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Abstract The tetraneutron has attracted the attention of nuclear physicists during the past decades,
but there is still no unambiguous confirmation of its existence or non-existence. A new experiment based
on 8He(p, 2p)7H{t+4n} reaction, with direct detection of the four neutrons, has been carried out at RIBF,
which can hopefully help to draw a definite conclusion on the tetraneutron system.

Keywords Tetraneutron · Direct detection

1 Introduction

Few-neutron systems, especially the tetraneutron (4n), have been at the focus of interest in recent years.
They will not only serve as a sensitive probe to investigate the nuclear force, in particular the isospin
dependence of many-body nuclear forces, and also help to understand how the structure of nuclei located
around the neutron drip line and the properties of neutron-rich nuclear matter and neutron stars emerge
from the underlying nuclear force and correlations [1–3].

While it is a general consensus that 4n cannot be a bound state, the possibility for 4n existing as
a low-lying resonant state still remains elusive despite many experimental and theoretical efforts (for
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details see recent review [3]). A candidate 4n resonance with a decay energy ER = 0.83 ± 0.65(stat) ±

1.25(syst) MeV and a width Γ ≤ 2.6 MeV was recently reported in a double-charge-exchange reaction
4He(8He, 8Be)4n performed at RIKEN [4]. While the measurement is basically background-clean because
of the SHARAQ spectrometer and the highly selective reaction channel, the result suffered from the low
statistics—only four events indicative of a 4n resonant state. Another notable experiment claiming the
possible observation of a 4n resonance was made by Marqués et al. in 2002, where several events observed
in the breakup of the neutron-rich nucleus 14Be were found consistent with a low-lying 4n resonant state
[5,6].

Competing ab initio theoretical methods using well-established nuclear interactions, either realistic
interactions like Argonne and JISP16 or interactions derived from the chiral effective field theory, have
been employed to investigate the four-neutron system [3,7–17]. The existence of a 4n resonance is sup-
ported by some theoretical models including Quantum Monte Carlo (QMC) [7,8], No-Core Shell Model
(NCSM) [9], and No-Core Gamow Shell Model (NCGSM) [10,11], but is incompatible with some other
calculations using the Faddeev-Yakubovsky (FY) or Alt-Grassberger-Sandhas (AGS) formalisms [12–14],
the variational Gaussian Expansion Method [15], and the adiabatic hyper-spherical approach [16,17]. It is
of great interest and also of urgent importance to understand and resolve the obvious discrepancy between
these state-of-the-art theoretical calculations. But the only available experimental data mentioned above
are insufficient to draw a conclusion on the possible existence of a 4n resonance, particularly because of
the extremely low statistics [4–6].

We have carried out a new experimental study of 4n by using the 8He(p, 2p)7H{t+4n} reaction in
inverse kinematics. We populated the four-neutron-unbound nucleus 7H by removing one proton from
8He, which subsequently decayed via direct emission of four neutrons since the sequential decay through
intermediate 4,5,6H should be energetically forbidden [18–21]. Our study concerns a kinematically complete
measurement of all the reaction products including the four decay neutrons.

2 Experimental Methods

Fig. 1 Schematic view of the experimental setup.

The 8He(p, 2p)7H{t+4n} experiment was carried out at the radioactive isotope beam factory (RIBF)
operated by the RIKEN Nishina Center and the Center for Nuclear Study of the university of Tokyo. Fig. 1
shows the schematic view of the experimental setup. The secondary beam of 8He with an energy of 150
MeV/nucleon was produced through the fragmentation of the 18O primary beam, and then purified and
transported through the BigRIPS fragment separator [22]. The secondary beam particles were identified
on an event-by-event basis. Using two multi-wire drift chambers (BDC1, BDC2), the 8He beam with an
intensity of 105 pps was tracked onto the 150 mm-thick liquid hydrogen target MINOS [23] and 7H was
then produced by the (p, 2p) reaction.

The key ingredient of our experiment is the kinematically complete measurement of all the reaction
products. The recoil protons were detected by an array of 36 NaI crystals (part of DALI2 [24]), arranged



4 S. W. Huang et al.

in two symmetric rings, providing an energy resolution of 1% (FWHM) for 80 MeV protons. Energy
calibration was performed by measuring the p-p elastic scattering at 175 MeV with the same setup.

The particle identification (PID) and momentum analysis of the charged fragments were achieved using
the SAMURAI spectrometer and the associated detectors [25,26]—two drift chambers (FDC0, FDC2),
located at the entrance and exit of the dipole magnet, measuring the trajectory and the HODO plastic
scintillator array measuring the energy loss and the time of flight (TOF). Light fragments including
triton, 4He and 6He can be clearly identified with the TOF-∆E method [27]. Beam-velocity neutrons
were detected by two plastic scintillator arrays placed at 0◦, the NeuLAND demonstrator from GSI [28]
and the existing NEBULA array [29], which can together provide the highest 4n detection efficiency at
present. The momenta of neutrons were determined from the measured hitting positions and TOF.

3 Preliminary results

We first analyzed the 6He+n channel, populated in the (p, pn) reaction of 8He, to validate the momentum
analysis of fragments and neutrons. The relative-energy (Erel) spectrum of 7He reconstructed from the
momenta of 6He and the coincident neutron is shown in Fig. 2a, exhibiting a prominent peak at around 0.4
MeV which corresponds to the well-known ground state of 7He [30,31]. A tentative fitting (red solid line
in Fig. 2a) shows that the Erel spectrum of 7He can be nicely described by a single p-wave Breit-Wigner
function (Erel = 0.38 MeV, Γ = 0.14 MeV) convoluted by the detector response function obtained from
the simulation taking into account the experimental resolution (∼160 keV (FWHM) at Erel = 1 MeV)
and acceptance, in agreement with previous reports [30,31].

We also checked the distribution of the polar angle θ defined as the angle between the 7He momentum
and 6He-n relative momentum in the projectile rest frame. As shown in the inset of Fig. 2a, the cos(θ)
spectrum is anisotropic but symmetric with respect to 90◦, consistent with previous work [31].

We then checked the consistency of the full detector calibrations by further combining the proton
detection of NaI crystals. For the 8He(p, pn)7He channel, we can reconstruct the momentum of the recoil
neutron from momentum conservation although it is not detected in our experiment [32]. The energy
conservation of all involved reaction particles shown in Fig. 2b clearly indicates the correct calibrations
of all the detectors including the beamline detectors and NaI crystals.

Fig. 2 (a)Relative-energy spectrum of 7He. The black points with statistical error bars correspond to the experimental
data. The red solid line shows the fitting result. The inset shows the polar angular distribution for 7He decaying into 6He+n.
(b)The energy conservation distribution from the reconstruction method (explained in the text).

To analyze multi-neutron reaction channels, it’s crucial to distinguish true neutrons from the crosstalk
background. It is well-known that a single incoming neutron can induce multiple hit signals (so-called
crosstalks) in plastic scintillators either due to the emission of secondary particles (mainly protons), which
are concentrated in the close proximity of the first hit, or due to the scattering of the incoming neutron
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into another scintillator. The crosstalk rejection algorithm [29,33] well-established for the three-wall
configuration consisting of NeuLAND and NEBULA is adopted in our analysis.

We started the crosstalk analysis by checking the time-space separation of all the recorded hits. Two

hits were grouped into a same cluster if the following condition was satisfied:

√

(dr−dr0
R

)
2
+ (dt−dt0

T
)
2
< 1,

where dr and dt are position and time differences of the two hits and others are adjustable parameters
that are generally optimized using Geant4 simulations [29,33]. In our preliminary analysis, we adopted
dr0 = 15 cm, R = 15 cm, dt0 = 0.5 ns, T = 2.5 ns for NeuLAND and dr0 = 15 cm, R = 15 cm, dt0 =
0.5 ns, T = 3.5 ns for NEBULA. For each cluster, only the fastest (first) hit was kept and in this way
crosstalks in neighboring scintillators (termed as “same-wall crosstalks” in [29,33]) were eliminated.

Next, we examined the causality condition for all the remaining hits to eliminate secondary hits arising
from the scattered neutron. For each pair of hits (1 for the earlier hit and 2 for the latter hit), the causality
condition was defined as β01

β12

> 1, where β01 is the velocity from target to the earlier hit and β12 is the
intermediate velocity between the two hits. The causality condition works because of the energy loss of
the neutron at the earlier hit, resulting in β01 > β12. Once the causality condition was satisfied, the latter
hit would be considered as a crosstalk and thus be rejected. This procedure was repeated successively
for all combinations of hits following the timing sequence. After the crosstalk analysis, the surviving hits
are considered as real incoming neutrons from the target. In the practical analysis we have also used the
energy loss signals to improve the crosstalk rejection following the procedure in [33].

Fig. 3 (a) Experimental neutron multiplicity distribution for the 6He+n channel before (black) and after (red) crosstalk
elimination. (b) Relative-energy spectrum of 6He decaying into 4He+2n.

Fig. 3a represents the experimental distribution of neutron multiplicity, defined as the number of
neutron hits, before (black) and after (red) the crosstalk rejection for the 6He+n channel. Here, we
requested the coincidence of 6He and recoil proton to exclusively select the one-neutron decay channel
7He→6He+n, so any event with multiplicity≥2 must be a crosstalk. The observed ratio of the remaining
crosstalk events to the total events is ∼0.5%, which is quite small for the multiple neutron detection and
comparable with previous results [33].

The two-neutron decay channel 6He→4He+2n is then analyzed using the same crosstalk filter. Fig. 3b
reports the Erel spectrum of 6He reconstructed from the momenta of 4He and two coincident neutrons. The
low-lying narrow peak at ∼0.8 MeV corresponds to the first excited 2+ state of 6He, in good agreement
with previous measurements [34].

We are now incorporating the crosstalk filter into the analysis of the 7H→t+4n channel. From the
simulation of 7H→t+4n assuming the phase-space decay, the detection efficiency for 4 neutrons is ∼0.6%
at a decay energy of 1 MeV, and we have also estimated that the crosstalk contamination in this four-
neutron channel is within 20%. Tentative analysis also shows that for the identified 8He(p, 2p)7H{t+4n}
events the energy conservation of all involved particles including two recoil protons and four decay neu-
trons is well kept, validating the performance of the full detector setup and the extremely challenging
four-neutron analysis.
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