
This is a repository copy of Learning Aligned Vertex Convolutional Networks for Graph
Classification.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/181652/

Version: Accepted Version

Article:

Cui, Lixin, Bai, Lu, Xiao, Bai et al. (2 more authors) (2021) Learning Aligned Vertex
Convolutional Networks for Graph Classification. IEEE Transactions on Neural Networks
and Learning Systems. ISSN 2162-237X

https://doi.org/10.1109/TNNLS.2021.3129649

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 1

Learning Aligned Vertex Convolutional Networks

for Graph Classification
Lixin Cui, Lu Bai, Xiao Bai, Yue Wang, Edwin R. Hancock, IEEE Fellow

Abstract—Graph Convolution Networks (GCNs) are powerful
tools for graph structure data analysis. One main drawback
arising in most existing GCN models is that of the over-smoothing
problem, i.e., the vertex features abstracted from existing graph
convolution operation have previously tended to be indistinguish-
able if the GCN model has many convolutional layers (e.g., more
than 2 layers). To address this problem, in this paper we propose a
family of Aligned Vertex Convolutional Network (AVCN) models
that focuses on learning multi-scale features from local-level
vertices for graph classification. This is done by adopting a
transitive vertex alignment algorithm to transform arbitrary
sized graphs into fixed-sized grid structures. Furthermore, we
define a new aligned vertex convolution operation that can
effectively learn multi-scale vertex characteristics by gradually
aggregating local-level neighboring aligned vertices residing on
the original grid structures into a new packed aligned vertex.
With the new vertex convolution operation to hand, we propose
two architectures for the AVCN models to extract different
hierarchical multi-scale vertex feature representations for graph
classification. We show that the proposed models can avoid
iteratively propagating redundant information between specific
neighboring vertices, restricting the notorious over-smoothing
problem arising in most spatial-based Graph Convolution Net-
work (GCN) models. Experimental evaluations on benchmark
datasets demonstrate the effectiveness.

Index Terms—Graph Neural Networks, Graph Convolution
Networks, Vertex Convolution, Graph Classification

I. INTRODUCTION

There have been increasing interests to generalize Convolu-

tional Neural Networks (CNNs) [1], [2], [3], [4], [5] to graph

domains. These neural networks on graphs are now widely

known as Graph Convolutional Networks (GCNs) [6], [7], [8],

[9], [10], and have been proven effective to extract highly

meaningful statistical features from graph structures [11]. The

aim of this work is to develop novel GCN models to learn

rich features of local-level vertices for graph classification.

A. Literature Review

Broadly speaking, most existing GCN models are developed

based on one of two strategies, i.e., either a) spectral or b)

Lixin Cui (cuilixin@cufe.edu.cn), Lu Bai (Corresponding Author: bailuc-
s@cufe.edu.cn), and Yue Wang (wangyuecs@cufe.edu.cn) are with Engi-
neering Research Center of State Financial Security, Ministry of Education,
Central University of Finance and Economics, Beijing, 102206, China.
Xiao Bai is with School of Computer Science and Engineering, Beihang
University, Beijing, China (baixiao@buaa.edu.cn). Edwin R. Hancock (ed-
win.hancock@york.ac.uk) is with Department of Computer Science, Universi-
ty of York, York, UK. This work is supported by the National Natural Science
Foundation of China (Grant no.61976235 and 61602535), the program for
innovation research in Central University of Finance and Economics, and the
Emerging Interdisciplinary Project of CUFE.

spatial strategy. Approaches based on the former strategy em-

ploy the Fourier domain properties of the convolution operator

based on graph spectral theory [12], [13], [14], [15]. However,

since most approaches based on the spectral strategy request

the graph sizes to be identical, these approaches can not

accommodate arbitrary sized graphs and thus different Fourier

bases. Hence, the spectral-based approaches are usually uti-

lized for vertex classification. Approaches based on the latter

strategy, on the other hand, extend the standard convolution

operation of classical CNN models into graph structures by

propagating feature information between spatially adjacent

vertices [16], [17], [18]. Since spatial-based approaches do not

demand graph structures to be the same sizes, these approaches

can be directly adopted for graph classification. However, the

performance of most spatial-based approaches are relatively

low on graph classification. The reason for this ineffective-

ness is that these approaches tend to directly compute the

summation of the feature information of local-level vertices

from the convolution operation as global characteristics of

graph structures through a SumPooling layer. Hence, the

local topological information residing on the vertices may be

substantially discarded.

To address this drawback of the GCN models associated

with SumPooling, a number of spatial-based GCN models

focusing on local-level vertex information have been proposed.

For example, Niepert et al. [19] have proposed a novel GCN

model by re-ordering the vertices and converting each graph

into a fixed-sized vertex grid structure, where standard one-

dimensional CNNs can be directly used. Zhang et al. [20]

have developed a Subgraph Convolutional Network model

by re-ordering the vertices and constructing the fixed-sized

expansion subgraph based grid structure rooted at each vertex,

so that a standard one-dimensional convolution can be directly

slid over the subgraph based grid structures to extract multi-

scale features for the corresponding rooted vertices. Similarly,

Zhang et al. [21] have proposed a Deep Graph Convolutional

Neural Network (DGCNN) model, that reserves rich local

information of vertices by using global characteristics of

graph topologies. To this end, a SortPooling layer is proposed

to construct fixed-sized vertex grid structures through the

unordered vertex features abstracted from convolution layers.

Then traditional convolution operations can be directly per-

formed on the grid structures to further extract the multi-

scale feature information. These aforementioned approaches

focus more on local-level vertex features and achieve bet-

ter performance than most existing GCN models for graph

classification. However, they tend to sort the vertex order

based on each individual graph. As a result, they can not

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 2

easily reflect accurate structural correspondence information

between graphs. Furthermore, these methods also suffer from

the problem of information loss. This usually arises when they

operate with a fixed-sized vertex grid structure and thus low

rank vertices are discarded.

To address the drawbacks of the aforementioned spatial-

based GCN models, Bai et al. [22], [23] have proposed a fam-

ily of Aligned-Spatial Graph Convolutional Network models

(i.e., the ASGCN model [22] and its backtrackless version

BASGCN model [23]) to learn local-level vertex features

through aligned fixed-sized grid structures. The grid structures

encapsulate the transitive correspondence information between

graphs, and are constructed using the original vertex feature

and vertex adjacency matrices without discarding vertices.

Thus, unlike existing spatial-based GCN models, both ASGCN

and BASGCN models can either reduce the information loss

problem or better reflect the structural correspondence infor-

mation. Unfortunately, all the graph convolution operations

of the DGCNN, ASGCN and BASGCN models rely on in-

formation propagation between neighboring vertices indicated

by the adjacency matrix. As a result, these models may

suffer from the over-smoothing problem [6], i.e., the vertex

features abstracted from the graph convolution operation tend

to be more and more similar and are indistinguishable after

multiple convolutional layers [24]. In other word, these GCN

models may fail to capture diversified local vertex information,

influencing their performance on graph or vertex classification

problems. Generally speaking, developing effective GCN ap-

proaches for graphs is still a challenging problem.

B. Contributions of This Work

The main objective of this paper is to overcome the

drawbacks of the aforementioned spatial-based GCN methods

by proposing novel Aligned Vertex Convolutional Network

(AVCN) models for graph classification. To inherit the effec-

tiveness of the aforementioned GCN models, the starting point

is to convert arbitrary sized graphs into fixed-sized aligned

vertex-based grid structures through the associated transitive

vertex alignment procedure of the aforementioned ASGCN

and BASGCN models [22], [23], replacing the original vertex

feature and adjacency matrices of each graph. This not only

guarantees the consistency between the spatial positions and

structural correspondences of vertices over all graphs, but

also provides a way of developing a novel aligned vertex

convolution operation to abstract multi-scale aligned vertex

features from the grid structures. Overall, the main novel

contributions of this paper are threefold.

First, with the aforementioned fixed-sized aligned vertex-

based grid structure of each graph to hand, we develop

a new aligned vertex convolution operation. This is done

by adopting a fixed-sized one-dimensional convolution filter

on the grid structure which slides across the entire set of

ordered aligned vertices. We show that the proposed vertex

convolution operation can effectively learn multi-scale vertex

characteristics by gradually aggregating together similar local-

level aligned vertices residing on the original grid structure as

a new aligned vertex, and thus produce a new packed grid

structure with a reduced number of packed aligned vertices.

By contrast, the convolution operation of most existing spatial-

based GCN models (e.g., the ASGCN as well as the DGC-

NN models) extract new characteristics for each vertex by

repeatedly propagating redundant vertex feature information

between its neighboring vertices indicated by the adjacency

matrix, and thus remain the original vertex numbers. As a

result, the resulting AVCN models associated with the new

vertex convolution operation can avoid iteratively propagating

redundant information between specific neighboring vertices

and significantly restrict the aforementioned over-smoothing

problem. Moreover, since the packed aligned vertex after each

convolution operation is extracted by aggregating the aligned

vertices residing on the original grid structures with specific

spatial positions. The resulting AVCN models can maintain

the consistency between the spatial positions and structural

correspondences for the extracted grid structures after the con-

volution operation, reflecting precise structural correspondence

information between graphs during the convolution operation.

Second, to extract different hierarchical multi-scale feature

representations of the aligned vertices, we propose two ar-

chitectures for the AVCN models associated with the new

vertex convolution operation. Both architectures are defined

associated with a family of parallel stacked vertex convolution

layers consisting with multiple vertex convolution filters of

different sizes (see Figure 4 for more details). As a result, the

proposed AVCN models can reflect rich hierarchical multi-

scale local-level vertex features of each graph structure.

Third, we empirically investigate the performance of the

proposed models on graph classification problems. Experi-

ments on benchmark datasets demonstrate the effectiveness.

This paper is organized as follows. Section II reviews

related works. Section III presents how to convert arbitrary

sized graphs into fix-sized aligned vertex grid structures.

Section IV defines the new AVCN models. Section V provides

experimental evaluations. Section VI gives conclusions.

II. REVIEW OF RELATED SPATIAL-BASED GCN MODELS

We commence by briefly reviewing two representative

spatial-based GCN models described elsewhere in the liter-

ature. To this end, we introduce the associated graph convo-

lution operations for the Deep Graph Convolutional Neural

Network (DGCNN) model [21] as well as the Aligned-Spatial

Graph Convolutional Network (ASGCN) model [22]. To com-

mence, we assume a sample graph G(V,E) drawn from a

graph set G, where V is the set of vertices, E is the set

of edges, X = (x1, x2, ..., xn) ∈ R
n×c encapsulates the c-

dimensional (i.e., n = |V |) feature vectors of the n vertices

from G, and A ∈ R
n×n is the vertex adjacency matrix. Note

that, A can be either a weighted or an un-weighted adjacency

matrix. If G is a vertex attributed graph, X can be the one-

hot encoding matrix associated with the vertex labels. If G

is an un-attributed graph, we adopt the vertex degrees as the

corresponding labels of vertices.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 3

A. The DGCNN Model

With the sample graph G(V,E) to hand, the spatial graph

convolution operation of the DGCNN model is defined as

Z = f(D̃−1ÃXW), (1)

where Ã = A+ I represents the adjacency matrix of G asso-

ciated with pre-added self-loop connections, D̃ refers to the

degree matrix of Ã (Ãi,i =
∑

j Ãi,j), W ∈ R
c×c

′

represents

the matrix of trainable parameters for graph convolution, f is

a nonlinear activation function, and Z ∈ R
n×c

′

is the output.

The above graph convolution procedure is mainly comprised

of four computational steps. The first step computes the matrix

product XW which converts the c-dimensional feature vector

of each vertex into a new c
′

-dimensional feature vector, where

all vertices share the same filter weights W . The second step

computes the matrix product ÃY (where Y := XW) which

propagates the feature information between adjacent vertices.

Here, the i-th row (ÃY)i,: represents the extracted features

of the i-th vertex, and corresponds to the summation of Yi,:

itself and Yj,: from the neighbor vertices of the i-th vertex. The

third step multiplies the matrix ÃY by the inverse of D̃ (i.e.,

D̃−1) to normalize each row of ÃY . This step can be seen as

the process of keeping a fixed feature scale after the vertex

feature propagation (i.e., the graph convolution operation),

by assigning equal weights D̃i,i between the i-th vertex and

its neighbouring vertices. The final step applies a nonlinear

activation function and outputs the convolution result.

Remarks: Eq.(1) shows that the associated spatial graph

convolution procedure of the DGCNN model fails to distin-

guish the importance of different vertices when it performs the

convolution operation. The reason for this is that the feature

transformations of different vertices rely on the same filter

weight matrix W . Thus, the trainable weight matrix W of the

DGCNN model can not directly affect the feature aggregation

process. Actually, this drawback also appears in other spatial-

based GCN models, such as the Neural Graph Fingerprint Net-

work (NGFN) model [17] the Diffusion Convolution Neural

Network (DCNN) model [18], and the Quantum Spatial Graph

Convolutional Neural Network (QSGCNN) model [25]. The

convolution procedures of these GCN models also follow a

similar form with that of the DGCNN model. The trainable

parameters of the underlying convolution operations are shared

by each individual vertex. Moreover, these spatial-based GCN

models suffer from over-smoothing, i.e., the vertex features

abstracted from the graph convolution operation tend to be

indistinguishable or similar if the GCN model has more than

2 convolutional layers [6], [24]. Since the required graph

convolution operation of these GCN models relies on the

feature information propagation between neighboring vertices

indicated by the vertex adjacency matrix Ã. This process may

propagate redundant information between adjacent vertices,

taking place multiple times over the multiple convolutional

layers. Clearly, these two drawbacks limit the effectiveness of

state-of-the-art spatial-based GCN models. ✷

B. The ASGCN Model

To avoid ignoring the influence of different vertices in the

aforementioned spatial-based GCN models, we have develope-

d the ASGCN model that can adaptively discriminate vertex

importance [22]. For the graph G(V,E), we commence by

converting its vertex feature matrix X and its associated vertex

adjacency matrix Ã into the fixed-sized aligned vertex grid

structure X̄ ∈ R
M×c (i.e., the aligned grid vertex feature

matrix) and the associated aligned grid vertex adjacency matrix

Ā ∈ R
M×M . Here the vertices of the same spatial position

are also transitively matched (see details in Section III). The

spatial graph convolution operation of the ASGCN model is

defined as the following form

Zh = f(D̄−1Ā

c∑

j=1

(X̄ ⊙Wh):,j). (2)

Here, f is a nonlinear activation function, Wh ∈ R
M×c is

the trainable graph convolution parameter matrix of the h-th

convolution filter of filter size M×1 and channel number c, ⊙
is the element-wise Hadamard product, D̄ is the degree matrix

of Ā, and Z ∈ R
M×1 is the output matrix.

We observe that the mathematical form of the graph con-

volution operation for the ASGCN model in Eq.(2) is similar

to that for the DGCNN model defined in Eq.(1), and also

consists of four main corresponding computational steps. The

only difference between the two convolution operations is their

first step. Specifically, for the DGCNN model, the first step

of its convolution operation takes the form Y := XW and

maps the c-dimensional feature vector of each vertex into

a new c
′

-dimensional feature vector through the same filter

weight matrix W ∈ R
c×c′ . In contrast, the ASGCN model

takes the form Ȳ :=
∑c

j=1 (X̄ ⊙Wh):,j as the first step of

its convolution opeartion. The procedure
∑c

j=1 (X̄ ⊙Wh):,j
first calculates the element-wise Hadamard product between

X̄ and Wh, and then compute the sum of the columns of

X̄ ⊙Wh) as Ȳ . The resulting matrix Ȳ can be considered as

a new weighted aligned vertex grid structure with one vertex

feature channel, and the i-th aligned grid vertex residing on the

i-th row of X̄ is assigned by a different weighted vector wi,:.

Unlike the DGCNN model, the trainable parameter matrix Wh

of the ASGCN model has a direct impact on the process of

the vertex feature aggregation.

Remarks: Although the graph convolution procedure of the

ASGCN model indicated by Eq.(2) addresses the shortcoming

of overtaking the importance of different vertices in most

existing spatial-based GCN models, it also suffers from over-

smoothing. Similar to the DGCNN model, the convolution

operation of ASGCN also relies on vertex feature information

aggregations through its associated aligned grid vertex adja-

cency matrix Ā, and this influences its effectiveness. On the

other hand, for the backtrackless version of the ASGCN model

(i.e., the BASGCN model [23]), the convolution operation

takes the same as Eq.(2). The only difference between the

two models is that the BASGCN model further transforms

the original undirected adjacency matrix Ā into the directed

adjacency matrix to restrict the tottering problem arising in the

ASGCN model (see the previous work [23] for more details).

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 4

Graph Vertex AlignmentThe Set of Original Graphs

Align to

R𝑝;1𝑘

R𝑝;𝑖𝑘
R𝑝; 𝑉𝑝𝑘

𝜇1𝑘 𝜇𝑗1𝑘 𝜇𝑀1𝑘

…
…

… …

The Set of Prototype Representations

𝑪𝒑𝒌(𝒊, 𝒋)∈ (𝟎, 𝟏)

A sample graph Gp(Vp, Ep) Prototype Representations

Perform k-meansk-dimensional vectorial

vertex representations The k-level correspondence matrix

Fig. 1. Based on the previous work in [22], the procedure of transitively aligning vertices and computing the vertex correspondence matrix consists of three
sequential computational stages. (1) We commence by representing the n vertices of all graphs in G as the k-dimensional vectorial representations Rk =
{Rk

1 ,R
k
2 , . . . ,R

k
n}. (2) We adopt the classical lite k-means clustering method [26] to divide the k-dimensional vectorial representations Rk of all graphs into

M clusters. We compute the centroid point vectors of the M clusters and employ them as a set of prototype representations PR
k = {µk

1 , · · · , µ
k
j , · · · , µ

k
M},

where each µk
j is the centroid point of the j-cluster. (3) We align the k-dimensional vectorial vertex representations of each graph Gp ∈ G to the prototype

representations PR
k and compute a k-level correspondence matrix Ck

p to record the correspondence information between Gp and PR
k . Let vi ∈ Vp be

the i-th vertex of graph Gp. If the j-th prototype representation µk
j of PR

k is the nearest one to the k-dimensional vectorial representation Rk
p;i of vertex

vi ∈ Vp regarding the Euclid distance in the vectorial principle space (i.e., Rk
p;i belongs to the j-th cluster identified in the second step), we say that the i-th

vertex vi of Gp is aligned to µk
j . In this case, we set Ck

p (i, j) = 1 to indicate the structure correspondence.

As a result, the performance of the BASGCN model may also

be influenced by over-smoothing. In this paper, we propose a

new variant of the Aligned Vertex Convolution Network model

to overcome the above problems. ✷

III. CONSTRUCT ALIGNED VERTEX GRID STRUCTURES

To inherit the effectiveness of existing GCN models, we

propose to define novel AVCN models based on the associated

aligned vertex grid structures of the aforementioned ASGCN

model [22]. In this section, we briefly introduce how to convert

arbitrary sized graphs into the grid structures.

A. The Transitive Vertex Alignment Method

We commence by reviewing the transitive vertex alignment

method developed in the previous work [22]. The main idea

of this method is based on aligning the vertices of each graph

to a family of prototype representations. Since the prototype

representations are identified by locating the M centroids

over the vectorial vertex representations of all graphs under

evaluation using the classical k-means clustering method. The

prototype representations can encapsulate main characteristics

of the set of graphs under study. Specifically, assume the set

of graphs is G = {Gp(Vp, Ep), p = 1, ..., N}, where p is

the graph index, Vp is the vertex set of the sample graph Gp,

and Ep is the edge set. Fig. 1 exhibits the detailed alignment

procedure for computing the vertex correspondence matrix

based on the transitive vertex matching method.

Like our previous work in [22], we utilize the k-

dimensional depth-based (DB) representations as the original

k-dimensional vectorial vertex representations Rk to calculate

the family of k-dimensional prototypes. Although, one can

adopt any other method to initialize the vectorial representa-

tions of vertices [27], [15]. The DB representation is computed

by gauging the entropy on the layered expansion subgraph

rooted at each vertex [28]. Thus, the DB representation can

contain significant entropy-based content flow rooted from

each local vertex to the global structure of each original graph.

Fig.2 shows the details of calculating the DB representation.

B. The Aligned Vertex-based Grid Structure

We now illustrate how to convert arbitrary-sized graphs

into fixed-sized aligned vertex-based grid structures, where

the vertices at the same corresponding spatial position are

also transitively matched to each other. For the set of graphs

G defined earlier, assume Xp ∈ R
|Vp|×c and Ãp ∈ R

|Vp|×n

are the original vertex feature matrix and the original vertex

adjacency matrix (with the added self-loops) of a sample graph

Gp(Vp, Ep) ∈ G, respectively. With the k-level correspon-

dence matrix Ck
p of Gp based on the definition in Section III-A

to hand, we calculate the k-level aligned vertex feature matrix

for Gp as

X̄k
p = (Ck

p)
TXp, (3)

where X̄k
p ∈ R

M×c, the rows of X̄K
p are indexed by the corre-

sponding prototypes in PR
k, and each row of X̄k

p represents

the vectorial feature of an aligned vertex. We compute the

k-level aligned vertex adjacency matrix for Gp as

Āk
p = (Ck

p)
T (Ãp)(C

k
p), (4)

where Āk
p ∈ R

M×M . Both the rows and the columns of Āk
p

are indexed by the same prototypes in PR
k. The matrix Āk

p

can also be viewed as the k-level aligned vertex feature

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 5

1 − 𝑙𝑎𝑦𝑒𝑟 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ 𝐺𝑝;𝑖1
𝑣𝑒𝑟𝑡𝑒𝑥 𝑣𝑖

𝑆ample graph 𝐺𝑝
DB𝑝;𝑖k = 𝐻𝑆 𝐺𝑝;𝑖1 , 𝐻𝑆 𝐺𝑝;𝑖2 , … , 𝐻𝑆 𝐺𝑝;𝑖k 𝑇

…

…

DB representation

2 − 𝑙𝑎𝑦𝑒𝑟 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ 𝐺𝑝;𝑖2 3 − 𝑙𝑎𝑦𝑒𝑟 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ 𝐺𝑝;𝑖3 𝑘 − 𝑙𝑎𝑦𝑒𝑟 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ 𝐺𝑝;𝑖k
Fig. 2. The procedure to calculate the DB representation of a vertex [28]. Specifically, assume a sample graph Gp(Vp, Ep) ∈ G marked by black color,
vi is its i-th vertex (marked by red color). For vi, we first compute its 1-th order neighborhood set N 1

i as N 1
i = {vj ∈ Vp | ds(vi, vj) ≤ 1}, where

ds(vi, vj) represents the shortest path length between j-th vertex vj and i-th vertex vi. The resulting 1-layer expansion subgraph G1
p;i rooted at vi is defined

as the substructures (surrounded by the red broken line) associated with the vertices in N 1
i and the edges between the vertices from the original graph Gp.

Analogously, we also abstract the 2-layer subgraph G2
p;i (surrounded by the green line) and the 3-layer expansion subgraph G3

p;i (surrounded by the blue

broken line), respectively. Consequently, we establish a family of k̃-layer expansion subgraphs rooted at vi (k̃ ∈ [1, k]). Clearly, if k is greater than the length
of the longest shortest path rooted from vi to the remaining vertices, the k-layer expansion subgraph Gk

p;i is the global graph Gp itself. As a result, the

k-dimensional DB representation of vi is defined as DBk
p;i = {HS(G

1
p;i), · · · , HS(G

k̃
p;i), · · · , HS(G

k
p;i)]

T , where HS(·) is the classical Shannon entropy

of a subgraph based on classical random walks [29].

matrix of Gp, where each row of Āk
p contains the adjacency

information of a corresponding aligned vertex to the remaining

aligned vertices.

To construct the fixed-sized grid structure of each graph

Gp ∈ G based on X̄k
p and Āk

p , we need to determine the

spatial position of corresponding aligned vertices that are all

indexed by the same set of prototype representations PR
k.

To this end, Bai et al., [22] have proposed to compute the

Gaussian kernel-based similarity [30] between the prototype

representations in PR
k, and sort the prototypes based on the

summation of the similarities between each prototype and the

remaining ones. Then we can permute the elements of X̄k
p

and Āk
p accordingly, i.e., we determine the spatial positions

of the aligned vertices based on the orders of their indexed

prototypes. The above process is equivalent to sorting the

prototypes in order of average similarity to the remaining

ones. As a result, the aligned vertices indexed by the similar

prototypes will be assigned to the spatial positions with close

spatial proximity.

As stated in Section III-A, we use the k-dimensional DB

representations as the vectorial vertex representation to con-

struct the family of prototype representations PR
k. Here, the

DB representation is computed by measuring the entropies on

a family of k̃-layer (k̃ ≤ k) expansion subgraphs rooted at each

vertex [28]. When we vary the largest layer k of the expansion

subgraphs from 1 to K (i.e., k ≤ K), we can compute two

kinds of aligned vertex-based grid structures associated with

the k-level aligned vertex feature matrix X̄k
p ∈ R

M×c and

the k-level aligned vertex adjacency matrix Āk
p ∈ R

M×M ,

respectively. Specifically, for each graph Gp, we compute the

final aligned vertex feature-based grid structure as

X̄F
p =

K∑

k=1

X̄k
p

L
, (5)

and the final aligned vertex adjacency information-based

grid structure as

X̄A
p = (D̄p)

−1
Āp, (6)

where Āp =
∑K

k=1

Āk
p

L
is the mixed aligned vertex adja-

cency matrix, and D̄p is its degree matrix, X̄F
p ∈ R

M×c,

X̄A
p ∈ R

M×M , and the i-th rows of X̄F
p and X̄A

p correspond

to the feature vector of the i-th aligned grid vertex. The

aligned vertex-based grid structure X̄F
p ∈ R

M×c preserves the

original vertex feature matrix. The aligned vertex-based grid

structure X̄A
p ∈ R

M×M encapsulates the original adjacency

information between each vertex to the remaining vertices as

well as the vertex transition information arising in the DGCNN

and ASGCN model. Moreover, (D̄p)
−1

Āp indicates how the

vertex features propagate between neighboring vertices during

the convolution process.

Remarks: Since both the aligned vertex-based grid struc-

tures X̄F
p and X̄A

p are computed by converting the original

feature and adjacency information of each vertex vp ∈ Vp to

that of the new aligned vertices, they preserve the original

vertex feature and structural information of Gp. This reduces

the aforementioned information loss problem of existing graph

convolutional network models [19], [21]. Moreover, since

both X̄F
p and X̄A

p are computed by employing the transitive

alignment procedure, they are indexed by the prototype rep-

resentations from PR
k with consistent orders. Thus, we can

guarantee that the aligned grid vertices at the same spatial

position are also transitively matched to each other.

IV. THE ALIGNED VERTEX CONVOLUTIONAL NETWORKS

In this section, we define the new Aligned Vertex Con-

volutional Network (AVCN) models for graph classification.

We employ the transitive alignment information over a family

of graphs and convert arbitrary sized graphs into fixed-sized

vertex aligned grid structures. We then define an aligned

vertex convolution operation by using a set of fixed-sized

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 6

TABLE I
IMPORTANT TERMS AND NOTATIONS

Symbol Definitions

node e the e-th vertex

Zt
e,h the h-th feature channel of vertex (e) in layer t

W t,h,s the filter that maps to the h-th feature channel in

layer t from the s-th feature channel in layer t-1

W
t,h,s
j

the j-th element of the filter that maps to the h-th

feature channel in layer t from the s-th feature

channel in layer t-1

bt,h the bias of the h-th filter in layer t

σ the activate function, e.g., Relu function

ct−1 the number of filters in layer t-1

one-dimensional convolution filters on the aligned grid struc-

ture. With the new vertex convolution operation to hand, the

proposed model can extract the original aligned vertex grid

structure as a new grid structure with a reduced number of

packed aligned vertices. As a result, the extracted multi-scale

vertex features learned through the convolutional operation is

packed into the new grid structure. Finally, we employ the

Softmax layer to read-out the abstracted vertex features and

predict the categories of graph structures.

A. The Aligned Vertex Convolution Operation

In this subsection, we develop a new AVCN model that

learns local-level vertex features for graph classification. This

model is defined by employing a set of fixed-sized one-

dimensional convolution filters on the predefined aligned

vertex-based grid structures and sliding the filter over the

ordered aligned vertices to learn features, in a manner anal-

ogous to the standard convolution operation. Specifically, for

each graph G(V,E) ∈ G defined earlier, we first compute

its associated aligned vertex-based grid structure X̄ , based on

the definition in Section III-B. Note that, X̄ can be either

the aligned vertex feature-based grid structure X̄F
p ∈ R

M×c

(i.e., M aligned vertices each with c feature channels) or

the aligned vertex adjacency information-based grid structure

X̄A
p ∈ R

M×M (i.e., M aligned vertices each with M feature

channels). We denote the element of X̄ in the e-th row and

s-th column as X̄e,s, i.e., the s-th feature channel of the e-th

aligned vertex. We pass X̄ to the convolution layer. Assume

the size of the receptive field is m, i.e., the size of the one-

dimensional convolution filter is m, the vertex convolution

operation associated with 1-stride takes the form

Ze,h = σ(

c∑

s=1

(

m∑

j=1

W
h,s
j X̄e+j−1,s) + bh), (7)

where Ze,h is the element in the e-th row and h-th column of

the new grid structure Z after the convolution operation. The

row index e satisfies the condition e ≤ M −m+ 1. The j-th

convolution filter element W
h,s
j maps the s-th feature channel

of X to the h-th feature channel of Z, bh is the bias of the

h-th convolution filter, and σ is the activation function.

An example of the vertex convolution operation defined by

Eq.(7) is shown in Fig. 3. The vertex convolution operation

consists of two computational steps. In the first step, the

convolution filter
∑c

s=1(
∑m

j=1 W
h,s
j X̄e+j−1,s) is applied to

map the e-th aligned vertex X̄e,: as well as its neighbor vertices

X̄e+j−1,: (j = 2, 3) into a new feature value, associated

X∈R M×c

X1,:

X2,:

X3,:

X4,:

X5,:

Z∈R (M-m+1)×H

channel: 1, …s,…,c
convolution filter

with size: m=3

𝑤𝑗=1ℎ,𝑠𝑤𝑗=2ℎ,𝑠𝑤𝑗=3ℎ,𝑠
weight sharing for each filter

∑𝑠=1𝑐 (∑𝑗=1𝑚 𝑤𝑗ℎ,𝑠 𝑋𝑒+𝑗−1,𝑠)

X2,:

(3) A sample of the e-th

vertex (e=2)

(2) The convolution

filter with filter size 3

(1) The vertex convolution operation

Z1,:

Z2,:

Z3,:

Fig. 3. The procedure of the vertex convolution.

with all the c (for X̄F
p) or M (for X̄A

p) feature channels of

these vertices. Fig. 3.(1) illustrates this process. Here, assume

the vertex index e = 2, the convolution filter size m = 3,

and we focus on the 2-nd aligned vertex X̄2,: of X̄ . The

convolution filter
∑c

s=1(
∑m

j=1 W
h,s
j X̄2+j−1,s) represented by

the red lines first maps the s-th feature channels of the 2-nd

aligned vertex X̄2,: as well as its neighbor vertices X̄3,: and

X̄4,: into a new single value by
∑m

j=1 W
h,s
j X̄2+j−1,s, and

then sums up the values computed through all the channels as

the h-th feature channel of Z2,:. Moreover, we need to slide

the convolution filter over all the aligned vertices, and this

requires three convolution filters represented by the green, red

and blue lines respectively. The weights for the three filters are

shared, i.e., they are in fact the same filter. Finally, the second

step σ(X̄h + bh), where X̄h :=
∑c

s=1(
∑m

j=1 W
h,s
j Xe+j−1,s),

applies the Relu function associated with the bias bh and

outputs the final result as Ze,h.

To further extract the multi-scale features for a graph

associated with its aligned vertex-based grid structure X̄ , we

stack multiple vertex convolution layers defined as follows

Zt
e,h = σ(

c∑

s=1

(

m∑

j=1

W
t,h,s
j Zt−1

e+j−1,s) + bt,h), (8)

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 7

convolution filter

with size: m=3

convolution filter

with size: m=5

Stacked Vertex Convolution LayersGrid Structures

First layer Second layer

T
h
e alig

n
ed

 v
ertex

 featu
re

-b
ased

 g
rid

 stru
ctu

re

Concatenate

Dense Layer

S
o

ftM
ax

Fig. 4. An example of the General ACVN architecture.

where t is the stack label, Z0 is the input aligned vertex-

based grid structure X̄F
p ∈ R

M×c or X̄A
p ∈ R

M×M , and

the corresponding notations of the symbols are listed in

Table I. After a number of vertex convolution operations, we

can employ the Softmax layer to read the extracted features

computed from the vertex convolution layers and predict the

graph class for graph classifications.

For the vertex convolution operation defined by Eq.(7)

and Eq.(8), since the spatial positions of the aligned vertices

residing on the required aligned vertex-based grid structure

are indexed by the prototype representations, that represent the

main characteristics of the aligned vertices and are rearranged

based on their interior global similarities (see Section III-B

for details). The proposed vertex convolution operation can be

seen as the process to gradually aggregate the similar local-

level aligned vertices as a new extracted aligned vertex.

B. The Architectures of the AVCN Model

In this subsection, we define the architectures of the pro-

posed AVCN models associated with the new aligned vertex

convolution operation defined in Section IV-A. We propose

two variants of the AVCN model, namely a) the General

ACVN model based on the aligned vertex feature-based grid

structure, together with b) the Hybrid AVCN model based

on the aligned vertex features and also the aligned vertex

adjacency grid structures. We apply these two architectures

to graph classification problems.

The General AVCN model: For the General AVCN model,

we commence by converting each graph G(V,E) ∈ G into

the fixed-sized aligned vertex feature-based grid structure X̄F
p .

To extract different hierarchical multi-scale feature represen-

tations for the aligned vertices, we input the grid structure

X̄F
p of each graph Gp to a family of parallel stacked vertex

convolution layers associated with different convolution filter

sizes. The architecture of the General AVCN model consists

of three convolution layers and is defined as

C
1:f :(s1;s2;...;sf)
F :k − C

2:f :(s1;s2;...;sf)
F :k − C

3:f :(s1;s2;...;sf)
F :k − F f

u ,

(9)

where C
t:f :(s1;s2;...;sf)
F :k denotes the t-th (t = 1, 2 or 3) vertex

convolution layer consisting of f parallel vertex convolution

filters each with k channels. The filter sizes of each layer are

s1, s2, . . ., sf respectively and satisfy s1 < s2 < . . . < sf .

The subscript F of C
l:f :(s1;s2;...;sf)
F :k indicates that the convolu-

tion operation is based on the aligned vertex feature-based grid

structure X̄F
p . Finally, F f

u denotes the dense layer consisting

of f parallel fully-connected layers each with u hidden units,

where each full-connected layer is added after a corresponding

convolution filter of the last stacked convolution layer. An

example of the architecture

C
1:2:(3;5)
F :5 − C

2:2:(3;5)
F :5 − F 2

6

for the proposed General AVCN model is shown in Fig. 4.

Here, each t-th vertex convolution layer C
t:2:(3;5)
F :5 (t = 1 or

2) has two parallel convolution filters of sizes 3 and 5, the

number of channels for each filter is 5, and the stride of each

filter is 1. With the extracted patterns learned from the parallel

stacked vertex convolution layers to hand, we add the dense

layer F 2
6 consisting with 2 parallel fully-connected layers after

the final vertex convolution layer. Finally, a Softmax layer is

added after the dense layer to learn the graph class. ✷

Note that, since the convolution operation of the General

AVCN model is based on the aligned vertex feature-based

grid structure X̄F
p that only encapsulates the vertex feature

information. Unlike the existing DGCNN and ASGCN models

that can propagate the vertex feature information through the

vertex adjacency matrix during the convolution operation, the

proposed General AVCN model can not reflect the topological

information residing on the adjacency matrix. To address this

shortcoming, we propose a Hybrid AVCN model as follows.

The Hybrid AVCN model: For the proposed Hybrid AVCN

model, we commence by converting each graph G(V,E) ∈ G

into the aligned vertex feature-based grid structure X̄F
p as

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 8

convolution filter

with size: m=3

convolution filter

with size: m=5

First layer Second layer

T
h
e alig

n
ed

 v
ertex

 featu
re-b

ased
 g

rid
 stru

ctu
re

S
o

ftM
ax

convolution filter

with size: m=3

convolution filter

with size: m=5

Stacked Vertex Convolution LayersGrid Structures

T
h

e alig
n

ed
 v

ertex
 ad

jacen
cy

 in
fo

rm
atio

n
-b

ased
 g

rid
 stru

ctu
re

Dense Layer

Concatenate

First layer Second layer

Concatenate

Concatenate

Fig. 5. An example of the Hybrid ACVN architecture.

well as the aligned vertex adjacency information-based grid

structure X̄A
p . To extract different hierarchical multi-scale

representations, for each graph Gp, we input its grid structures

X̄F
p and X̄A

p into two families of parallel stacked vertex

convolution layers, respectively. The architecture of the Hybrid

AVCN model consists of three convolution layers and is

defined as
{

C
1:f :(s1;s2;...;sf)
F :k − C

2:f :(s1;s2;...;sf)
F :k − C

3:f :(s1;s2;...;sf)
F :k

C
1:f :(s1;s2;...;sf)
A:k − C

2:f :(s1;s2;...;sf)
A:k − C

3:f :(s1;s2;...;sf)
A:k

}
F f
u ,

(10)

where each t-th (t = 1, 2 or 3) vertex convolution layer

C
t:f :(s1;s2;...;sf)
F :k or C

t:f :(s1;s2;...;sf)
A:k follows the same definition

of the General AVCN model defined by Eq.(9). As a result,

the Hybrid AVCN model can be seen as the model consisting

of two individual General AVCN models associated with the

grid structures X̄F
p and X̄A

p , respectively. However, unlike

the General AVCN model, after the last stacked convolution

layers, we propose to first concatenate the extracted patterns

from the same sized convolution filters of all different stacked

convolution layers from the two General AVCN models as

f sets of concatenated features, and then add the predefined

dense layer F f
u associated with f parallel fully-connected

layers. An example of the architecture
{

C
1:2:(3;5)
F :5 − C

2:2:(3;5)
F :5

C
1:2:(3;5)
A:5 − C

2:2:(3;5)
A:5

}
F 2
6

for the proposed Hybrid AVCN model is shown in Fig. 5.

Unlike the General AVCN model, the Hybrid AVCN model

can simultaneously capture either the original vertex feature

information or the topological information. ✷

C. Discussions of the AVCN Model

The proposed Aligned Vertex Convolution Network (AVC-

N) model has a number of novelties and advantages, that are

not available for most existing state-of-the-art GCN models.

These are listed in Table II and discussed as follows.

First, rather than pooling vertex features, we aggregate

them with an aligned multi-scale grid structure. The Neural

Graph Fingerprint Network (NGFN) model [17] as well as the

Diffusion Convolution Neural Network (DCNN) model [18]

both employ a SumPooling layer to directly compute the

summation of the local-level features of vertices abstracted

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 9

TABLE II
PROPERTIES OF DIFFERENT GCN MODELS.

Properties AVCN NGFN [17] DCNN [18] PSGCNN [19] DGCNN [21] ASGCN [22]

Focus More on Local Information Yes No No Yes Yes Yes

Encapsulate Structural Correspondence Information Yes No No No No Yes

Restrict Over-smoothing Problem Yes No No Yes No No
Preserve All Original Vertex Information Yes Yes Yes No No Yes

Discriminate Importance between Different Vertices Yes No No Yes No Yes

from the convolution layers as the global-level characteristics

of graph structures. By contrast, the proposed AVCN model

focuses more on learning local structural features through

the proposed aligned vertex-based grid structure. Specifically,

Fig. 3 implies that the associated vertex convolution operation

of the proposed AVCN model can convert the original aligned

vertex-based grid structure into a new packed grid structure,

by packing the aligned vertex features from the original grid

structure into the new grid structure. Thus, the new grid struc-

ture can be viewed as a new extracted aligned vertex-based

grid structure with a reduced number of aligned vertices. As a

result, the proposed AVCN model can gradually extract multi-

scale local-level vertex features through a number of stacked

vertex convolution layers, and encapsulate more significant

local-level structural information than the existing DCNN and

NGFN models based on SumPooling.

Second, our model ensures both consistent spatial and

consistent structural alignment of vertex features. Like the

proposed AVCN model, either the PATCHY-SAN Graph Con-

volution Neural Network (PSGCNN) model [19] or the Deep

Graph Convolution Neural Network (DGCNN) model [21]

needs to predetermine the vertex orders of each graph and

convert the graph into the fixed-sized vertex grid structure.

Unfortunately, both the PSGCNN and the DGCNN models

sort the vertex orders based on each individual graph structure,

ignoring the arrangement of consistent vertex correspondence

information between different graphs. By contrast, the pro-

posed AVCN model employs a transitive vertex matching

method to convert arbitrary sized graphs into fixed-sized

aligned vertex-based grid structures where the aligned vertices

on the same spatial position are also structurally aligned.

Moreover, the proposed AVCN can keep the consistency

between the spatial positions and structural correspondences

for the abstracted grid structures after the vertex convolution

operation. Thus, our AVCN model can always encapsulate the

structural correspondence information over all graphs during

the computational process of convolution operations.

Third, unlike the Aligned-Spatial Graph Convolution Net-

work (ASGCN) model [22] and the DGCNN model, our pro-

posed AVCN model can avoid over-smoothing vertex features

through a process of gradually multiscale aggregation. By

contrast, the ASGCN and DGCNN models rely on propagating

feature information between adjacent vertices, and in turn pro-

duce similar abstracted vertex features and fail to capture local

vertex information. On the other hand, as discussed previously,

the DGCNN and PSGCNN models also need to construct

fixed-sized vertex grid structures for graph classification. Both

methods may discard the vertices with lower ranking during

the construction process. Unlike the DGCNN and PSGCNN

models, the aligned vertex-based grid structures of our AVCN

model can preserve the original vertex features and vertex

adjacency information from original graphs. Thus, our AVCN

models address the drawback of information loss arising in

the DGCNN and PSGCNN models.

Fourth, our model does not unnecessarily discard vertex

features. Similar to the proposed AVCN model, the ASGC-

N model is also defined based on the fixed-sized aligned

vertex-based grid structure. Thus, ASGCN model can also

either reduce the information loss or overcome the neglect of

structural correspondence information arising in most existing

spatial-based GCN models. However, like the DGCNN model,

the associated convolution operation of the ASGCN mod-

el depends on propagating the feature information between

neighboring vertices indicated by the vertex adjacency matrix

and this process may propagate redundant feature information

between any pair of adjacent vertices for multiple times. As a

result, both the ASGCN and the DGCNN model suffer from

the notorious over-smoothing problem with multiple graph

convolution layers [6]. By contrast, the required vertex convo-

lution operation of the AVCN model can gradually aggregate

the neighboring local-level aligned vertices residing on the

original grid structures as a new packed aligned vertex, i.e.,

the proposed AVCN model can avoid iteratively propagating

redundant information between specific neighboring vertices

during the convolution operation process. Thus, the AVCN

model can significantly restrict the over-smoothing problem.

Fifth, our model can adaptively discriminate the importance

of vertices. the required vertex convolution operation of the

proposed AVCN model can be seen as an one-dimensional

standard convolution filter of the CNN on standard grid struc-

tures [1]. The AVCN model can thus assign the neighboring

aligned vertices a family of different parameter weights during

the convolution operation process. As a result, similar to the

ASGCN and PSGCNN models, the AVCN model can also

adaptively discriminate the importance of different vertices.

In this way it addresses the problem of ignoring the vertex

importance information, which arises in the spatial-based

NGFN, DCNN and DGCNN models.

Finally, the aligned grid structures of the AVCN model

are constructed by transitively aligning each original graph

to prototype representations that are identified by the classical

k-means clustering method. Although, the k-means method

needs to randomly select initial centers from the original vec-

torial DB representations of vertices over all graphs. This does

not influence the robustness of the resulting grid structures.

Because the associated transitive vertex alignment method is

based on the k-dimensional (k ≤ K) DB representations

and we need to perform the k-means method for K times

to construct the resulting grid structures.

V. EXPERIMENTS

In this subsection, we compare the performance of the pro-

posed AVCN models to state-of-the-art approaches on graph

classification problems with ten standard open source graph

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 10

datasets [31]. These datasets are extracted from bioinformatics,

computer vision and social networks, respectively. Statistical

information of these datasets are exhibited in Table III.

A. Evaluations on Graph Classification

Experimental Setup: We evaluate the performance of our

AVCN models on graph classification problems, including the

AVCN(G) model with the general AVCN architecture and the

AVCN(H) model with the hybrid architecture stated in Sec-

tion IV-B. Moreover, we compare our model against alternative

graph kernels and deep learning methods for graphs. Specif-

ically, the graph kernels include: 1) the Weisfeiler-Lehman

Subtree Kernel (WLSK) [32], 2) the Weisfeiler-Lehman K-

ernel associated with Core Variants (CORE WL) [33], 3)

Jensen-Tsallis q-difference Kernel (JTQK) with q = 2 [34], 4)

the Shortest Path Graph Kernel (SPGK) [35], 5) the Shortest

Path Kernel associated with Core Variants (CORE SP) [33],

6) the Random Walk Graph Kernel (RWGK) [36], 7) the

Graphlet Kernel (GK) [37], and 8) the Pyramid Match Graph

Kernel (PMGK) [38]. On the other hand, the deep learning

methods include: 1) the Aligned-Spatial Graph Convolution

Network (ASGCN) mdoel [22], 2) the backtrackless ver-

sion of the ASGCN model (i.e., the BASGCN model [23]),

3) the PATCHY-SAN based Convolutional Neural Network

(PSGCNN) [19], 4) the Deep Graph Convolutional Neu-

ral Network (DGCNN) [21], 5) the Diffusion Convolution-

al Neural Network (DCNN) [18], 6) the Anonymous Walk

Embeddings with Feature Driven (AWE) [39], 7) the Deep

Graphlet Kernel (DGK) [40], 8) the Self-Attention Pooling

based Graph Convolution Network (SAGPool) [41], 9) the

Differentiable Pooling based Graph Convolution Network (D-

iffPool) [42], 10) the EigenPooling based Graph Convolution

Network (EigenPool) [43], 11) the Degree-specific Graph

Neural Network (DEMO-Net) [44], 12) the Edge-conditioned

Convolutional Network (ECC) [45], and 13) the High-order

Graph Convolution Network (HO-GCN) [46].

For the experiment, we propose to use the same network

structure for either the AVCN(G) model or the AVCN(H)

model on all graph datasets. The reasons of adopting the

same structure are twofold. First, utilizing the same GCN

network structure can guarantee the fair comparison between

the proposed AVCN models and the graph kernel method-

s [21]. Second, it is useful to evaluate the generalization ability

of the proposed AVCN models on different datasets [23].

Specifically, for either the AVCN(G) or the AVCN(H) model,

we set the prototype representation number as M = 64.

This is because we observe that the vertex numbers of most

graphs (about 60% to 70% graphs) over all datasets are around

64. This setting in turn guarantees that the required aligned

vertex-based grid structures can preserve the vertex feature

and adjacency matrix of original graphs as much as possible.

Moreover, this setting can also guarantee the better trade-off

between the classification performance and the computational

efficiency, because greater parameter M will lead to larger

network structures for the proposed AVCN model. We input

the grid structures into the AVCN(G) or the AVCN(H) mod-

el associated with three parallel stacked vertex convolution

layers, where each layer has four parallel vertex convolution

filters of sizes 3, 5, 7 and 9, respectively. Moreover, we set the

number of channels for each vertex convolution filter as 64,

the stride number for each filter as 1, and the number of the

hidden units for the final fully-connected layer as 128. As a

result, based on Eq.(9) and Eq.(10), the resulting architectures

of the AVCN(G) and AVCN(H) models are

C
1:4:(3;5;7;9)
F :64 − C

2:4:(3;5;7;9)
F :64 − C

3:4:(3;5;7;9)
F :64 − F 4

128,

and
{

C
1:4:(3;5;7;9)
F :64 − C

2:4:(3;5;7;9)
F :64 − C

3:4:(3;5;7;9)
F :64

C
1:4:(3;5;7;9)
A:64 − C

2:4:(3;5;7;9)
A:64 − C

3:4:(3;5;7;9)
A:64

}
F 4
128,

respectively. Note that, for both the AVCN(G) model and

the AVCN(H) model, we also add a classical AvgPooling

layer of size and stride 2 after the first and second stacked

vertex convolution layers. We concatenate the features from

their fully-connected layer, and add a Softmax layer with a

dropout rate of 0.5 by following the same setting of existing

works [21]. We use the rectified linear units (ReLU) for their

convolution filters. The only optimized hyperparameters are a)

the learning rate, b) the number of epochs, and c) the batch

size for the mini-batch gradient decent algorithm.

Note that, the proposed AVCN models need to first con-

struct the prototype representations to identify the transitive

correspondence information between vertices over all graphs.

We propose to abstract the prototype representations (PRs)

from either the training or testing graphs. Hence, the proposed

AVCN models can be viewed as the instance of transductive

learning [47], where all graphs are employed to abstract the

prototype representations. However, note that, computing the

PRs does not use any label information from both training

and testing data. Moreover, the PRs are only employed to

map each graph into the fixed-sized grid structure, and the

training process of the proposed AVCN model does not use

any testing graph information. As a result, the train process of

either the AVCN(G) model and the AVCN(H) model is still

inductive. In fact, the alternative deep learning models as well

as the graph kernels for attributed graphs in our comparisons

can also be seen as instances of transductive learning. This is

because these methods can accommodate vertex labels. They

thus need to seek the label space over all the training and

testing graphs for constructing one hot coding vertex feature

matrix (for deep learning methods) or initializing the vertex

label (for kernels). However, similar to the proposed model, the

training processes for these alternative methods are only based

on the training graphs, i.e., their processes are still inductive.

For our proposed AVCN models, we employ 10-fold cross-

validation to calculate the mean classification accuracy for

each dataset, where we use 9 sample sets for training and

1 sample set for testing. For each of the datasets, we perform

the experiments 10 times and show the mean classification

accuracy as well as the standard error in Table IV. In terms

of the alternative kernel methods, we set the parameters of

the maximum subtree height for both the WLSK and JTQK

kernels as 10, based on the previous empirical studies in the

original papers. For each alternative graph kernel, we employ

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 11

TABLE III
INFORMATION OF THE GRAPH DATASETS

Datasets MUTAG PROTEINS D&D PTC(MR) GatorBait Reeb IMDB-B IMDB-M RED-B COLLAB

Max # vertices 28 620 5748 109 545 220 136 89 3782 492
Mean # vertices 17.93 39.06 284.32 25.56 348.72 95.42 19.77 13.00 429.62 74.49
Mean # eges 19.79 72.82 715.65 25.96 796.11 94.59 96.53 65.93 497.75 2457.50
graphs 188 1113 1178 344 100 300 1000 1500 2000 2000
vertex labels 7 3 82 19 78 32 − − − −
classes 2 2 2 2 30 20 2 3 2 2
Description BioInfor BioInfor BioInfor BioInfor CV CV Social Social Social Social

TABLE IV
PERFORMANCE COMPARISONS WITH GRAPH KERNELS.

Datasets MUTAG PROTEINS D&D PTC(MR) GatorBait

AVCN(G) 87.05 ± 0.71 75.71 ± 0.65 80.10 ± 0.95 60.13 ± 0.70 19.00 ± 0.75
AVCN(H) 89.30 ± 0.63 75.75 ± 0.43 80.77 ± 0.77 62.32 ± 0.67 22.90 ± 1.07
JTQK 85.50 ± 0.55 72.86 ± 0.41 79.89 ± 0.32 58.50 ± 0.39 11.40 ± 0.52
WLSK 82.88 ± 0.57 73.52 ± 0.43 79.78 ± 0.36 58.26 ± 0.47 10.10 ± 0.61
CORE WL 87.47 ± 1.08 − 79.24 ± 0.34 59.43 ± 1.20 −
SPGK 83.38 ± 0.81 75.10 ± 0.50 78.45 ± 0.26 55.52 ± 0.46 9.00 ± 0.75
CORE SP 88.29 ± 1.55 − 77.30 ± 0.80 59.06 ± 0.93 −
PMGK 80.66 ± 0.90 − 77.34 ± 0.97 56.41 ± 1.45 −
GK 81.66 ± 2.11 71.67 ± 0.55 78.45 ± 0.26 52.26 ± 1.41 8.40 ± .83
RWGK 80.77 ± 0.72 74.20 ± 0.40 71.70 ± 0.47 55.91 ± 0.37 7.00 ± 0.77

Datasets Reeb IMDB-B IMDB-M RED-B COLLAB

AVCN(G) 67.00 ± 0.91 72.75 ± 0.39 51.19 ± 0.49 90.50 ± 0.20 79.12 ± 0.25
AVCN(H) 70.20 ± 0.68 73.46 ± 0.59 50.90 ± 0.35 91.22 ± 0.36 80.24 ± 0.26
JTQK 60.56 ± 0.35 72.45 ± 0.81 50.33 ± 0.49 77.60 ± 0.35 76.85 ± 0.40
WLSK 58.53 ± 0.53 71.88 ± 0.77 49.50 ± 0.49 76.56 ± 0.30 77.39 ± 0.35
CORE WL − 74.02 ± 0.42 51.35 ± 0.48 78.02 ± 0.23 −
SPGK 55.73 ± 0.44 71.26 ± 1.04 51.33 ± 0.57 84.20 ± 0.70 58.80 ± 0.20
CORE SP − 72.62 ± 0.59 49.43 ± 0.42 90.84 ± 0.14 −
PMGK 81.66 ± 2.11 71.67 ± 0.55 78.45 ± 0.26 52.26 ± 1.41 8.40 ± .83
GK − 68.53 ± 0.61 45.75 ± 0.66 82.70 ± 0.68 −
RWGK 32.47 ± 0.69 67.94 ± 0.77 46.72 ± 0.30 72.73 ± 0.39 −

TABLE V
PERFORMANCE COMPARISONS WITH DEEP LEARNING APPROACHES ON BIOINFORMATICS AND SOCIAL NETWORK DATASETS..

Datasets MUTAG PROTEINS D&D PTC(MR) IMDB-B IMDB-M RED-B COLLAB

AVCN(G) 87.05 ± 0.71 75.71 ± 0.65 80.10 ± 0.95 60.13 ± 0.70 72.75 ± 0.39 51.19 ± 0.49 90.50 ± 0.20 79.12 ± 0.25
AVCN(H) 89.30 ± 0.63 75.75 ± 0.43 80.77 ± 0.77 62.32 ± 0.67 73.46 ± 0.59 50.90 ± 0.35 91.22 ± 0.36 80.24 ± 0.26
ASGCN 89.70 ± 0.85 76.50 ± 0.59 80.40 ± 0.95 61.42 ± 2.47 73.86 ± 0.92 50.86 ± 0.85 90.60 ± 0.35 78.75 ± 0.79
BASGCN 90.05 ± 0.82 76.05 ± 0.57 80.71 ± 0.99 61.51 ± 0.77 74.00 ± 0.87 50.43 ± .77 91.00 ± 0.25 79.60 ± 0.83
DGCNN 85.83 ± 1.66 75.54 ± 0.94 79.37 ± 0.94 58.59 ± 2.47 70.03 ± 0.86 47.83 ± 0.85 76.02 ± 1.73 73.76 ± 0.49
PSGCNN 88.95 ± 4.37 75.00 ± 2.51 76.27 ± 2.64 62.29 71.00 ± 2.29 45.23 ± 2.84 86.30 ± 1.58 72.60 ± 2.15
DCNN 66.98 61.29 ± 1.60 58.09 ± 0.53 58.09 ± 0.53 49.06 ± 1.37 33.49 ± 1.42 − 52.11 ± 0.71
DGK 82.66 ± 1.45 71.68 ± 0.50 78.50 ± 0.22 57.32 ± 1.13 66.96 ± 0.56 44.55 ± 0.52 78.30 ± 0.30 73.09 ± 0.25
AWE 87.87 ± 9.76 − 71.51 ± 4.02 − 73.13 ± 3.28 51.58 ± 4.66 82.97 ± 2.86 70.99 ± 1.49
HO-GCN 86.10 − 75.50 60.90 74.20 49.50 − −

10-fold cross-validation associated with the LIBSVM of C-

Support Vector Machines (C-SVMs) to calculate the mean

classification accuracy. We perform the experiments 10 times

for each kernel on each dataset, and show the mean classi-

fication accuracy as well as the standard error in Table IV.

Because some kernels have been well evaluated by other

authors based on the same setting of ours, we directly exhibit

the corresponding results of these kernels from the original

literatures. Note that, the symbol − in Table IV indicates

that some approaches were not evaluated on the corresponding

datasets by the original authors, and this symbol has the same

meaning in the following Table V and Table VI

On the other hand, in terms of the alternative deep learn-

ing approaches, we show the best results for the ASGCN,

BASGCN, DGCNN, PSGCNN, HO-GCN and DGK models

reported in their original publications. For the DCNN model,

we directly show the results from the work of Zhang et

al., [21], associated with the same experimental setting as

our methods. For the AWE model, we show the classification

accuracies based on the feature-driven AWE, because of its

better performance on attributed graphs. Note that, the PSGC-

NN model is able to leverage extra edge features, whereas

most alternative methods can not leverage these features.

TABLE VI
PERFORMANCE COMPARISONS WITH DEEP LEARNING APPROACHES ON

BIOINFORMATICS DATASETS.
Datasets MUTAG PROTEINS D&D PTC(MR)

AVCN(G) 87.05 75.71 80.10 60.13

AVCN(H) 89.30 75.75 80.77 62.32

ECC 76.11 − 72.54 −
DEMO-Net 81.40 − 70.80 57.20
DiffPool 82.66 76.25 80.64 −
EigenPool 79.50 78.60 76.60 −
SAGPool − 71.86 76.45 −

Hence, for the PSGCNN model, we only show the results

based on vertex features. Moreover, as these alternative deep

learning approaches have not been investigated on the Reeb

and GatorBait datasets abstracted from computer vision by any

author, we do not include the accuracies for these methods.

The classification accuracies associated with standard errors

of each deep learning approach are listed in Table V.

Finally, the DEMO-Net, EigenPool and SAGPool models

were not investigated on the social network datasets in the

original publications. Both the DiffPool and ECC models, on

the other hand, were only evaluated on the COLLAB dataset

in the original publications, and their accuracies are 67.79
and 75.48, respectively. These are obviously lower than the

proposed models. Thus, we only show the mean accuracies of

these models on the bioinformatics datasets in Table VI.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 12

Experimental Results: Table IV, Table V and Table VI

indicate that the proposed AVCN models can outperform

either the graph kernels or the deep learning approaches

for graphs, on most datasets. Specifically, in terms of the

comparisons with the graph kernels on the standard bioinfor-

matics, computer vision and social network datasets, Table IV

indicates that the proposed AVCN models can achieve better

performance than the alternative graph kernels on eight of

the ten datasets. By contrast, each of the alternative methods

can only achieve the best classification accuracies on at most

two of the ten datasets. Although the classification accuracies

of the proposed AVCN models on the IMDB-B as well as

IMDB-M datasets are not the best, our AVCN models are still

competitive and outperform most of the graph kernels. In terms

of the comparisons with the deep learning approaches on the

standard social network and bioinformatics datasets, Table V

indicates that the proposed AVCN models can outperform

the alternative deep learning approaches on four of the eight

datasets. By contrast, each of the alternative methods can only

achieve the best classification accuracies on at most one of the

eight datasets. Although the classification accuracies of the

proposed AVCN models on the MUTAG, PROTEINS, IMDB-

B and IMDB-M datasets are not the best, our models are

still competitive and outperform most of the deep learning

methods. Overall, the ASGCN as well as the BASGCN models

are the most competitive alternative methods when compared

with the proposed AVCN model. However, our model can

still outperform these two alternative models on five of the

eight datasets. In terms of the comparisons with the partial

GCN models on the standard bioinformatics datasets, Table VI

indicates that our proposed methods can outperform all of the

alternative GCN models, but excluding the EigenPool model

on the PROTEINS datasets.

Experimental Analysis: In general, although several alter-

native approaches may achieve better classification accuracies

than the proposed AVCN models on a small number of

datasets, our models are still competitive on these datasets, and

outperform these methods on most of the remaining datasets.

The experimental results indicate the effectiveness of the pro-

posed AVCN model. Moreover, although both the AVCN(G)

and AVCN(H) models are effective, the performance of the

AVCN(H) is obviously better than that of the AVCN(G) model.

This is because the AVCN(G) model can only accommodate

the aligned vertex feature-based grid structures. By contrast,

the AVCN(H) model can accommodate both the aligned vertex

features and the adjacency-based grid structures. Thus, only

the AVCN(H) model can simultaneously capture both the

vertex feature information and the topological information

of graphs. Overall, the reasons for the effectiveness of the

proposed AVCN models are fourfold.

First, the alternative graph kernels are typical examples of

R-convolution kernels and are based on measuring the simi-

larity of substructures, without using the correspondence in-

formation. By contrast, the proposed AVCN model associates

the aligned vertex-based grid structures, that incorporates the

transitive vertex alignment information between graphs, and

thus better reflects graph characteristics. Furthermore, the C-

SVMs associated with kernel methods can only be viewed as

a classical framework of shallow learning [48]. In contrast,

our AVCN models offer an end-to-end framework of deep

learning, extracting more meaningful characteristics of graphs.

Second, similar to the alternative graph kernels, all the

alternative deep learning approaches fail to integrate the cor-

respondence information between graph structures into their

learning frameworks, excluding the alternative ASGCN and

BASGCN models. In particular, either the DGCNN model or

the PASGCNN model needs to rearrange the vertex orders and

some vertices may be lost. Clearly, this may cause significant

information loss. In contrast, our AVCN models are able to

encapsulate more information from the original graphs.

Third, unlike the proposed AVCN models, some alternative

spatial-based GCN models (e.g., the DCNN model) need to

compute the summation of extracted local-level features of

vertices as global-level characteristics of graph structures. In

contrast, the proposed AVCN models can learn richer multi-

scale local-level vertex features. Experiments demonstrate the

effectiveness of the proposed models.

Fourth, although the ASGCN and BASGCN models are also

designed based on aligned vertex-based grid structures, and

can thus reflect the structural correspondence information and

reduce the information loss problem like the proposed AVCN

model. Unfortunately, like the DGCNN model, the ASGCN

and BASGCN models also suffer from over-smoothing. By

contrast, the proposed AVCN model can significantly restrict

this drawback, and thus extract more discriminating multi-

scale features for graph classification.

Finally, the proposed AVCN models mainly have a little

lower classification performance than the ASGCN and BAS-

GCN models on the MUTAG, PROTEINS, IMEB-B datasets.

Through Table III, we observe that the three datasets have

obviously less average vertex numbers than most of the

remaining datasets. Since the proposed AVCN models maily

rely on capturing local-level vertex information, this may in

turn influence the performance of the AVCN models. However,

the proposed AVCN models are still competitive on these

datasets, demonstrating the effectiveness.

B. Evaluation of Different Prototype Representation Numbers

To further analyze the performance of the proposed AVCN

models, in this subsection we investigate how the selection

of the parameter M (i.e., the numbers of the prototype

representations) affects the classification performance with the

proposed AVCN(H) model. As we have stated previously

in Section V-A, the sizes of 60% to 70% graphs over all

the datasets are around 64. Setting the parameter M as 64
can not only preserve the structural information of most

original graphs as much as possible, but also guarantee the

better trade-off between the classification performance and the

computational efficiency. Thus, in this experiment, we vary

the parameter M from 16 to 64 with 8 strides, and exhibit

how the classification performance of the proposed AVCN(H)

varies with the increasing parameter M . Specifically, we

only perform the AVCN(H) model on the RED-B, PTC and

COLLAB datasets, due to the representativeness of different

levels of average graph sizes, i.e., the graph size is around 64

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 13

16 24 32 40 48 56 64

The values of the parameter M

50

60

70

80

90

100
C

la
s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y

COLLAB

PTC

RED-B

Fig. 6. Accuracies vs different parameters M.

for the COLLAB dataset, a little larger than 64 for the PTC

dataset, and much greater than 64 for the RED-B dataset. The

experimental results are shown in Fig.6. This figure indicates

that the classification performance of the our AVCN(H) model

tends to gradually increase with M until it reaches a plateaux

when M is greater than 48 or 56. This is because the grid

structure sizes of the proposed AVCN models are related to

the value of the parameter M , and the greater value of M

can preserve more structural information of original graphs,

influencing the classification performance of the proposed

AVCN model.

VI. CONCLUSION

In this work, we have developed a family of Aligned Vertex

Convolutional Network (AVCN) models for graph classifi-

cation. Our approaches are based on employing a transitive

vertex matching method to convert the graphs of arbitrary sizes

into fixed-sized aligned vertex-based grid structures, and then

designing a new aligned vertex convolution operation on the

associated grid structures. Since the proposed vertex convolu-

tion operation can gradually aggregating local-level neighbor-

ing aligned vertices residing on the original grid structures as

a new packed aligned vertex, i.e., the convolution operation

can extract new packed grid structures with a reduced number

of packed aligned vertices. The proposed AVCN models can

avoid iteratively propagating redundant information between

specific neighboring vertices, and significantly restrict the

notorious over-smoothing problem arising in most spatial-

based GCN models. Experimental evaluations on benchmark

datasets demonstrate the effectiveness.

ACKNOWLEDGMENTS

We thank Mr. Yuhang Jiao’s help on partial coding and experi-
mental works, as well as Dr. Shu Wu’s suggestions on this paper.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6,
pp. 84–90, 2017.

[2] X. Zhang, J. Zou, K. He, and J. Sun, “Accelerating very deep convo-
lutional networks for classification and detection,” IEEE Trans. Pattern

Anal. Mach. Intell., vol. 38, no. 10, pp. 1943–1955, 2016.
[3] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using

deep convolutional networks,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 38, no. 2, pp. 295–307, 2016.

[4] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: towards
real-time object detection with region proposal networks,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, 2017.

[5] J. You, R. Ying, and J. Leskovec, “Position-aware graph neural net-
works,” in Proceedings of ICML, 2019, pp. 7134–7143.

[6] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proceedings of ICLR, 2017.

[7] S. Wu, Y. Tang, Y. Zhu, L. Wang, X. Xie, and T. Tan, “Session-based
recommendation with graph neural networks,” in Proceedings of AAAI.

[8] X. Zhang, C. Xu, X. Tian, and D. Tao, “Graph edge convolutional neural
networks for skeleton-based action recognition,” IEEE Trans. Neural

Networks Learn. Syst., vol. 31, no. 8, pp. 3047–3060, 2020.
[9] F. Manessi, A. Rozza, and M. Manzo, “Dynamic graph convolutional

networks,” Pattern Recognit., vol. 97, 2020.
[10] Y. Chen, G. Ma, C. Yuan, B. Li, H. Zhang, F. Wang, and W. Hu, “Graph

convolutional network with structure pooling and joint-wise channel
attention for action recognition,” Pattern Recognit., vol. 103, p. 107321,
2020.

[11] J. Wang, L. Zhang, Q. Wang, L. Chen, J. Shi, X. Chen, Z. Li, and
D. Shen, “Multi-class ASD classification based on functional connectiv-
ity and functional correlation tensor via multi-source domain adaptation
and multi-view sparse representation,” IEEE Trans. Medical Imaging,
vol. 39, no. 10, pp. 3137–3147, 2020.

[12] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks
and locally connected networks on graphs,” CoRR, vol. abs/1312.6203,
2013.

[13] O. Rippel, J. Snoek, and R. P. Adams, “Spectral representations for
convolutional neural networks,” in Proceddings of NIPS, 2015, pp.
2449–2457.

[14] M. Henaff, J. Bruna, and Y. LeCun, “Deep convolutional networks
on graph-structured data,” CoRR, vol. abs/1506.05163, 2015. [Online].
Available: http://arxiv.org/abs/1506.05163

[15] X. Bai, E. R. Hancock, and R. C. Wilson, “Graph characteristics from
the heat kernel trace,” Pattern Recognit., vol. 42, no. 11, pp. 2589–2606,
2009.

[16] J. Vialatte, V. Gripon, and G. Mercier, “Generalizing the convolution op-
erator to extend cnns to irregular domains,” CoRR, vol. abs/1606.01166,
2016. [Online]. Available: http://arxiv.org/abs/1606.01166

[17] D. K. Duvenaud, D. Maclaurin, J. Aguilera-Iparraguirre, R. Gómez-
Bombarelli, T. Hirzel, A. Aspuru-Guzik, and R. P. Adams, “Convo-
lutional networks on graphs for learning molecular fingerprints,” in
Proceedings of NIPS, 2015, pp. 2224–2232.

[18] J. Atwood and D. Towsley, “Diffusion-convolutional neural networks,”
in Proceedings of NIPS, 2016, pp. 1993–2001.

[19] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional neural
networks for graphs,” in Proceedings of ICML, 2016, pp. 2014–2023.

[20] Z. Zhang, D. Chen, J. Wang, L. Bai, and E. R. Hancock, “Quantum-
based subgraph convolutional neural networks,” Pattern Recognit.,
vol. 88, pp. 38–49, 2019.

[21] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, “An end-to-end deep
learning architecture for graph classification,” in Proceedings of AAAI,
2018.

[22] L. Bai, Y. Jiao, L. Cui, and E. R. Hancock, “Learning aligned-spatial
graph convolutional networks for graph classification,” in Proceedings

of ECML-PKDD, Part I, 2019, pp. 464–482.
[23] L. Bai, L. Cui, Y. Jiao, L. Rossi, and E. R. Hancock, “Learning

backtrackless aligned-spatial graph convolutional networks for graph
classification,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, p. In Press, 2020.
[24] I. Spinelli, S. Scardapane, and A. Uncini, “Adaptive propagation graph

convolutional network,” CoRR, vol. abs/2002.10306, 2020.
[25] L. Bai, Y. Jiao, L. Cui, L. Rossi, Y. Wang, P. S. Yu, and E. R.

Hancock, “Learning graph convolutional networks based on quantum
vertex information propagation,” IEEE Transactions on Knowledge and

Data Engineering, p. In Press, 2021.
[26] D. Cai, “Litekmeans: the fastest matlab implementation of kmean-

s,” Available at: http://www.zjucadcg.cn/dengcai/Data/Clustering.html,
2011.

[27] R. C. Wilson, E. R. Hancock, and B. Luo, “Pattern vectors from
algebraic graph theory,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27,
no. 7, pp. 1112–1124, 2005.

[28] L. Bai and E. R. Hancock, “Depth-based complexity traces of graphs,”
Pattern Recognition, vol. 47, no. 3, pp. 1172–1186, 2014.

[29] L. Bai, L. Rossi, Z. Zhang, and E. R. Hancock, “An aligned subtree
kernel for weighted graphs,” in Proceedings of ICML, 2015, pp. 30–39.

[30] X. Bai, C. Yan, H. Yang, L. Bai, J. Zhou, and E. R. Hancock, “Adaptive
hash retrieval with kernel based similarity,” Pattern Recognit., vol. 75,
pp. 136–148, 2018.

[31] K. Kersting, N. M. Kriege, C. Morris, P. Mutzel, and M. Neumann,
“Benchmark data sets for graph kernels,” 2016. [Online]. Available:
http://graphkernels.cs.tu-dortmund.de

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 14

[32] N. Shervashidze, P. Schweitzer, E. J. van Leeuwen, K. Mehlhorn,
and K. M. Borgwardt, “Weisfeiler-lehman graph kernels,” Journal of

Machine Learning Research, vol. 1, pp. 1–48, 2010.
[33] G. Nikolentzos, P. Meladianos, S. Limnios, and M. Vazirgiannis, “A

degeneracy framework for graph similarity,” in Proceedings of IJCAI,
2018, pp. 2595–2601.

[34] L. Bai, L. Rossi, H. Bunke, and E. R. Hancock, “Attributed graph kernels
using the jensen-tsallis q-differences,” in Proceedings of ECML-PKDD,
2014, pp. 99–114.

[35] K. M. Borgwardt and H.-P. Kriegel, “Shortest-path kernels on graphs,”
in Proceedings of the IEEE International Conference on Data Mining,
2005, pp. 74–81.

[36] H. Kashima, K. Tsuda, and A. Inokuchi, “Marginalized kernels between
labeled graphs,” in Proceedings of ICML, 2003, pp. 321–328.

[37] N. Shervashidze, S. Vishwanathan, K. M. T. Petri, and K. M. Borgwardt,
“Efficient graphlet kernels for large graph comparison,” Journal of

Machine Learning Research, vol. 5, pp. 488–495, 2009.
[38] G. Nikolentzos, P. Meladianos, and M. Vazirgiannis, “Matching node

embeddings for graph similarity,” in Proceedings of AAAI, 2017, pp.
2429–2435.

[39] S. Ivanov and E. Burnaev, “Anonymous walk embeddings,” in Proceed-

ings of ICML, 2018, pp. 2191–2200.
[40] P. Yanardag and S. V. N. Vishwanathan, “Deep graph kernels,” in

Proceedings of the 21th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, Sydney, NSW, Australia, August

10-13, 2015, 2015, pp. 1365–1374.
[41] J. Lee, I. Lee, and J. Kang, “Self-attention graph pooling,” in Proceed-

ings of ICML, 2019, pp. 3734–3743.
[42] Z. Ying, J. You, C. Morris, X. Ren, W. L. Hamilton, and J. Leskovec,

“Hierarchical graph representation learning with differentiable pooling,”
in Processing of NeurIPS, 2018, pp. 4805–4815.

[43] Y. Ma, S. Wang, C. C. Aggarwal, and J. Tang, “Graph convolutional
networks with eigenpooling,” in Proceedings of KDD, 2019, pp. 723–
731.

[44] J. Wu, J. He, and J. Xu, “Demo-net: Degree-specific graph neural
networks for node and graph classification,” in Proceedings of KDD,
2019.

[45] M. Simonovsky and N. Komodakis, “Dynamic edge-conditioned filters
in convolutional neural networks on graphs,” in Proceedings of CVPR,
2017, pp. 29–38.

[46] C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan,
and M. Grohe, “Weisfeiler and leman go neural: Higher-order graph
neural networks,” in Proceedings of AAAI, 2019.

[47] A. Gammerman, K. S. Azoury, and V. Vapnik, “Learning by transduc-
tion,” in Proceedings of UAI, 1998, pp. 148–155.

[48] S. Zhang, C. Liu, K. Yao, and Y. Gong, “Deep neural support vector
machines for speech recognition,” in Proceedings of ICASSP, 2015, pp.
4275–4279.

Lixin Cui Lixin Cui received the Ph.D. degree
from the University of Hong Kong, HKSAR, China,
and both the B.Sc. and M.Sc. degrees from Tianjin
University, Tianjin, China. She is now an Associate
Professor in Central University of Finance and Eco-
nomics, Beijing, China. She was the recipient of the
Outstanding Paper Awards of the International Con-
ference IEEE IEEM 2019, the Best Student Paper
Awards of the International Conferences APIEMS
2011 and WCE 2011. She has published more than
40 journal and conference papers, including TPAMI,

TFS, TNNLS, TKDE, TCYB, PR, IJPR, WWWJ, IJCAI, ECML-PKDD, etc.
Her current research interests include machine learning, deep learning, and
their applications in Fintech problems. She is currently a member of the
editorial board of the journal Pattern Recognition.

Lu Bai Lu Bai received the Ph.D. degree from the
University of York, UK, and both the B.Sc. and
M.Sc degrees from Macau University of Science
and Technology, Macau SAR, China. He was a
recipient of the National Award for Outstanding
Self-Financed Chinese Students Study Aboard by
China Scholarship Council in 2015, and the Best Pa-
per Awards of the International Conferences ICIAP
2015 (Eduardo Caianello Best Student Paper Award)
and ICPR 2018. He is now an Associate Professor
in Central University of Finance and Economics,

Beijing, China. He has published more than 80 journal and conference papers,
including TPAMI, TKDE, TCYB, TNNLS, PR, ICML, IJCAI, ECML-PKDD,
ICDM, etc. His current research interests include pattern recognition, machine
learning, quantum walks, and financial data analysis. He is currently a member
of the editorial board of the journal Pattern Recognition.

Xiao Bai Xiao Bai received the B.Eng. degree in
computer science from Beihang University, Beijing,
China, in 2001, and the Ph.D. degree in computer
science from the University of York, York, U.K.,
in 2006. He was a Research Officer (Fellow and
Scientist) with the Computer Science Department,
University of Bath, Bath, U.K., until 2008. He is
currently a Full Professor with the School of Com-
puter Science and Engineering, Beihang University.
He has authored or coauthored more than 100 papers
in journals and refereed conferences. His current

research interests include pattern recognition, image processing, and remote
sensing image analysis. He is an Associate Editor of Pattern Recognition and
Signal Processing.

Yue Wang Yue Wang received the Ph.D. degree
from Sichuan University, Sichuan, China, and both
the B.Sc. and M.Sc. degrees from Hefei University
of Technology, Anhui, China. He was a postdoctor
of Peking University, Beijing, China. He is now an
Associate Professor in School of Information, Cen-
tral University of Finance and Economics, Beijing,
China. His current research interests include data
mining and machine learning.

Edwin R. Hancock Edwin R. Hancock (F16) re-
ceived the B.Sc., Ph.D., and D.Sc. degrees from
the University of Durham, Durham, UK. He is
currently an Emeritus Professor with the Department
of Computer Science, University of York, York, UK.
He has published over 200 journal articles and 650
conference papers. Prof. Hancock is the fellow of the
Royal Academy of Engineering, and was a recipient
of the Royal Society Wolfson Research Merit Award
in 2009, the Pattern Recognition Society Medal in
1991, the BMVA Distinguished Fellowship in 2016

and the IAPR Piere Devijver Award in 2018. He is a fellow of the IAPR,
IEEE, the Royal Astronomical Society, the Institute of Physics, the Institute
of Engineering and Technology, and the British Computer Society. He was
named Distinguished Fellow by the British Machine Vision Association. He
has also received best paper prizes at CAIP 2001, ACCV 2002, ICPR in
2006 and 2018, BMVC 2007, ICIAP in 2009 and 2015. He is currently
Editor-in-Chief of the journal Pattern Recognition, and was founding Editor-
in-Chief of IET Computer Vision from 2006 until 2012. He has also been a
member of the editorial boards of the journals IEEE Transactions on Pattern
Analysis and Machine Intelligence, Pattern Recognition, Computer Vision and
Image Understanding, Image and Vision Computing, and the International
Journal of Complex Networks. He has been Conference Chair for BMVC in
1994 and Program Chair in 2016, Track Chair for ICPR in 2004 and 2016
and Area Chair at ECCV 2006 and CVPR in 2008 and 2014, and in 1997
established the EMMCVPR workshop series. He was Second Vice President
of the International Association of Pattern Recognition (2016-2018). He is
currently an IEEE Computer Society Distinguished Visitor (2021-2023).

	Introduction
	Literature Review
	Contributions of This Work

	Review of Related Spatial-based GCN Models
	The DGCNN Model
	The ASGCN Model

	Construct Aligned Vertex Grid Structures
	The Transitive Vertex Alignment Method
	The Aligned Vertex-based Grid Structure

	The Aligned Vertex Convolutional Networks
	The Aligned Vertex Convolution Operation
	The Architectures of the AVCN Model
	Discussions of the AVCN Model

	Experiments
	Evaluations on Graph Classification
	Evaluation of Different Prototype Representation Numbers

	Conclusion
	References
	Biographies
	Lixin Cui
	Lu Bai
	Xiao Bai
	Yue Wang
	Edwin R. Hancock

