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Spectral-Energy Efficiency Trade-off based Design

for Hybrid TDMA-NOMA System
Xinchen Wei, Student Member, IEEE, Haitham Al-Obiedollah, Member, IEEE, Kanapathippillai Cumanan, Senior

Member, IEEE, Wei Wang, Member, IEEE, Zhiguo Ding, Fellow, IEEE, and Octavia A. Dobre, Fellow, IEEE

Abstract—The combination of time division multiple access
(TDMA) and non-orthogonal multiple access (NOMA), referred
to as hybrid TDMA-NOMA system, is considered as a potential
solution to meet the unprecedented requirements for future
wireless networks. While recent resource allocation techniques
aiming to individually maximize either spectral efficiency (SE)
or energy efficiency (EE), this paper considers a SE-EE trade-off
based technique for a hybrid TDMA-NOMA system. This design
offers an additional degree of freedom in resource allocation. The
proposed design is formulated as a multi-objective optimization
(MOO) problem - a non-convex problem. The MOO framework
is reformulated as a single-objective optimization (SOO) prob-
lem by combining the multi-objectives through a weighted-sum
objective function. With this, each of the original objectives is
assigned with a weight factor to reflect its importance in the
design. Then, sequential convex approximation (SCA) and a
second-order cone (SOC) approach are jointly utilized to deal
with the non-convexity issues of the SOO problem. Simulation
results reveal that the proposed trade-off based design strikes a
good balance between the objective functions, while meeting the
instantaneous requirements of the system.

Index Terms—NOMA, TDMA, spectral efficiency (SE), energy
efficiency (EE), multi-objective optimization (MOO).

I. INTRODUCTION

Non-orthogonal multiple access (NOMA) is considered as a

promising technique to meet the unprecedented requirements

of beyond fifth-generation wireless networks [1]. The demand-

ing requirements include higher spectral efficiency (SE) and

energy efficiency (EE), as well as massive connectivity [2].

With power domain NOMA, multiple users are served simul-

taneously by utilizing power domain multiplexing. This can

be achieved through employing a power-domain superposition

coding at the transmitter [1]. At the receiver, the successive

interference cancellation (SIC) technique is utilized at stronger

users [1], [2]. However, as the number of users increases,

the computational complexity of SIC becomes prohibitive in

practical implementations. This might restrict the potential

capabilities of employing NOMA in dense networks, in which

SIC should be used to decode a large number of signals [6].

To deal with the challenges of using SIC in large networks,

such as Internet-of-things (IoT), NOMA has been recently

combined with other multiple access techniques. These in-

clude NOMA with multiple-antenna [7], [8], and conventional

orthogonal multiple access (OMA) technology [2]. These
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strategic combinations facilitate the implementation of SIC

in dense networks, and offer additional degrees of freedom.

In a hybrid OMA-NOMA system, orthogonal domains along

with power domain multiplexing are jointly utilized to serve

more number of users, supporting the massive connectivity [2].

Specifically, in hybrid TDMA-NOMA systems, the available

time for transmission is divided into several sub-time slots and

each time slot is allocated to serve a group of users through

power domain NOMA [12], [13].

To meet the requirements of future wireless networks,

several resource allocation techniques have been proposed

for hybrid TDMA-NOMA systems. Sum-rate maximization

design (SE-Max) has been investigated in [3] and the work

in [4] has considered the EE maximization (EE-Max) based

resource allocation technique. The EE and SE are conflicting

performance metrics. Optimizing SE degrades the overall

EE, provided the available transmit power is more than the

green power [5]. Similarly, EE maximization does not offer

maximum SE.

An SE-EE trade-off based design has been proposed for

a multiple-input single-output (MISO)-NOMA system in [6].

In [7], the SE-EE trade-off for the massive MIMO systems

has been investigated through the particle swarm optimization

algorithm. The EE-SE trade-off has been studied for the RIS-

aided multi-user MIMO uplink system with the partial channel

state information (CSI) in [8]. The solution to multi-objective

optimization (MOO) problem can be achieved by converting it

into a single-objective optimization (SOO) problem [9], [10].

Motivated by the importance of both SE and EE in future

wireless networks, this paper considers a SE-EE trade-off

based resource allocation technique for a hybrid TDMA-

NOMA system. The hybrid TDMA-NOMA system with

single-antenna has potential capabilities to achieve better per-

formance and meet different requirements in specific scenarios

compared to the conventional stand-alone NOMA or TDMA

designs, including some practical applications, such as M2M

communications [13], UAV communications [14], and IoT

networks [15]. Unlike the existing stand-alone SE or EE re-

source allocation techniques in hybrid TDMA-NOMA system,

the proposed design aims to strike a good balance between

those performance metrics while fulfilling the requirements of

future wireless networks. The SE-EE trade-off based design is

formulated as a MOO problem, and the weighted sum utility

function is utilized to reformulate the MOO framework as a

SOO problem. Then, an iterative approach is proposed to solve

the SOO problem.

c© 2015 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes
must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org.



II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

A downlink transmission of a multi-user single-input single-

output hybrid TDMA-NOMA system is considered. In this

hybrid system, a single-antenna base station (BS) commu-

nicates with K single-antenna users. The available time for

transmission (T ) is divided into a number of sub-time slots

(ti), ∀i = 1, 2, 3, · · · , C, where C denotes the total number

of sub-time slots, such that T =
∑C

i=1 t. Within a sub-time

slot, Ki users are grouped into a cluster, and served based

on NOMA approach. The uj,i represents the jth user at the

ith sub-time slots, i.e., cluster. The number of users in the ith

cluster (Hi) is denoted by Ki, ∀i ∈ C △

= {1, 2, ..., C}.

The signal transmitted from the BS during ti can be written

as xi =
∑Ki

j=1 τj,isj,i, where sj,i and τj,i represent the mes-

sage intended to uj,i and the corresponding power allocation,

respectively. We assume that the signals are transmitted over

a quasi-static flat Rayleigh fading channel and the BS has

perfect CSI. The received signal at uj,i can be defined as

yj,i = gj,ixi + nj,i, ∀i ∈ C, ∀j ∈ Ki
△

= {1, 2, ...,Ki}, (1)

where gj,i is the channel gain between the BS and uj,i,

and nj,i ∼ CN (0, σ2
j,i) denotes the additive white Gaussian

noise (AWGN) at the receiver. The corresponding channel

gain is |gj,i|2 = β
(dj,i/d0)κ

[16], where dj,i and d0 are the

distances between uj,i and the BS, and a reference distance

in meters, respectively. The β and κ represent the signal at-

tenuation and the path loss exponent at the reference distance,

d0, respectively. Note that users in the ith cluster, i.e., Hi,

are served simultaneously using NOMA. Therefore, ordering

users within a cluster is essential to determine the overall

performance of the system. In this paper, the users at each

cluster are ordered based on their channel gains [6], such that

|g1,i|2 ≥ |g2,i|2 ≥ ...|gKi,i|2, ∀i ∈ C. The jth user at the

ith cluster, i.e., uj,i, should be able to decode and subtract

the messages intended for weaker users, i.e., sj+1,i, · · · , sKi,i

prior to decoding its own message. Thus, the received signal

at uj,i after performing SIC can be expressed as

ySIC
j,i = gj,iτj,isj,i + gj,i

j−1
∑

s=1

τs,iss,i + nj,i∀i ∈ C, ∀j ∈ Ki.

The signal-to-interference and noise ratio (SINR) at uj,i for

decoding the messages intended to the weaker users ud,i, ∀d ∈
{j + 1, j + 2, ...,Ki} is given by

SINRd
j,i =

|gj,i|2τ2d,i
|gj,i|2

∑d−1
s=1 τ

2
s,i + σ2

j,i

,

∀i ∈ C, ∀j ∈ Ki, ∀d ∈ {j + 1, j + 2, ...,Ki}. (2)

Accordingly, the achieved rate at uj,i can be written as [11]:

Rj,i = Bti log2(1 + SINRj,i), ∀i ∈ C, ∀j ∈ Ki, (3)

where

SINRj,i = min{SINR1
j,i, SINR2

j,i, ..., SINR
j
j,i},

∀i ∈ C, ∀j ∈ Ki. (4)

Note that B is the available bandwidth. Thus, SE can be

defined as SE =
∑C

i=1

∑Ki
j=1

Rj,i

B . For notational simplicity,

we assume that B = 1 throughout this paper. Therefore, both

SE and sum-rate carry the same meaning throughout this work.

To align with the fundamental concepts of NOMA, the

weaker users in the clusters should be allocated higher power

levels compared to those with stronger channel gains. This can

be ensured through imposing the following constraint [11]:

τ2K,i ≥ τ2K−1,i ≥ ... ≥ τ21,i, ∀i ∈ C. (5)

The total transmit power at the BS, Pt, should be less than

the available power budget, Pmax. This constraint can be

mathematically expressed as

Pt =

C
∑

i=1

Ki
∑

j=1

τ2j,i ≤ Pmax. (6)

The power consumption at the BS should take into account

the transmit power, i.e., Pt, along with total power losses at

the BS (Ploss) [4]. Therefore, the total power consumption at

the BS can be defined as Ptotal = 1
ωPt + Ploss [10], [17],

where ω ∈ [0, 1] is the efficiency of the power amplifier [8].

Note that the overall EE and global EE (GEE) carry the

same meaning. The overall EE of the system can be defined

as

GEE =

∑C
i=1

∑Ki

j=1 Rj,i

Ptotal
. (7)

It is obvious that GEE and SE are conflicting performance

metrics, and they have been considered in isolation in the pre-

vious works. For example, the GEE maximization (GEE-Max)

design has been proposed in [17], [4] without considering SE.

For ease of access, the GEE-Max resource allocation technique

for the hybrid TDMA-NOMA is defined here as follows [6]:

(P1) : max
τj,i,ti

∑C
i=1

∑Ki

j=1 ti log2(1 + SINRj,i)

1
ω

∑C
i=1

∑Ki

j=1 τ
2
j,i + Ploss

(8)

s.t.

C
∑

i=1

ti ≤ T, (9)

(5), (6), Rj,i ≥ Rmin
j,i , ∀i ∈ C, ∀j ∈ Ki. (10)

Note that Rmin
j,i is the minimum rate requirement for user uj,i,

and (9) ensures that the total allocated time does not exceed

the available transmission time T . Furthermore, (5) facilitates

the successful implementation of SIC at stronger users [11].

With the total power and time constraints, the SE-Max

resource allocation technique for the hybrid TDMA-NOMA

can be formulated as

(P2) : max
τj,i,ti

C
∑

i=1

Ki
∑

j=1

Rj,i s.t. (9), (5), (6). (11)

Note that the objective functions of P1 and P2 are conflicting

in nature. In particular, maximizing the sum rate in P1 might

degrade the GEE of the system. Similarly, maximizing GEE

through solving P2 has a negative impact on the achieved

sum-rate. To overcome this conflicting issue and to align with

different requirements of both users and service providers,

we propose an SE-EE trade-off based design in the following

subsection.



B. Problem Formulation

We formulate the SE-EE trade-off based design for the

hybrid TDMA-NOMA system. The objective function of

this MOO design consists of the conflicting performance

metrics, i.e., SE and GEE. For simplicity, we represent

SE and GEE by the functions f1({τj,i}, {ti}Ci=1
Ki

j=1) and

f2({τj,i}, {ti}Ci=1
Ki

j=1), respectively. In fact, the objective func-

tion of this trade-off based design can be defined as a vector

f , with the elements of both performance metrics f1 and

f2. Accordingly, the proposed trade-off based design can be

formulated as

(P3) : max
τj,i,ti

f({τj,i}, {ti}Ci=1
Ki

j=1) s.t. (9), (5), (6), (10),

where

f({τj,i}, {ti}Ci=1
Ki

j=1)

= [f1({τj,i}, {ti}Ci=1
Ki

j=1), f2({τj,i}, {ti}Ci=1
Ki

j=1)]. (12)

There are several challenges associated in solving P3. Firstly,

it is essential to identify the users that have to be grouped

and served at each sub-time slot as different solutions can

be obtained with different grouping strategies. Secondly, once

the grouping strategy is determined, a feasibility check has to

be carried out prior to solving the problem. This is due to

the fact that the minimum rate constraints in P3 cannot be

satisfied for some power budget at BS. Finally, given a multi-

objective function in P3, the conventional approaches cannot

be directly employed to determine its feasible solution. Thus,

we propose a solution approach to address all of these issues

in the following section.

III. PROPOSED METHODOLOGY

The solution of the original problem P3 depends on the

selected users for each cluster. Hence, it is important to

determine an appropriate grouping strategy in the considered

hybrid TDMA-NOMA system. The optimal grouping strategy

can be only determined through exhaustive search [24], which

has a high computational complexity. To reduce the compu-

tational complexity, different sub-optimal grouping strategies

have been considered in the literatures [22], [23].

A. Feasibility Analysis

With the grouping strategy, we now investigate the feasibil-
ity of P3. Note that P3 might turn out to be infeasible due
to the limited total power constraint in (6). Therefore, it is
important to firstly examine the required minimum transmit
power to fulfill these minimum rate constraints. It can be
evaluated by solving the following problem:

(P-Min) : P
min = min

τj,i,ti

C
∑

i=1

Ki
∑

j=1

τ
2
j,i (13)

s.t.(9), (5), SINRj,i ≥ 2
Rmin

j,i
ti − 1, ∀i ∈ C, ∀j ∈ Ki,

where Pmin is the minimum total transmit power required to

meet the minimum rate requirements. The P3 is feasible, and

thus worthy to solve if Pmin ≥ Pmax. When Pmin < Pmax,

P3 turns out to be infeasible. In this paper, it is assumed that

an alternative SE-Max design is considered if P3 is infeasible.

B. The Proposed Algorithm

Given that P3 is feasible, we propose an approach to

solve this MOO problem. Note that no single unique

optimal solution exists to simultaneously optimize both

f1({τj,i}, {ti}Ci=1
Ki

j=1) and f2({τj,i}, {ti}Ci=1
Ki

j=1). Therefore,

we aim to determine the set of the best trade-off solutions,

referred to as the Pareto-optimal solutions [18]. A feasible

solution {τ∗j,i, t∗i } is considered to be a Perto-optimal solution

if no other solution exists such that f({τj,i}, {ti}Ci=1
Ki

j=1) �
f({τ∗j,i}, {t∗i }Ci=1

Ki

j=1) [19]. To determine the Pareto-optimal

solution, the multi-objective function should be firstly replaced

with a single-objective function [18], [19]. In this work, we se-

lect the weighted-sum utility function to determine the Pareto-

optimal solution [19]. A weight factor αi ∈ [0, 1] is assigned

to the ith objective function to reflect its relative importance

on the overall design, and the sum of both weighted functions

is considered. The SOO framework to represent P3 can be

formulated as

(P4) : max
τj,i,ti

2
∑

l=1

αlf
Norm
l ({τj,i}, {ti}Ci=1

Ki

j=1) (14)

s.t. (9), (5), (6), (10), (15)

where fNorm
1 ({τj,i}, {ti}Ci=1

Ki

j=1) and

fNorm
2 ({τj,i}, {ti}Ci=1

Ki

j=1) are the normalized versions

of f1({τj,i}, {ti}Ci=1
Ki

j=1) and f2({τj,i}, {ti}Ci=1
Ki

j=1),
respectively. These can be expressed as

fNorm
1 ({τj,i}, {ti}Ci=1

Ki

j=1) =
f1({τj,i}, {ti}Ci=1

Ki

j=1)

f∗

1

, (16a)

fNorm
2 ({τj,i}, {ti}Ci=1

Ki

j=1) =
f2({τj,i}, {ti}Ci=1

Ki

j=1)

f∗

2

, (16b)

where f∗

1 and f∗

2 are the maximum values of SE and GEE,

respectively. With such a normalization, a non-dimensional

objective function with an unity upper bound is obtained. For

simplicity, let α2 = α and α1 = 1− α. Note that P4 is non-

convex problem. Therefore, we exploit the SCA technique to

deal with its non-convexity issue.

C. Sequential Convex Approximation (SCA)

The SCA technique is a local optimization method for

evaluating the solutions of non-convex problems, and it has

been utilized to obtain the solutions for several optimization

frameworks in wireless communications [6], [20]. We start

with the objective function by introducing two slack variables

γ1 and γ2 such that

(1− α)fNorm
1 ({τj,i}, {ti}Ci=1

Ki

j=1) ≥ γ1, (17a)

αfNorm
2 ({τj,i}, {ti}Ci=1

Ki

j=1) ≥ γ2. (17b)

With γ1 and γ2, P4 can be equivalently written as

(P5) : max
τj,i,ti,γ1,γ2

γ1 + γ2 (18)

s.t. (9), (5), (6), (10), (19)

(1−α)fNorm
1 ({τj,i}, {ti}

C
i=1

Ki
j=1)≥γ1, (20)

αf
Norm
2 ({τj,i}, {ti}

C
i=1

Ki
j=1) ≥ γ2. (21)



Note that the objective function in P5 is linear in terms of γ1
and γ2. However, the non-convex constraints in (20) and (21)

are introduced to P5. We exploit the SCA to approximate the

non-convex terms.

Firstly, the constraint in (20) can be rewritten as

C
∑

i=1

Ki
∑

j=1

ti log2(1 + SINRj,i) ≥
f∗

1

1− α
γ1. (22)

We deal with the non-convexity of (22) by introducing slack

variables zj,i and χj,i, such that

(1 + SINRj,i) ≥ zj,i, ∀i ∈ C, ∀j ∈ Ki, ∀d ∈ {j + 1, ...,Ki},
(23a)

log2(1 + SINRj,i) ≥ χj,i, ∀i ∈ C, ∀j ∈ Ki, (23b)

zj,i ≥ 2χj,i , ∀i ∈ C, ∀j ∈ Ki, (23c)

C
∑

i=1

Ki
∑

j=1

tiχj,i ≥
f∗

1

1− α
γ1, ∀i ∈ C, ∀j ∈ Ki. (23d)

Note that the constraint in (23c) is convex while the others

are not. To overcome the non-convexity issues of (23a), we

introduce another slack variable ξj,i, such that (23a) can be

rewritten as

|gj,i|2τ2d,i
|gj,i|2

∑d−1
s=1 τ

2
s,i + σ2

j,i

≥
(zj,i − 1)ξ2j,i

ξ2j,i
,

∀i ∈ C, ∀j ∈ Ki, ∀d ∈ {j + 1, j + 2, ...,Ki}. (24)

Furthermore, the constraint in (24) can now be decomposed

into two constraints as follows:

|gj,i|2τ2d,i ≥ (zj,i − 1)ξ2j,i,

∀i∈C, ∀j∈Ki, ∀d∈{j + 1, j + 2, ...,Ki}, (25a)

|gj,i|2
d−1
∑

s=1

τ2s,i + σ2
j,i ≤ ξ2j,i,

∀i∈C, ∀j∈Ki, ∀d∈{j + 1, j + 2, ...,Ki}. (25b)

Then, the first-order Taylor series expansion is exploited to

approximate both sides of (25a) with their corresponding linear

approximations, such that

|gj,i|2
(

τ2d,i
(n)

+ 2τ
(n)
d,i (τd,i − τ

(n)
d,i )

)

≥ ξ2j,i
(n)

(

z
(n)
j,i − 1

)

+ 2
(

z
(n)
j,i − 1

)

ξ
(n)
j,i

(

ξj,i − ξj,i
(n)

)

+ ξ2j,i
(n)

(

zj,i − zj,i
(n)

)

,

∀i ∈ C, ∀j ∈ Ki, ∀d ∈ {j + 1, j + 2, ...,Ki}, (26)

where τ
(n)
d,i , ξj,i

(n) and z
(n)
j,i represent the approximations of

τd,i, ξj,i and zj,i at the nth iteration, respectively. Note that

both sides of (26) are now linear in terms of τd,i, ξj,i, and

zj,i. Furthermore, the constraint in (25b) can be rewritten as

the following SOC constraint:

‖|gj,i|τ1,i, |gj,i|τ2,i, ..., |gj,i|τd−1,i,σj,i‖ ≤ ξj,i,

∀i ∈ C, ∀j ∈ Ki, ∀d ∈ {j + 1, j + 2, ...,Ki}, (27)

where || · || denotes the Euclidean norm of a vector. With these

approximations, (23a) can now be approximated as the convex

constraints in (26) and (27).

Next, we address the non-convexity issue of the constraint in

(23d). This can be dealt by incorporating a new slack variable

νj,i, such that

tiχj,i ≥ νj,i, ∀i ∈ C, ∀j ∈ Ki, (28a)

C
∑

i=1

Ki
∑

j=1

νj,i ≥
f∗

1

1− α
γ1, ∀i ∈ C, ∀j ∈ Ki. (28b)

To tackle the non-convexity issue of (28a), we incorporate non

negative t2i +χ2
j,i to the both sides of inequality (28a) without

affecting the original inequality. This constraint can be now

formulated as the following SOC constraint:

ti + χj,i ≥
∥

∥

∥

2
√
νj,i

ti − χj,i

∥

∥

∥

2
, ∀i ∈ C, ∀j ∈ Ki. (29)

To this end, the non-convex constraint in (20) is replaced with

the following convex constraints:

(20) ⇔ (26), (27), (23c), (29), (28b).

Similarly, the non-convexity of the constraint in (21) is

tackled by introducing a new slack variable b such that

∑C
i=1

∑Ki

j=1 ti log2(1 + SINRj,i)

1
ω

∑C
i=1

∑Ki

j=1 τ
2
j,i + Ploss

≥ γ2f
∗

2 b
2

αb2
. (30)

The constraint in (30) can be split into the following two

constraints:

C
∑

i=1

Ki
∑

j=1

ti log2(1 + SINRj,i) ≥
f∗

2

α
γ2b

2, (31)

b2 ≥ 1

ω

C
∑

i=1

Ki
∑

j=1

τ2j,i + Ploss. (32)

To handle the non-convexity issue of (31), we exploit the same

approaches that were used for constraint in (20). We introduce

a set of new slack variables ̟j,i, ǫj,i, δj,i and βj,i, such that

(1 + SINRj,i) ≥ ǫj,i, ∀i ∈ C, ∀j ∈ Ki, ∀d ∈ {j + 1, ...,Ki},
(33a)

ǫj,i ≥ 2̟j,i , ∀i ∈ C, ∀j ∈ Ki, (33b)

C
∑

i=1

Ki
∑

j=1

ti̟j,i ≥
f∗

2

α
γ2b

2, ∀i ∈ C, ∀j ∈ Ki. (33c)

The constraint in (33a) can be written as

|gj,i|2τ2d,i
|gj,i|2

∑d−1
s=1 τ

2
s,i + σ2

j,i

≥
(ǫj,i − 1)δ2j,i

δ2j,i
. (34)

Following a similar approach,

|gj,i|
2
τ
2
d,i ≥ (ǫj,i − 1)δ2j,i,

∀i∈C, ∀j∈Ki, ∀d∈{j + 1, j + 2, ...,Ki}, (35a)

|gj,i|
2
d−1
∑

s=1

τ
2
s,i + σ

2
j,i ≤ δ

2
j,i,

∀i∈C, ∀j∈Ki, ∀d∈{j + 1, j + 2, ...,Ki}. (35b)



The inequalities in (35) can now be approximated with linear

function using the first-order Taylor series approximation as

|gj,i|2
(

τ2d,i
(n)

+ 2τ
(n)
d,i (τd,i − τ

(n)
d,i )

)

≥ δ2j,i
(n)

(

ǫ
(n)
j,i − 1

)

+ 2
(

ǫ
(n)
j,i − 1

)

δ
(n)
j,i

(

δj,i − δj,i
(n)

)

+ δ2j,i
(n)

(

ǫj,i − ǫj,i
(n)

)

,

∀i ∈ C, ∀j ∈ Ki, ∀d ∈ {j + 1, j + 2, ...,Ki}, (36a)

‖|gj,i|τ1,i, |gj,i|τ2,i, ..., |gj,i|τd−1,i,σj,i‖ ≤ δj,i,

∀i ∈ C, ∀j ∈ Ki, ∀d ∈ {j + 1, j + 2, ...,Ki}. (36b)

The constraint in (33c) can be reformulated with the following
convex constraints:

ti̟j,i ≥ βj,i, ∀i ∈ C, ∀j ∈ Ki, (37a)

ti +̟j,i ≥
∥

∥

∥

2
√

βj,i

ti −̟j,i

∥

∥

∥

2
, ∀i ∈ C, ∀j ∈ Ki, (37b)

C
∑

i=1

Ki
∑

j=1

βj,i ≥
f∗

2

α
γ2b

2
, ∀i ∈ C, ∀j ∈ Ki, (37c)

C
∑

i=1

Ki
∑

j=1

βj,i ≥
f∗

2

α
(b2

(n)
γ2

(n) + 2γ2
(n)

b
(n)(b− b

(n))

+ b
2(n)

(γ2 − γ2
(n))), ∀i ∈ C, ∀j ∈ Ki. (37d)

Following a similar approach in (25b), the constraint in (32)

can be cast as the following SOC constraint:

b ≥ 1

ω

∥

∥

∥

∥

[

τ1,i, τ2,i, ..., τd−1,i,
√

Ploss

]T
∥

∥

∥

∥

2

,

∀i ∈ C, ∀j ∈ Ki, ∀d ∈ {j + 1, j + 2, ...,Ki}. (38)

To this end, the non-convex constraint in (21) is replaced with

the following convex constraints:

(21) ⇔ (36a), (36b), (33b), (37b), (37d), (38).

The non-convexity issue of (5) can be dealt by approximat-

ing each non-convex term of the inequality by a lower bounded

convex term using the first-order Taylor series. Each term in

(5) can be written as

τ2K,i ≥ τ2K,i
(n)

+ 2τK,i
(n)(τK,i − τK,i

(n)), ∀i ∈ C. (39)

Finally, the minimum rate constraints in (10) can be formu-

lated as the following convex constraints:

νj,i ≥ Rmin
j,i , ∀i ∈ C, ∀j ∈ Ki. (40)

With the above approximations, P3 can be equivalently

written as the following approximated convex one:

(P6) : max
Γ

γ1 + γ2 (41)

s.t. (9), (6), (39), (40), (42)

(26), (27), (23c), (29), (28b), (43)

(36a), (36b), (33b), (37b), (37d), (38), (44)

where Γ consists of all the optimization parameters, such that

Γ = {τj,i, ti, γ1, γ2, βj,i, χj,i, ξj,i, zj,i, νj,i, ǫj,i, ̟j,i, δj,i, b},

∀i ∈ C, ∀j ∈ Ki. In fact, the solution to P3 can be obtained

by iteratively solving P6. With this iterative algorithm, the

initial value of Γ(0) needs to be carefully selected as it plays a

crucial role in determining the solution. Therefore, we discuss

a simplified approach to select these initial values. Firstly, an

TABLE I
PARAMETER VALUES USED IN THE SIMULATIONS

Simulation Parameter Value(s)
Number of users (K) 10

Number of users in each cluster (Ki) 2
Distances of users (m) 1.0 ≤ dj,i ≤ 10.0

Pass loss exponent(κ) 2
Noise variance of users (σ2

j,i) 0.01

Power amplifier efficiency (ω) 0.35
Threshold of algorithm 0.01

Bandwith B (MHz) 1

appropriate initial power allocation and time slots are selected

to fulfill all the constraints of P6. Then, the corresponding

slack variables can be evaluated based on the initial power

allocation and time slots. Note that the iterative process is

continued until the required accuracy.

IV. SIMULATION RESULTS

In this section, we provide simulation results to demonstrate

the effectiveness of the proposed SE-EE trade-off based de-

sign for the hybrid TDMA-NOMA system. For the grouping

strategy, we consider clusters with two users in each cluster,

i.e., Ki = 2. Clusters with two users have been considered

due to practical implementation challenges, including high

computational complexity and error propagations in SIC.

However, the analysis provided in this work is applicable

to clusters with any number of users. Motivated by the

fact that SIC can be successfully implemented when the

difference of the channel gains is high, we group users

with higher difference in their channel gains. Based on this

grouping strategy, the clusters for the considered system can

be presented as ({u1,1, u2,1}, {u1,2, u2,2}, ...{u1,C , u2,C}) ≡
(

{u1, uK}, {u2, uK−1}, ...{uK
2

, uK
2
+1}

)

, where u1 and uK

are the strongest and the weakest users, respectively. Table I

provides simulation parameters [11], [20]. Similar to the works

in the literature [11], [21], a pico-cell is considered in this

simulation.

Fig. 1 presents the achieved SE and EE with different weight

factors α. As seen in Fig. 1, both SE and EE remain the

same when the weight factor α is small. Then, with increasing

α, the SE decreases whereas the EE increases. This is due

to the fact that more resources are allocated for maximizing

EE as the weight factor α increases. With an appropriate

weight factor α, the BS has the flexibility to achieve different

performance trade-off according to the requirements of the

systems. Furthermore, Fig. 1 shows the achieved EE and SE

for the proposed design against α with 10 and 30 meters radii

around the BS. As expected, with the 30 meters radius, both

the achieved EE and SE decrease compared to those achieved

with 10 meter radius.

Fig. 2 and Fig. 3 depict the achieved SE and EE perfor-

mance versus Pmax with different α, respectively. It can be

observed that the achieved SE first increases until reaching

a certain value, and it then remains constant. Similarly, the

performance of EE first increases until reaching the maximum

value, however, it then decreases as the transmit power in-

creases. The proposed SE-EE trade-off based design becomes

the conventional SE and EE designs with α = 0 and 1,

respectively.

Finally, the SE-EE performance trade-off is illustrated in

Fig. 4 with the set of Pareto-optimal solutions for the original

optimization problem. Note that each point on this curve
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Fig. 1. Achieved SE and EE with different weight factors.
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Fig. 2. The achieved SE performance versus P
max with different α.

represents a Pareto-optimal solution for a particular α, based

on sum rate and EE performance. In other words, no other

solution exists to simultaneously improve both the SE and

GEE objective functions.

V. CONCLUSION

In this paper, we have investigated the SE-EE trade-off

based resource allocation technique for a hybrid TDMA-

NOMA system. The original problem has been formulated as

a MOO problem with the conflicting objective functions SE

and EE. Then, a weighted-sum approach has been utilized

to convert the MOO framework into a SOO problem, and
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Fig. 3. The achieved EE performance versus P
max with different α.
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Fig. 4. A set of Pareto-optimal solutions of the proposed design.

thus to obtain the Pareto-optimal solutions. However, the SOO

problem has turned out to be a non-convex problem. Therefore,

an iterative algorithm has been developed to deal with the non-

convexity issues. Simulation results have demonstrated that the

proposed SE-EE trade-off based design has the flexibility to

strike a good balance between the conflicting metrics SE and

EE compared to the conventional SE and EE designs. To deal

with the channel uncertainties, a robust design needs to be

considered, which is an interesting future direction to extend

our work.

REFERENCES
[1] Y. Liu et al., “Non-orthogonal multiple access for 5G and beyond,”

Proceedings of the IEEE, vol. 105, no. 12, pp. 2347-2381, Dec. 2017.
[2] S. R. Islam, N. Avazov, O. A. Dobre, and K. S. Kwak, “Power-domain

non-orthogonal multiple access (NOMA) in 5G systems: Potentials and
challenges,” IEEE Commun. Surveys Tutorials, vol. 19, no. 2, pp. 721-
742, Second Quarter 2017.

[3] S. Zeb et al., “NOMA enhanced backscatter communication for green
IoT networks,” in Proc. ISWCS, Oulu, Finland, Aug. 2019, pp. 640-644.

[4] A. Zappone and E. Jorswieck, “Energy efficiency in wireless networks
via fractional programming theory,” Found. Trends Commun. Inf. Theory,
vol. 11, no. 3-4, pp. 185-396, Jan. 2015.

[5] M. Zeng, N. Nguyen, O. A. Dobre, Z. Ding, and H. V. Poor, “Spectral-
and energy-efficient resource allocation for multi-carrier uplink NOMA
systems,” IEEE Trans. Veh. Technol., vol. 68, no. 9, pp. 9293-9296, Sept.
2019.

[6] H. M. Al-Obiedollah et al., “Spectral-energy efficiency trade-off-based
beamforming design for MISO non-orthogonal multiple access systems,”
IEEE Trans. Wireless Commun., vol. 19, no. 10, pp. 6593-6606, Oct.
2020.

[7] Z. Liu, W. Du, and D. Sun, “Energy and spectral efficiency tradeoff for
massive MIMO systems with transmit antenna selection,” IEEE Trans.
Veh. Technol., vol. 66, no. 5, pp. 4453-4457, May. 2017.

[8] L. You et al., “Energy efficiency and spectral efficiency tradeoff in
RIS-aided multiuser MIMO uplink transmission,” IEEE Trans. Signal
Process., vol. 69, pp. 1407-1421, Mar. 2021.

[9] Y. Huang, S. He, J. Wang, and J. Zhu, “Spectral and energy efficiency
tradeoff for massive MIMO,” IEEE Trans. Veh. Technol., vol. 67, no. 8,
pp. 6991-7002, Aug. 2018.

[10] C. He, B. Sheng, P. C. Zhu, X. H. You, and G. Y. Li, “Energy-
and spectral-efficiency tradeoff for distributed antenna systems with
proportional fairness,” IEEE J. Sel. Areas Commun., vol. 31, no. 5, pp.
894-902, May. 2013.

[11] M. F. Hanif, Z. Ding, T. Ratnarajah, and G. K. Karagiannidis, “A
minorization-maximization method for optimizing sum rate in the down-
link of non-orthogonal multiple access systems,” IEEE Trans. Signal
Process., vol. 64, no. 1, pp. 76-88, Jan. 2016.

[12] A. B. Rozario, and M. F. Hossain, “Hybrid TDMA-NOMA based M2M
communications over cellular networks with dynamic clustering and 3D
channel models,” in ISAECT, Rome, Italy, Nov. 2019, pp. 1-6.

[13] Z. Li, and J. Gui, “Energy-efficient resource allocation with hybrid
TDMA–NOMA for cellular-enabled machine-to-machine communica-
tions,” IEEE Access, vol. 7, pp.105800-105815, Jul. 2019.

[14] Z. Hadzi-Velkov, S. Pejoski, N. Zlatanov and R. Schober, “UAV-assisted
wireless powered relay networks with cyclical NOMA-TDMA,” IEEE
Wireless Communi. Lett., vol. 9, no. 12, pp. 2088-2092, Dec. 2020.

[15] K. Wang, W. Liang, Y. Yuan, Y. Liu, Z. Ma and Z. Ding, “User
clustering and power allocation for hybrid non-orthogonal multiple
access systems,” IEEE Trans. Veh. Technol., vol. 68, no. 12, pp. 12052-
12065, Dec. 2019.

[16] T. N. Do and B. An, “Optimal sum-throughput analysis for downlink
cooperative SWIPT NOMA systems,” in Proc. 2nd Int. Conf. Recent
Adv. Signal Process., Telecommun. Comput. (SigTelCom), Ho Chi Minh
City, Vietnam, Jan. 2018, pp. 85-90.

[17] M. Zeng, W. Hao, O. A. Dobre, and H. V. Poor, “Energy-efficient
power allocation in uplink mmWave massive MIMO with NOMA,”
IEEE Trans. Veh. Technol., vol. 68, no. 3, pp. 3000-3004, Mar. 2019.

[18] A. Zhou et al. “Multiobjective evolutionary algorithms: A survey of the
state of the art,” Swarm Evol. Comput., vol. 1, no. 1, pp. 32-49, Mar.
2011.

[19] R. T. Marler and J. S. Arora, “Survey of multi-objective optimization
methods for engineering,” Struct. Multidiscip. Optim., vol. 26, no. 6, pp.
369-395, Apr. 2004.

[20] O. Tervo, L. N. Tran, and M. Juntti, “Optimal energy-efficient transmit
beamforming for multi-user MISO downlink,” IEEE Trans. Signal
Process., vol. 63, no. 20, pp. 5574-5588, Oct. 2015.

[21] Z. Chen, Z. Ding, P. Xu, and X. Dai, “Optimal precoding for a
Qos optimization problem in two-user MISO-NOMA downlink,” IEEE
Commun. Lett., vol. 20, no. 6, pp. 1263-1266, Apr. 2016.

[22] M. S. Ali, H. Tabassum, and E. Hossain, “Dynamic user clustering and
power allocation in non-orthogonal multiple access (NOMA) systems,”
IEEE Access, vol. 4, pp. 6325-6343, Aug. 2016.

[23] W. Hao, M. Zeng, Z. Chu and S. Yang, “Energy-efficient power allo-
cation in millimeter wave massive MIMO with non-orthogonal multiple
access,” IEEE Wireless Commun. Lett., vol. 6, no. 6, pp. 782-785, Dec.
2017.

[24] J. R. Uijlings, K. E. van de Sande, T. Gevers, and A. W. Smeulders,
“Selective search for object recognition,” Int. J. Comput. Vis., vol. 104,
no. 2, pp. 154-171, Sept. 2013.


