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Abstract: For a subalgebra of a generic CCR algebra, we consider the relative
entropy between a general (not necessarily pure) quasifree state and a coherent excitation
thereof. We give a unified formula for this entropy in terms of single-particle modular
data. Further, we investigate changes of the relative entropy along subalgebras aris-
ing from an increasing family of symplectic subspaces; here convexity of the entropy
(as usually considered for the Quantum Null Energy Condition) is replaced with lower
estimates for the second derivative, composed of “bulk terms” and “boundary terms”. Our
main assumption is that the subspaces are in differential modular position, a
regularity condition that generalizes the usual notion of half-sided modular inclusions.
We illustrate our results in relevant examples, including thermal states for the conformal
U (1)-current.

1. Introduction

Entropy and related correlation measures are of fundamental importance in quantum
physics; not only in information theory, but also in thermodynamics and quantum field
theory.

Mathematically, the most appropriate generalization of the classical notion of (rela-
tive) entropy to quantum systems, or noncommutative probability spaces, is formulated
in terms of normal states on von Neumann algebras [1] (see also [3,26]). However, while
the formalism is quite easy to handle for type I factors, where normal states are described
by positive trace-class operators and the entropy can be computed by means of traces,
applications to the type III1 factors occurring generically in quantum field theory [11]
require working with (relative) Tomita–Takesaki modular objects, which are difficult to
decribe explicitly in examples.

Recent work in quantum field theory [22,23] has focussed on entropy measures
for algebras associated with certain subregions of spacetime, and the dependence of the
entropy of a given state depending on the spacetime region. Specifically, one considers the
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relative entropy between a ground state and a coherent excitation in the setting of linear
fields [12,14] or related situations in chiral conformal quantum field theories [19,27,28];
in some geometric situations, specific information about the (relative) modular operator
is available here and allows for explicit results.

Let us illustrate the situation in an example, following [14]. Consider a massive free
field in 3+1-dimensional Minkowski space, given in terms of the well-known symplectic
space (K , σ ) and real subspaces L (O) ⊂ K associated with space-time regions O ,
and the corresponding Weyl (CCR) algebras A (O). Further let ω be the vacuum state
on these algebras, and consider a coherent state ωg = ω(W (g)∗ · W (g)), where g ∈ K

and W (g) is the corresponding Weyl operator. Consider the standard left wedge W =
{x : x1 < 0, |x0| < |x1|} ⊂ R

4 , and for t ∈ R the shifted region1 Wt = W + (t, t, 0, 0).
Then the relative entropy between ωg and ω with respect to the algebra A (Wt ) can be
computed as [14]

SA (Wt )(ωg‖ω) = 2π

∫

x1<t

dx (t − x1) T 00
g (t, x), (1.1)

where T
μν
g is the single-particle stress-energy tensor of the wave function g. Conse-

quently, with v = (1, 1, 0, 0),

d

dt
SA (Wt )(ωg‖ω) = 2π

∫

x1<t

dx vμT 0μ
g (t, x) ≥ 0, (1.2)

d2

dt2
SA (Wt )(ωg‖ω) = 2π

∫

x1=t

dx vμvνT μν
g (t, x) ≥ 0. (1.3)

The second derivative is nonnegative, and hence the relative entropy is a convex func-
tion of t ; this can be regarded [13] as a variant of the Quantum Null Energy Condition
(QNEC). More generally, the QNEC is understood as a relation between certain expec-
tation value of the energy density and the second derivative of the relative entropy [8],
which is also suggested by Eq. (1.3). In this paper, we will only investigate derivatives of
the entropy along a family of regions or subspaces, but will not comment on the relation
with the energy density.

Apart from convexity, one may observe that the first derivative (1.2) is given by a
“bulk term” (an integral over a Cauchy surface for the wedge region) while the second
derivative (1.3) is given by a “boundary term” (an integral over the edge of the wedge
at x1 = x0 = t).

This motivates the question which of these observations are a coincidence of the
specific system chosen, and which of them generalize to a wider context.

In this paper, we ask such questions in a generic setting. We remain within the
context of CCR algebras, i.e., the algebras in question are still generated by the “second
quantization functor” from a symplectic space K and certain real subspaces L ⊂ K ;
and our states will be of the quasifree type. However, we abstract from the specifics of
the above example.

As a first point, we investigate the connection between the symplectic (single-particle)
structure and the relative entropy on the CCR algebras. Essentially, the methods of [14]
apply whenever the symplectic subspace L ⊂ K above is standard and factorial, and
the state ω is quasifree and pure. (These notions will be recalled in Sect. 2.) However,

1 Here and in the following, our conventions are arranged so that larger values of the parameter t correspond
to larger regions (and correspondingly, larger symplectic spaces, algebras, etc.); the literature often chooses
the opposite sign.
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in applications in physics, also non-pure quasifree states are of importance, for example
thermal states [9,32] or Hadamard states in quantum field theory on curved spacetimes
[20,30]. Moreover, while factorial subspaces are usual in quantum field theory, they are
certainly not the most general case (cf. [33]).

We aim to prove a unified formula for the relative entropy between a quasifree state
ω and an associated “coherent excitation” ωg in the general case. Our approach is as
follows. We start with a generic symplectic space and consider the CCR algebra over
it, equipped with a quasifree state. The state is not assumed to be pure; rather, using the
well-known purification construction [20,36], we extend it to a pure state on a larger
algebra. Now given a closed subspace L , we decompose the extended space (and the
corresponding CCR algebra) into factorial, abelian and nonseparating parts, and compute
the relative entropy for these. We give a unified formula for the relative entropy between
coherent states with respect to A (L ), where L is a generic subspace, in terms of the
modular data associated with L .

Second, we consider a family of subspaces {Lt }, depending on a real parameter
t , in particular when Lt increases with t ; we ask how the relative entropy St (g) =
SA (Lt )(ωg‖ω) for given g ∈ K changes with t .

To this end, the following technical insight is important. With each subspace Ls one
obtains, as in [14], a projector Qs which projects onto the “Ls-entropy relevant part”
of K (in the factorial case, onto Ls itself) and annihilates the symplectic complement
L ′

s . However, this projector is unbounded in the usual topology of the symplectic space
K ; even more, its domain will usually depend on the parameter s, which makes it
particularly challenging to analyze a change in the parameter. However, let us equip the
space with an (indefinite) scalar product arising from the semipositive quadratic form
St (g), where t �= s in general. With respect to this Hilbert space structure, it turns out
in relevant cases that the projector Qs is orthogonal, in particular bounded. We say in
this case that the spaces Ls , Lt are in differential modular position, a condition that
underlies our analysis, and resembles the concept of geometric modular action (see [4]).

This structure then allows for the desired analysis of bulk versus boundary terms: For
fixed g ∈ K , let us consider the function Tg(s, t) = St (Qs g), which equals the entropy
on the diagonal t = s. A change in s near the diagonal then corresponds to an abstract
“boundary change” while a change in t corresponds to a “bulk change”. Analyzing the
monotonicity properties of Tg , we establish estimates between the partial derivatives of
Tg (at s = t − 0) and the desired derivatives of the entropy.

We note that convexity of St cannot be expected in such a general setting; it is
already not preserved under a smooth reparametrization of the family of spaces, which
our definition admits. However, we establish lower estimates on the second derivative
(in the sense of distributions) that replace convexity. Also, the observation from above
that the first derivative contains only bulk terms, while the second derivative contains
only boundary terms, does not hold up in general, and is replaced by a more nuanced
picture.

We verify the regularity condition of “differential modular position” in a number
of examples, mainly but not exclusively from quantum field theory. In particular, it
turns out that in half-sided modular inclusions of symplectic subspaces (cf. [4,21]), our
condition is always fulfilled. Also, we treat relative entropies for halfline algebras in the
conformal U (1)-current in thermal states, which to our knowledge have not appeared in
the literature.

The paper is organized as follows: Sect. 2 defines our setting, recalls the purifica-
tion and decomposition construction for symplectic spaces, and establishes the unified
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formula for relative entropies in terms of single-particle objects. In Sect. 3, we investi-
gate the relative positions of several subspaces, in particular one-parameter families of
inclusions; we formulate our main condition (differential modular position) and derive
estimates for the second derivative of the relative entropy. Then we show that all half-
sided modular inclusions fit into our framework (Sect. 4). In Sect. 5 we give examples
from quantum mechanics, quantum field theory and classical probability theory in which
our framework is applicable, illustrating various cases that can occur with respect to the
derivative estimates we established. We end with a conclusion and outlook in Sect. 6.
The appendix recalls definition and fundamental properties of the relative entropy on
C∗- and von Neumann algebras.

2. Entropies in Nonpure States

We first introduce our setting of symplectic spaces, purification and the decomposition
of subspaces in Sect. 2.1. Then (Sect. 2.2) we pass to the associated CCR algebras and
their decomposition, and express the relative entropy between coherent states in terms
of the single-particle modular data. Sect. 2.3 establishes some approximation properties
needed in later sections.

2.1. Single-particle structure. The basic object we work with is as follows:

Definition 2.1. Let K be a vector space over R and τ, σ two bilinear forms on K . The
triple (K , τ, σ ) is called a symplectic Hilbert space if (K , τ ) is a separable Hilbert
space, (K , σ ) is a symplectic space, and if

∀ f, g ∈ K : σ( f, g)2 ≤ τ( f, f )τ (g, g). (2.1)

Here σ is allowed to be degenerate as a symplectic form; we can (and will) assume
without loss of generality that the dimension of its kernel is either even or infinite.
(Otherwise consider the direct sum of K with a one-dimensional space, on which σ

is set to vanish.) Note that K is assumed a priori to be complete with respect to τ -
convergence; in applications one often starts with a pre-Hilbert space in the first step,
and then takes its completion, but note that e.g. a non-degenerate form σ on the non-
completed space might be degenerate on the completion (cf. [33]).

If K is a Hilbert space over C with complex scalar product 〈 · , · 〉, then a standard
example for Definition 2.1 is τ( f, g) = Re〈 f, g〉 and σ( f, g) = Im〈 f, g〉. In fact, this is
exactly the case when the quasifree state induced by τ on the CCR algebra over (K , σ )

(see Sect. 2.2 below) is a pure state [24]; hence we will call (K , τ, σ ) pure in this
case. In general, it is always possible to embed (K , τ, σ ) into a pure symplectic Hilbert
space (K ⊕, τ⊕, σ⊕), i.e., such that τ⊕, σ⊕ are extensions of τ , σ . This construction
is known as purification, and we will present it here in the form of [29, Ch. 4]; see also
[20, Appendix A].

Due to (2.1), we can write σ = τ( · , D · ) with an operator D, where ‖D‖ ≤ 1. Using
the polar decomposition of D on the orthogonal complement of ker D, and a suitable
choice2 on ker D, we obtain two bounded operators C , |D| such that

C |D| = D = |D|C, |D| ≥ 0, C2 = −1, D† = −D, C† = −C. (2.2)

2 At this point, our assumption enters that the dimension of ker D is either even or infinite.
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(We denote the adjoint with respect to τ by †, whereas we will denote adjoints on complex
Hilbert spaces by ∗ later on.)

We now define the space K ⊕ := K ⊕ K , which is a vector space over C with
respect to the complex structure given by the operator

ı⊕ =
(

−D C
√

1 + D2

C
√

1 + D2 D

)

. (2.3)

In fact, defining the bilinear forms ( f, g ∈ K ⊕)

τ⊕ := τ ⊕ τ, (2.4)

σ⊕( f, g) := τ⊕( f,−ı⊕g), (2.5)

〈 f, g〉⊕ := τ⊕( f, g) + iσ⊕( f, g), (2.6)

K becomes a complex Hilbert space with the scalar product 〈 · , · 〉⊕, and a nonde-
generate symplectic space with symplectic form σ⊕. Identifying K with K ⊕ 0, the
restrictions of τ⊕ and σ⊕ to K ×K are τ and σ respectively, as the notation suggests.

Now let L ⊂ K be a closed subspace. (Note that closure in K -norm is crucial for
the following.) We decompose L in a standard way (cf. [18]) as follows: We set

L
⊕

0 := (L + ı⊕L )⊥, (2.7)

L
⊕
∞ := L ∩ ı⊕L ≡ L∞, (2.8)

La := L ∩ L
′, (2.9)

L
⊕
a := La + ı⊕La, (2.10)

L
⊕
f

:= (L ⊕
0 ⊕ L

⊕
a ⊕ L

⊕
∞)⊥, (2.11)

Lf := L
⊕
f

∩ L , (2.12)

where L ′ denotes the symplectic complement of L . The spaces Lf, La, and L∞ are
called the factorial, abelian and nonseparating parts of L , respectively, for reasons that
will become clear below. We then have:

Lemma 2.2. K ⊕ is isomorphic to the orthogonal direct sum

K
⊕ ∼= L

⊕
0 ⊕ L

⊕
a ⊕ L

⊕
f

⊕ L
⊕
∞ (2.13)

and under this isomorphism

L ∼= 0 ⊕ La ⊕ Lf ⊕ L∞. (2.14)

Proof. One shows by direct computation that La is complex-orthogonal to L∞; also,
La is real-orthogonal to ı⊕La, hence L

⊕
a is closed. The other parts follow directly

from the definitions (2.7)–(2.12). ⊓⊔

All three components of L may be present in general: in quantum field theory, one
usually considers purely factorial subspaces, i.e., L = Lf (see Examples 5.3 and 5.11);
but in other situations, L may be purely abelian (L = La, Example 5.12), or one may
have L = L∞ (part of Example 5.1), and of course direct sums of these can be formed.
We note some special cases:
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Remark 2.3. If (K , τ, σ ) is a pure symplectic Hilbert space, then D = −i , hence ı⊕

acts by the diagonal matrix
(

i 0
0 −i

)

. In the decomposition of Lemma 2.2, this leads to

0 ⊕K ⊂ L
⊕

0 , and all other spaces Lf, La, L∞ etc. being contained in K ⊕ 0. In this
sense, if (K , τ, σ ) is already pure, we can ignore the purification construction.

Remark 2.4. If specifically K = L in Remark 2.3, then L∞ = K ⊕ 0, Lf = La =
{0}, L

⊕
0 = 0 ⊕ K .

Remark 2.5. For a symplectic Hilbert space (K , τ, 0) (i.e., for σ = 0), even- or infinite-
dimensional, we obtain i⊕ =

(
0 C
C 0

)

. The map ( f, g) �→ f − iCg then identifies K ⊕

with the usual complexification of K . For L ⊂ K , we have L = La, Lf = L∞ =
{0}, L

⊕
0 = L ⊥ + iL ⊥ where ⊥ denotes the orthogonal complement in K .

In the following, we shall denote the complex-linear orthogonal projectors onto L
⊕
f

etc. as P⊕
f

etc. We also denote by Pa the real-orthogonal projector onto La, and by Pf

the real-linear projector with image Lf and kernel L ′
f
. Note that Pf is not bounded (or

orthogonal) in general, but closed on its domain Lf + L ′
f

[14].

We also consider the subspaces Ls := La⊕Lf, L
⊕
s := L

⊕
a ⊕L

⊕
f

; here Ls ⊂ L
⊕
s

is standard in the sense that Ls ∩ ı⊕Ls = {0} and Ls + ı⊕Ls is dense in L
⊕
s . Hence

[31] we obtain Tomita–Takesaki objects JL , ΔL with respect to this subspace. We
set KL := − log ΔL , then extend this operator KL by 0 to L

⊕
0 and consider it as

undefined on L ⊕
∞\{0}. We denote the modular group by UL (x) = exp(−ı⊕x KL ),

again defined on L
⊕

0 ⊕ L
⊕
s . It is important in the following that the projector Pf can

be written as a function of the modular objects:

Lemma 2.6 ([14, Theorem 2.2]). Let a(λ) = (1 − λ)−1, b(λ) = λ1/2a(λ). Then

Pf =
(

a(Δf) + JL b(Δf)
)−

where Δf = ΔL ↾ L
⊕
f

. (2.15)

For use in future sections, we also consider the closed, real-linear projector

QL = 0 ⊕ (1 − Pa) ⊕ Pf ⊕ 1

with domain dom QL = L
⊕

0 ⊕ L
⊕
a ⊕ (Lf + L

′
f
) ⊕ L

⊕
∞.

(2.16)

Note that img QL = L in the purely factorial case (L = Lf), but in general
img QL �= L ; rather, as will become clear in the next subsection, QL projects onto the
“entropy-relevant part” of the space. (See Lemma 2.12(v) and Theorem 2.13 in partic-
ular.) However, we always have ker QL = L ′. In other words, img QL �= (ker QL )′

in general. We also note:

Lemma 2.7. For 0 < ǫ < 1, let Q(ǫ) be the spectral projector of log ΔL for the set

(−ǫ−1,−ǫ)∪(ǫ, ǫ−1)∪{0}, extended by 1 toL
⊕

0 andL ⊕
∞ . LetD (0) := ∪0<ǫ<1 Q(ǫ)K ⊕.

Then D (0) is a core for QL , and D (0) ∩ L
⊕
s a common core for ΔL and log ΔL .

Proof. We can suppose without loss of generality that we are in the factorial case, i.e.,
L = Lf, since on L

⊕
a we have that ΔL ↾ L

⊕
a = 1, log ΔL ↾ L

⊕
a = 0, and

QL ↾ L
⊕
a is bounded, while on L

⊕
0 and L ⊕

∞ the statement is clearly trivial. That

D (0) ∩L
⊕
s is a common core for ΔL and log ΔL is immediate by functional calculus.

That D (0) is a core for QL in the factorial case follows by the expression of QL in
terms of ΔL and JL given in Lemma 2.6. ⊓⊔
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2.2. CCR algebras and relative entropy. We now pass to the CCR algebras on the
symplectic space (K , σ ); see, e.g., the monographs [15,29]. We denote by AK :=
CCR(K , σ ) the C∗ algebra generated by elements W ( f ), f ∈ K , with the relations

W ( f )W (g) = e−iσ( f,g)W ( f + g), W ( f )∗ = W (− f ). (2.17)

Similarly, for a closed subspace L ⊂ K , we define AL := CCR(L , σ ) ⊂ AK ,
A

⊕
K

:= CCR(K ⊕, σ⊕) ⊃ AK , and write the relevant subalgebras as A∞ := CCR

(L∞, σ⊕) etc.
On AK , the bilinear form τ induces the quasifree state3 ω by

ω(W ( f )) = e−τ( f, f )/2; (2.18)

we use the same notation for its extension by τ⊕ to A
⊕
K

and the restrictions to subalge-
bras, suppressing the dependence on τ where no confusion can arise. Related to ω, for
each g ∈ K we consider the coherent state4

ωg = ω(W (g)∗ · W (g)); (2.19)

note that ω0 = ω.
We are interested in the relative entropy between the ωg (for different g) as states on

the C∗-algebra AL ; see Appendix A for a brief review of this concept. As a first step,
we remark that the relative entropy respects the decomposition of L :

Proposition 2.8. Let (K , τ, σ ) be a symplectic Hilbert space. For any closed subspace

L ⊂ K , we have

SAL
(ωg‖ω) = SAa

(ωP⊕
a g‖ω) + SAf

(ωP⊕
f

g‖ω) + SA∞(ωP⊕
∞g‖ω). (2.20)

Proof. Due to Lemma 2.2, and noting that the pure quasifree states are faithful on the
respective subalgebras, we know that A

⊕
K

is isomorphic to the (spatial) tensor product
of C∗-algebras

A
⊕
K

∼= A
⊕

0 ⊗ A
⊕

a ⊗ A
⊕

f
⊗ A

⊕
∞ (2.21)

and under this isomorphism

AL
∼= C1 ⊗ Aa ⊗ Af ⊗ A∞ (2.22)

and

ωg
∼= ωP⊕

0 g ⊗ ωP⊕
a g ⊗ ωP⊕

f
g ⊗ ωP⊕

∞g; (2.23)

ω decomposes in the same way. This decomposition holds analogously for the induced
von Neumann algebras in the GNS representation of A

⊕
K

associated with ω. Thus, due
to additivity of the relative entropy in this situation (see Lemma A.2 in the appendix),
we obtain (2.20). (This includes the obvious observation that the summand with respect
to L

⊕
0 vanishes.) ⊓⊔

We will now compute the three terms in (2.20) individually. We start with the abelian
part, following standard methods (cf. [34]).

3 also known in the literature as a quasifree state with vanishing one-point function
4 An alternative nomenclature is quasifree state with nonvanishing one-point function.
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Proposition 2.9. For any g ∈ L
⊕
a ,

SAa
(ωg‖ω) = 2(‖(1 − Pa)g‖⊕)2 (2.24)

where Pa is the (real-linear) projector onto La.

Proof. Since K is separable, the von Neumann envelope of AL is generated by the
algebras for finite-dimensional subspaces of L . Lemma A.1 in the appendix shows that
SAa

(ωg‖ω) is determined by the supremum of the entropy for these subalgebras; hence
it suffices to prove the statement for the case of finite-dimensional L ⊕

a . Also, on the
algebra Aa, the state ωg coincides with ωĝ where ĝ = (1 − Pa)g; hence we can assume

without loss that g ∈ (1 − Pa)L ⊕
a = ı⊕La .

In this case, after a suitable choice of basis, L
⊕
a with the scalar product 〈·, ·〉⊕

can be identified with C
n and its standard scalar product, with the real subspace R

n

corresponding to La . The GNS representation π for (Aa, ω) acts on L2(Rn, dμ)

where dμ = (2π)−n/2 exp(−‖x‖2/2)dn x , with π(W ( f )) being multiplication with
exp i〈 f, · 〉, and π(Aa)′′ = L∞(Rn, dμ). The states ω and ωg are vector states with

vectors Ω(x) = 1, Ωg(x) = exp(〈ı⊕g, x〉 − (‖g‖⊕)2). The relative modular group

turns out to act by multiplication with exp(−2i t〈ı⊕g, x〉 + 2i t (‖g‖⊕)2). The relative
entropy can then be computed from the general definition (A.1), which yields the result
(2.24). ⊓⊔

Of course, this relative entropy coincides with the usual Kullback-Leibler divergence
of Gaussian distributions (cf. [26, p. 81]). In the proof, we have used our simplifying
assumption that K is separable, but by methods of the theory of Gaussian fields [34],
we expect that this assumption is actually dispensable.

Next, we consider the factorial part, for which the relative entropy is known from
[14].

Proposition 2.10. For any g ∈ L
⊕
f

∩ dom KL , one has ı⊕KL g ∈ dom Pf and

SAf
(ωg‖ω) = σ⊕(g, Pf ı⊕KL g). (2.25)

Proof. We sketch the relevant techniques from [14]. Since (L ⊕
f

, τ⊕, σ⊕) is pure, the

GNS representation π of (Af, ω) acts on the Fock space over L
⊕
f

, and in that repre-
sentation both ω and ωg are vector states: ω corresponds to the Fock vacuum vector
Ω , and ωg to the vector Ωg := π(W (g))Ω . The vector Ω is cyclic and separating

for π(Af)
′′, and the associated Tomita–Takesaki modular group is Δi t

Ω = Γ (Δi t
L

), the

“second quantization” of the unitary Δi t
L

↾ L
⊕
f

.

Now first let g ∈ Lf ∩ dom KL . Using that W (g) ∈ Af, one finds Δi t
Ω,Ωg

= Δi t
Ω ,

and consequently

SAf
(ωg‖ω) = i

d

dt
〈Ωg,Δ

i t
Ω,Ωg

Ωg〉
∣
∣
∣
t=0

= i
d

dt
〈Ω,π(W (g))∗Δi t

Ω π(W (g))Ω〉
∣
∣
∣
t=0

= i
d

dt
〈Ω,π(W (g))∗Δi t

Ω π(W (g))Δ−i t
Ω Ω〉

∣
∣
∣
t=0

.

(2.26)

With the Weyl relations (2.17) and Δi t
Ω = Γ (Δi t

L
),

π(W (g))∗Δi t
Ω π(W (g))Δ−i t

Ω = π(W (g))∗π(W (Δi t
L

g)) = π(W (Δi t
L

g − g))eiσ⊕(g,Δi t
L

g).

(2.27)
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Therefore the relative entropy is

SAf
(ωg‖ω) = i

d

dt
e−(‖Δi t

L
g−g‖⊕)2/2eiσ⊕(g,Δi t

L
g)

∣
∣
∣
t=0

= σ⊕(g, ı⊕KL g). (2.28)

Hence (2.25) holds for g ∈ L f ∩ dom KL . It also holds for g ∈ L ′
f
∩ dom KL , since

in that case both sides of the equation vanish. The result for general g ∈ L
⊕
f

∩dom KL

follows by a density argument that employs Lemma 2.6; see [14, Sect. 4.4]. ⊓⊔
On the nonseparating part, one finds the relative entropy as follows:

Proposition 2.11. For any g ∈ L ⊕
∞,

SA∞(ωg‖ω) =
{

0 if g = 0,

∞ otherwise.
(2.29)

Proof. Since (L∞, τ⊕, σ⊕) is pure, the GNS representation π of (A∞, ω) is irreducible
[29, Ch. 4] and ω and ωg are given by vector states Ω and Ψ := π(W (g))Ω there. The
support projections of these states are hence the projectors PΩ and PΨ respectively; and
PΩ ≤ PΨ if and only if they are equal, i.e., for g = 0. The statement then follows from
the definition of the relative entropy, see the appendix. ⊓⊔

Our goal is now to establish a unified formula that applies to all these cases, linking
the relative entropy on the CCR algebras to a quadratic form at single-particle level. To
that end:

Lemma 2.12 (cf. [14, Prop. 2.5]). Consider the real-linear operator on D (0) ∩ L
⊕
s ,

RL := c(KL )(1 − JL )c(KL ), where c(λ) =
√

λ

1 − e−λ
, (2.30)

extended by zero to L
⊕

0 and undefined on L ⊕
∞\{0}. (The function c is extended by

continuity to λ = 0.) Then:

(i) There is a unique closed real-linear quadratic form SL associated with RL , which

is positive;

(ii) one has ‖RL − c(KL )2‖ ≤ 1 as operators on L
⊕

0 ⊕ L
⊕
s ;

(iii) dom SL = L
⊕

0 ⊕ L
⊕
a ⊕ dom(E+|KL |1/2) ⊕ {0}, where E+ denotes the spectral

projector of KL for the interval (0,∞);

(iv) ker SL = L ′;
(v) SL (QL f, QL f ) = SL ( f, f ) for all f ∈ dom QL ∩ dom SL .

Proof. Since (1 − JL )/2 is a real-orthogonal projector, it is clear that RL is positive.
Thus RL has a unique positive closed quadratic form associated with it, showing (i).
Further, one computes on L

⊕
s ,

RL − c(KL )2 = −JL c(KL )c(−KL ), (2.31)

and since λ �→ c(λ)c(−λ) is bounded by 1, (ii) follows, also on L
⊕

0 . Consequently,
the form domain of SL is the same as the operator domain of c(KL ); since c(λ) → 0
as λ → −∞ and c(λ) ∼ λ1/2 as λ → ∞, it can be written as in (iii). We prove (iv)
separately for the restrictions to L

⊕
a and L

⊕
f

; it is trivial on L
⊕

0 . Now on L
⊕
a , the

statement follows from c(0) = 1, while on L
⊕
f

, one computes ker SL = ker Pf by

Lemma 2.6, and ker Pf = L ′ ∩L
⊕
f

. Finally for (v), let f ∈ dom QL . Then f = g + g′

with g ∈ img QL and g′ ∈ ker QL = L ′ = ker SL . If additionally f ∈ dom SL ,
then also g ∈ dom SL , and SL ( f, f ) = SL (g, g) = SL (QL f, QL f ) follows. ⊓⊔
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We will sometimes write SL ( f ) as shorthand for SL ( f, f ). We are now ready to
state the main result of the section:

Theorem 2.13. For any f, g ∈ K ⊕, we have

SAL
(ωg‖ω f ) = SL (g − f ); (2.32)

in particular, the left-hand side is finite if and only if g − f ∈ dom SL .

Proof. The automorphism α = ad W (− f ) of AL fulfills ω f ◦ α = ω and ωg ◦ α =
ωg− f ; hence we can assume f = 0 without loss of generality.

First let g ∈ L
⊕
f

∩ D (0). From Lemma 2.6, spectral calculus shows Pfı
⊕ log ΔL =

−ı⊕ RL on D (0) ∩ L
⊕
f

, thus

σ⊕(g, Pfı
⊕ log ΔL g) = Im〈g, Pfı

⊕ log ΔL g〉⊕ = Re〈g, RL g〉⊕ = 〈g, RL g〉⊕,

(2.33)

and (2.32) follows for all g ∈ L
⊕
f

∩ D (0) from Proposition 2.10. Using approximation

techniques [14, Theorem 4.5], the relation can be extended to all g ∈ L
⊕
f

, including
the case where the two sides of (2.32) are infinite.

Now consider g ∈ L
⊕
a . We note that L

⊕
a = ker log ΔL and c(0) = 1, hence RL

acts as 1− JL = 2(1− Pa) on L
⊕
a . Thus the proposed result (2.32) holds for g ∈ L

⊕
a ,

see Proposition 2.9.
Likewise, Proposition 2.11 shows that (2.32) holds for g ∈ L ⊕

∞, with both sides
being infinite unless g = 0. Applying Proposition 2.8 now concludes the proof. ⊓⊔

2.3. Approximation properties. For the following, we establish some approximation
properties for the entropy form and the modular group. Apart from the Hilbert space
norm given by τ on K (and extended to ‖ · ‖⊕ on K ⊕), we consider the following
norms on K ⊕ or subsets of it:

– the KL -graph norm, ‖ f ‖K ,L := ‖KL f ‖⊕ + ‖ f ‖⊕,

– the SL -graph norm, ‖ f ‖2
S,L

:= SL ( f ) + τ⊕( f, f ),

– the seminorm ‖ · ‖L defined by ‖ f ‖2
L

:= SL ( f ).

It is clear that the KL -graph norm is stronger than the SL -graph norm, which is in turn
stronger than the seminorm ‖ · ‖L . We denote the closure of dom SL in ‖ · ‖L , modulo
the kernel L ′ of the seminorm, as XL ; for formal reasons we explicitly denote the
isometric inclusion of (dom SL , SL ) into XL as ϕL . Then XL becomes a Hilbert
space with the (continuous extension of) the scalar product 〈ϕL f, ϕL g〉L = SL ( f, g).

Lemma 2.14. The modular group UL maps dom SL into dom SL , and this action is

strongly continuous in the SL -graph norm.

Proof. From Lemma 2.12(iii), it is clear that UL = exp(−ı⊕KL ) preserves dom SL .
Further, for f ∈ dom SL and fs := UL (s) f , we have

SL ( fs − f, fs − f ) ≤ 〈 fs − f, c(KL )2( fs − f )〉⊕ + (‖ fs − f ‖⊕)2

= 2 Re
〈

c(KL ) f, (1 − UL (s)) c(KL ) f
〉⊕

+ (‖ fs − f ‖⊕)2,
(2.34)

where Lemma 2.12(ii) was used. This vanishes as s → 0 due to strong continuity of
UL in the K ⊕-norm. ⊓⊔
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The following lemmas for a fixed closed subspace L ⊂ K will allow us to identify
XL with a “concrete” Hilbert space in examples.

Lemma 2.15. ϕL (img QL ∩ dom KL ) is dense in XL with respect to ‖ · ‖L . In

particular, if L = Lf, then ϕL (L ∩ dom KL ) is dense in XL with respect to ‖ · ‖L .

Proof. Let ε > 0 and Q(ε) be as in Lemma 2.7. Then for any v ∈ K ⊕, by Lemma 2.7 we
have Q(ε)v ∈ dom QL . Also, for any v ∈ dom(SL ), by the expression for the relative
entropy in Theorem 2.13, we have Q(ε)v → v in SL -graph norm as ε → 0. Furthermore
for v ∈ dom(SL ), by functional calculus, QL Q(ε)v ∈ img QL ∩ dom(KL ). Thus

‖ϕL (v − QL Q(ε)v)‖L ≤ SL

(

v − Q(ε)v
)

+ SL

(

Q(ε)v − QL Q(ε)v
)

= SL (v − Q(ε)v) → 0 (2.35)

as ε → 0.— If here L = Lf, one has img QL = L and the second statement
follows. ⊓⊔

Lemma 2.16. Let D ⊂ L be a core for the generator of the strongly continuous (with

respect to the norm of K ) one-parameter group s → UL (s) ↾ L , i.e., ı⊕KL ↾ L .

Then D is dense in L ∩ dom KL in the SL -graph norm.

Proof. In this proof, we drop the index L on KL . Note that by functional calculus, the
norm induced by the positive self-adjoint operator c(K )2 + c(−K )2, where λ → c(λ)

is as in Lemma 2.12, is equivalent to the norm induced by 1 + |K |, while the graph
norm of ı⊕K ↾ L is induced by 1 + K 2 and thus stronger. Hence since D is a core for
ı⊕K ↾ L , it is also dense in L ∩ dom K in the norm induced by c(K )2 + c(−K )2 and
consequently, by Lemma 2.12(i)–(ii), dense in the SL -graph norm. ⊓⊔

3. Entropies for Subspaces

We will now consider several subspaces Lt ⊂ K , and relations between the entropies
related to them. To simplify notation, we will usually denote the related objects as St ,
Δt , etc. rather than SLt

, ΔLt
etc.

3.1. Two subspaces. We begin with the relation between two subspaces, say, L0 and
L1, and their associated entropy forms. Let us first mention:

Lemma 3.1. If L0 ⊂ L1, then S0( f, f ) ≤ S1( f, f ) for any f ∈ K .

Proof. This follows from Theorem 2.13, since the relative entropy is known to increase
with the algebra considered (Lemma A.3). ⊓⊔

We now investigate the relation between the projector Q0 (on the “entropy relevant
part” for S0) and the entropy S1. Heuristically, we expect in relevant cases that

S1(Q0 f, g) = S1( f, Q0g), (3.1)

in other words, that the projector Q0 is “orthogonal” with respect to the bilinear form
S1. However, the relation (3.1) needs to be read with care, as in general neither domain
nor image of Q0 will consist only of vectors of finite entropy S1. The precise version of
our condition is given as:
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Definition 3.2. Let L0 and L1 be closed subspaces of a symplectic Hilbert space (K ,
τ , σ ). Define

D
+
01 := img Q0 ∩ dom S1, D

−
01 := ker Q0 ∩ dom S1, D01 := D

+
01 + D

−
01. (3.2)

We say that the pair (L0,L1) is in differential modular position if

(i) ϕ1D01 is dense in X1;
(ii) For all f ± ∈ D

±
01, one has S1( f +, f −) = 0.

This condition may seem restrictive, but it is in fact fulfilled in many relevant ex-
amples: in the conformal U (1)-current for half-line algebras, both in the vacuum (Ex-
ample 5.3) and in KMS states (Example 5.11), for lightlike translated wedge algebras
in the free massive field as in [14], as well as in certain abelian (Example 5.12) and
finite-dimensional (Example 5.1) situations. Nevertheless, it is a nonempty condition
(Example 5.2). It may be seen as reminiscent of geometric modular action, as we shall
see in Lemma 3.3 below.

If (L0,L1) is in differential modular position, then we can define a projector Q̄0 on
(a dense set of) X1 by

〈ϕ1 f, Q̄0ϕ1g〉1 = S1( f, Q0g), f, g ∈ D01. (3.3)

Because of item (ii) in the definition, this projector is actually real-orthogonal, and hence
extends uniquely to a bounded operator on all of X1.

The spaces D
±
01 are somewhat difficult to explicitly describe in examples, we therefore

give more directly applicable sufficient criteria for Def. 3.2.

Lemma 3.3. Suppose that ϕ1D01 is dense in X1. Further suppose either

(a) L0 ⊂ L1, and the closure i⊕ R̄1 of i⊕ R1 restricts to an S1-graph-densely defined

operator from D+
01 to L0; or

(b) L0 ⊂ L1, both L0 and L1 are purely factorial, and i⊕K1 restricts to an S1-graph-

densely defined operator from D+
01 to L0; or

(c) L0 ⊂ L1, both L0 and L1 are purely factorial, and U1(x)L0 ⊂ L0 for all x ≥ 0
[or all x ≤ 0]; or

(d) L0 ⊂ L1, and both L0 and L1 are purely abelian; or

(e) L0 ⊃ L1.

Then the pair (L0,L1) is in differential modular position. In case (e), the associated

projector Q̄0 is the identity.

Part (b) motivates the wording “differential modular”, since it refers to the generator
of the modular group only.

Proof. For (a), it suffices to show (by the assumed S1-graph density) that S1( f −, f +) =
0 for all f + ∈ dom R̄1 ∩ D+

01 and all f − ∈ D
−
01. But for these, we can write

S1( f −, f +) = τ⊕( f −, R̄1 f +) = σ⊕( f −, ı⊕ R̄1 f +) = 0, (3.4)

since ı⊕ R̄1 f + ∈ L0 by assumption, and f − ∈ ker Q0 = L ′
0.

Items (b) and (d) are special cases of (a): If L0 and L1 are purely factorial, then
for f + ∈ dom K1 ∩ D+

01 ⊂ (L0)f ⊂ (L1)f we have ı⊕ R̄1 f + = P1,fı
⊕K1 f +. By

assumption, ı⊕K1 f + ∈ L0 ∩ (L1)f and hence P1,fı
⊕K1 f + = ı⊕K1 f + ∈ L0.

Likewise, if L0 and L1 are purely abelian, then for f + ∈ img Q0 = ı⊕(L0)a ⊂
ı⊕(L1)a we have ı⊕ R1 f + = ı⊕(1 − P1,a) f + = ı⊕ f + ∈ L0.
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For (c), we consider the case x ≥ 0, the other case being analogous; that is, U1 is a
strongly continous semigroup on img Q0 = (L0)f with respect to the K -norm, and on
D+

01 with respect to the S1-graph norm.

Now for f + ∈ D+
01 and ǫ > 0, consider

f +
ǫ = ǫ−1

∫ ǫ

0

U1(x) f + dx ∈ L0; (3.5)

then f +
ǫ → f + in S1-graph norm as ǫ → 0 (Lemma 2.14). But also f +

ǫ ∈ dom K1 [16,
Ch. II Lemma 1.3] and i⊕K1 f +

ǫ ∈ L0. Since vectors of the form (3.5) are a core for the
generator on D+

01, we can apply part (b).

For (e), we use monotonicity of the entropy (Lemma 3.1) to show for f − ∈ D
−
01 ⊂

L ′
0,

0 ≤ S1( f −, f −) ≤ S0( f −, f −) = 0; (3.6)

hence by the Cauchy–Schwarz inequality for S1, we have S1( f −, f +) = 0 for all
f ± ∈ D

±
01. Thus (L0,L1) is in differential modular position, but also 1 − Q̄0 = 0, i.e.,

Q̄0 = 1. ⊓⊔

3.2. Families of subspaces. Closer to the applications we have in mind, we now proceed
to a family of subspaces, labelled by a real parameter t ; in particular, we are interested
in the situation where the subspaces increase with the parameter.

Definition 3.4. A family of differential modular inclusions is a family (Lt )t∈R of closed
subspaces of K which is increasing5 (i.e., Ls ⊂ Lt for each s ≤ t) and where each
pair (Ls,Lt ) (s, t ∈ R) is in differential modular position (Definition 3.2).

We will show later (Sect. 4) that the usual notion of (single-particle) half-sided mod-
ular inclusions [4,21] is a special case of Def. 3.4. However, the notion of differential
modular inclusions is more general: It also applies to other situations where the modular
group acts geometrically (Example 5.11) or where the space Lt takes discrete steps (Ex-
ample 5.1). Also, notice that Def. 3.4 is invariant under monotonous reparametrizations
of the parameter t , whereas half-sided modular inclusions are not.

We note that for t ≤ t̂ , Lemma 3.1 gives us a canonical map ρt t̂ : Xt̂ → Xt which
fulfills ϕt = ρt t̂ ◦ ϕt̂ , and ‖ρt t̂‖ ≤ 1. With respect to this inclusion map, we can now

formulate some compatibility properties for the projectors Q̄s on Xt .

Lemma 3.5. If (Lt )t∈R is a family of differential modular inclusions, then:

(a) For s ≤ ŝ and any t, the projectors Q̄s and Q̄ ŝ on Xt fulfil Q̄s ≤ Q̄ ŝ .

(b) For any s and t ≤ t̂ , let Q̄s be the extension of Qs to Xt and Q̂s the corresponding

extension to Xt̂ . We have Q̄s ◦ ρt t̂ = ρt t̂ ◦ Q̂s .

(Because of the last property, we will not indicate the dependence of Q̄s on the extension
space Xt beyond the proof of this lemma.)

5 We do not demand that it is strictly increasing.
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Proof. For (a), note first that ker Qs = L ′
s and similarly for ŝ. Since Ls ⊂ Lŝ , this

yields

D
−
ŝ,t

⊂ D
−
s,t , and (1 − Qs) f − = f − for all f − ∈ D

−
ŝt

. (3.7)

Now for any f = f + + f − ∈ Dŝt , compute

(1 − Q̄ ŝ)ϕt f = ϕt (1 − Q ŝ) f = ϕt f − = ϕt (1 − Qs) f − = (1 − Q̄s)ϕt f −

= (1 − Q̄s)ϕt (1 − Q ŝ) f = (1 − Q̄s)(1 − Q̄ ŝ)ϕt f.
(3.8)

By density of ϕtDŝt in Xt , we obtain (using orthogonality of the projectors),

(1 − Q̄s)(1 − Q̄ ŝ) = (1 − Q̄ ŝ) ⇒ Qs ≤ Q ŝ . (3.9)

Regarding (b): For f ∈ Dst̂ ⊂ Dst , we compute

Q̄sρt t̂ϕt̂ f = Q̄sϕt f = ϕt Qs f = ρt t̂ϕt̂ Qs f = ρt t̂ Q̂sϕt̂ f. (3.10)

By density of ϕt̂Dst̂ in Xt̂ , we conclude Q̄s ◦ ρt t̂ = ρt t̂ ◦ Q̂s . ⊓⊔

3.3. Derivatives of the entropy. For a family of differential modular inclusions, we now
investigate how the entropy St ( f, f ) of a given vector f depends on the parameter
t ; here we take f ∈ D̄ := ∩t∈R dom St . Actually, in order to study the “bulk” versus
“boundary” terms mentioned in the introduction, we consider the function T f : R

2 → R

given by

T f (s, t) := 〈ϕt f, Q̄sϕt f 〉t = ‖Q̄sϕt f ‖2
t ; (3.11)

we have T f (t, t) = St ( f ), and we aim at estimates for d2St/dt2 in terms of the partial
derivatives of T f , which will in general exist only in the sense of distributions.

Crucial to this analysis are certain monotonicity properties of T f , in particular on the

cones C± := {(s, t) ∈ R
2 : ±(s − t) ≥ 0}.

Lemma 3.6. For any f ∈ D̄ , the function T f enjoys the following properties:

(a) It is increasing in t everywhere;

(b) It is increasing in s everywhere, and constant in s on C+;

(c) Along the diagonal, it is increasing, i.e., T f (t, t) is increasing in t.

(d) One has the “mixed monotonicity” estimate

∀s < ŝ, t < t̂ : T f (ŝ, t̂) − T f (ŝ, t) − T f (s, t̂) + T f (s, t) ≥ 0. (3.12)

Proof. For item (a), observe for t ≤ t̂ that

T f (s, t) = ‖Q̄sϕt f ‖2
t = ‖ρt t̂ Q̄sϕt̂ f ‖2

t ≤ ‖Q̄sϕt̂ f ‖2
t̂

≤ T f (s, t̂), (3.13)

where Lemma 3.5(b) and ‖ρt t̂‖ ≤ 1 have been used. Item (b) follows similarly from

Lemma 3.5(a), along with Q̄s = Q̄t = 1 for s ≥ t (Lemma 3.3 (e)). Item (c) is a
consequence of (a) and (b). For item (d), one rewrites using Lemma 3.5,

T f (ŝ, t̂) − T f (ŝ, t) − T f (s, t̂) + T f (s, t) = ‖(Q̄ ŝ − Q̄s)ϕt̂ f ‖2
t̂
− ‖ρt t̂ (Q̄ ŝ − Q̄s)ϕt̂ f ‖2

t ,

(3.14)

which is nonnegative since ‖ρt t̂‖ ≤ 1. ⊓⊔
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Item (c) above implies d St ( f )/dt ≥ 0, at least in the sense of distributions. For
d2St ( f )/dt2, we will derive estimates stemming from item (d). For simplicity, let us
first assume that T f is smooth outside the diagonal s = t , and at least C1 at the diagonal.
(Smoothness overall does not even occur in otherwise well-behaved examples, such as
Example 5.3).

Proposition 3.7. Let f ∈ D̄ . Suppose that T f is of class C1, and that there are functions

T̂± ∈ C2(R2) such that T f ↾ C± = T̂± ↾ C±. Then

lim
ǫց0

∂2T f

∂t2
(t − ǫ, t) ≤ d2St ( f )

dt2
= lim

ǫց0

∂2T f

∂t2
(t + ǫ, t). (3.15)

Proof. Since T f is C1, Lemma 3.6(b) implies ∂T f /∂s|s=t = 0, and we can differentiate
this relation along the diagonal to yield

∂2T̂±
∂s2

∣
∣
∣
s=t

+
∂2T̂±
∂s∂t

∣
∣
∣
s=t

= 0. (3.16)

On the other hand, St = T̂±(t, t), which yields together with (3.16),

d2St

dt2
= ∂2T̂±

∂t2

∣
∣
∣
s=t

+
∂2T̂±
∂s∂t

∣
∣
∣
s=t

= lim
ǫց0

(
∂2T f

∂t2
(t ± ǫ, t) +

∂2T f

∂s∂t
(t ± ǫ, t)

)

. (3.17)

Now ∂2T f /∂s∂t vanishes on C+ by Lemma 3.6(b), and is nonnegative on C− by
Lemma 3.6(d); hence the result follows. ⊓⊔

In other words, d2S f /dt2 is bounded above und below by a “bulk term” (determined
by the change of modular data in Rt ), but the lower bound may allow for a positive
“boundary term” (involving also a change in Q̄s).

It is instructive to look at estimate (3.15) in specific examples. In certain situations,
in particular in the conformal U (1)-current in the vacuum (Example 5.3), one has
∂2T f /∂t2 = 0 on C−, and the only contribution to d2S/dt2 is the “boundary term”

∂2T f /∂s∂t ≥ 0. Thus (3.15) implies convexity of the entropy in t in this case. However,
in other situation, such as thermal states on the conformal U (1)-current (Example 5.11),
or even when just reparametrizing a half-sided modular inclusion (Example 5.4), the
“bulk term” ∂2T f /∂t2 need not vanish, and indeed can take any sign. Thus St ( f ) need
not be convex in t , while the estimate (3.15) still holds.

We now want to establish a generalization of Prop. 3.7 without smoothness assump-
tions on T f . In preparation, we first prove:

Lemma 3.8. For almost every t ∈ R, the function T f is continuous at the point (t, t).

Proof. The map t �→ T f (t, t) is monotonic, hence continuous almost everywhere; we
fix a point t of continuity. Consider a sequence (sn, tn) which converges to (t, t), and
set un := min{sn, tn}, vn := max{sn, tn}. Since T f is increasing in both variables by
Lemma 3.6(a),(b), we have

T f (un, un) ≤ T f (sn, tn) ≤ T f (vn, vn). (3.18)

As n → ∞, both sides of this inequality tend to T f (t, t), showing that T f is continuous
(in two variables) at (t, t). ⊓⊔
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Further, we note that St and T f are locally integrable (due to their monotonicity prop-

erties) and hence can be understood as distributions in C∞
c (R)′ and C∞

c (R2)′ respec-
tively. Regarding test functions, we fix—for all what follows—a nonnegative function
h ∈ C∞

c (R+) with
∫

h = 1, and for any g ∈ C∞
c (R) and ǫ > 0, we define g±

ǫ ∈ C∞
c (R2)

by

g±
ǫ (s, t) := 1

ǫ
g(t)h

(

± s − t

ǫ

)

, (3.19)

which has support in the interior of C±. The dual pairing between distributions and test
functions will be denoted as 〈 · , · 〉. With this notation, our generalisation of Prop. 3.7
to the non-smooth case is:

Theorem 3.9. Let f ∈ D̄ . For any nonnegative g ∈ C∞
c (R), one has

lim sup
ǫց0

〈
∂2T f

∂t2
+

∂2T f

∂s2
, g−

ǫ

〉

≤
〈

d2St ( f )

dt2
, g

〉

= lim
ǫց0

〈
∂2T f

∂t2
, g+

ǫ

〉

. (3.20)

Proof. Due to local boundedness of T f , we have

∫

dt g′′(t)T f (t, t) = lim
ǫց0

∫

du dt g′′(t)
1

ǫ
h
(

± u

ǫ

)

T f (t + u, t) (3.21)

by dominated convergence together with Lemma 3.8. After a change of coordinates
(s = t + u), this equality reads

〈
d2St ( f )

dt2
, g

〉

= lim
ǫց0

〈
∂2T f

∂s2
+

∂2T f

∂t2
+ 2

∂T f

∂s∂t
, g±

ǫ

〉

. (3.22)

Now by Lemma 3.6, the partial derivatives by s vanish in the interior of C+, and
∂T f /∂s∂t ≥ 0 in the interior of C−, yielding the proposed result. ⊓⊔

Note the extra boundary term ∂2T f /∂s2 on the left-hand side of (3.20), which may
have any sign. This term indeed occurs in Examples 5.1 and 5.13 and saturates the
inequality there, hence cannot be omitted.

Thus convexity (d2S/dt2 ≥ 0) can fail or a number of reasons. This is already appar-
ent from our definitions: our notion of a “family of differential modular inclusions” in
Definition 3.4 is invariant under monotonous reparametrizations of the parameter t , while
convexity of St is clearly not preserved under such reparametrizations in general. In fact,
under mild conditions (e.g., if St is strictly monotonous and at least continuous, but with-
out restrictions on the second derivative), there exists a monotonous reparametrization
of the family such that the resulting entropy function is convex (in fact, linear).

4. Half-Sided Modular Inclusions

In this section, we show that the usual notion of half-sided modular inclusions of algebras
[4], via its analogue on the level of symplectic Hilbert spaces [21], fits into the framework
of this paper; more specifically, every half-sided modular inclusion yields a family of
differential modular inclusions in the sense of Def. 3.4.

To that end, we first analyze an explicit example of half-sided modular inclusions
(in a sense, the smallest nontrivial one), namely, the symplectic spaces of the conformal
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U (1)-current in the vacuum state (Sect. 4.1). For this model, convexity of the entropy was
shown to hold in [22]; we show that it fits within our framework of family of differential

modular inclusions. Then, we decompose a general half-sided modular inclusion of
symplectic Hilbert spaces into direct summands equivalent to the U (1)-current or to a
trivial inclusion, thus lifting our results to the general case.

However, let us first note that our structures are indeed preserved under taking direct
sums.

Lemma 4.1. Let I ⊆ Z+. For every n ∈ I , let (Kn, τn, σn) be a symplectic Hilbert

space (Def. 2.1).

(a) (K , τ, σ ) := (⊕n∈I Kn,⊕n∈I τn,⊕n∈I σn) is a symplectic Hilbert space.

(b) If Ln ⊂ Kn are closed subspaces, and L := ⊕n∈I Ln , then we have for f =
∑

n∈I fn ∈ K ,

SL ( f, f ) =
∑

n∈I

SLn
( fn, fn). (4.1)

(c) Suppose that, for each n ∈ I , {L n
t }t∈R, with L n

t ⊂ Kn , is a family of differential

modular inclusions for (Kn, τn, σn). Then

{Lt }t∈R := {⊕n∈I L
n

t }t∈R

is a family of differential modular inclusions for (K , τ, σ ); and for f =
∑

n∈I fn ∈
∩t dom SLt

, we have

T f (s, t) =
∑

n∈I

T n
fn

(s, t), (4.2)

where T n
fn

is the function (3.11) associated with the family {L n
t }.

Proof. (a) is immediate, and (b) follows from the expression for the relative entropy
SLt

( f, f ) in Theorem 2.13. For (c), note that condition (ii) of Definition 3.2 is implied
by Eq. (4.1), noting that also the projectors Qt decompose along the direct sum. To show
that, for every s, t ∈ R, condition (i) of Definition 3.2 holds for the pair of subspaces
(Lt ,Ls), let Dn

st be the subspace defined in (3.2) corresponding to the pair of subspaces
(L n

t ,L n
s ). Consider

D̄st := { f ∈ H : fn �= 0 for finitely many n ∈ I , fn ∈ D
n
st } ⊆ Dst ,

where Dst is the subspace defined in (3.2) relative to the pair of subspaces (Lt ,Ls)

in K . Since the family of subspaces {L n
t }t∈R is by hypothesis a differential modular

inclusion, we can find for every f ∈ dom(SLt
) a sequence {gk}k∈Z+ ⊂ D̄st , defined as

(gk)n := 0 if n > k, and such that

SL n
t
((gk)n − fn, (gk)n − fn) ≤ 1

k

1

2n

for n ≤ k. We thus have by (4.1)

SLt
(gk − f, gk − f ) =

∑

n∈I

SL n
t
((gk)n − fn, (gk)n − fn)

=
∑

0≤n≤k

SL n
t
((gk)n − fn, (gk)n − fn) +

∑

n>k

SL n
t
( fn, fn)

≤ 1

k

∑

n≥0

1

2n
+

∑

n>k

SL n
t
( fn, fn), (4.3)
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which converges to 0 as k → ∞ since f has finite entropy.—Finally, one verifies that
also the projectors Q̄t and dom SLt

decompose along the direct sum, hence Eq. (4.2)
follows from (4.1). ⊓⊔

4.1. The U (1)-current in the vacuum. We consider the symplectic space for the U (1)-
current, namely (in “configuration space” representation) C∞

c (R) equipped with the
symplectic form

σ( f, g) =
∫

f (x)g′(x)dx . (4.4)

for f, g ∈ C∞
c (R).

The vacuum state is the pure quasifree state induced by the bilinear form

τ( f, g) = Re

∫ ∞

0

dp p f̃ (−p)g̃(p), (4.5)

where f̃ denotes the Fourier transform

f̃ (p) = 1

2π

∫

R

e−i px f (x)dx . (4.6)

The closure of C∞
c (R) in the topology induced by τ is K = L2

C
(R+, p dp). This is a

complex Hilbert space with complex scalar product 〈·, ·〉 and indeed,

〈 f, g〉 =
∫ ∞

0

dp p f̃ (p)g̃(p) = τ( f, g) + iσ( f, g), f, g ∈ C∞
c (R). (4.7)

Thus, (K , τ, σ ) is a pure symplectic Hilbert space (see Remark 2.3).

Let I be the set of open, proper (bounded or unbounded) intervals of R. For an
interval I ∈ I , let L U (1)(I ) be the closure of C∞

c (I ) in K . The net {L U (1)(I )}I∈I

is a local net of standard and factorial6 subspaces of K , the well known U (1)-current
net at single-particle level (restricted to the real line R). Its extension to the circle S1 is
covariant with respect to the action of the lowest weight 1 positive energy irreducible
representation of the Möbius group, V . The latter, restricted to the subgroup P generated
by translations and dilations (denoted by t �→ ϑ(t) and s �→ δ(s) respectively), is given
explicitly on K = L2(R+, p dp) by

(V (ϑ(t)) f )(p) = ei tp f (p), (4.8)

(V (δ(s)) f )(p) = e−2πs f (e−2πs p). (4.9)

This yields the unique irreducible, strictly positive energy representation of the group
P; see, e.g., [17, Section 6.7].

For brevity, for t ∈ R, we denote by L
U (1)
t := L U (1)((−∞, t)), Δt := Δ

L
U (1)
t

,

Kt := − log(Δt ) and with mild abuse of notation we omit the identification between
the configuration space representation and L2

C
(R+, p dp). By the Bisognano-Wichmann

6 That is, L U (1)(I ) = L U (1)(I )f; see, e.g., [21, Section 4.2].
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theorem for Möbius covariant local nets of standard subspaces [21, Theorem 3.3.1] we
have that

Δ−is
0 = V (δ(−2πs)), (4.10)

and Δt for other t is then determined by translation covariance; in particular we get (“in
configuration space”)

Kt = − log Δt = 2π i(x − t)∂x . (4.11)

Let Qt denote the projection (2.16) relative to the subspace L
U (1)
t ; since the space is

factorial, it acts by

Qt : L
U (1)
t + L

U (1)′
t → L

U (1)
t ,

h + h′ �→ h.
(4.12)

Proposition 4.2. For f ∈ C∞
c (R) ⊂ K we have

Qt Kt f (x) = Θ(t − x)Kt f (x)

for almost all x ∈ R, where Θ denotes the Heaviside function.

Proof. Let g± := Θ(±(t − · ))Kt f . Since g± are continuous and piecewise differen-

tiable functions, they are elements of K . Also, g+ ∈ L
U (1)
t , since clearly σ(g+, ϕ) = 0

for all ϕ ∈ L
U (1)′
t , and similarly g− ∈ L

U (1)′
t . By (4.12), we now have Qt Kt f =

Qt (g+ + g−) = g+ as claimed. ⊓⊔
One then immediately finds for the relative entropy by applying formula (2.25):

Proposition 4.3. Let f ∈ C∞
c (R) ⊂ K . We have

S
L

U (1)
t

( f, f ) = 2π

∫ t

−∞
(t − x) f ′(x)2dx . (4.13)

Further, the spaces fit into our framework of differential modular inclusions (Defini-
tion 3.4):

Proposition 4.4. {L U (1)
t }t∈R is a family of differential modular inclusions.

Proof. We must prove that, for every s, t ∈ R, conditions (i) and (ii) in Definition 3.2

hold for the pair of subspaces (L
U (1)
s ,L

U (1)
t ). In fact, once (i) is shown, (ii) is obtained

immediately from points (c) and (e) of Lemma 3.3, which apply since the modular group
acts geometrically by Eq. (4.10).

Now for condition (i) in Definition 3.2, note that C∞
c ((−∞, t)) ⊂ L

U (1)
t is a core

for the generator ı⊕K t ↾ L
U (1)
t of the K -strongly continuous one-parameter group

s → Δis
t ↾ L

U (1)
t , as it is a dense invariant subset of dom ı⊕K t ↾ L

U (1)
t [16, Proposition

1.7, Chapter 2]. Using Lemmas 2.15 and 2.16, we find that ϕ
L

U (1)
t

(C∞
c ((−∞, t))) is

dense in X
L

U (1)
t

. Thus to conclude the proof we only have to show that vectors in

C∞
c ((−∞, t)) ⊂ L

U (1)
t can be approximated by vectors in L

U (1)
t ∩Dst in ‖ ·‖t , where

Dst is defined in (3.2). Suppose s ≤ t ; the proof for s > t is very similar.
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Note that

D̂st := { f ∈ C∞
c (R) : supp( f ) ⊂ (−∞, t) \ {s}} ⊂ Dst ∩ L

U (1)
t (4.14)

and D̂st ⊂ C∞
c ((−∞, t)). Consider the map

ϕ : C∞
c ((−∞, t)) → L2((−∞, t), (t − x)dx),

f �→ f ′,
(4.15)

which, by (4.13), is an isometry if C∞
c ((−∞, t)) is equipped with the norm ‖ ·‖t . To get

the claim we show that the closure of ϕ(D̂st ) is the whole space L2((−∞, t), (t −x)dx).

To that end, we check that the orthogonal complement of ϕ(D̂st ) in L2((−∞, t), (t −
x)dx) is trivial:

0 =
∫ t

−∞
(t − x) f ′(x)g(x)dx (4.16)

for all f ∈ D̂st implies that g(x) = c
t−x

for Lebesgue-almost all −∞ < x < s with

some constant c. But such g is not in L2((−∞, s), (t − x)dx) unless c = 0. Thus g

must vanish almost everywhere in (−∞, s), and by a similar argument, also in (s, t). ⊓⊔

As a byproduct of the proof above, we see that the space Xt can be identifed with
L2((−∞, t), (t − x)dx) via the map (4.15), with the projectors Q̄s being multiplication
with the characteristic function of (−∞, s).

Note that the inclusion

L
U (1)((1,∞)) ⊂ L

U (1)((0,∞)) (4.17)

is a +half-sided modular inclusion (see Definition 4.5 below). It is indeed the unique non-
trivial irreducible +half-sided modular inclusion up to unitary equivalence [21, Corollary
4.3.2]. Similarly

L
U (1)
−1 ⊂ L

U (1)
0 (4.18)

is the unique nontrivial irreducible −half-sided modular inclusion up to unitary equiva-
lence.

4.2. Decomposition. In this section we show that the family of standard subspaces in-
duced by a half-sided modular inclusion yields a family of differential modular inclusions
(Definition 3.4). We start by recalling the notion of (single-particle) half-sided modular
inclusion and some of its relevant consequences following [21].

Definition 4.5. Let K ⊂ H be real standard subspaces of a complex Hilbert space H .
If

Δ−i t
H K ⊂ K for every ± t ≥ 0,

the inclusion K ⊂ H is called a ±half-sided modular inclusion of standard subspaces.
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In our context, we will work with −half-sided modular inclusions only.

As above, let P denote the group generated by translations and dilations on the real line
R, which we denote respectively with ϑ and δ, i.e. ϑ(t)(x) = x + t , δ(s)(x) = es x for
t, s, x ∈ R. We denote by δ1 the one-parameter subgroup of P of dilations of the interval
(1,∞), i.e. δ1(s) = ϑ(−1)δ(s)ϑ(1).

A unitary representation V of the group P is said to have positive energy if the
generator of the subgroup of translations, t → V (ϑ(t)), is a positive operator. It is said
to be nonsingular if the kernel of the generator of translations is trivial.

The following is the single-particle version of Wiesbrock’s theorem for half-sided
modular inclusions [35], see [21, Theorem 2.4.1].

Theorem 4.6. Let K ⊂ H be a −half-sided modular inclusion of standard subspaces

in a Hilbert space H . There exists a positive energy unitary representation V of P on

H determined by

V (δ(2πs)) = Δ+is
H , V (δ1(2πs)) = JH Δ+is

K JH .

The translation unitaries V (ϑ(t)) are defined by

V (ϑ(e2π t − 1)) = Δ+i t
H JH Δ−i t

K JH

and satisfy V (ϑ(s))H ⊂ H, s ≤ 0, and K = V (ϑ(−1))H.

Definition 4.7. Let K ⊂ H be a −half-sided modular inclusion and V be its induced
representation of P from Theorem 4.6. K ⊂ H is said to be

(i) irreducible if V is irreducible;
(ii) nondegenerate if V is nonsingular;

(iii) trivial if K = H .

The following statement is the content of [21, Corollary 4.3.2] which is obtained by
decomposing the representation V into irreducibles.

Proposition 4.8. Let K ⊂ H be a −half-sided modular inclusion. Then it is canonically

a direct sum of a nondegenerate −half-sided modular inclusion and a trivial −half-sided

modular inclusion. If K ⊂ H is a nondegenerate −half-sided modular inclusion then it is

a countable direct sum of irreducible −half-sided modular inclusions unitary equivalent

to L
U (1)
−1 ⊂ L

U (1)
0 in (4.18).

From the latter decomposition, we easily derive our desired result.

Proposition 4.9. Let K ⊂ H be a −half-sided modular inclusion of standard subspaces

in a Hilbert spaceH . Then {V (ϑ(t))H}t∈R is a family of differential modular inclusions.

Proof. Combining Propositions 4.8 and 4.4 we have that {V (ϑ(t))H}t∈R decomposes
into a direct sum of families of differential modular inclusions, thus the conclusion
follows by Lemma 4.1. ⊓⊔

Of course a similar statement can be obtained starting from a +half-sided modular
inclusion.
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5. Examples

5.1. Quantum mechanics. As the simplest, but instructive example, let us consider a
finite-dimensional symplectic Hilbert space; for concreteness, K = C

n with σ( f, g) =
Im( f, g), where ( f, g) denotes the standard scalar product on C

n , and τ( f, g) =
Re( f, Mg) with some matrix M ≥ 1. (If M has no eigenvalue of 1, this may be in-
terpreted as a thermal state on n independent harmonic oscillators, cf. [25], and M = 1
corresponds to the ground state of the oscillators.)

Example 5.1. Let E be a ( · , · )-orthogonal projector that commutes with M , and set
L = EK . Then

SL ( f ) = 2( f, E arcoth(M) f ) (5.1)

where we read arcoth(M) as ∞ on eigenspaces of M for eigenvalue 1.

If Et := E(−∞, t) is the spectral family of M , then Lt = EtK is a family of
differential modular inclusions with

T f (s, t) = 2( f, Es Et arcoth(M) f ). (5.2)

Proof. For the first statement, by choosing a basis in which both M and E are diagonal
and applying Lemma 4.1, it is sufficient to prove the statement for n = 1. In this case,
either E = 0 (in which case the statement is trivial) or E = 1 (assumed in the following).
Hence L = K and M = m1 with some m ≥ 1. Assume first m = 1. In that case,
(K , τ, σ ) is pure, and as in Remark 2.4, one has L∞ = K ⊕ 0, L0 = 0 ⊕ K . From
Proposition 2.11, one sees that both sides of (5.1) are infinite (unless f = 0, in which
case both are 0).

Now let m > 1. In that case, one has D = −im−1 and

ı⊕ =
(

im−1 i
√

1 − m−2

i
√

1 − m−2 −im−1

)

. (5.3)

One then computes the modular operator ΔL of the spaces L = K ⊕ 0 and ı⊕L to
be

Δ =
(

1 −2(m2 − 1)−1/2

−2(m2 − 1)−1/2 (m2 + 3)/(m2 − 1)

)

, (5.4)

so that log ΔL has the eigenvalues ±2 arcoth(m), and the projector QL is obtained (for
example by Lemma 2.6) as

QL =
(

1
√

m2 − 1
0 0

)

. (5.5)

From Proposition 2.10, one then obtains (5.1).

For the differential modular inclusion, again by Lemma 4.1 it suffices to consider only
the case n = 1. If Et = 0, then St = 0 and (Ls,Lt ) is trivially in differential modular
position; both sides of (5.2) vanish. If instead Et = Es = 1, i.e., Ls = Lt , differential
modular position is clear and T f (s, t) = St ( f ) in agreement wih (5.2). Hence let Et = 1
and Es = 0. If m = 1, then f ∈ dom St = {0} must vanish, and (5.2) holds trivially. If
m > 1, then Qs = 0, D+

st = {0}, D
−
st = K , one has Q̄s = 0, and both sides of (5.2)

vanish. ⊓⊔
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Of course, the same results for the entropy are obtained in the usual formalism repre-
senting thermal states of the harmonic oscillator as density matrices. It is interesting to
note how our inequalities for d2St/dt2 work out in this example. Writing M =

∑

j m j E j

in spectral decomposition, the terms in Theorem 3.9 are (in suggestive notation)

∂2T f

∂s2
(t − 0, t) = d2St ( f )

dt2
= 2

∑

j

δ′(t − m j ) arcoth(m j ) ( f, E j f ),
∂2T f

∂t2
(t − 0, t) = 0,

(5.6)

so that the inequality (3.20) turns into an equality; note that the distribution δ′ does not
have a definite sign, hence finding nontrivial lower estimates would not be possible.

In the above example, our condition of differential modular position was satisfied
because M leaves each subspace Lt invariant. Clearly, this will not be true for more
general subspaces. We provide an explicit counterexample:

Example 5.2. In the above setting, let n = 2, M = diag(2, 3), let L0 ⊂ K be the
subspace spanned over R by the vectors (1, 1) and (i, 0), and let L1 = K . Then
(L0,L1) is not in differential modular position.

Proof. By explicit matrix computation, one can find the modular operators related to
L0 and L1, and hence an explicit formula for Q0 and S1. For f ∈ K , consider

δ := S1( f, f ) − S1(Q0 f, Q0 f ); (5.7)

one finds that if f = (a, b) with a, b ∈ R, then

δ = (b2 − a2) log 2. (5.8)

This is in general not positive, hence Q0 cannot be orthogonal with respect to S1. ⊓⊔

In the same situation, one finds that S1( f, f ) − S1( f, Q0 f ) = b(b − a) log 2; hence
T f (s, t) defined as in (3.11) may be decreasing in s, and the conclusion of Lemma 3.6
fails.

5.2. Conformal U (1)-current, vacuum state. As an example from quantum field theory,
we can take the conformal U (1)-current in the vacuum state, as already treated in
Sect. 4.1. We briefly summarize the results here, and comment how the estimates on
derivatives of the entropy work out in this case.

Example 5.3. Let (K , τ, σ ) be the pure symplectic Hilbert space defined in Sect. 4.1

and let Lt = L
U (1)
t ⊂ K . Then (Lt )t∈R is a family of differential modular inclusions,

the space Xt is isomorphic to L2((−∞, t), (t − x)dx) via ϕt : f �→ f ′, and we have
for f ∈ C∞

c (R) ⊂ K ,

T f (s, t) = 2π

∫ min{s,t}

−∞
(t − x) f ′(x)2 dx, St ( f, f ) = 2π

∫ t

−∞
(t − x) f ′(x)2dx .

(5.9)
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We note here that T f is C1, as well as the restriction of smooth functions to the cones
C±; one has

d2

dt2
St ( f ) = ∂2

∂s∂t
T f

∣
∣
∣
s=t−0

= 2π f ′(t)2 ≥ 0,
∂2

∂t2
T f

∣
∣
∣
s=t−0

= 0, (5.10)

so that the second derivative of St is positive and given by a boundary term only.

By the results of Sect. 4, a similar behaviour is exhibited by general half-sided modular
inclusions. Namely, in the notation of Sect. 4.2, let K ⊂ H be a −half-sided modular
inclusion in the complex Hilbert space H , Kt := V (ϑ(t))H and f ∈ H . By using
Lemma 4.1, we have that St ( f, f ) and T f (s, t) decompose along the direct sum provided
by Proposition 4.8. Precisely, if f =

∑

n>0 fn + f0 is the corresponding decomposition
of f , with f0 being the component relative to the trivial modular inclusion,

St ( f, f ) =
∑

n≥0

St ( fn, fn), T f (s, t) =
∑

n≥0

T fn (s, t),

where St ( fn, fn) and T fn (s, t) with n > 0 are given by (5.9). The behaviour of the
derivatives of St ( f, f ), at least when taking the fn to have suitably fast decay, is analo-
gous to (5.10), noticing also that St ( f0, f0), i.e., the contribution to the relative entropy
given by the trivial half-sided inclusion component, is constant in t . As a particular ex-
ample, this applies to the subspaces associated with lightlike shifted wedges in the real
scalar free field, as in [14].

The above situation is compatible with Proposition 3.7; however, the vanishing

of ∂2

∂t2 T f is clearly a special feature of this particular family of subspaces. Even a
reparametrization will remove it:

Example 5.4. In Example 5.3, consider instead Lt = L
U (1)
h(t) where h is a smooth, strictly

increasing function. Then (Lt )t∈R is still a family of differential modular inclusions,
but

d2

dt2
St ( f ) = 2πh′(t)2 f ′(t)2

︸ ︷︷ ︸

∂2T f
∂s∂t

(t−0,t)

+ 2πh′′(t)
∫ t

−∞
f ′(x)2 dx

︸ ︷︷ ︸

∂2T f

∂t2
(t−0,0)

. (5.11)

Of course, this is still compatible with Proposition 3.7, but while the first term (the
“boundary term”) is still positive, the second derivative of St will not be positive in
general.

5.3. Conformal U (1)-current, thermal states. Let us now consider thermal (KMS) states
on the conformal U (1)-current, as described in [5]. This examples illustrates, in partic-
ular, that different scalar products τ can be chosen with respect to the same symplectic
form σ , and that this leads to different relative entropies.

Specifically, fixing β > 0, we choose on the non-completed space C∞
c (R) the bilinear

form

τβ( f, g) := Re

∫ ∞

0

f̃ (−p)g̃(p)

1 − e−βp
p dp. (5.12)
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The associated quasifree state fulfills the KMS condition with respect to translations [5].

The completion of the symplectic space C∞
c (R) with respect to τβ is Kβ := L2

C
(R+,

p
1−exp(−βp)

dp) as a real vector space; as before, we do not always denote the Forier

transform explicitly. We apply the purification procedure described in Section 2.1: it is
easy to see that

σ( f, g) = τβ( f, Dg), f, g ∈ Kβ , (5.13)

where D is the multiplication operator by i (1−e−βp) on Kβ . In the polar decomposition

D = C |D|, the operators |D| and C act by multiplication with (1 − e−βp) and i ,
respectively. This induces a complex structure ı⊕ on K

⊕
β := Kβ ⊕ Kβ by (2.3); let us

denote the complex scalar product as 〈·, ·〉β .

For t ∈ R, we define L
β

t := C∞
c ((−∞, t))) ⊂ Kβ where the bar indicates norm

closure in Kβ . The bilinear form τβ is translation invariant, thus we have the following
immediate proposition.

Proposition 5.5. The symplectic action of translations (ϑ(t)⋆ f )(x) = f (x − t), f ∈
C∞

c (R), extends to a unitary representation of the group of translations ϑ on K
⊕

β by

V (ϑ(t))
(

( f ⊕ 0) + ı⊕(g ⊕ 0)
)

= ϑ(t)⋆ f ⊕ 0 + ı⊕(ϑ(t)⋆g ⊕ 0), (5.14)

f, g ∈ C∞
c (R). Furthermore it acts covariantly on the subspaces L

β
t , namely

V (ϑ(t))L β
s = L

β
s+t (5.15)

for every s, t ∈ R.

Regarding the decomposion of K
⊕

β with respect to L
β

t , we find:

Proposition 5.6. For each t, the subspace L
β

t ⊕ 0 ⊂ K
⊕

β is standard and factorial,

i.e., in the notation of Section 2.1 we have L
β

t = (L
β

t )f and K
⊕

β = (L
β

t )⊕
f

.

Proof. We first show (L
β

t )∞ ≡ L
β

t ∩ ı⊕L
β

t = {0}. A generic element in this inter-

section is of the form f ⊕ 0 = ı⊕(g ⊕ 0) for some f, g ∈ L
β

t . Since ı⊕(g ⊕ 0) =
−Dg ⊕ C

√
1 + D2g, we have C

√
1 + D2g = 0, which implies that g = 0, since

C
√

1 + D2 has trivial kernel.

For establishing (L
β

t )0 ≡ L
β⊥

t = {0}, where ⊥ indicates the orthogonal comple-

ment in K
⊕

β , we use a modified Reeh–Schlieder argument as follows. Let f ∈ L
β⊥

t , and

let ϕ = ϕa ⊕ 0 + ı⊕(ϕb ⊕ 0) with arbitrary ϕa,b ∈ C∞
c (R). Denoting ϕs = V (ϑ(s))(ϕ)

(see Proposition 5.5), we notice that 〈 f, ϕs〉β is analytic in s ∈ R + iR+ (indeed, we
can differentiate under the integral sign by use of dominated convergence). But for large

negative s, we have ϕs ∈ L
β

t + ı⊕L
β

t , and hence 〈 f, ϕs〉β = 0. Due to analyticity, the
same then holds for all s, in particular 〈 f, ϕ〉β = 0. Therefore, writing f = f1 ⊕ f2,

0 = Re〈 f, ϕ〉β = τβ( f1, ϕa) − σ( f1, ϕb) − τβ(C
√

1 + D2 f2, ϕb). (5.16)

In particular, choosing ϕb = 0 and varying ϕa ∈ C∞
c (R) yields f1 = 0; then also f2 = 0

since C
√

1 + D2 has trivial kernel. Hence f = 0.
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Finally, we show (L
β

t )a ≡ L
β

t ∩ L
β′

t = {0}. Any f ∈ L
β

t is of the form f =
τβ -limn→∞ ϕn for some ϕn ∈ C∞

c ((−∞, t)). Since the τβ -norm is stronger than the

L2-norm, this implies f ∈ L2(R) and supp f ⊂ (−∞, t]. If now also f ∈ L
β′

t , one has
σ( f, ϕ) = 0 for all ϕ ∈ C∞

c ((−∞, t)). This means
∫

f (x)ϕ′(x) dx = 0 for all these ϕ,
which by standard argument implies that f is constant on (−∞, t). Hence f = 0. ⊓⊔

Following [5], one can determine the modular group associated with L
β

0 :

Proposition 5.7. The modular group U0(u) := Δiu

L
β

0

of L
β

0 as a standard subspace

w.r.t. K
⊕

β is given by

U0(u)
(

ψ ⊕ 0 + ı⊕(ϕ ⊕ 0)
)

= δuψ ⊕ 0 + ı⊕(δuϕ ⊕ 0) (5.17)

for u ∈ R, ϕ, ψ ∈ C∞
c ((−∞, 0)), and

δu f (x) := f
(

− β

2π
log

(

1 + e2πu(e−2πx/β − 1)
)
)

(5.18)

for f ∈ C∞
c ((−∞, 0)).

Proof. δu fulfils the following properties [5, p. 620]:

(i) It preserves the subspace C∞
c ((−∞, 0));

(ii) it satisfies the group property, i.e., δu ◦ δu′ = δu+u′ ;
(iii) there holds τβ(δu f, δu g) = τβ( f, g) and σ(δu f, δu g) = σ( f, g);
(iv) settingω2( f, g) := τβ( f, g)+iσ( f, g), for every f, g ∈ C∞

c ((−∞, 0)) the function
u �→ ω2( f, δu g) has an analytic continuation into the strip S(−1, 0) and

ω2( f, δu−i g) = ω2(δu g, f ). (5.19)

Thus item (i) and item (iii) show that (5.17) is a well-defined and unitary mapping, and
by item (ii) U0 is a unitary group. Using complex linearity of the scalar product 〈·, ·〉β ,
item (iv) implies the KMS property in the form

〈 f, U0(u − i)g〉β = 〈U0(u)g, f 〉β for all f, g ∈ L
β

0 , (5.20)

which characterizes U0 as the modular group of L
β

0 . ⊓⊔

We can thus compute − log Δ0, the generator of the modular group action of L
β

0 :

for f ∈ C∞
c ((0,∞)) ⊂ L

β
0 we have

(− log Δ0) f ⊕ 0 := ı⊕
d

du
U0(u)( f ⊕ 0)

∣
∣
u=0

= ı⊕
d

du
δu f ⊕ 0

∣
∣
u=0

= ı⊕
d

du
f
(

− β

2π
log

(

1 + e2πu(e−2π ·/β − 1)
)
)∣
∣
∣
u=0

⊕ 0

= −ı⊕
(

f ′(·)β(1 − e2π ·/β) ⊕ 0
)

. (5.21)

As an immediate consequence of Proposition 2.10, we now obtain:

Proposition 5.8. For f ∈ (C∞
c ((−∞, t)) ⊕ 0) ⊂ L

β
t we have

S
L

β
t
( f, f ) =

∫ t

−∞
( f ′(x))2β(1 − e2π(x−t)/β) dx . (5.22)
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Further, analogous to the vacuum case in Sect. 4.1, we can show:

Proposition 5.9. {L β
t }t∈R is a family of modular differential inclusions (Definition 3.4).

Proof. The proof of condition (i) is very similar to Proposition 4.4. Condition (ii) follows
immediately by Lemma 3.3(c). ⊓⊔

The entropy for general f ∈ C∞
c (R) is less directly accessible, since the action of

the modular group on f ∈ C∞
c ((t,∞)) is not explicitly known. Nevertheless, we can

show:

Proposition 5.10. For f ∈ C∞
c (R) ⊕ 0,

S
L

β
t
( f, f ) =

∫ t

−∞
dx( f ′(x))2β(1 − e2π(x−t)/β) dx . (5.23)

Proof. Similarly to the proof of Proposition 4.4, given f ∈ C∞
c (R) and chosen t ≤ s ∈

R such that supp( f ) ⊂ (−∞, s), we have a sequence { fn}n≥0 in

D̂ts := {g ∈ C∞
c (R) : supp(g) ⊂ (−∞, s) \ {t}} ⊂ Dts (5.24)

such that ‖ f − fn‖s → 0 and thus ‖ f − fn‖t → 0 since s ≥ t . If Qt denotes the

projection (2.16) of the subspace L
β

t , we further have that ‖ f − Qt fn‖t ≤ ‖ f − fn‖t +
‖ fn − Qt fn‖t = ‖ f − fn‖t → 0, thus S

L
β

t
( f, f ) = ‖ f ‖2

t = limn ‖Qt fn‖2
t . If ϕs is

the extension to Xs of the isometric mapping

ϕs : C∞
c ((−∞, s)) → L2((−∞, s), β(1 − e2π(x−s)/β) dx)

f �→ f ′,
(5.25)

(where C∞
c ((−∞, s)) is equipped with norm ‖ · ‖s), then ϕs(Qt fn) = Θ(t − · )ϕs( fn).

Multiplication by Θ(t − · ) is continuous in L2((−∞, s), β(1 − e2π(x−s)/β) dx), thus
Θ(t − · )ϕs( fn) → Θ(t − · )ϕs( f ). This implies that

Θ(t − · ) f ′
n = Θ(t − · )ϕs( fn) → Θ(t − · )ϕs( f ) = Θ(t − · ) f ′ (5.26)

in L2((−∞, t), β(1 − e2π(x−t)/β) dx), which yields the statement using
Proposition 5.8. ⊓⊔

Let us summarize the results:

Example 5.11. In the symplectic Hilbert space (Kβ , τβ , σ ) of the conformal U (1)-

current with KMS state induced by τβ , consider L
β

t = C∞
c (−∞, t). Then {L β

t }t∈R is
a family of differential modular inclusions, and for f ∈ C∞

c (R),

T f (s, t) = ‖Q̄sϕt f ‖2
t =

∫ min{s,t}

−∞
dx( f ′(x))2β(1 − e2π(x−t)/β) dx . (5.27)

Computing the second derivative of the relative entropy, we have

d2S
L

β
t
( f )

dt2
= 2π( f ′(t))2

︸ ︷︷ ︸

∂2T f
∂s∂t

(t−0,0)≥0

− (2π)2

β

∫ t

−∞
dx ( f ′(x))2e−2π(x−t)/β

︸ ︷︷ ︸

∂2T f

∂t2
(t−0,0)≤0

. (5.28)

Thus in the present case, the estimate in Proposition 3.7 bounds the second derivative
of the entropy from below by its negative bulk term, i.e., the second term in (5.28).
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5.4. Commutative algebras. It is instructive to consider also the case of abelian CCR
algebras, i.e., subspaces L with L ⊂ L ′.

Example 5.12. Let (X,M , μ) be a measure space such that K := L2
R
(X, dμ) is sepa-

rable. For measurable subsets Y ⊂ X , set LY := L2
R
(Y ) ⊂ K . For (K , τ, 0) with τ

the L2 scalar product, identify K ⊕ with L2
C
(X, dμ) as in Remark 2.5. Then XY can

be identified with L2
R
(Y, dμ) via ϕY : f �→ Im f ↾ Y , and

SY ( f, f ) = 2

∫

Y

(Im f )2dμ. (5.29)

For any two such subsets Y, Z , the pair (LZ ,LY ) is in differential modular position,
and Q̄ Z acts on XY by multiplication with the characteristic function of Y ∩ Z .

Proof. By Remark 2.5, we have L
⊕

0 = L2
C
(Y c, dμ), La = LY , Lf = L∞ = 0.

The formula (5.29), and with it the proposed form of ϕY , then follows directly from
Proposition 2.9; note that SY is bounded and defined on all of K ⊕. Also, noting that
the projector Q Z (which acts by Q Z f = χZ Im f ) is already orthogonal, we have
D+

ZY = i L2
R
(Z ∩ Y ), D

−
ZY = { f ∈ K : Im f ↾ Z = 0}, and one sees that Q̄ Z

multiplies with χZ∩Y in XY . ⊓⊔

As a special case, let us consider:

Example 5.13. Let K = L2
R
(R), K ⊕ = L2

C
(R) with subspaces Lt = L2

R
(−∞, t).

Then Lt is a family of differential modular inclusions, and we have St ( f, f ) = 2
∫ t

−∞
(Im f (x))2dx and T f (s, t) = 2

∫ min(s,t)

−∞ (Im f (x))2dx .

We note that in this example, the function T f is not C1. Clearly

d2St

dt2
= 2

d

dt
(Im f (t))2, (5.30)

thus St will not be convex in general. Note that ∂2T f /∂
2s = 2 d

ds
(Im f (s))2 and

∂2T f /∂t2 = 0 for s < t , so that the estimate in Theorem 3.9 is saturated.

6. Conclusions

In this paper, we have analyzed the relative entropy between coherent excitations of a
general quasifree state on a CCR algebra, with respect to the algebra generated by a
generic closed subspace. We gave an explicit description of the relative entropy in terms
of single-particle modular data.

Also, we analyzed the change of the relative entropy along an increasing one-
parameter family of subspaces, establishing an abstract notion of bulk and boundary
changes. Convexity of the entropy (or the QNEC) is in general replaced by certain lower
estimates of the second derivative, where both bulk and boundary terms can contribute.

An instrumental part of this analysis was the notion of differential modular position of
two subspaces, meaning that the projector onto one subspace is orthogonal with respect
to the scalar product induced by the entropy form of the other. While this is a nontrivial
condition, we showed that it is fulfilled in a number of relevant examples; in particular
it includes, but generalizes, the well-known notion of half-sided modular inclusions.
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As the condition of differential modular position seems a fruitful tool, it would cer-
tainly be of interest to investigate whether it holds, possibly in a generalization, in a
wider context than discussed here, both in other models of (linear) quantum fields and
with respect to more general positions of subalgebras than treated in examples here. In
particular, one would expect that it can be formulated employing notions of category
theory, akin to the “locally covariant” setting of quantum field theory [10]. We hope to
report on this issue elsewhere.

Also, it would be of interest to generalize our framework beyond CCR algebras to
general inclusions of von Neumann algebras; in the context of quantum field theory,
this would correspond to models beyond linear fields. Clearly, a challenge is the limited
availability of concrete examples beyond CCR algebras, in particular with sufficiently
explicit descriptions of the relative modular operator. Possibly integrable models in
low space-time dimensions, which are (fully or partially) known to fulfill quantum
inequalities [6,7], can provide some test cases in this respect.
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A. Relative entropy on C
∗ and von Neumann algebras

The notion of relative entropy for states on general von Neumann algebras was first
introduced by Araki [1,2]. We recall its definition and relevant properties, following
[26].

Let M be a von Neumann algebra on a Hilbert space H , let ω = 〈ξ, · ξ 〉 a vector state
(with some ξ ∈ H ), and ϕ another state on M . The relative entropy between ω and ϕ

(with respect to M ) is defined as

SM (ω‖ϕ) =
{

−〈ξ, log Δ(ϕ/ω′
ξ )ξ 〉 if ξ ∈ supp ϕ,

∞ otherwise.
(A.1)

Here ω′
ξ is the state 〈ξ, · ξ 〉 restricted to M ′, and Δ(ϕ/ω′

ξ ) denotes the spatial derivative.

In the case where both ω and ϕ are given by cyclic and separating vectors ξ, ψ , the
relative modular Δψ,ξ is defined and we have (see [26, Theorem 5.7], [14, Proposition
4.1])

SM (ω‖ϕ) = i
d

dt
〈ξ,Δi t

ψ,ξ ξ 〉
∣
∣
∣
t=0

. (A.2)

http://creativecommons.org/licenses/by/4.0/
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If A is a C∗-algebra and ω, ϕ are positive linear functionals on A , then SA (ω‖ϕ) is
defined as

SA (ω‖ϕ) := SA ∗∗(ω̄‖ϕ̄),

where the right-hand-side denotes the relative entropy with respect to the universal
enveloping von Neumann algebra A ∗∗ of A and ω̄, ϕ̄ are the normal extensions of ω,
ϕ to A ∗∗.
Suppose there is a representation π of A , π : A → B(H ), where ω is a vector state,
i.e., there is ξ ∈ H with

ω̃(π(a)) := 〈ξ, π(a)ξ 〉 = ω(a), a ∈ A ,

and for which there is a normal state ϕ̃ on π(A )′′ such that

ϕ(a) = ϕ̃(π(a)), a ∈ A .

Then by applying Kosaki’s formula for the relative entropy [26, Theorem 5.11], we have

SA (ω‖ϕ) = Sπ(A )′′(ω̃‖ϕ̃). (A.3)

We recall the following properties of the relative entropy:

Lemma A.1 [26, Corollary 5.12, iv]. Let Mi be an increasing net of von Neumann

subalgebras of M with the property (∪iMi )
′′ = M . Then SMi

(ω1 ↾ Mi , ω2 ↾ Mi )

converges to SM (ω1, ω2), where ω1, ω2 are two positive normal linear functionals on

M .

Lemma A.2 [26, follows from Corollary 5.20]. Let M1 and M2 be von Neumann al-

gebras, let ω1, ϕ1 be normal states on M1 and let ω2, ϕ2 be normal states on M2.

Then

SM1⊗M2
(ω1 ⊗ ω2‖ϕ1 ⊗ ϕ2) = SM1

(ω1‖ϕ1) + SM2
(ω2‖ϕ2). (A.4)

Lemma A.3 [26, follows from Theorem 5.3]. Let ω and ϕ be two normal states on a

von Neumann algebra M , and denote by ω1 and ϕ1 the restrictions of ω and ϕ to a von

Neumann subalgebra M1 ⊂ M respectively. Then SM1
(ω1‖ϕ1) ≤ SM (ω‖ϕ).
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15. Dereziński, J., Gérard, C.: Mathematics of Quantization and Quantum Fields. Cambridge Monographs on

Mathematical Physics. Cambridge University Press (2013). https://doi.org/10.1017/CBO9780511894541
16. Engel, K.J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in

Mathematics, vol. 194. Springer, New York (2000)
17. Folland, G.B.: A Course in Abstract Harmonic Analysis. CRC Press, London (1994)
18. Halmos, P.R.: Two subspaces. Trans. Am. Math. Soc. 144, 381–389 (1969)
19. Hollands, S.: Relative entropy for coherent states in chiral CFT. Lett. Math. Phys. 110(4), 713–733 (2020).

https://doi.org/10.1007/s11005-019-01238-z
20. Kay, B.S., Wald, R.M.: Theorems on the uniqueness and thermal properties of stationary, nonsingular,

quasifree states on spacetimes with a bifurcate Killing horizon. Phys. Rep. 207(2), 49–136 (1991). https://
doi.org/10.1016/0370-1573(91)90015-E

21. Longo, R.: Real Hilbert subspaces, modular theory, SL(2, R) and CFT. In: Dykema, K., Rădulescu, F.
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