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Hartle-Hawking state in the real-time formalism

Atsushi Higuchi∗ and William C. C. Lima†

Department of Mathematics, University of York, Heslington, York YO10 5DD, United Kingdom

(Dated: January 3, 2022)

We study self-interacting massive scalar field theory in static spacetimes with a bifurcate Killing
horizon and a wedge reflection. In this theory the Hartle-Hawking state is defined to have the
N -point correlation functions obtained by analytically continuing those in the Euclidean theory,
whereas the double KMS state is the pure state invariant under the Killing flow and the wedge
reflection which is regular on the bifurcate Killing horizon and reduces to the thermal state at the
Hawking temperature in each of the two static regions. We demonstrate in the Schwinger-Keldysh
operator formalism of perturbation theory the equivalence between the Hartle-Hawking state and
the double KMS state with the Hawking temperature, which was shown before by Jacobson in the
path-integral framework.

PACS numbers: 04.62.+v

I. INTRODUCTION

In static spacetimes with a bifurcate Killing horizon
and a wedge reflection, the natural state for quantum
fields in the static region is a thermal equilibrium state at
the Hawking temperature. Important examples of these
spacetimes are Schwarzschild (i.e. eternal black hole),
de Sitter and Minkowski spacetimes. This state was first
described by Hartle and Hawking [1] by computing the
Feynman propagator of a free scalar field in the Euclidean
section of Schwarzschild spacetime, and then analytically
continuing the result to the black-hole exterior region.
The thermal property of the Hartle-Hawking (HH) state
follows from the assumption that in the Euclidean section
the imaginary Killing time is periodic. The periodicity
corresponding to the Hawking temperature prevents the
appearance of a conical singularity on the Euclideanized
bifurcate horizon. In Minkowski spacetime, the HH state
corresponds to the Minkowski vacuum [2], and its ther-
mal property with respect to a boost Killing vector is
directly related to the Unruh effect [3]. The HH state in
de Sitter spacetime is known as the Euclidean (or Bunch-
Davies) vacuum [4–6], and its thermal property with re-
spect to a de Sitter boost is manifested in the Gibbons-
Hawking effect [7]. The HH state in this spacetime was
shown to be the same as the vacuum state in the Poincaré
patch [8, 9] for interacting scalar field theories, and its
infrared behavior was investigated in Refs. [10–13].
In the free-field case, Kay [14] proved that this state

exists on a certain algebra of observables localized on
the double-wedged region of the Kruskal-Szekeres exten-
sion [15, 16] of Schwarzschild spacetime. As noted earlier
by Israel [17], when seen as a state on that region, the
HH state is actually a pure state due to correlations be-
tween the two wedges. Moreover, as shown by Kay and
Wald [18], this state can be extended across the horizon
and defines a pure state on the entire spacetime. More
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precisely, they proved that the HH state, if it exists, is
the unique state to be both invariant under the action of
the Killing field generating the horizon and regular (i.e.
to have the Hadamard form) on and across the horizon.

For interacting fields, Gibbons and Perry [19] have em-
ployed perturbation theory to extend the original argu-
ment of Hartle and Hawking, and pointed out that the
interacting Euclidean theory also defines a thermal field
theory on the black-hole exterior. Concrete realizations
of this claim were later provided via the path-integral for-
malism by Unruh and Weiss [20] in Minkowski spacetime
and by Barvinsky, Frolov and Zelnikov [21] in the case
of a black hole. Motivated by these discussions, and the
regularity results of Kay and Wald, Jacobson [22] pro-
posed that the HH state should define a good state even
across the bifurcate horizon, notwithstanding the Killing
time coordinate being not well defined there. He then
showed that the HH state is the double KMS state us-
ing the path-integral formalism. Jacobson’s proposal has
been proved to work in a more rigorous framework by
Sanders [23] in the case of free fields only recently.

Perturbative analysis of the double KMS state leads
naturally to the Schwinger-Keldysh formalism [24, 25],
often used in more general spacetimes [26]. In this paper
we demonstrate that the N -point correlation functions in
the double KMS state in static spacetime with a bifurcate
Killing horizon agrees with those in the HH state, i.e. that
they agree with those obtained by analytic continuation
from the Euclidean theory. We note that the double KMS
state in this spacetime has also been studied in axiomatic
field theory [27–29].

The remainder of the paper is organized as follows. In
Sec. II we briefly discuss the geometry of the class of
spacetimes with a static bifurcate Killing horizon and a
wedge reflection considered in this paper. We also dis-
cuss their complexification. We then discuss the prop-
erties of double KMS states in general. In Sec. III we
consider a massive, self-interacting scalar field theory in
these spacetimes and show that the double (i.e. purified)
KMS state at the Hawking temperature with respect to
the Killing vector field generating the horizon is the HH



state. We first review the equivalence between the dou-
ble KMS state and HH state for the non-interacting case.
Then, we demonstrate this equivalence for the interact-
ing scalar field with non-derivative self-interaction. To do
so, we first explain how the N -point correlation functions
are obtained in the HH state by analytic continuation of
the Euclidean theory. Then we show that the N -point
correlation functions for the double KMS state in the
Schwinger-Keldysh operator formalism are the same as
those in the HH state. In Sec. IV we briefly explain
how the N -point functions are given perturbatively in
the HH state for Minkowski and de Sitter spacetimes.
We conclude in Sec. V with a summary and a discussion
of our results. We present some technical details in the
Appendices. In Appendix A we discuss the free-theory
two-point function in the region in the future of the bi-
furcate Killing horizon. In Appendix B we present some
details of the analytic continuation for the HH state. In
Appendix C we discuss the interaction picture with a
time-dependent Hamiltonian. Throughout this paper we
employ units such that kB = ~ = c = G = 1 and adopt
the signature −++ · · ·+ for the metric.

II. PRELIMINARIES

A. Static spacetime with a bifurcate Killing

horizon

Let us recall that the Kruskal-Szekeres extension of
4-dimensional Schwarzschild spacetime has the following
metric (see, e.g. Ref. [30]):

gSchab =
32M3

r
e−r/(2M)[−(dT )a(dT )b + (dX)a(dX)b]

+ r2ωab ,
(2.1)

where M is the black-hole mass and ωab is the metric on
the unit 2-sphere, S2. The variable r is implicitly defined
in terms of X and T as

r − 2M

2M
er/(2M) = X2 − T 2 . (2.2)

Note that the function of r on the left-hand side is mono-
tonically increasing, which makes r a well-defined func-
tion of X2 − T 2. It is more common to use the variables
U = T −X and V = T +X instead of T and X.
Motivated by this metric, we consider in this paper the

n-dimensional, globally hyperbolic spacetime (M, gab),
with the metric tensor

gab = f(ρ2,θ)[−(dT )a(dT )b + (dX)a(dX)b] + sab(ρ
2,θ) ,
(2.3)

where ρ2 = X2−T 2 takes values in a real interval contain-
ing an open neighborhood of 0 and f(ρ2,θ) is a positive
function. We assume that the hypersurfaces with con-
stant T are Cauchy surfaces. [For Schwarzschild space-

time, we have ρ2 ∈ (−1,∞).] Here, θ represents all coor-
dinate variables other than T and X, and sab is a linear
combination of (dθi)a(dθ

j)b.
The vector

ξa = κ[X(∂T )
a + T (∂X)a] , (2.4)

with κ > 0, is a Killing vector because T and X appear
in the metric only through ρ2 = X2 − T 2 and because
ξa∇aρ

2 = 0. The constant κ is chosen suitably for each
spacetime.1 An orbit of ξa has θ and X2 − T 2 constant.
The hypersurfaces X − T = 0 (denoted by hA in Fig. 1)
and X + T = 0 (denoted by hB in Fig. 1) are null hy-
persurfaces with ξa as the normal vector. (Recall that
a vector normal to a null hypersurface is also tangent to
it.) Thus, these hypersurfaces are Killing horizons for ξa.
These two Killing horizons constitute a bifurcate Killing
horizon [31].
The Killing vector ξa vanishes on the (n − 2)-

dimensional surface given by X = T = 0. This surface is
called the bifurcation surface and denoted by B in Fig. 1.
The bifurcate Killing horizon divides the spacetime M
into four regions as follows (see Fig. 1):

the right wedge (R) : X > 0, −X < T < X ;
the left wedge (L) : X < 0, X < T < −X ;
the future wedge (F) : T > 0, −T < X < T ;
the past wedge (P) : T < 0, T < X < −T .

(2.5)

b

F

P

RL

B

hB hA

Σ
Σ

L
Σ

R

Figure 1. Spacetime with a bifurcate Killing horizon

The right and left wedges, R and L, are globally hyper-
bolic on their own right, and the hypersurfaces at T = 0
with X > 0 and X < 0 are the Cauchy surfaces for R
and L, respectively, and denoted here by ΣR and ΣL.

1 For Schwarzschild spacetime it is chosen so that ξaξa → −1 at
spacelike infinity. For de Sitter spacetime we choose ξaξa = −1
for a particular timelike geodesic.
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The constant of proportionality κ in Eq. (2.4) can be
shown to be the surface gravity, which is defined on a
Killing horizon h as follows:

ξb∇bξ
a|h = ±κξa|h , (2.6)

with κ > 0. This equation can also be written as

∓ 1

2
∇a
(

ξbξb
)

|h = κξa|h , (2.7)

by using the Killing equation. This equation can be used
to verify that the constant κ in Eq. (2.4) is indeed the
surface gravity of the bifurcate Killing horizon.
A form of the metric useful for the right and left

wedges, R∪L, can be given after the coordinate change

(T,X)

=

{

(

ρ sinh(κt), ρ cosh(κt)
)

, ρ > 0, if (T,X) ∈ R,
(

− ρ sinh(κt), ρ cosh(κt)
)

, ρ < 0, if (T,X) ∈ L .
(2.8)

Thus, we find

gab|R∪L

= f(ρ2,θ)
[

−κ2ρ2(dt)a(dt)b + (dρ)a(dρ)b
]

+ sab(ρ
2,θ) .

(2.9)

In these coordinates the Killing vector ξa becomes simply

ξa =

{

(∂t)
a in R ,

−(∂t)a in L . (2.10)

The time variable t increases toward the future both in
the right and left wedges, and the Killing vector is time-
like in either wedge, future-directed in the right wedge
and past-directed in the left wedge. For 4-dimensional
Schwarzschild spacetime, this coordinate transformation
with κ = 1/(4M) and Eq. (2.2) gives the standard
Schwarzschild metric:

gSchab |R∪L

= −
(

1− 2M

r

)

(dt)a(dtb) +
(dr)a(dr)b
1− 2M/r

+ r2 ωab .

(2.11)

The wedge reflection I, which is an isometry of
(M, gab), is defined by

I : (T,X) 7→ (−T,−X) , (2.12)

or equivalently,

I : (t, ρ)|R 7→ (−t,−ρ)|L . (2.13)

[We recall that T is given differently in terms of ρ and
t on the right and left wedges in Eq. (2.8).] It maps a
point in R to a point in L and vice versa. Note that the
time ordering is reversed under the map I.

The Euclidean section ME of the manifold M is ob-
tained by letting T = iTE with TE ∈ R. The metric of
ME can be found from Eq. (2.3) as

gEab = f(ρ2,θ)[(dTE)a(dTE)b + (dX)a(dX)b] + sab(ρ
2,θ) ,
(2.14)

where ρ2 ≥ 0. This metric can also be given in terms of
tE, where t = itE, and ρ ≥ 0 as

gEab

= f(ρ2,θ)
[

κ2ρ2(dtE)a(dtE)b + (dρ)a(dρ)b
]

+ sab(ρ
2,θ) .

(2.15)

The coordinates (TE, X) and (tE, ρ) cover the whole of
ME, and are related by

(TE, X) =
(

ρ sin(κtE), ρ cos(κtE)
)

. (2.16)

Thus, we identify tE with period 2π/κ:

tE ∼ tE + 2nπ/κ , n ∈ Z . (2.17)

Note that the hypersurface TE = 0 ofME can be identi-
fied with ΣR∪B∪ΣL, which is the Cauchy surface T = 0
of the Lorentzian manifoldM. Moreover, in this identifi-
cation the hypersurface with tE = 0 is identified with the
Cauchy surface ΣR of the right wedge R whereas that
with tE = −π/κ is identified with the Cauchy surface ΣL

of the left wedge L.

B. Double KMS states

In quantum statistical mechanics there is a standard
procedure to reproduce the expectation values computed
in a mixed state in terms of those of a pure state [32]. The
idea is to double the original system and, in the doubled
system, construct an entangled pure state such that the
expectation values of operators restricted to the original
system reproduce the statistical predictions in the orig-
inal mixed state. For example, consider the standard
density matrix of a thermal state for the Hamiltonian H
with inverse temperature β. This state is given by

̺(β) =
e−βH

Z(β)
(2.18)

in a finite dimensional space of states H , where Z(β) ≡
tr e−βH is the partition function. Suppose that ψi form
a complete set of eigenstates of the Hamiltonian H, with
Hψi = Eiψi. Then, the thermal average of an operator A
given by 〈A〉β ≡ tr[̺(β)A] is reproduced in the doubled
space of states H ⊗H by taking the expectation value
of the operator ✶⊗A in the pure state

Ωβ =
1

√

Z(β)

∑

i

e−
1
2βEiψi ⊗ ψi . (2.19)

In this doubled system one also defines the Hamilto-
nian operator

H̃ ≡ ✶⊗H −H ⊗ ✶ (2.20)
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and an antiunitary operator2 J such that J(ψi ⊗ ψj) ≡
ψj ⊗ ψi. Note that from this definition it follows that

J2 = ✶ . (2.21)

It can readily be verified that

[e−iH̃t, J ] = 0 , (2.22)

by letting the left-hand side act on the basis of the dou-
bled space of states.
It is easy to see that the state Ωβ defined by Eq. (2.19)

is annihilated by the Hamiltonian H̃ and is left invariant
by J , i.e.

e−iH̃tΩβ = Ωβ (2.23)

and

JΩβ = Ωβ . (2.24)

One can also show that the state OΩβ obtained by letting
any operator of the form O = ✶⊗A act on Ωβ satisfies

e−
1
2βH̃OΩβ = JO†Ωβ . (2.25)

This relation is called the KMS condition [33–35]. Since
the state Ωβ is the extension of the thermal state ̺(β)
to the enlarged system, we shall refer to it as the double
KMS state, following Kay [36]. The converse is also true:
a state Ωβ ∈H ⊗H satisfying the KMS condition (2.25)
is given by Eq. (2.19). The advantage of defining dou-
ble KMS states by Eqs. (2.23)-(2.25) is that they can be
used to characterize thermal equilibrium states for sys-
tems with an infinite number of degrees of freedom as
well [35].
Although this doubling of the space of states may ap-

pear artificial in the case of ordinary thermal systems
such as the quantum-mechanical example above, double
KMS states appear quite naturally in quantum field the-
ory in spacetimes with a bifurcate Killing horizon and a
wedge-reflection symmetry, as first noticed by Israel [17].
Thus, let us consider a double KMS state over the left
and right wedges, R ∪ L, for a massive real scalar field
Φ(x) in a spacetime described in the previous section.
The Hamiltonian operator H then corresponds to the t-
translation generator in either wedge. Since these wedges
are static with respect to the t-translation, this Hamil-
tonian is conserved. We assume that there is a unique
state with the lowest energy, i.e. the lowest eigenvalue of
H, in either wedge, which we call the vacuum state.
The Hilbert space H of (pure) states in the right or

left wedge is constructed by applying the (smeared) field

2 We recall that J is said to be antilinear if for any two state vectors
Ψ1 and Ψ2 and constants a, b ∈ C we have J(aΨ1 + bΨ2) =
a∗JΨ1+b∗JΨ2, while J is said to be antiunitary if it is antilinear
and satisfies 〈JΨ1|JΨ2〉 = 〈Ψ2|Ψ1〉.

operators on the vacuum state with support in the respec-
tive wedge. Then the Hilbert space of states in L ∪R is
the tensor product H ⊗H . We define the operator H̃
acting on H ⊗H as in Eq. (2.20). Moreover, the wedge
reflection I is an isometry ofM⊃ L∪R, and defines in
the quantum theory an antiunitary operator J according
to

JΦ(x)J ≡ Φ(I(x)) , (2.26)

for all x ∈ M. The operator J is antiunitary because it
reverses the direction of time. The double KMS state Ωβ

for the scalar field Φ is then defined by requiring that it
satisfy Eqs. (2.23)-(2.25).

III. HARTLE-HAWKING STATE AS A DOUBLE

KMS STATE

In this section we consider a massive real scalar field
theory with non-derivative self-interaction in a spacetime
with metric given by Eq. (2.3). The HH state for this the-
ory is defined as a state such that its N -point functions
are the analytic continuation from that state in the corre-
sponding Euclidean field theory defined on the Euclidean
section with metric (2.14). The HH state in the non-
interacting case is known to be a double KMS state [18],
which is a pure state with correlations between the left
and right wedges. These correlations give rise to a ther-
mal state at the temperature

β−1
H ≡ κ

2π
, (3.1)

the Hawking temperature, when the HH state is re-
stricted to the right or left wedge. A formal path-integral
argument [22] shows that this is also the case for the in-
teracting case. In this section we show this fact in per-
turbation theory using the Schwinger-Keldysh operator
formalism.

A. The non-interacting case

Before presenting the interacting case, we review the
equivalence of the HH and a double KMS state at the
Hawking temperature for free massive scalar fields. Most
results in this subsection can be found, e.g. in Ref. [37].
Thus, we let the quantum scalar field ΦI(x) satisfy the
Klein-Gordon equation,

[

−∇a∇a +m2
]

ΦI(x) = 0 , (3.2)

in the spacetime (M, gab). We put the subscript “I” on
the field Φ in anticipation of the application of the results
of this subsection to the field in the interaction picture,
which is a non-interacting field. First we describe the HH

state Ω
(0)
HH for this theory. Let xE = (itE,x), x = (ρ,θ),

ρ ≥ 0, with tE periodically identified as in Eq. (2.17).
Thus, xE can be identified with a point in the Euclidean
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section ME defined in the previous section. Define the
Green’s function G(0)(xE;x

′
E) as the function satisfying

[

−∇(E)
a ∇(E)a +m2

]

G(0)(xE;x
′
E) =

1
√

gE
δ(xE;x

′
E) ,

(3.3)

where ∇(E)
a is the covariant derivative compatible with

the metric gEab.
3 Dirac’s delta-function δ(xE;x

′
E) is de-

fined by
∫

ME

dt′E d
n−1x′ F (x′E)δ(xE;x

′
E) = F (xE) , (3.4)

for any smooth and compactly supported function F on
ME. The function G(0)(xE;x

′
E) is known to be symmet-

ric under the interchange of the two arguments, xE and
x′E. We define the function G(0)(x;x′) for x = (t,x) and
x′ = (t′,x′) with t and t′ not purely imaginary by ana-
lytic continuation in t and t′, where the time variable is
periodically identified in the imaginary direction as

t ∼ t+ 2nπi/κ, n ∈ Z . (3.5)

This is possible in general if Im(t − t′) 6= 0 because sin-
gularities occur only for Im(t− t′) = 0 [37]. Thus, we an-
alytically continue G(0)(x, x′) from (t, t′) = (itE, it

′
E) to

(tR+ itE, t
′
R+ it′E), with tR and t′R nonzero while keeping

tE and t′E fixed.
We introduce the notation

ΦI(x) =

{

Φ
(R)
I (x) , if x ∈ R ,

Φ
(L)
I (x) , if x ∈ L .

(3.6)

The Wightman two-point function in the right wedge for

the HH state Ω
(0)
HH is defined by

〈Ω(0)
HH|Φ

(R)
I (t,x)Φ

(R)
I (t′,x′)Ω

(0)
HH〉

≡ lim
ǫ→0+

G(0)(t− iǫ,x; t′,x′) ,
(3.7)

with t, t′ ∈ R. A point (t,y) ∈ L with y = (ρ,θ), ρ < 0,

can be identified with
(

− t− iβH

2 , ι(y)
)

, where

ι(y) ≡ (|ρ|,θ) , (3.8)

since
(

|ρ| sinh
[

κ(−t− iβH

2 )
]

, |ρ| cosh
[

κ(−t− iβH

2 )
])

=
(

− ρ sinh(κt), ρ cosh(κt)
)

(3.9)

[see Eq. (2.8) for the definition of t and ρ in the left
wedge]. Thus, in the case one of the points is in the left
wedge, we can define

〈Ω(0)
HH|Φ

(L)
I (t,y)Φ

(R)
I (t′,x′)Ω

(0)
HH〉

≡ G(0)(−t− iβH

2 , ι(y); t′,x′) ,
(3.10)

3 We may need to impose boundary conditions at the upper end of
the interval for ρ in order to make this Green’s function unique.

where ι(y) is defined by Eq. (3.8). If both points are in
the left wedge, then by the symmetry of the spacetime
we have

〈Ω(0)
HH|Φ

(L)
I (t,y)Φ

(L)
I (t′,y′)Ω

(0)
HH〉

≡ lim
ǫ→0+

G(0)(t− iǫ, ι(y); t′, ι(y′)) .
(3.11)

Since the two-point function depends on t and t′ only
through t− t′, we can write

〈Ω(0)
HH|Φ

(L)
I (t,y)Φ

(L)
I (t′,y′)Ω

(0)
HH〉

≡ lim
ǫ→0+

G(0)(−t′ − iβH

2 − iǫ, ι(y
′);−t− iβH

2 , ι(y)) ,

(3.12)

which is more suggestive because of Eq. (3.9). The func-

tion 〈Ω(0)
HH|ΦI(x)ΦI(x

′)Ω
(0)
HH〉 for x or x′ in the future re-

gion F or past region P can be determined by the Cauchy
evolution from G(0)(x, x′) with x, x′ ∈ R ∪ L.
The state Ω

(0)
HH is defined to be quasi-free with vanish-

ing one-point function: 〈Ω(0)
HH|ΦI(x)Ω

(0)
HH〉 = 0. That is,

the N -point function for N odd vanishes and that for N
even is defined as if it obeyed Wick’s theorem. Thus,
if N is even, it is defined as a sum of products of the
two-point functions as follows. Let S be the set of per-
mutations σ of {1, 2, . . . , N} such that σ(2i− 1) < σ(2i)
and that σ(2i− 1) < σ(2j − 1) if i < j for i, j ∈ N. Then
we define

〈Ω(0)
HH|ΦI(x1)ΦI(x2) · · ·ΦI(xN )Ω

(0)
HH〉

=
∑

σ∈S

G(0)(xσ(1);xσ(2))

×G(0)(xσ(3);xσ(4)) · · ·G(0)(xσ(N−1);xσ(N)) ,

(3.13)

where we have written

〈Ω(0)
HH|ΦI(x)ΦI(x

′)Ω
(0)
HH〉 ≡ G(0)(x;x′) , (3.14)

for simplicity, with the understanding that the time co-
ordinates t and t′ of x and x′, respectively, have infinites-
imal imaginary parts satisfying Im(t − t′) < 0. For ex-
ample, the four-point function reads

〈Ω(0)
HH|ΦI(x1)ΦI(x2)ΦI(x3)ΦI(x4)Ω

(0)
HH〉

= G(0)(x1;x2)G
(0)(x3;x4) +G(0)(x1;x3)G

(0)(x2;x4)

+G(0)(x1;x4)G
(0)(x2;x3) .

(3.15)

Now we discuss the double KMS state Ω
(0)
β , which later

will be compared to the HH state Ω
(0)
HH. Thus, consider a

complete set of positive-frequency solutions to the Klein-
Gordon equation (3.2), given by φωσ(x)e

−iωt, ω > 0, and
choose φωσ(x) to be real. Here σ represents all the labels
of the solutions other than ω. The differential equation
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satisfied by φωσ(x) can be found from the Klein-Gordon
equation (3.2) as

[

ρfDaρfD
a −m2(ρf)2

]

φωσ(x) = −
ω2

κ2
φωσ(x) , (3.16)

where Da is the covariant derivative compatible with the
spatial metric hab ≡ f2(dρ)a(dρ)b + sab. One can show
that these functions with different values of ω are orthog-
onal to each other with respect the measure

√
s/ρ, noting

that the determinant of the spatial metric is
√
sf , where

s = det(sab).
We normalize the functions φωσ(x) by requiring

1

κ

∫

dρ dn−2
θ
√
s

ρ
φωσ(x)φω′σ′(x) = δσσ′δ(ω − ω′) .

(3.17)
Here we assume that the labels σ are discrete, but the
generalization to the continuous case is straightforward.
The completeness of φωσ(x) reads

∫ ∞

0

dω
∑

σ

φωσ(x)φωσ(x
′) =

κρ√
s
δ(x;x′) , (3.18)

where Dirac’s delta-function δ(x;x′) is defined in the
same way as δ(xE;x

′
E) in Eq. (3.4). The field operator

Φ
(R)
I (x) can be expanded as

Φ
(R)
I (t,x) =

∫ ∞

0

dω√
2ω

∑

σ

{

φωσ(x)e
−iωta(R)

σ (ω)

+φωσ(x)e
iωta(R)†

σ (ω)
}

.

(3.19)

We have chosen the normalization of the functions
φωσ(x) in Eq. (3.17) so that

[

a(R)
σ (ω), a

(R)†
σ′ (ω′)

]

= δσσ′δ(ω − ω′) , (3.20)

with all other commutators vanishing. The vacuum state

in the right wedge Ψ
(0)
R is defined by a

(R)
ωσ Ψ

(0)
R = 0 for all

ω and σ.
For x = (t,x) ∈ L the field can be expanded as

Φ
(L)
I (t,x) =

∫ ∞

0

dω√
2ω

∑

σ

{

φωσ(ι(x))e
−iωta(L)σ (ω)

+φωσ[ι(x)]e
iωta(L)†σ (ω)

}

,

(3.21)

where the annihilation and creation operators, a
(L)
σ (ω)

and a
(L)†
σ (ω), satisfy

[

a(L)σ (ω), a
(L)†
σ′ (ω′)

]

= δσσ′δ(ω − ω′) , (3.22)

with all other commutators vanishing. The vacuum

state Ψ
(0)
L in the left wedge is defined by requiring

a
(L)
σ (ω)Ψ

(0)
L = 0 for all ω and σ. We define the static

vacuum state Ψ(0) ∈H ⊗H by

Ψ(0) ≡ Ψ
(0)
L ⊗Ψ

(0)
R . (3.23)

From the definition of the antiunitary operator J ,
Eq. (2.26), we conclude that its action on annihilation
and creation operators yields

Ja(R)
σ (ω)J = a(L)σ (ω) ,

Ja(R)†
σ (ω)J = a(L)†σ (ω) ,

(3.24)

respectively.

The double KMS state Ω
(0)
β for the field ΦI(x) with

inverse temperature β is a thermal state if restricted to
the right wedge. That is,

〈Ω(0)
β |a(R)†

σ (ω)a
(R)
σ′ (ω′)Ω

(0)
β 〉 =

1

eωβ − 1
δσσ′δ(ω − ω′) ,

〈Ω(0)
β |a(R)

σ (ω)a
(R)†
σ′ (ω′)Ω

(0)
β 〉 =

1

1− e−ωβ
δσσ′δ(ω − ω′) ,

(3.25)

with

〈Ω(0)
β |a(R)

σ (ω)a
(R)
σ′ (ω′)Ω

(0)
β 〉 = 0 . (3.26)

Using these formulas one finds

〈Ω(0)
β |Φ

(R)
I (x)Φ

(R)
I (x′)Ω

(0)
β 〉

=

∫ ∞

0

dω

2ω

∑

σ

φωσ(x)φωσ(x
′)

[

e−iω(t−t′)

1− e−ωβ
+
eiω(t−t′)

eωβ − 1

]

,

(3.27)

where x = (t,x) and x′ = (t′,x′). This two-point func-
tion can be extended to complex values of t and t′ with
−β < Im(t − t′) < 0 since the ω-integral here is conver-
gent if this condition is satisfied. For these values of t
and t′ one finds the KMS condition for the free field:

〈Ω(0)
β |Φ

(R)
I (t′ − iβ,x′)Φ

(R)
I (t,x)Ω

(0)
β 〉

= 〈Ω(0)
β |Φ

(R)
I (t,x)Φ

(R)
I (t′,x′)Ω

(0)
β 〉 .

(3.28)

Now, define for −β < Im(t− t′) < β

∆
(0)
β (t,x; t′,x′)

≡
{

〈Ω(0)
β |Φ

(R)
I (x)Φ

(R)
I (x′)Ω

(0)
β 〉 if Im(t− t′) < 0 ,

〈Ω(0)
β |Φ

(R)
I (x′)Φ

(R)
I (x)Ω

(0)
β 〉 if Im(t′ − t) < 0 .

(3.29)

If x 6= x′, this function is in fact an analytic function in
the strip −β < Im(t−t′) < β with branch cuts on the real
line Im(t−t′) = 0 [37]. [It is analytic for Im(t−t′) = 0 as
well, if (tR,x) and (t′R,x

′), where tR and t′R are the real
parts of t and t′, respectively, are spacelike separated.]
On these branch cuts, we have from Eq. (3.29) that

lim
ǫ→0+

∆
(0)
β (t− iǫ,x; t′,x′) = 〈Ω(0)

β |Φ
(R)
I (x)Φ

(R)
I (x′)Ω

(0)
β 〉

(3.30)
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and

lim
ǫ→0+

∆
(0)
β (t+ iǫ,x; t′,x′) = 〈Ω(0)

β |Φ
(R)
I (x′)Φ

(R)
I (x)Ω

(0)
β 〉 .
(3.31)

Equation (3.28) implies that

∆
(0)
β (t,x; t′ − iβ,x′) = ∆

(0)
β (t,x; t′,x′) , (3.32)

for −β < Im(t− t′) < 0 since −β < Im[(t′ − iβ)− t] < 0.
Therefore, this two-point function is periodic in t − t′,
with period iβ in the strip −β < Im(t− t′) < β. Hence,
it is an analytic function of t − t′ on the whole com-
plex plane with period iβ, with branch cuts on the lines
Im(t − t′) = nβ, where n ∈ Z. For this reason, we shall

regard the two-point function ∆
(0)
β (x, x′) as a function on

Cβ×Cβ , where Cβ is the complex plane quotiented by the
equivalence relation ∼ defined by

t ∼ t+ iβ . (3.33)

That is,

Cβ ≡ C/ ∼ . (3.34)

Now, let us assume that our double KMS state is at the
Hawking temperature, i.e. let us take β = βH. Assuming
the Euclidean times tE and t′E to satisfy 0 < |tE−t′E| < β,
we use Eq. (3.27) to show that

∆
(0)
βH

(itE,x; it
′
E,x

′)

=

∫ ∞

0

dω

2ω

∑

σ

φωσ(x)φωσ(x
′)

[

e−ω|tE−t′E|

1− e−ωβH
+
eω|tE−t′E|

eωβH − 1

]

.

(3.35)

This two-point function is defined on the Euclidean sec-
tion ME with the metric (2.15). One can readily verify
that this function satisfies the equation for the Green’s
function on ME, Eq. (3.3), by directly differentiating

Eq. (3.35) and using Eq. (3.18). Since ∆
(0)
βH

and G(0) both

satisfy the field equation (3.3) with the same boundary
conditions in the Euclidean section, it follows that

∆
(0)
βH

(itE,x; it
′
E,x

′) = G(0)(itE,x; it
′
E,x

′) . (3.36)

Finally, we can show that the double KMS state at the

Hawking temperature Ω
(0)
βH

is nothing but the HH state

Ω
(0)
HH by checking that these states have the same two-

point functions. Indeed, if −β < Im(t − t′) < 0, then
Eq. (3.36) yields

〈Ω(0)
βH
|Φ(R)

I (x)Φ
(R)
I (x′)Ω

(0)
βH
〉 = G(0)(x, x′) . (3.37)

This in turn implies

〈Ω(0)
βH
|Φ(R)

I (t,x)Φ
(R)
I (t′,x′)Ω

(0)
βH
〉

= lim
ǫ→0+

G(0)(t− iǫ,x; t′,x′)

= 〈Ω(0)
HH|Φ

(R)
I (t,x)Φ

(R)
I (t′,x′)Ω

(0)
HH〉 ,

(3.38)

where the last equality follows from Eq. (3.7).
Next, we note that if x ∈ L and x′ ∈ R, then

〈Ω(0)
βH
|Φ(L)

I (x)Φ
(R)
I (x′)Ω

(0)
βH
〉

= 〈JΦ(R)
I (I(x))Ω

(0)
βH
|Φ(R)

I (x′)Ω
(0)
βH
〉 ,

(3.39)

where we have used the definition of the operator J ,
Eq. (2.26). Furthermore, the KMS condition (2.25) yields

JΦ
(R)
I (I(x))Ω

(0)
β = e−

1
2βH̃0Φ

(R)
I (−t, ι(x))Ω(0)

β , (3.40)

where H̃0 ≡ ✶⊗H0 −H0 ⊗ ✶, with H0 denoting the free
Hamiltonian operator that generates the time translation
in the right or left wedge. Going back to Eq. (3.39), and

recalling that Ω
(0)
β is annihilated by H̃0, we use the above

result to show that

〈Ω(0)
βH
|Φ(L)

I (x)Φ
(R)
I (x′)Ω

(0)
βH
〉

= 〈Ω(0)
βH
|e

βH
2 H̃0Φ

(R)
I (−t, ι(x))e−

βH
2 H̃0Φ

(R)
I (x′)Ω

(0)
βH
〉

= 〈Ω(0)
βH
|Φ(R)

I (−t− iβH

2 , ι(x))Φ
(R)
I (t′,x′)Ω

(0)
βH
〉 .

(3.41)

Together with Eq. (3.37), this last result implies that

〈Ω(0)
βH
|Φ(L)

I (t,x)Φ
(R)
I (t′,x′)Ω

(0)
βH
〉

= G(0)(−t− iβH

2 , ι(x); t′,x′)

= 〈Ω(0)
HH|Φ

(L)
I (t,x)Φ

(R)
I (t′,x′)Ω

(0)
HH〉 ,

(3.42)

where the last equality follows from Eq. (3.10). By using
Eq. (3.27), we can write this two-point function explicitly
as a mode sum, i.e.

〈Ω(0)
βH
|Φ(L)

I (t,x)Φ
(R)
I (t′,x′)Ω

(0)
βH
〉

=

∫ ∞

0

dω

2ω

∑

σ

φωσ(ι(x))φωσ(x
′)

× 1

2 sinh ωβH

2

[

e−iω(t+t′) + eiω(t+t′)
]

.

(3.43)

Finally, if x, x′ ∈ L, it immediately follows from the

symmetry of Ω
(0)
β that

〈Ω(0)
βH
|Φ(L)

I (t,x)Φ
(L)
I (t′,x′)Ω

(0)
βH
〉

= 〈Ω(0)
βH
|Φ(R)

I (t, ι(x))Φ
(R)
I (t′, ι(x′))Ω

(0)
βH
〉

= lim
ǫ→0+

G(0)(t− iǫ, ι(x); t′, ι(x))

= 〈Ω(0)
HH|Φ

(L)
I (t,x)Φ

(L)
I (t′,x′)Ω

(0)
HH〉 ,

(3.44)

where the last equality follows from Eq. (3.11).
Equations (3.38), (3.42) and (3.44) show that, if x, x′ ∈
R ∪ L, then

〈Ω(0)
βH
|ΦI(x)ΦI(x

′)Ω
(0)
βH
〉 = 〈Ω(0)

HH|ΦI(x)ΦI(x
′)Ω

(0)
HH〉 .

(3.45)
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The two-point function for any points in the spacetime
(M, gab) outside the double-wedged region R ∪ L can
be uniquely determined from this case by the Cauchy

evolution. Since the double KMS state Ω
(0)
β is quasi-free

for any β [14, 38], all itsN -point functions are determined
by its two-point function. Hence, we conclude that

Ω
(0)
βH

= Ω
(0)
HH (3.46)

for the free-field theory.
If the mode functions φωσ(x) are analytic in ρ, then

one should be able to find the mode expansion for the
field ΦI(x) and its two-point function also for x ∈ F ∪P
by analytic continuation of the corresponding expressions
in R ∪ L. Assuming that this analytic continuation is
analogous to the special cases of Minkowski and de Sit-
ter spacetimes [39, 40], we can write down the two-point
function with one or two points in F∪P. As an example,
let us consider the case when the two-point function has
points in R∪ F . Note that

(T,X) =
(

ρ cosh(κt), ρ sinh(κt)
)

for (T,X) ∈ F ,
(3.47)

with ρ > 0. Define φ̃ωσ(x) to be the function obtained

from φωσ(x) by making the substitution ρ→ e
iπ
2 ρ. Then,

by defining Φ
(F)
I (x) = ΦI(x) for x ∈ F , we find

〈Ω(0)
βH
|Φ(F)

I (t,x)Φ
(F)
I (t′,x′)Ω

(0)
βH
〉 =

∫

dω

2ω

∑

σ

φ̃ωσ(x)φ̃ωσ(x′)
e−iω(t−t′) + eiω(t−t′)

2 sinh ωβH

2

,
(3.48)

and

〈Ω(0)
βH
|Φ(F)

I (t,x)Φ
(R)
I (t′,x′)Ω

(0)
βH
〉 =

∫

dω

2ω

∑

σ

φ̃ωσ(x)φωσ(x
′)
e

ωβ

4 e−iω(t−t′) + e−
ωβ

4 eiω(t−t′)

2 sinh ωβH

2

.

(3.49)

A derivation of these formulas, together with the assump-
tions we made, can be found in Appendix A.

B. The interacting case

We will now consider a massive, real scalar field theory
with non-derivative self-interaction in spacetimes with a
bifurcate Killing horizon considered in Sec. II. Our aim
is to show that a double KMS state at the Hawking tem-
perature (3.1) is the HH state for this interacting theory.

The interacting HH state will be defined here via the
Euclidean perturbation theory [19]. We assume that the
Hamiltonian H in either right or left wedge can be writ-
ten as a free part H0 plus an interaction perturbation
term,

H = H0 +HI , (3.50)
where

HI ≡
∫

ΣR

dρdn−2
θ κρf(ρ2,θ)

√

s(θ)HI(Φ) (3.51)

is the interaction Hamiltonian, with HI(Φ) as a poly-
nomial in Φ. The Φ4-theory, for example, is given by
HI(Φ) = (λ/4!)Φ4, where λ is a real constant. Then, the
Euclidean N -point function for the Heisenberg operator
Φ(x) is given by

G(xE,1, xE,2, . . . , xE,N )

=
〈

ΦI(xE,1)ΦI(xE,2) · · ·ΦI(xE,N ) exp

(∫

ME

dnxE
√

gEHI(ΦI)

)

〉

E

/〈

exp

(∫

ME

dnxE
√

gEHI(ΦI)

)

〉

E

=
〈

ΦI(xE,1)ΦI(xE,2) · · ·ΦI(xE,N ) exp

(∫

ME

dnxE
√

gEHI(ΦI)

)

〉

E, connected
,

(3.52)

and we recall that xE = (itE,x). In the notation of Eq. (3.52), 〈 . . . 〉E denotes the expectation value of the interaction
field operator ΦI(xE) such that

〈ΦI(xE)〉E = 0 ,

〈ΦI(xE,1)ΦI(xE,2)〉E = G(0)(xE,1, xE,2)
(3.53)

and the expectation value of a higher number of field is obtained with Wick’s theorem, while “connected” indicates
the sum of diagrams with all parts connected to some of the external points xE,1, xE,2,. . .,xE,N in the diagrammatic
expansion. The integral is parametrized as

∫

ME

dnxE =

∫ −βH

0

dtE

∫

ΣR

dn−1x = −
∫ 0

−βH

dtE

∫

ΣR

dn−1x . (3.54)
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For the HH state ΩHH, the N -point functions are given by the analytic continuation of Eq. (3.52) to the Lorentzian
section of the spacetime. Let us now describe how this analytic continuation is carried out. For this purpose it is
useful to write Eq. (3.52) as follows:

G(xE,1, xE,2, . . . , xE,N ) =
〈

ΦI(xE,1)ΦI(xE,2) · · ·ΦI(xE,N ) exp

(

−i
∫

C

dt

∫

ΣR

dn−1x
√−gHI(ΦI)

)

〉

E, connected
, (3.55)

where the directed contour C is the straight line segment
from 0 to −iβH, and corresponds to a circle in CβH

, see
Eq. (3.34). We also have used the fact that gE = −g.
Note that xE,i ∈ C × ΣR, with i = 1, 2, . . . , N .

These N -point functions are ultraviolet divergent in
general because the two-point function G(0)(x, x′) di-
verges in the coincidence limit x→ x′. They need to be
regularized and renormalized. We assume that the regu-
larization is done in such a way that one may first restrict
the integration over ΣR by requiring that for any two in-
ternal points ‖yi − yj‖ > ǫ and for any external point
‖xi−yj‖ > ǫ for all i and j for some ǫ > 0, and then take
the limit ǫ → 0 after the counter-terms are included to
cancel the ultraviolet divergences. We also assume that
the (multiple) vertex integrals over ΣR can be performed
by first cutting them off in the infrared with ‖x‖ < Λ
and then removing the cutoff. With these assumptions
we can show that the N -point function in Eq. (3.55) is
analytically continued in t1, t2, . . . , tN , by changing the
real part of each ti while keeping its imaginary part the
same.
The analytic continuation of the Euclidean N -point

function G is defined by extending the external points to
xi = (ti,xi) with ti ∈ Cβ and satisfying Im(ti − tj) 6= 0
for all i and j. Hence, in the diagrammatic expansion
of the right-hand side of Eq. (3.55), this analytic con-
tinuation amounts to employing the analytically contin-
ued Euclidean Green’s function G(0)(x, x′) for the free
field discussed in the previous subsection. In moving the
complex times t1, t2, . . . , tN we have to avoid hitting the
branch cuts of the Green’s functions G(0)(x, x′), with x
and x′ being various external and internal points form-
ing a given diagram, while performing the vertex integra-
tions, so that the result is the same analytic function of
the external points. This entails that we also need to de-
form the integration contour C appearing in Eq. (3.55).
This contour is deformed in such a way that it contains
the external complex-time coordinates t1, t2, . . . , tN and
its imaginary part is monotonically decreasing. We refer
the reader to Appendix B for more details on this point.
The N -point functions of the HH state ΩHH are de-

fined by the analytic continuation of Eq. (3.55) to the
right wedge. Thus, taking x1, x2, . . . , xN ∈ R and using
Eq. (3.36) we have

〈ΩHH|Φ(x1)Φ(x2) · · ·Φ(xN )ΩHH〉 ≡ G(x1, x2, . . . , xN )

= 〈Ω(0)
βH
|P
[

Φ
(R)
I (x1)Φ

(R)
I (x2) · · ·Φ(R)

I (xN ) exp

(

−i
∫

C

dtH
(R)
I (t)

)

]

Ω
(0)
βH
〉E, connected ,

(3.56)

where the points x1, x2, . . . , xN appear in this order on C, and H
(R)
I (t) is defined by Eq. (3.51) with Φ replaced by the

interaction-picture operator Φ
(R)
I . The path-ordering P indicates that the operators Φ

(R)
I (x) are ordered according to

the order on C, which coincides with the decreasing order in the imaginary part of t in x = (t,x).
To show that the HH state ΩHH is a double KMS state at the Hawking temperature, we consider the following

N -point function:

∆HH(y1, y2, . . . , yL;x1, x2, . . . , xR) ≡ 〈ΩHH|ΦI(y1)ΦI(y2) · · ·ΦI(yL)ΦI(x1)ΦI(x2) · · ·ΦI(xR)ΩHH〉 , (3.57)

where y1, y2, . . . , yL ∈ L and x1, x2, . . . , xR ∈ R with
xi = (ti,xi) and yi = (τi,yi), with R+L = N . We shall
write this N -point function in a form that can readily be
compared to the N -point function of the state ΩβH

. In
particular, we write this N -point function in terms of the

operator Φ
(R)
I (x).

Assuming that ti and τi are real, one needs to define
this N -point function as a limit of the N -point func-
tion defined by Eq. (3.56) in which the imaginary parts

of some time variables coincide. For the points in R,
Eq. (3.38) implies that one should let ti → ti − iǫi with
ǫi > ǫj if i < j in taking the limit ǫi → 0+. A point

y = (τ,y) ∈ L is represented by
(

−τ− iβH

2 , ι(y)
)

accord-
ing to Eqs. (3.10) and (3.12), and the latter equation

implies that we should let τi − iβH

2 → −τi − iβH

2 − iεi,
where εi < εj if i < j in taking the limit εi → 0+. (No-
tice the reversed order here in comparison with the case
for the right wedge.) The imaginary parts of the time co-
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ordinates dictate the order on C, and these points should appear on C in the following order:

− τL −
iβH
2
← −τL−1 −

iβH
2
← · · · ← −τ1 −

iβH
2
← t1 ← t2 ← · · · ← tR . (3.58)

Thus, we find

∆HH(y1, y2, . . . , yL;x1, x2, . . . , xR)

= 〈Ω(0)
βH
|P
{

Φ
(R)
I (−τL − iβH

2 , ι(yL)Φ
(R)
I (−τL−1 − iβH

2 , ι(yL−1)) · · ·Φ(R)
I (−τ1 − iβH

2 , ι(y1))

× Φ
(R)
I (t1,x1)Φ

(R)
I (t2,x2) · · ·Φ(R)

I (tR,xR) exp

(

−i
∫

C

dtH
(R)
I (t)

)

}

Ω
(0)
βH
〉connected .

(3.59)

To illustrate the integration contour for the complex-
time coordinate, we consider the special case where the
L points y1, y2, . . . , yL and the R points x1, x2, . . . , xR
have positive time coordinates and are time-ordered, i.e.
τ1 > τ2 > · · · > τL > 0 and t1 > t2 > · · · > tR > 0. In
this case, the contour C can be chosen as shown in Fig. 2
(with the initial time ti set to 0). The time coordinates
ti (with small positive imaginary parts), i = 1, 2, . . . , R,
satisfying 0 < ti < tf are on the path C1 whereas the
coordinates −τj − iβH

2 , 0 < τj < tf , with further small
negative imaginary parts, are on the path C5.

Now, we consider a double KMS state Ωβ , defined by
Eqs. (2.23)-(2.25) with respect to the timelike Killing vec-
tor field ξa and the wedge reflection I. For simplicity we
consider the 4-point function of this state with points y1
and y2 in the left wedge and points x1 and x2 in the
right wedge. The generalization to the N -point function
with N > 4 is straightforward. Our aim is to express the
4-point function

∆β(y1, y2;x1, x2) ≡ 〈Ωβ |Φ(y1)Φ(y2)Φ(x1)Φ(x2)Ωβ〉
(3.60)

in terms of the interaction-picture field Φ
(R)
I (x) in the

right wedge, so we can compare it to the corresponding
HH state 4-point function for β = βH. Hence, we first
use Eqs. (2.23)-(2.26) to write the right-hand side of the
4-point function above as

∆β(y1, y2;x1, x2)

= 〈Φ(y2)Φ(y1)Ωβ |Φ(x1)Φ(x2)Ωβ〉
= 〈JΦ(I(y2))Φ(I(y1))Ωβ |Φ(x1)Φ(x2)Ωβ〉
= 〈e− 1

2βH̃Φ(I(y1))Φ(I(y2))Ωβ |Φ(x1)Φ(x2)Ωβ〉
= 〈Ωβ |Φ(I(y2))Φ(I(y1))e−

1
2βH̃Φ(x1)Φ(x2)Ωβ〉

= 〈Ωβ |e
1
2βH̃Φ(I(y2))Φ(I(y1))e

− 1
2βH̃Φ(x1)Φ(x2)Ωβ〉 .

(3.61)

To fully express this 4-point function as a correlator of
field operators evaluated on the right wedge, we notice

ti − iβH

2

ti − iǫ
ti + iǫ

b

b

ti − iβH

tf
b

t

itE

C1

C2

C4

C5

C3

C6

b

b

b

−tf − iβH

2

Figure 2. The contour C in the complex Killing-time plane
with monotonically decreasing imaginary part. The path C1

runs forward in the real time along the real axis, while the
path C2 runs along the real axis but backwards. The path
C3 runs from ti − iǫ down to ti −

iβH
2

+ iǫ parallel to the
imaginary axis. The path C4 runs backwards in the real time
along the line t = −

iβH
2

, while the path C5 runs along the

same line but forwards. The path C6 runs from ti −
iβH
2

− iǫ

to ti − iβH parallel to the imaginary axis. The time ti is the
initial time and the final time tf is assumed to be larger than
the time coordinate of any external point on C, but otherwise
arbitrary. At the end of the computation we let ǫ → 0+, so
the paths C1, C2, C4 and C5 become parallel to the real axis.

that e±
1
2βH̃ = (e∓

1
2βH ⊗ ✶)(✶⊗ e± 1

2βH) and use the fact

that the operators e∓
1
2βH ⊗✶ commutes with the opera-

tors in the right wedge. This allows us to write

∆β(y1, y2;x1, x2)

=
1

Z(β)
tr
{

e−
1
2βHΦ(R)(I(y2))Φ

(R)(I(y1))

×e− 1
2βHΦ(R)(x2)Φ

(R)(x1)
}

,

(3.62)

where we have (formally) expressed the expectation value

10



in the state Ωβ as the trace over the space of states in
the right wedge with the operator e−βH/Z(β) inserted.

The right-hand side of Eq. (3.62) is a correlator involv-
ing the Heisenberg field operator Φ(t,x). In the right
wedge, this operator evolves in time with the full Hamil-
tonian H = H0 +HI according to

Φ(t,x) = eiH(t−ti)Φ(ti,x)e
−iH(t−ti) , (3.63)

where ti is an arbitrary time coordinate, which will be set
to 0 later. To write Eq. (3.62) as a perturbative series,
we have to go to the interaction picture. The interaction-
picture field operator is defined by

ΦI(t,x) ≡ eiH0(t−ti)Φ(ti,x)e
−iH0(t−ti) , (3.64)

so it satisfies the free-field equation because its evolution
is governed by the free-theory Hamiltonian H0. From
Eqs. (3.63) and (3.64), the Heisenberg field can be ex-
pressed in terms of the interaction-picture field as

Φ(t,x) = UI(ti, t)ΦI(t,x)UI(t, ti) , (3.65)

where

UI(t, ti) ≡ eiH0(t−ti)e−iH(t−ti) , (3.66)

and UI(t, ti) ≡ U †
I (ti, t). The operator UI(t, ti) is unitary,

being the product of two unitary operators. We define
the operator UI(t, t

′) for arbitrary values of t and t′ by

UI(t, t
′) = UI(t, ti)UI(ti, t

′) . (3.67)

From this definition and Eq. (3.66) we find

UI(t, t
′) = ei(t−ti)H0e−i(t−t′)He−i(t′−ti)H0 . (3.68)

From this it follows that

UI(t
′′, t′)UI(t

′, t) = UI(t
′′, t) . (3.69)

The operator UI(t, t
′) can be shown to satisfy the fol-

lowing differential equation by direct differentiation using
Eq. (3.68):

i
d

dt
UI(t, t

′) = HI(t)UI(t, t
′) . (3.70)

The unique solution to this equation is given in terms of
Dyson’s series [41]:

UI(t, t
′) = P exp

(

−i
∫ t

t′
dt′′HI(t

′′)

)

, (3.71)

where the path-ordering P indicates time-ordering if t >
t′ and anti-time-ordering if t < t′, and the interaction
Hamiltonian operator HI(t) is defined by

HI(t) ≡ eiH0(t−ti)HIe
−iH0(t−ti) . (3.72)

Thus, HI(t) is the interaction Hamiltonian written in
terms of the interaction-picture field ΦI(x) satisfying the
free-field equation.
Furthermore, the operator e−aβH , with a real and pos-

itive, can be seen as an evolution operator in the imagi-
nary time −iaβ and conveniently expressed as [42]

e−aβH = e−aβH0UI(ti − iaβ, ti) , (3.73)

which can readily be verified by using Eq. (3.66). We
note that, since the right-hand side is expressed entirely
in terms of the free field ΦI(x), it can be given explicitly
in the mode expansion order by order in perturbation
theory.
Now, let us set the initial time ti = 0 for simplicity. We

then use Eqs. (3.65), (3.69) and (3.73) to write the right-
hand side of the 4-point function (3.62) in the interaction
picture. The result is

∆β(y1, y2;x1, x2)

=
1

Z(β)
tr
{

e−
1
2βH0UI(− iβ

2 , 0)UI(0,−τ2)Φ(R)
I (−τ2, ι(y2))

× UI(−τ2,−τ1)Φ(R)
I (−τ1, ι(y1))UI(−τ1, 0)e−

1
2βH0

× UI(− iβ
2 , 0)UI(0, t1)Φ

(R)
I (t1,x1)UI(t1, t2)

× Φ
(R)
I (t2,x2)UI(t2, 0)

}

.

(3.74)

The right-hand side of Eq. (3.74) can be expressed as a
thermal average of an operator by moving the operator
e−

1
2βH0 in the middle to the left to combine it with the

operator e−
1
2βH0 on the far left. To do so, we first note

that

UI(t, t
′)e−aβH0 = e−aβH0UI(t− iaβ, t′ − iaβ) , (3.75)

which can be shown using Eq. (3.68) on both sides. This
equation can be used to express the partition function
Z(β) in terms of the free-theory thermal state ̺0(β) ≡
e−βH0/Z0(β) as

Z(β) = Z0(β)tr{̺0(β)UI(ti − iβ, ti)} . (3.76)

Moreover, since the interaction-picture field evolves with
the free-field Hamiltonian operator, we have that

Φ
(R)
I (t,x)e−aβH0 = e−aβH0Φ

(R)
I (t− iaβ,x) . (3.77)

Using these three equations we can write Eq. (3.74) as
follows:
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∆β(y1, y2;x1, x2) = tr
{

̺0(β)UI(−iβ,− iβ
2 )UI(− iβ

2 ,−τ2 −
iβ
2 )Φ

(R)
I (−τ2 − iβ

2 , ι(y2))UI(−τ2 − iβ
2 ,−τ1 −

iβ
2 )

× Φ
(R)
I (−τ1 − iβ

2 , ι(y1))UI(−τ1 − iβ
2 ,−

iβ
2 )UI(− iβ

2 , 0)UI(0, t2)Φ
(R)
I (t2,x2)UI(t2, t1)

× Φ
(R)
I (t1,x1)UI(t1, 0)

}/

tr{̺0(β)UI(−iβ, 0)} .

(3.78)

Now, since the operators on the right-hand side of this equation are all in the right wedge, both the numerator and

denominator can be expressed as expectation values of operators in the state Ω
(0)
β , with tr{̺0(β) · · · } replaced by

〈Ω(0)
β | · · ·Ω

(0)
β 〉. Then, recalling Eq. (3.71), we can write this equation more concisely as

∆β(y1, y2;x1, x2)

= 〈Ω(0)
β |P

{

Φ
(R)
I (−τ2 − iβ

2 , ι(y2))Φ
(R)
I (−τ1 − iβ

2 , ι(y1))Φ
(R)
I (t1,x1)Φ

(R)
I (t2,x2) exp

(

−i
∫

C

dtH
(R)
I (t)

)

}

Ω
(0)
β 〉connected ,

(3.79)

where C is a directed contour from 0 to −iβ with de-
creasing imaginary parts and with −τ2 − iβ

2 , −τ1 −
iβ
2 ,

t1 and t2 on it in this order. For the inverse temperature
β = βH, the right-hand side of Eq. (3.79) is the case with
R = L = 2 of Eq. (3.59). It is straightforward to gener-
alize this result to the N -point case. Hence, the N -point
functions of the double KMS state at the Hawking tem-
perature ΩβH

are equal to those of the HH state ΩHH.
This concludes our proof that ΩβH

= ΩHH, and is the
main result of this paper.

Next, we shall write down a perturbative expression of
the double KMS state Ωβ itself as an operator acting on

the free-theory double KMS state Ω
(0)
β . To do so, we go

back to Eq. (3.78) and express the trace over the free-

field states as the expectation value in the state Ω
(0)
β .

It is convenient to introduce the following notation for
interaction-picture propagators acting on the left or the
right wedge:

U
(L)
I (t, t′) ≡ UI(t, t

′)⊗ ✶ ,
U

(R)
I (t, t′) ≡ ✶⊗ UI(t, t

′) .
(3.80)

Then, the operator UI(−iβ,− iβ
2 ) in Eq. (3.78) can be

rearranged in the following way. For any operator O
with support on the right wedge,

〈Ω(0)
β |U

(R)
I (−iβ,− iβ

2 )OΩ
(0)
β 〉 = 〈Ω

(0)
β |U

(R)
I (−iβ,−icLβ − iβ

2 )U
(R)
I (−icLβ − iβ

2 ,−
iβ
2 )OΩ

(0)
β 〉

= 〈Ω(0)
β |P exp

(

−i
∫ −iβ

−icL−
iβ
2

dtH
(R)
I (t)

)

U
(R)
I (−icLβ − iβ

2 ,−
iβ
2 )OΩ

(0)
β 〉

= 〈Ω(0)
β |P exp

(

−i
∫ 0

i(
1
2−cL)β

dtH
(R)
I (t− iβ)

)

U
(R)
I (−icLβ − iβ

2 ,−
iβ
2 )OΩ

(0)
β 〉

= 〈Ω(0)
β |eβH̃0U

(R)
I (0, icRβ)e

−βH̃0U
(R)
I (−icLβ − iβ

2 ,−
iβ
2 )OΩ

(0)
β 〉

= 〈Ω(0)
β |U

(R)
I (−icLβ − iβ

2 ,−
iβ
2 )OU

(R)
I (0, icRβ)Ω

(0)
β 〉 ,

(3.81)

where in the last equality we have used the invariance of Ω
(0)
β under the free Hamiltonian and the KMS condition,

Eqs. (2.23) and (2.25), respectively. Here, the non-negative numbers cR and cL satisfy

cL + cR = 1
2 . (3.82)

Thus, Eq. (3.78) can be cast in the form

∆β(y1, y2;x1, x2)

= 〈Ω(0)
β |U

(R)
I (−icLβ − iβ

2 ,−
iβ
2 )U

(R)
I (− iβ

2 ,−τ2 −
iβ
2 )Φ

(R)
I (−τ2 − iβ

2 , ι(y2))U
(R)
I (−τ2 − iβ

2 ,−τ1 −
iβ
2 )

× Φ
(R)
I (−τ1 − iβ

2 , ι(y1))U
(R)
I (−τ1 − iβ

2 ,−
iβ
2 )U

(R)
I (− iβ

2 , icLβ −
iβ
2 )U

(R)
I (−icRβ, 0)U (R)

I (0, t2)

× Φ
(R)
I (t2,x2)U

(R)
I (t2, t1)Φ

(R)
I (t1,x1)U

(R)
I (t1, 0)U

(R)
I (0, icRβ)Ω

(0)
β 〉
/

〈Ω(0)
β |U

(R)
I (−iβ, 0)Ω(0)

β 〉 ,

(3.83)
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The next step is to express some of the operators appearing in Eq. (3.83) as operators acting on the left wedge. This
can been done by retracing the steps taken in Eq. (3.61). In particular, we observe that for z, z′ ∈ C we can employ

the properties defining the free KMS state Ω
(0)
β , Eqs. (2.23)-(2.26), to show that

〈Ω(0)
β |Φ

(R)
I (z − iβ

2 , ι(y)) · · ·Φ
(R)
I (z′ − iβ

2 , ι(y
′))OΩ

(0)
β 〉 = 〈Ω

(0
β |Φ

(L)
I (−z′,y′) · · ·Φ(L)

I (−z,y)OΩ
(0)
β 〉 , (3.84)

where again O is any operator with support on R. (Notice the reversing of the operator ordering when the right-
wedge operators are converted to left-wedge operators here.) Using this observation, we convert the string of operators

U
(R)
I (icLβ − iβ

2 ,−
iβ
2 ) · · ·U

(R)
I (− iβ

2 , icLβ −
iβ
2 ) in Eq. (3.83) into a string of operators on the left wedge. The result is

∆β(y1, y2;x1, x2)

= 〈Ω(0)
β |U

(L)
I (−icLβ, 0)U (L)

I (0, τ1)Φ
(L)
I (τ1,y1)U

(L)
I (τ1, τ2)Φ

(L)
I (τ2,y2)U

(L)
I (τ2, 0)U

(L)
I (0, icLβ)U

(R)
I (−icRβ, 0)

× U (R)
I (0, t1)Φ

(R)
I (t1,x1)U

(R)
I (t1, t2)Φ

(R)
I (t2,x2)U

(R)
I (t2, 0)U

(R)
I (0, icRβ)Ω

(0)
β 〉
/

〈Ω(0)
β |U

(R)
I (−iβ, 0)Ω(0)

β 〉 .
(3.85)

Finally, we use Eq. (3.65) to write some strings of
interaction-picture operators as the Heisenberg operator
(with ti = 0) and use the fact that operators on the right
wedge commute with those on the left ones to cast the
expression above into the form

∆β(y1, y2;x1, x2)

= 〈Ω(0)
β |U

(L)
I (−icLβ, 0)U (R)

I (−icRβ, 0)

× Φ(y1)Φ(y2)Φ(x1)Φ(x2)U
(L)
I (0, icLβ)

× U (R)
I (0, icRβ)Ω

(0)
β 〉
/

〈Ω(0)
β |U

(R)
I (−iβ, 0)Ω(0)

β 〉 .
(3.86)

It is clear from this equation that the interacting double
KMS state is related to the free one according to

Ωβ =
U

(L)
I (0, icLβ)U

(R)
I (0, icRβ)

√

〈Ω(0)
β |U

(R)
I (−iβ, 0)Ω(0)

β 〉
Ω

(0)
β , (3.87)

and we recall that the constants cL, cR > 0 and satisfy
Eq. (3.82).
In the case of a quantum system with a finite-

dimensional Hilbert space, it is possible to give a simple
interpretation of Eq. (3.87). The adjoint of Eq. (3.73) is
written as

U
(L)
I (0, icLβ)U

(R)
I (0, icRβ)

= e−(cLH⊗✶+cR✶⊗H)βe(cLH0⊗✶+cR✶⊗H0)β ,
(3.88)

The free-theory counterpart of Eq. (2.19) is

Ω
(0)
β =

1
√

Z0(β)

∑

i

e−
1
2βE

(0)
i ψ

(0)
i ⊗ ψ

(0)
i , (3.89)

where the ψ
(0)
i are eigenstates of the free Hamiltonian

and satisfy H0ψ
(0)
i = E

(0)
i ψ

(0)
i , with E

(0)
i the respective

energy eigenvalues. We first note that

e(cLH0⊗✶+cR✶⊗H0)βΩ
(0)
β =

1
√

Z0(β)

∑

i

ψ
(0)
i ⊗ ψ

(0)
i ,

(3.90)

since cR + cL = 1
2 . We assume that both free and full

Hamiltonians are invariant under an antiunitary trans-
formation T satisfying T 2 = ✶, such as the time-reversal
transformation. In this case, the orthonormal energy
eigenstates in the free and full theories can be chosen
to be invariant under T . Then, at the initial time the
free energy eigenstates can be expanded in terms of the
interacting ones as

ψ
(0)
i =

∑

j

Aijψj , (3.91)

with Aij as the elements of an orthogonal matrix. This is

because 〈ψ(0)
i |ψj〉 = 〈Tψ(0)

i |Tψj〉 = 〈ψj |ψ(0)
i 〉. The fact

that this matrix is orthogonal implies that

∑

i

ψ
(0)
i ⊗ ψ

(0)
i =

∑

i

ψi ⊗ ψi . (3.92)

Using this equality, we find

U
(L)
I (0, icLβ)U

(R)
I (0, icRβ)Ω

(0)
β

=
1

√

Z0(β)
e−(cLH⊗✶+cR✶⊗H)β

∑

i

ψi ⊗ ψi

=
1

√

Z0(β)

∑

i

e−
1
2βEiψi ⊗ ψi

=

√

Z(β)

Z0(β)
Ωβ .

(3.93)

A similar argument shows that

〈Ω(0)
β |U

(R)
I (−iβ, 0)Ω(0)

β 〉 =
Z(β)

Z0(β)
. (3.94)

Equation (3.87) then follows from this last result and
Eq. (3.93).
Equation (3.87) allows us to evaluate the expectation

value of operators which are not necessarily in the right or
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left wedge. Thus, with any points X1, X2, . . . , XN ∈M,
we have with the choice cR = 1

2 and cL = 0

〈Ωβ |Φ(X1)Φ(X2) . . .Φ(XN )Ωβ〉
= 〈Ω(0)

β |U
(R)
I (− iβ

2 , 0)Φ(X1)Φ(X2) . . .Φ(XN )

× U (R)
I (0, iβ2 )Ω

(0)
β 〉
/

〈Ω(0)
β |U

(R)
I (−iβ, 0)Ω(0)

β 〉 .
(3.95)

If some of the points Xk, k = 1, 2, . . . , N , are not
in either wedge, we need to use the global time T to
construct the Heisenberg operator Φ(Xk) in terms of
the interaction-picture operators satisfying the free-field
equation. The Hamiltonian in this construction is time-
dependent, in general. Nevertheless, as shown in Ap-
pendix C, the Heisenberg operator can still be given in
terms of the interaction-picture operators. Thus, if we
write X = (T,X), we have

Φ(T,X) = UI(0, T )ΦI(T,X)UI(T, 0) , (3.96)

where the operator UI(T, T
′) is define in Appendix C. By

substituting this formula into Eq. (3.95), assuming that
Tk > 0 for all k for simplicity, we find for time-ordered
products,

〈Ωβ |T [Φ(X1)Φ(X2) . . .Φ(XN )]Ωβ〉
= 〈Ω(0)

β |U
(R)
I (− iβ

2 , 0)UI(0, Tf)

× T [UI(Tf , 0)ΦI(X1)ΦI(X2) . . .ΦI(XN )]

× U (R)
I (0, iβ2 )Ω

(0)
β 〉
/

〈Ω(0)
β |U

(R)
I (−iβ, 0)Ω(0)

β 〉 ,
(3.97)

where Tf > Tk for all k.
The right-hand side of Eq. (3.97) is evaluated pertur-

batively as follows. Let M(+)
E and M(−)

E be the two
halves of the Euclidean section with TE > 0 (or 0 < tE <
βH/2 = π/κ) and TE < 0 (or −π/κ = −βH/2 < tE < 0),
respectively. LetM1 andM2 be two copies of the part
of the global Lorentzian manifold M with 0 < T < Tf .
Let

Mtotal ≡M(−)
E ∪M1 ∪M2 ∪M(+)

E . (3.98)

Then Eq. (3.97) can be expressed as

〈Ωβ |T [Φ(X1)Φ(X2) . . .Φ(XN )]Ωβ〉
= 〈Ω(0)

β |ΦI(X1)ΦI(X2) · · ·ΦI(XN )

× exp

(

−i
∫

Mtotal

√−gdnxHI(x)

)

Ω
(0)
β 〉connected ,

(3.99)

where X1, X2, . . . , XN ∈ M2. The right-hand side is
expanded using Wick’s theorem in terms of the free-
field two-point function. If the two points x and

x′ are on M(+)
E ∪ M(−)

E , then the two-point function

∆
(0)
β (x, x′) is the Green’s function on the Euclidean sec-

tion, G(0)(x, x′). If one point is on M(+)
E ∪ M(−)

E and

the other is onM1∪M2, then ∆
(0)
β (x, x′) is the analytic

continuation of this function. For the other cases we have

∆
(0)
β (x1, x2)

=











〈Ω(0)
β |ΦI(x1)ΦI(x2)Ω

(0)
β 〉 if xi ∈Mi, i = 1, 2 ,

〈Ω(0)
β |T [ΦI(x1)ΦI(x2)]Ω

(0)
β 〉 if x1, x2 ∈M2 ,

〈Ω(0)
β |T [ΦI(x1)ΦI(x2)]Ω

(0)
β 〉 if x1, x2 ∈M1 ,

(3.100)

where T denotes anti-time-ordering.

IV. EXAMPLES

In this section we briefly comment on the Schwinger-
Keldysh formulation of the HH state in Sec. III B for some
spacetimes with a static bifurcate Killing horizon and a
wedge reflection. The application of this formulation to
Schwarzschild spacetime is straightforward since it was
constructed with this spacetime in mind, except that we
need to change the upper limit Tf for the T integration
depending on the coordinate X because the T coordinate
is bounded by the singularities as |T | <

√
1 +X2.

A. Minkowski spacetime

The metric of n-dimensional Minkowski spacetime can
be given as

gMab = −(dT )a(dT )b + (dX)a(dX)b +

n−2
∑

i=1

(dxi)a(dx
i)b ,

(4.1)
where T is the usual inertial time. With (T,X) =
(

ρ sinh(κt), ρ cosh(κt)
)

, ρ > 0, we obtain the metric on
the right Rindler wedge satisfying −X < T < X:

gMab|R =
[

−κ2ρ2(dt)a(dt)b + (dρ)a(dρ)b
]

+

n−2
∑

i=1

(dxi)a(dx
i)b .

(4.2)

The metric covering the left Rindler wedge is obtained
by letting (T,X) =

(

ρ sinh(κt),−ρ cosh(κt)
)

, ρ < 0, and
takes the same form.
The Euclidean section is obtained by letting T = iTE,

which has the metric

gM,E
ab = (dTE)a(dTE)b + (dX)a(dX)b +

n−2
∑

i=1

(dxi)a(dx
i)b .

(4.3)

The manifoldM(+)
E (M(−)

E ) is the TE > 0 (TE < 0) part
of the Euclidean section andM1 andM2 are two copies
of the portion satisfying 0 < T < Tf of the Lorentzian
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manifold. Thus, in a double KMS state at the inverse
temperature β = βH with respect to the boost Killing
vector ∂/∂t, the time-ordered N -point function is ob-
tained by analytic continuation of that for the Euclidean
theory. As is well known, the N -point function in the
vacuum state is obtained in the same way. Thus, the vac-
uum state is a double KMS state with respect to ∂/∂t.
This corresponds to the result of Bisognano and Wich-
mann [27] in axiomatic field theory.
If all N operators for the time-ordered N -point func-

tion are in the right Rindler wedge with positive time
coordinates, then it can be given by Eq. (3.59) with the
contour C given by Fig 2 with the path C4 ∪ C5 miss-
ing. It is interesting that in the limit ti → −∞ the paths
C3∪C6 can be omitted [43]. This property is called “fac-
torization” (see, e.g. Ref. [44]).

B. De Sitter spacetime

The metric of de Sitter spacetime with the Hubble con-
stant set to 1 can be given as

gdSab =
4

(1 + ρ2)2
[−(dT )a(dT )b + (dX)a(dX)b]

+

(

1− ρ2
1 + ρ2

)2

ωab ,

(4.4)

with ρ2 = X2 − T 2 ∈ (−1, 1], where ωab denotes the
metric on the unit (n−2)-dimensional sphere, Sn−2. This
metric tensor can be cast into a more familiar form by
defining the coordinates τ and χ by

X =
cosχ

cos τ + sinχ
,

T =
sin τ

cos τ + sinχ
,

(4.5)

where −π
2 < τ < π

2 and 0 ≤ χ ≤ π. The transformation
to these new coordinates yields

gdSab =
1

cos2 τ

[

−(dτ)a(dτ)b + (dχ)a(dχ)b + sin2 χωab

]

.

(4.6)
Notice that (dχ)a(dχ)b + sin2 χωab corresponds to the
metric of Sn−1.
The static metric on the right wedge is found by letting

(T,X) = (ρ sinh t, ρ cosh t), ρ > 0, as

gdSab |R =
4

(1 + ρ2)2
[

−ρ2(dt)a(dt)b + (dρ)a(dρ)b
]

+

(

1− ρ2
1 + ρ2

)2

ωab .

(4.7)

This can be cast into a more familiar form by defining
the following radial coordinate:

r ≡ 1− ρ2
1 + ρ2

. (4.8)

In terms of the coordinate r, the metric tensor (4.7) then
reads

gdSab |R = −(1−r2)(dt)a(dt)b+
(dr)a(dr)b
1− r2 +r2ωab . (4.9)

The metric on the left wedge is identical. The state ΩβH

[now with βH = 1/(2π)] is the double KMS state con-
structed for these wedges.
The Euclidean section is given by letting T = iTE.

This can also be achieved by letting τ = iτE in Eq. (4.5),
and the metric (4.6) becomes

gdS,Eab

=
1

cosh2 τE

[

(dτE)a(dτE)b + (dχ)a(dχ)b + sin2 χωab

]

.

(4.10)

Finally, the coordinate change cosh τE = sec η (with
dτE/dη > 0) leads to the familiar metric on Sn:

gdS,Eab = (dη)a(dη)b + cos2 η
[

(dχ)a(dχ)b + sin2 χωab

]

.
(4.11)

The regions with TE > 0 and TE < 0 in the Euclidean
section correspond to the hemisphere with 0 < η < π

2
and that with −π

2 < η < 0, respectively. The manifold
taken in perturbation theory in the previous section in

this case is given as follows. The manifolds M(+)
E and

M(−)
E are the hemispheres of Sn with 0 < η < π

2 and
−π

2 < η < 0, respectively. The manifolds M1 and M2

can both be replaced by the part of the global Lorentzian
manifold with metric (4.6) with 0 < τ < τf , where τf is
larger than the τ -coordinate of any external point.

V. SUMMARY AND DISCUSSION

In this paper we discussed the relationship between Eu-
clidean and Lorentzian perturbative formalisms for quan-
tum fields in static spacetimes with a bifurcate Killing
horizon and a wedge reflection. The natural state in such
a spacetime is the HH state, which is a thermal equilib-
rium state at the Hawking temperature, as measured by
static observers in either of the two static wedges. The
naturalness of the HH state comes from the fact that it
shares the background symmetries and is regular on the
bifurcation surface. Since this state has been originally
defined via the analytic continuation of the Euclidean
theory to real times, the question we have addressed is
how it relates to the double KMS state constructed in an
intrinsically Lorentz-signature approach.
We first reviewed the equivalence of the HH state and

a double KMS state at the Hawking temperature for a
non-interacting scalar field theory. Then, in an inter-
acting scalar field theory with non-derivative interaction,
we clarified how the N -point correlation functions are
analytically continued from the Euclidean theory with
imaginary time to real time in the Schwinger-Keldysh
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perturbation theory for the HH state. Then, we showed
that these N -point functions are equal to those in a dou-
ble KMS state at the Hawking temperature if the points
are in the union of the right and left wedges. This gives
a perturbative demonstration of the equivalence between
the HH state and this double KMS state, shown formally
by using path-integral by Jacobson [22]. We also found a
perturbative expression of this interacting double KMS
state in terms of the non-interacting one and the free-
field operators. We used this result to express the N -
point functions when the points are not necessarily in
the wedges.
It is interesting to compare Jacobson’s path-integral

argument with our operator approach. He started by
pointing out that the HH state can be characterized as
the Schrödinger wave functional on the Cauchy surface
ΣL ∪ B ∪ ΣR constructed by the path integral over the
“lower half” (with −π < tE < 0) of the Euclidean mani-
fold with metric (2.15) bounded by this Cauchy surface.
To identify this state as a double KMS state he first noted
that this path integral can be interpreted as the following
imaginary-time evolution operator up to a normalization
factor:

e−
1
2βHH : H

(S)
ΣR
→H

(S)
ΣL

, (5.1)

where H
(S)
ΣR

and H
(S)
ΣL

are the spaces of the Schrödinger
wave functionals of states on ΣR and ΣL, respectively.

Let {ψ(i)
ΣR
} and {ψ(i)

ΣL
} be complete sets of orthonormal

wave functionals on ΣR and ΣL, respectively. Then, if
〈ψ|ψ′〉 is the inner product between the wave function-

als ψ,ψ′ ∈ H
(S)
ΣL

, this path integral gives the following
Schrödinger wave functional on ΣL∪B∪ΣR (in a heuristic
notation):

ΨHH ∝
∑

i,j

〈ψ(i)
ΣL
|e− 1

2βHHψ
(j)
ΣR
〉ψ(i)

ΣL
⊗ ψ(j)∗

ΣR
, (5.2)

which is indeed a double KMS state with the Hawking
temperature [see Eq. (2.19)].
Jacobson’s argument corresponds to the demonstra-

tion in this paper that the 4-point function in the double
KMS state Ωβ in Eq. (3.60) is given by a thermal average
as in Eq. (3.62), which is a 4-point function in the HH
state if β = βH. In our operator-formalism derivation we
needed to rewrite the 4-point function involving opera-
tors in both wedges as a 4-point function only with those
in the right wedge using the KMS condition. There is no
corresponding step in the path-integral derivation.
The operator approach in this paper makes it clear how

the N -point functions in the HH state are found in per-
turbation theory. Also our derivation, based on Hamil-
tonian perturbation theory, can readily be extended to
other quantum field theory, e.g. perturbative quantum
gravity.
The detailed discussion we presented of the analytic

continuation of the Euclidean N -point functions both in
the free and interacting theories is the main contribution

of this paper. In summary, it shows that the Euclidean
theory defines a bona fide state in the Lorentzian section
in perturbation theory. Although this does not come
as a surprise in the scalar field case, some authors have
raised doubts about the validity of Euclidean methods
in perturbative quantum gravity around de Sitter back-
ground [45, 46]. An interesting application we foresee
of the results of this paper is in investigating whether
the gauge-fixed Euclidean partition function for quantum
gravity in de Sitter defines a good state when analytically
continued to the global patch of de Sitter spacetime. The
free Euclidean vacuum for the graviton is known to be
well defined, as it does not display IR divergences [47–49].
Thus, it will be interesting to use the Schwinger-Keldysh
contour presented in this paper to define the interact-
ing Euclidean vacuum, i.e. the HH state, in the global
de Sitter spacetime.
In defining the HH state for perturbative gravity we

would need to confront the infrared problem in the
Faddeev-Popov ghost sector [50–52]. Recently it has been
proposed to solve this problem using certain conserved
charges in this sector of the theory [53, 54]. Another
challenge would be the conformal-mode problem in the
Euclidean quantum gravity [55–57]. It would be interest-
ing to see whether this problem could be circumvented by
the Schwinger-Keldysh approach, which is intrinsically
Lorentzian.
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Appendix A: Free field in the future region

For the annihilation operator on the right wedge, the
KMS condition (2.25) reads

e−
1
2βHH̃0a(R)

σ (ω)Ω
(0)
βH

= Ja(R)†
σ (ω)Ω

(0)
βH

= a(L)†σ (ω)Ω
(0)
βH
,

(A1)

where we have used Eqs. (2.24) and (3.24) in the second
equality. On the other hand, the commutator

[

H̃0, a
(R)
σ (ω)

]

= −ωa(R)
σ (ω) , (A2)

together with Eq. (2.23), implies that

e−
1
2βHH̃0a(R)

σ (ω)Ω
(0)
βH

= e
ωβH

2 a(R)
σ (ω)Ω

(0)
βH
. (A3)
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Then, by subtracting Eq. (A3) from Eq. (A1), we obtain

A(R)
σ (ω)Ω

(0)
βH

= 0 , (A4)

where

A(R)
σ (ω) ≡ 1√

1− e−ωβH

[

a(R)
σ (ω)− e−

ωβH
2 a(L)†σ (ω)

]

.

(A5)
One finds similarly,

A(L)
σ (ω)Ω

(0)
βH

= 0 , (A6)

where

A(L)
σ (ω) ≡ 1√

1− e−ωβH

[

a(L)σ (ω)− e−
ωβH

2 a(R)†
σ (ω)

]

.

(A7)

The operators A
(R)
σ (ω) and A

(L)
σ (ω) are normalized so

that
[

A(R)
σ (ω), A

(R)†
σ′ (ω′)

]

= δσσ′δ(ω − ω′) , (A8)

and the other commutators vanish. Similar commutators
are found for A

(L)
σ (ω). The field operator with support

on the right wedge can then be expanded as follows:

Φ
(R)
I (t,x) =

∫ ∞

0

dω
√

2ω(1− e−ωβH)

∑

σ

× φσω(x)
[

A(R)
σ (ω)e−iωt +A(L)

σ (ω)e−
ωβH

2 +iωt

+A(R)†
σ (ω)eiωt +A(L)†

σ (ω)e−
ωβH

2 −iωt
]

.

(A9)

The coefficient functions of annihilation operators

A
(R)
σ (ω) and A

(L)
σ (ω) are analytically continued to other

regions as global positive-frequency modes, whereas those
of creation operators are analytically continued as global
negative-frequency modes. As the point (T,X) goes
across the horizon X − T = 0 from R to F , the pos-
itive frequency solution must be analytically continued
with the following conditions: (i) its T +X dependence
should be the same in R and F ; (ii) the singularity X−T
must be avoided by letting X − T → X − T + iǫ. The
condition (ii) comes from the fact that, since its high-
frequency components with respect to the global time
T are of the form e−ikT with k large and positive, this
solution should be regarded as a distribution obtained
by taking the ǫ → 0+ limit with T → T − iǫ so that
e−ikT → 0 as k → +∞.
To find out the implications of conditions (i) and (ii)

to the static coordinates, we note that the combinations
X ± T are expressed in terms of t and ρ as

X + T = ρeκt for (T,X) ∈ R ∪ F (A10)

and

X − T =

{

ρe−κt if (T,X) ∈ R ,
−ρe−κt if (T,X) ∈ F , (A11)

respectively. Hence, for the global positive-frequency so-

lutions we must let ρ → e
iπ
2 ρ and t → t − iβH/4, as the

point (T,X) traverses the horizon X − T = 0 from R,
where X − T > 0, to F , where X − T < 0. This implies
that

φωσ(x)e
±iωt (in R)→ φ̃ωσ(x)e

±
ωβH

4 ±iωt (in F) , (A12)

where φ̃ωσ(x) is obtained from φωσ(x) by replacing ρ by

e
iπ
2 ρ.
The coefficient function multiplying creation operators

in Eq. (A9) must be continued as a global negative-

frequency mode, for which ρ→ e−
iπ
2 ρ and t→ t+ iβH/4.

Thus, the free field in the future region F is obtained from
Eq. (A9) as follows:

Φ
(F)
I (t,x) =

∫ ∞

0

dω e−
ωβ

4

√

2ω(1− e−ωβ)

∑

σ

×
{

φ̃σω(x)
[

A(R)
σ (ω)e−iωt +A(L)

σ (ω)eiωt
]

+φ̃ωσ(x)
[

A(R)†
σ (ω)eiωt +A(L)†

σ (ω)e−iωt
]}

.

(A13)

Equations (3.48) and (3.49) readily follow from Eqs. (A9)
and (A13).

Appendix B: Analytic continuation of correlation

functions

In this Appendix we show that the N -point function
defined by Eq. (3.55) is analytically continued by chang-
ing the real part of the time variables while keeping their
imaginary part unchanged, under the assumptions made
about the integration over ΣR.
Let F (x1, x2, . . . , xN ; y1, y2, . . . , yM ), with xi = (ti, xi)

and yj = (τj ,yj), xi,yj ∈ ΣR, denote a product of

the free-theory two-point functions G(0)(x, x′) with the
points from the set of external points {xi}i=1,2,...,N and
the set of internal points {yj}j=1,2,...,M . We let each of
the external points xi appear only once as an argument
of a two-point function. An example is

F (x1, x2, x3, x4; y1, y2)

= G(0)(x1, y1)G
(0)(x2, y1)

[

G(0)(y1, y2)
]2

×G(0)(y2, x3)G
(0)(y2, x4) ,

(B1)

which arises in the Φ4-theory. At each order in pertur-
bation theory, the N -point function (3.55) is a finite sum
of functions of the form





M
∏

j=1

∫

C

dτj

∫

ΣR

dn−1yj

√

−g(yj)





× F (x1, x2, . . . , xN ; y1, y2, . . . , yM ) ,

(B2)
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where C is a contour in CβH
defined by Eq. (3.34) with

the points x1, x2, . . . , xN also on C.
Under the assumption we made about the integrals

over ΣR—in effect we assume that these integrals are
cut off in the ultraviolet and infrared—these integrals
do not affect the analytic property with respect to the
time variables ti and τj . That is, if the integrand has a
certain analytic property, then so does the result of the
integration over ΣR. Thus, we are led to consider

IC(t1, t2, . . . , tN )

≡





M
∏

j=1

∫

C

dτj



F (x1, x2, . . . , xN ; y1, y2, . . . , yM ) .

(B3)

What we need to show is that, if ‖yi−yj‖, ‖yj−xi‖ > ǫ
for all i and j for some ǫ > 0, this function is analytically
continued by changing the real part of ti ∈ C with the
contour C with monotonically decreasing imaginary part
deformed so that ti are always on C.
Let us define an equivalence relation for IC as follows:

IC ∼ IC′ if IC(t1, t2, . . . , tN ) and IC′(t′1, t
′
2, . . . , t

′
N ) are

analytic continuations of each other, with the analytic
continuation performed by changing the real part of ti
but keeping its imaginary part fixed, i.e. Im(ti) = Im(t′i)
for all i. We now show that IC ∼ IC′ for all C and C ′.
We define the horizontal distance (i.e. the distance along
the real axis) between C and C ′ by

|C − C ′| ≡ max{|t− t′| : t ∈ C, t′ ∈ C ′, Im(t) = Im(t′)} .
(B4)

Suppose that for some d > 0 we have IC ∼ IC′ for all C
and C ′ satisfying |C − C ′| < d. Then, since ∼ defined
here is an equivalence relation, and thus transitive, we
have IC ∼ IC′ for all C and C ′ satisfying |C − C ′| < nd
for any n ∈ N. This implies that IC ∼ IC′ for all C and
C ′. Hence, all we need to show is that there is a number
d > 0 such that IC ∼ IC′ if |C − C ′| < d.
In general the two-point function G(0)(x, x′) with x =

(t,x) and x′ = (t′,x) for the free scalar field is singu-
lar only if Im(t) = Im(t′) and the points (Re(t),x) and
(Re(t′),x′) can be connected by a null geodesic [37]. This
implies that there exists a positive number d such that
the two-point function G(0)(t,x; t′,x′) with the points
satisfying ‖x− x′‖ > ǫ is an analytic function of t and t′

in a open neighborhood without holes containing C and
C ′ if |C − C ′| < d.

Now, assume that C and C ′ satisfy |C − C ′| < d and
define IC′,C(t

′
1, t

′
2, . . . , t

′
N ) to be the function obtained by

shifting each point ti in the real direction to t′i, which is
on C ′. Then, the function IC′,C is an analytic continua-
tion of IC . That is, IC′,C ∼ IC . Now, the function IC′,C

is unchanged if we replace the contour of integration for
τj from C to C ′ for any j. If we make this change of
the contour for all j, then the resulting function is IC′ by
definition. That is, IC′ = IC′,C . Hence we have IC ∼ IC′

for all C and C ′.

Appendix C: Interaction picture with a

time-dependent Hamiltonian

Let the Hamiltonian be given in the Schrödinger pic-
ture as

HS(t) = H0,S(t) +HI,S(t) , (C1)

i.e. it is given in terms of the canonical operators Φ(ti,x)
and their canonical conjugate momenta with ti fixed. The
Hamiltonian H0,S(t) describes the free-field theory and
HI,S(t) is the non-derivative interaction term. The explic-
itly time-dependence ofHS(t) arises from time-dependent
functions multiplying these canonical operators.
The time evolution of a state Ψ in the Schrödinger

picture is given by

i
d

dt
Ψ(t) = HS(t)Ψ(t) . (C2)

This can be solved as

Ψ(t) = U(t, ti)Ψ(ti) , (C3)

where we have defined the time-evolution operator

U(t, ti) ≡ P exp

(

−i
∫ t

ti

HS(τ)dτ

)

, (C4)

with P indicating the path-ordering. That is, products
of the operators HS(τ) is time-ordered if t > ti and anti-
time-ordered if t < ti. The Heisenberg operator Φ(t,x)
is given by

Φ(t,x) = U(ti, t)Φ(ti,x)U(t, ti) , (C5)

where Φ(ti,x) is the field operator in the Schrödinger pic-
ture at any time t. The operator Φ(t,x) satisfies Heisen-
berg’s equation of motion:

i
d

dt
Φ(t,x) = [Φ(t,x), H(t)] , (C6)

where H(t) is the Hamiltonian in the Heisenberg picture:

H(t) = U(ti, t)HS(t)U(t, ti) . (C7)

The field operator in the interaction picture is defined
as

ΦI(t,x) = U0(ti, t)Φ(ti,x)U0(t, ti) , (C8)

where U0(t, ti) is the time-evolution operator of the free
system, i.e. the operator defined in Eq. (C4) but with
HS(τ) replaced by H0,S(τ). Defined this way, the opera-
tor ΦI(t,x) satisfies the free-field equation:

i
d

dt
ΦI(t,x) = [ΦI(t,x), H0,I(t)] , (C9)

where H0,I(t) is the free-field Hamiltonian in the interac-
tion picture. This operator is defined as

H0,I(t) = U0(ti, t)H0,S(t)U0(t, ti) . (C10)
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From Eq. (C5) and the corresponding expression for
ΦI(t,x) we find

Φ(t,x) = UI(ti, t)ΦI(t,x)UI(t, ti) , (C11)

where

UI(t, ti) ≡ U0(ti, t)U(t, ti) . (C12)

Then we find

d

dt
UI(t, ti) = −iHI(t)UI(t, ti) , (C13)

where HI(t) is the interaction term in the Hamiltonian

in the interaction picture:

HI(t) = U0(ti, t)HI,S(t)U0(t, ti) . (C14)

From Eq. (C13) we obtain

UI(t, ti) = P exp

(

−i
∫ t

ti

HI(τ)dτ

)

. (C15)

Then, by defining UI(t, t
′) for general arguments t and t′

as

UI(t, t
′) = UI(t, ti)UI(t, ti)

† , (C16)

we find that the Heisenberg operator Φ(t,x) is ex-
pressed in terms of the interaction-picture operators as
in Eq. (3.65) also for a time-dependent Hamiltonian.
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le propagateur ∆1(x, y) du champ scalaire dans l’univers
de de Sitter, Ann. Inst. H. Poincaré Phys. Theor. 25, 67
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