current data are consistent with a report

from 1962 on trypanosomes using glycerol as a substrate for respiration [22], and a report

from 1977 on pyruvate production from glycerol [55]. Is glycerol the only GNG substrate in T.

brucei? Leishmania can also use aspartate, alanine or lactate to feed GNG [56]. Although the

same enzymatic repertoire is theoretically available in T. brucei [4], our findings suggest that

amino acid supply in growth medium fails to fuel GNG in cultured bloodstream form T. bru-

cei. On the other hand, glycerol may activate GNG, thereby allowing other substrates to be

used.

Futile cycling between glycolysis and GNG would be energetically disadvantageous, but it is

consistent with our observation that GNG is associated with a fitness cost. Depletion of triose-

phosphate isomerase, leading to production of one ATP per molecule of glucose, caused a

severe growth defect in BSF T. brucei [57]. Similarly, one molecule of ATP is produced per

molecule of glycerol when GNG is operative, while two molecules of ATP are produced per

molecule of glucose in glycolysis. However, this may be compensated for by upregulating glyc-

erol uptake. Decrease in glycolytic intermediates indicates decrease of flux in glycolysis, which

may be a consequence of futile cycling. In addition, glycerol must be phosphorylated in the ini-

tial step of GNG, potentially inhibiting glycolysis by depleting the ATP required to drive the

hexokinase and the phosphofructokinase reactions.

In parallel with GNG, we do see evidence for metabolic compensation to balance ATP pro-

duction. Additional ATP may be produced in the mitochondrion in the acetate:succinyl-CoA

shunt, the TCA cycle directly by succinyl-CoA synthetase, or indirectly by feeding the electron

transport chain with reduced cofactors from the TCA cycle. Specifically, labelling patterns

observed in fumarate, malate, and aspartate support activity of the TCA cycle, as proposed pre-

viously in adipose tissue trypanosomes [1]; pyruvate is converted into acetyl-CoA, which then

introduces two labelled carbons into the TCA cycle. An alternative explanation for this label-

ling pattern is that the enzymes, malate dehydrogenase and fumarase, are working in both

directions and shuffling carbons, as a consequence of GNG disrupting the usual metabolic

steady state. The glycerol-derived 13C3 component of fumarate, malate, and aspartate; com-

prising about 8% in wild-type, increased three-fold following hexose transporter knockdown.

This may reflect glycosomal succinate shunt activity or the reverse action of TCA cycle

enzymes. Notably, increased activity of the glycosomal succinate shunt would also serve to

regenerate NAD+ and maintain NAD+/NADH balance inside the glycosome.

Various mammalian host tissues may provide glycerol in quantities sufficient for GNG in

trypanosomes. Infection in the cerebrospinal fluid is well known. However, little is known

about parasite metabolism in the central nervous system and glycerol concentration is lower

than in blood [36]. Adipose tissue contains glucose at concentrations about seven fold lower

than in plasma [58] and glycerol at concentrations about four fold higher than in plasma

[35,36], although these levels may be variable. Adipose tissue form trypanosomes may possess

metabolically active or upregulated pathways, which are silent in the BSF, i.e. the TCA cycle

and fatty acid β-oxidation [1], and we show here that GNG is active in the presence of glycerol.

T. brucei are also present in skin, but their metabolism has yet to be scrutinised in this tissue

[2,3]. Trypanosomes may never encounter environments completely lacking glucose under

physiological conditions in mammalian hosts. Notably, in this regard, GNG is operative when
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both glucose and glycerol are present. Incomplete labelling in our glycerol-fed metabolomics

analyses suggests that, although glucose uptake was below the detection limit of our assay in

the absence of hexose transporters, some glucose was likely still imported by endocytosis. An

ability to use both substrates may be crucial for adaptation to particular tissue environments

or during transitions between tissues.

Our metabolomics analysis indicates that, in the presence of a suitable substrate, GNG does

operate in mammalian form T. brucei. The pathway even operates, albeit at a relatively low

level, in wild-type cells in the presence of glycerol. Cells that have limited access to glucose, in

this case following hexose transporter knockdown, display a major increase in flux through

GNG. We conclude that GNG in T. brucei, using glycerol taken up via aquaglyceroporins [24],

could be important for colonization of, and survival in, different host tissue environments.

Materials andmethods

Cell culture

T. b. brucei Lister 427 bloodstream form cells were cultured in the standard HMI-11 medium

(Gibco), supplemented with 10% fetal bovine serum (Sigma-Aldrich) at 37˚C, 5% CO2 [32].

Phleomycin (Invivogen) was used at 1 μg/ml, hygromycin (Sigma-Aldrich) at 1 μg/ml for

bloodstream and 50 μg/ml for insect-stage, puromycin (Sigma-Aldrich) at 1 μg/ml, and blasti-

cidin (Melford) at 5 μg/ml, as appropriate. RNAi was induced using tetracycline (Sigma-

Aldrich) at 1 μg/ml. Differentiation into insect-stage cells was performed as described [59].

Briefly, 2 x 107 cells were washed in DTMmedium, and resuspended in 5 ml of DTM supple-

mented with 15% heat-inactivated fetal bovine serum, 3 mM cis-aconitate (Sigma-Aldrich)

and 3 mM sodium isocitrate (Sigma-Aldrich). Cells were cultivated for at least 7 days at 27˚C

prior to analysis. Established insect-stage cells were cultured in SDM-79 medium (Gibco) sup-

plemented with 10% heat-inactivated fetal bovine serum (Sigma-Aldrich), GlutaMAX (Gibco)

and 2 mg/l hemin (Sigma-Aldrich) as described [60]. Genetic manipulation was performed by

electroporation in cytomix using an Amaxa nucleofector (Lonza) for BSF cells, and a Gene

Pulser (BioRad) for insect-stage cells.

Plasmids and Cas9-based editing

A codon-optimised mNeonGreen (mNG) sequence was cloned using AvrII and PacI (NEB)

restriction sites in the pNAT vector [61]. The THT1/THT2 gene specific targets (nucleotides

4–359 for THT1, and 4–180 for THT2; GeneScript) were cloned using SmaI and XhoI (NEB)

restriction sites. The resulting pNATmNGTHT1 was linearized with BaeI and pNATmNGTHT2

with BsrGI (NEB) prior to transfection. The pRPaiSL vector [61] was used to assemble the RNAi

constructs. The inserts comprised a THT1-specific sequence for pRPaiSLTHT1 (nucleotides

145–392, 459–600, 704–793; GeneScript) and a common region targeting both THT1 and

THT2, for pRPaiSLTHT1+2 (nucleotides 839–1338); these ‘stem-loop’ constructs were assem-

bled using BamHI and XhoI (NEB) restriction sites. Cas9-based editing of Tb927.9.8720 was

carried out using a previously described editing system [45]. Briefly, a Tb927.9.8720-specific

sgRNA construct was assembled following annealing of the FbPgRNA5 and FbPgRNA3 oliogo-

nucleotides. The resulting construct was linearised with NotI prior to transfection into

2T1T7-Cas9 cells. The NPT58720 / NPT38720 and PAC58720 / PAC38720 primer pairs were used to

amplify repair-templates encoding the antibiotic selection markers and with terminal 25-bp

Tb927.9.8720 untranslated region-specific targeting sequences. Cas9-based editing was induced

for 24 h, at which point both repair templates (~5 μg of each) were transfected. Both antibiotics

(G418 [Sigma-Aldrich] and puromycin [Sigma-Aldrich] at 2 μg/ml) were used to select for pop-

ulations that lacked the Tb927.9.8720 gene, as demonstrated using a series of PCR-assays.
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FbPgRNA5: AGGGAAGGTGCTCCCGCGCCTCTC

FbPgRNA3: AAACGAGAGGCGCGGGAGCACCTT

NPT58720: TAACGACACCACTCTTCCCAGATTTCGGGTGCTCAAGCTGTGT

NPT38720: CACACGCATCGAAGCAACCATTGGCGGGGAAGGAAACCAACTTG

PAC58720: TAACGACACCACTCTTCCCAGATTTATGGGTCCCATTGTTTGCC

PAC38720: CACACGCATCGAAGCAACCATTGGCACTATTTTCTTTGATGAAAGGG

Western blot analysis

For western blot analysis, cells were harvested (1,000 g, 10 min), washed with 1 x PBS and

lysed in Laemmli buffer (62 mM Tris pH 6.8, 10% glycerol, 2.3% SDS, 5% β-mercaptoethanol,

bromphenol blue). To detect mNG-tagged THT proteins, samples were sonicated (3 cycles for

3s, 4˚C), for VSG-2 and EP1 detection, samples were boiled at 95˚C for 10 min. Equivalent of

107 cells was loaded per well. Proteins were transferred from SDS gels onto Hybond ECL nitro-

cellulose membrane (GE Healthcare) using Trans-Blot Turbo Transfer System (BioRad) at 1.3

A, 25 V, for 10 min. Membranes were blocked in 5% milk in 0.005% PBS-Tween. Incubation

with α-mNG antibody (Chromotek) was performed at 1:1,000, 4˚C, overnight, α-VSG-2 at
1:10,000 for 1 h at room temperature (RT), α-EP1 (Cedarlane) at 1:1,000 for 1 h at RT, α-EF1
(Millipore) at 1:10,000 for 1 h at RT. Following three washes in PBS-Tween for 10 min, the sec-

ondary α-mouse or α-rabbit HRP-coupled antibody (BioRad) incubation was performed at

1:10,000, for 1 h at RT. Following a further three washes in PBS-Tween, the signal was visual-

ised using an ECL kit (GE Healthcare) with a G:BOX chemidoc (Syngene).

Microscopy and immunofluorescence microscopy assay

For microscopy, cells were washed with 1 x PBS and fixed in methanol-free 3% formaldehyde

(Thermo Scientific) for 15 min at RT. Following two washes in PBS, cells were resuspended in

1% bovine serum albumin (Sigma-Aldrich) and allowed to dry on microscopy slides. For

direct fluorescence microscopy, slides were immediately mounted with Vectashield with DAPI

(Vector Laboratories). For immunofluorescence microscopy, slides were blocked with 50%

FBS in PBS for 15 min at RT and, after two washes with PBS, primary α-VSG-2 (1:10,000;
[62]) or α-EP1 (1:1,000; Cedarlane) antibodies were applied for 1 h at RT. Following 3 washes

in PBS, the secondary antibodies, α-rat IgA-rhodamine (1:1,1000; Sigma-Aldrich) and α-
mouse Alexa 568 (1:1,000; Life Technologies), respectively, were applied for 1 h at RT, followed

by a further three washes in PBS. Images were captured using an Axiovert 200 epifluorescence

microscope and processed using Zen imaging software (Zeiss).

2-14C(U)-deoxyglucose uptake assay

The uptake assay was performed as described previously [24] with minor modifications.

Briefly, 108 cells were harvested (1000 g, 10 min 4˚C), washed twice in ice-cold transport buffer

without glucose (33 mMHEPES, 98 mMNaCl, 4.6 mM KCl, 0.55 mM CaCl2, 0.07 mM

MgSO4, 5.8 mMNaH2PO4, 0.3 mMMgCl2, 23 mMNaHCO3, pH 7.3) and resuspended to 108

cells/ml in the same buffer. Uptake was initiated by adding 100 μl of cell suspension to 100 μl

of transport buffer containing 0.25 μCi 14C-2-deoxyglucose (PerkinElmer) layered over 100 μl

of dibutyl phthalate (Sigma-Aldrich). After incubation at 37˚C or 4˚C for the appropriate

time, transport was stopped by centrifugation through the oil layer (16,000 g, 1 min). Micro-

centrifuge tubes were flash frozen in liquid nitrogen and the bottoms of the tubes, containing

the cell pellets, were snipped into scintillation vials. Pellets were solubilised overnight in 150 μl

of 1 M NaOH before mixing with 2 ml of scintillation fluid and radioactivity was measured on

a scintillation counter (Beckman LS 6500) for 1 min.
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LC-MSmetabolomic analysis

For the liquid chromatography–mass spectrometry (LC-MS) metabolomic analysis the sample

extraction was performed as described previously [11]. THT1/THT2 knockdown cells were

grown in the presence of tetracycline and 5 mM 13C3-U-glycerol (Sigma-Aldrich) three days

prior to sample preparation. Briefly, 5 x 107 cells were used for each final 200 μl sample. Cells

were rapidly cooled in a dry ice/ethanol bath to 4˚C, centrifuged at 1,300g, 4˚C for 10 min,

washed with 1 x PBS, and resuspended in extraction solvent (chloroform:methanol:water,

1:3:1 volume ratio). Following shaking for 1 h at 4˚C, samples were centrifuged at 16,000g at

4˚C for 10 min and the supernatant was collected and stored at -80˚C. The analysis was per-

formed using separation on 150 x 4.6 mm ZIC-pHILIC (Merck) on Dionex UltiMate 3000

RSLC (Thermo Scientific) followed by mass detection on an Orbitrap QExactive mass spec-

trometer (Thermo Fisher) at Glasgow Polyomics. Analysis was operated in polarity switching

mode, using 10 μl injection volume and a flow rate of 300 μl/min. The samples were run along-

side 170 authentic standards. The data were processed and analyzed using mzMatch software

[63] and mzMatchISO [64]. The analysis was performed in 4 replicates, means of which are

indicated, non-labelled samples were run in parallel. Metabolites were identified based on

matches with standards or were predicted based on mass and retention time. Metabolomics

data have been deposited to the EMBL-EBI MetaboLights database (https://www.ebi.ac.uk/

metabolights/index) with the identifier MTBLS706.

Fructose-1,6-bisphosphatase activity assay

To measure FbPase activity, cells were harvested, washed in PBS, and resuspended in TE buffer

(10 mM Tris-HCl pH 8.0, 1 mM EDTA, 0.15% Triton X-100, cOmplete Protease Inhibitor

Cocktail [Roche]) at 2 x 108 cells/ml. Following 20 min incubation at RT, cell extracts were

centrifuged at 14,000 g, 16˚C, 10 min, and supernatants were collected and kept on ice. The

reaction mixture (20 mM Tris pH 7.8, 10 mMMgCl2, 1 mMNADP, 1 μl glucose-6-phosphate

isomerase [Sigma-Aldrich], 1 μl glucose-6-phosphate dehydrogenase [Sigma-Aldrich], 100 μl

cell extract in H2O) was incubated at 30˚C for 5 min and 5 mM fructose 1,6-bisphosphate was

added immediately prior to reading at 340 nm, 30˚C with an UV-1601 spectrophotometer

(Shimadzu).

VSG glycosylation analysis

The VSG isolation was performed as described previously with minor modifications [65]. The

cells were cultured in 5 mM 13C3-U-glycerol (Sigma-Aldrich) for three days prior to sample

preparation, and unlabelled samples were prepared alongside. 108 cells were harvested (1,300

g, 4˚C, 10 min), washed twice in ice-cold PBS and resuspended in 300 μl of 10 mMNa2HPO4

pH 8.0 in MS grade water, containing 0.1 mM TLCK (Sigma-Aldrich), 1 μg/ml leupeptin

(Sigma-Aldrich), 1 μg/ml apoprotinin (Sigma-Aldrich), and 10 mM PMSF (Sigma-Aldrich).

Following 5 min incubation at 37˚C, the samples were cooled on ice and centrifuged at 14,000

g, 4˚C for 5 min. The samples were applied on chromatography columns containing 400 μl of

bead mixture (50:50 volume ratio, Anion Exchange Cellulose DE52 (Whatman) in 10 mM

Na2HPO4 pH 8.0 buffer) and eluted with 800 μl of 10 mMNa2HPO4 pH 8.0. The obtained

eluate was concentrated and diafiltered against water using Millipore Amicon Ultra-0.5 Cen-

trifugal Filter Devices (Merck) following the manufacturer’s instructions. Carbohydrate com-

positional analysis was performed by GC-MS. Samples (6–10 μg) were mixed with 2 nmol

scyllo-inositol internal standard and dried using vacuum centrifugation. Dried samples were

then subjected to methanolysis by adding 50 μl of 0.5 M HCl in dry methanol and incubating

at 85˚C for 4 h. Methanolysates were re-N-acetylated by the addition of 10 μl pyridine and
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10 μl acetic anhydride and incubating at RT for 30 min. The samples were dried under vacuum

and derivatised with 15 μl trimethysilylation (TMS) reagent at RT for 30 min. 1 μl aliquots of

each sample was injected in GC-MS (Agilent Technologies, 7890B Gas Chromatography sys-

tem with 5977AMSD) equipped with Agilent J&WHP-5ms GC Column (30 m X 0.25 mm,

0.25 μm) with He carrier gas at 0.5 ml/min. The temperature program used was run over 32.5

min with 95˚C (for 1 min) - 140˚C (30˚C/min) to 265˚C at 5˚C/min (for 5 min). The mass

spectra were collected from linear scanning overm/z 50–650, and quantification was based on

the integration of the extracted ion-current chromatograms and empirically determined molar

response factors.

Supporting information

S1 Fig. THT knockdown in bloodstream and insect stage cells. (A) The protein blot shows

native tagged mNGTHT2 in bloodstream form cells following THT1 knockdown for 5 days. (B)

The protein blot shows depletion of native tagged mNGTHT2 following THT1/THT2 knock-

down in insect stage cells; see Fig 2C for depletion of mNGTHT1 by the same approach in

bloodstream form cells. (C) Bloodstream form THT1/THT2 knockdown cells were grown in

the presence of tetracycline and glycerol for up to 6 days, and scrutinised by immunofluores-

cence microscopy. Staining of the cell surface with α-VSG-2, but not α-EP procyclin antibody

validated that these cells are not differentiated into PCF. A PCF cell is shown as a control.

DNA was counter stained with DAPI; scale bars 5 μm.

(PDF)

S2 Fig. Additional metabolites detected by the LC-MS analysis. The size of the bars repre-

sents the total abundance, and coloured parts indicate 13C labelling as depicted in the legend.

The samples are fromWT cells, WT grown in 13C-glycerol, THT1/THT2 RNAi grown in 12C-

glycerol and THT1/THT2 RNAi grown in 13C-glycerol. Natural abundance of 13C is 1%, hence

the 1C labelling in ‘un-labelled’ samples.
� the identity of these metabolites was confirmed using a match with a standard.

(PDF)

S3 Fig. Measurement of incorporation of 13C glycerol into the mannose and galactose resi-

dues of VSG. Total ion chromatograms of the methyl-glycoside TMS derivatives from wild-

type (panels A-B) and THT1/THT2 knockdown trypanosomes (panels C-D) grown in the

absence and presence of 13C glycerol, respectively. The peaks due to mannose (Man), galactose

(Gal) and the scyllo-inositol internal standard (s-I) are indicated. The insets show a detail of

the electron impact mass spectra of the main Man peak, illustrating the natural abundance of

m/z 206 relative to m/z 204 (panel A) compared to a sample where 13C has been incorporated

into the VSG sugar residues (panel D). One representative replicate, n = 3.

(PDF)

S1 Table. LC-MS metabolomics data with 13C3-glycerol. The samples are fromWT cells,

WT grown in 13C-glycerol, THT1/THT2 RNAi grown in 12C-glycerol and THT1/THT2 RNAi

grown in 13C-glycerol, n = 4.

(XLSX)
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Methodology: Julie Kovářová, Rupa Nagar, Joana Faria.

Supervision:Michael A. J. Ferguson, Michael P. Barrett, David Horn.
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